Dynamic equations of motion for inextensible beams and plates
The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work...
Saved in:
Published in | Archive of applied mechanics (1991) Vol. 92; no. 6; pp. 1929 - 1952 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work indicates that elastic cantilevers are subject to nonlinear inertial and stiffness effects. We review a recently established (quasilinear and nonlocal) cantilevered beam model, and consider some extensions to two spatial dimensions, namely inextensible plates. Our principal configuration is that of a thin, isotropic, homogeneous rectangular plate, clamped on the one edge and free on the remaining three. We proceed through the geometric and elastic modeling to obtain equations of motion via Hamilton’s principle for the appropriately specified energies. We then enforce
effective
inextensibility constraints through Lagrange multipliers. Multiple plate analogs of the established 1D model are obtained, based on assumptions. In total, we present three distinct nonlinear partial differential equation models and, additionally, describe a class of “higher-order” models. Each model has particular advantages and drawbacks for both mathematical and engineering analyses. We conclude with a discussion of the various models, as well as some analytical problems. |
---|---|
AbstractList | The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work indicates that elastic cantilevers are subject to nonlinear inertial and stiffness effects. We review a recently established (quasilinear and nonlocal) cantilevered beam model, and consider some extensions to two spatial dimensions, namely inextensible plates. Our principal configuration is that of a thin, isotropic, homogeneous rectangular plate, clamped on the one edge and free on the remaining three. We proceed through the geometric and elastic modeling to obtain equations of motion via Hamilton’s principle for the appropriately specified energies. We then enforce
effective
inextensibility constraints through Lagrange multipliers. Multiple plate analogs of the established 1D model are obtained, based on assumptions. In total, we present three distinct nonlinear partial differential equation models and, additionally, describe a class of “higher-order” models. Each model has particular advantages and drawbacks for both mathematical and engineering analyses. We conclude with a discussion of the various models, as well as some analytical problems. The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work indicates that elastic cantilevers are subject to nonlinear inertial and stiffness effects. We review a recently established (quasilinear and nonlocal) cantilevered beam model, and consider some extensions to two spatial dimensions, namely inextensible plates. Our principal configuration is that of a thin, isotropic, homogeneous rectangular plate, clamped on the one edge and free on the remaining three. We proceed through the geometric and elastic modeling to obtain equations of motion via Hamilton’s principle for the appropriately specified energies. We then enforce effective inextensibility constraints through Lagrange multipliers. Multiple plate analogs of the established 1D model are obtained, based on assumptions. In total, we present three distinct nonlinear partial differential equation models and, additionally, describe a class of “higher-order” models. Each model has particular advantages and drawbacks for both mathematical and engineering analyses. We conclude with a discussion of the various models, as well as some analytical problems. |
Author | Deliyianni, Maria McHugh, Kevin Dowell, Earl Webster, Justin T. |
Author_xml | – sequence: 1 givenname: Maria surname: Deliyianni fullname: Deliyianni, Maria organization: University of Maryland, Baltimore County – sequence: 2 givenname: Kevin surname: McHugh fullname: McHugh, Kevin organization: Air Force Research Lab, Wright-Patterson AFB – sequence: 3 givenname: Justin T. orcidid: 0000-0002-2443-3789 surname: Webster fullname: Webster, Justin T. email: websterj@umbc.edu organization: University of Maryland, Baltimore County – sequence: 4 givenname: Earl surname: Dowell fullname: Dowell, Earl organization: Duke University |
BookMark | eNp9UE1LAzEQDVLBtvoHPAU8r2aS_crBg9RPKHjRc0g2WUnZTdpkF-y_N-0KgocehpmB9-a9eQs0c94ZhK6B3AIh1V0kJAeeEUpTQVFl1RmaQ87SWtYwQ3PCGc-gYOwCLWLckIQvKJmj-8e9k71tsNmNcrDeRexb3PvDiFsfsHXmezAuWtUZrIzsI5ZO420nBxMv0Xkru2iufvsSfT4_faxes_X7y9vqYZ01DPiQVbxSWkErtVE5lFKXpWkVMMg5VbwgpaRMM5Us6rZuoJJAVM045boBBbpiS3Qz3d0GvxtNHMTGj8ElSUHLEjjneV0kVD2hmuBjDKYVjR2OTw1B2k4AEYewxBSWSGGJY1jiIED_UbfB9jLsT5PYRIoJ7L5M-HN1gvUDqX997w |
CitedBy_id | crossref_primary_10_1007_s00245_021_09798_0 crossref_primary_10_1007_s11071_024_09774_7 crossref_primary_10_1007_s00419_022_02320_0 crossref_primary_10_1007_s11012_024_01821_2 crossref_primary_10_1007_s11071_022_08162_3 |
Cites_doi | 10.1115/DETC2018-85447 10.1115/1.4034117 10.1115/1.4011138 10.1016/j.ymssp.2019.106340 10.1016/j.jfluidstructs.2011.02.003 10.1016/j.jfluidstructs.2012.06.009 10.3934/mine.2019.3.614 10.1115/1.4010053 10.1006/jsvi.1994.1035 10.1017/S002211200800284X 10.1016/j.jsv.2009.04.041 10.1006/jsvi.1999.2257 10.1007/978-0-387-87712-9 10.1006/jfls.1995.1007 10.1137/1.9781611970821 10.1177/1045389X11432656 10.1088/1361-665X/aac8a7 10.1016/S0889-9746(02)00121-4 10.1002/9781119991151 10.2514/1.J053385 10.1115/1.4026800 10.1016/S0025-5564(00)00062-6 10.1115/1.3423720 10.1051/mmnp/2020033 10.1137/17M1140261 10.1016/0022-247X(73)90121-2 10.1088/0951-7715/6/3/007 10.1115/1.4032795 10.1002/9781119038122 10.1007/s00245-021-09798-0 10.1007/978-3-0348-8221-7_11 10.1016/0022-0396(91)90145-Y 10.1016/j.jfluidstructs.2017.09.007 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00419-022-02157-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1432-0681 |
EndPage | 1952 |
ExternalDocumentID | 10_1007_s00419_022_02157_7 |
GrantInformation_xml | – fundername: directorate for mathematical and physical sciences grantid: 1907500; 1907620 funderid: http://dx.doi.org/10.13039/100000086 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W ZMTXR ZY4 _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-797bdb1fadeb416ad66efb131492b9506a23d3b939df8c17a10b83929dc1b1d73 |
IEDL.DBID | U2A |
ISSN | 0939-1533 |
IngestDate | Fri Jul 25 11:03:51 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Tue Jul 01 02:24:25 EDT 2025 Fri Feb 21 02:47:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 74K20 Inextensibility Cantilever Nonlinear elasticity Energy harvesting 74B20 35L77 quasilinear PDE 93A30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-797bdb1fadeb416ad66efb131492b9506a23d3b939df8c17a10b83929dc1b1d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2443-3789 |
PQID | 2661999485 |
PQPubID | 2043580 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2661999485 crossref_citationtrail_10_1007_s00419_022_02157_7 crossref_primary_10_1007_s00419_022_02157_7 springer_journals_10_1007_s00419_022_02157_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Archive of applied mechanics (1991) |
PublicationTitleAbbrev | Arch Appl Mech |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | PaïdoussisMPFluid–Structure Interactions: Slender Structures and Axial Flow, 11998San DiegoAcademic Press Mahran KasemMDowellEHA study of the natural modes of vibration and aeroelastic stability of a plate with a piezoelectric materialSmart Mater. Struct.201827707504310.1088/1361-665X/aac8a7 Levin, D., Dowell, E.: Improving piezoelectric energy harvesting from an aeroelastic system. In: International Forum on Aeroelasticity and Structural Dynamics IFASD, pp. 9–13 (2019) DeliyianniMWebsterJTTheory of solutions for an inextensible cantileverAppl. Math. Optim.20218413451399435689810.1007/s00245-021-09798-0 KochHLasieckaINeumannWRLorenziAHadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systemsEvolution Equations, Semigroups and Functional Analysis2002BaselBirkhäuser19721610.1007/978-3-0348-8221-7_11 Lagnese, J., Lions, J.L.: Modelling analysis and control of thin plates. Recherches en Mathematiques Appliques (1988) TangDMDowellEHAeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plateJ. Fluids Struct.201876143610.1016/j.jfluidstructs.2017.09.007 TangDGibbsSCDowellEHNonlinear aeroelastic analysis with inextensible plate theory including correlation with experimentAIAA J.20155351299130810.2514/1.J053385 Hodges, D.H., Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA technical note TN D-7818 (1974) LeissaArthur WVibration of Plates1969WashingtonScientific and Technical Information Division, NASA DeliyianniMGudibandaVHowellJWebsterJTLarge deflections of inextensible cantilevers: modeling, theory, and simulationMath. Model. Nat. Phenom.20201544415314910.1051/mmnp/2020033 BergerHA new approach to the analysis of large deflections of platesJ. Appl. Mech.19552219554654727340710.1115/1.4011138 McHugh, K.A., Dowell, E.H.: Nonlinear response of an inextensible, cantilevered beam subjected to a nonconservative follower force. J. Comput. Nonlinear Dyn. 14(3) (2019). https://doi.org/10.1115/DETC2018-85447 HowellJHuneycuttKWebsterJTWilderSA thorough look at the (in) stability of piston-theoretic beamsMath. Eng.201913614647413680610.3934/mine.2019.3.614 Sayag, M.R., Dowell, E.H.: Linear versus nonlinear response of a cantilevered beam under harmonic base excitation: theory and experiment. J. Appl. Mech. 83(10), 101002-1–101002-8 (2016) LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM10.1137/1.9781611970821 ChueshovILasieckaIVon Karman Evolution Equations2010BerlinSpringer10.1007/978-0-387-87712-9 BolotinVVNonconservative Problems of Elastic Stability1963OxfordPergamon Press0121.41305 ShubovMAShubovVIAsymptotic and spectral analysis and control problems for mathematical model of piezoelectric energy harvesterMath. Eng. Sci. Aerosp.2016722492681371.74132 EdenAMilaniAJExponential attractors for extensible beam equationsNonlinearity199363457122374310.1088/0951-7715/6/3/007 Aittokallio, T., Gyllenberg, M., Polo, O.: A model of a snorer’s upper airway. Math. Biosci. 170(1), 79–90 (2001) GibbsSCWangIDowellETheory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flowJ. Fluids Struct.201234688310.1016/j.jfluidstructs.2012.06.009 LagneseJELeugeringGUniform stabilization of a nonlinear beam by nonlinear boundary feedbackJ. Differ. Equ.1991912355388111118010.1016/0022-0396(91)90145-Y BassilySFDickinsonSMOn the use of beam functions for problems of plates involving free edgesTrans. ASME1975197585886410.1115/1.3423720 HowellJToundykovDWebsterJTA cantilevered extensible beam in axial flow: semigroup solutions and post-flutter regimesSIAM J. Math. Anal.201850220482085378490310.1137/17M1140261 BlevinsRDFormulas for Dynamics, Acoustics and Vibration2015LondonWiley10.1002/9781119038122 HanSMBenaroyaHWeiTDynamics of transversely vibrating beams using four engineering theoriesJ. Sound Vib.1999225593598810.1006/jsvi.1999.2257 Tang, D., Zhao, M., Dowell, E.H.: Inextensible beam and plate theory: computational analysis and comparison with experiment. J. Appl. Mech. 81(6), 061009-1–061009-10 (2014) Woinowsky-KriegerSThe effect of an axial force on the vibration of hinged barsJ. Appl. Mech.195017135363420210.1115/1.4010053 CiarletPRabierPLes Equations de Von Karman2006BerlinSpringer0433.73019 McHugh, K.A.: Large deflection inextensible beams and plates and their responses to nonconservative forces: theory and computations. Doctoral dissertation, Duke University (2020) TangDMYamamotoHDowellEHFlutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flowJ. Fluids Struct.200317222524210.1016/S0889-9746(02)00121-4 DowellEMcHughKEquations of motion for an inextensible beam undergoing large deflectionsJ. Appl. Mech.201683505100710.1115/1.4032795 ErturkEInmanDPiezoelectric Energy Harvesting2011LondonWiley10.1002/9781119991151 NovozhilovVVFoundations of the Nonlinear Theory of Elasticity1999North ChelmsfordCourier Corporation Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Doctoral dissertation, Virginia Tech University (2003) SayagMRDowellEHKerschenGNonlinear structural, inertial and damping effects in an oscillating cantilever beamNonlinear Dynamics2019ChamSpringer387400 AntmanSNonlinear Problems of Elasticity20052BerlinSpringer1098.74001 HuangLFlutter of cantilevered plates in axial flowJ. Fluids Struct.19959212714710.1006/jfls.1995.1007 DowellEA Modern Course in Aeroelasticity2014BerlinSpringer1297.74001 CulverDMcHughKDowellEAn assessment and extension of geometrically nonlinear beam theoriesMech. Syst. Signal Process.201913410634010.1016/j.ymssp.2019.106340 BallJMInitial-boundary value problems for an extensible beamJ. Math. Anal. Appl.1973421619031944010.1016/0022-247X(73)90121-2 DunnmonJAStantonSCMannBPDowellEHPower extraction from aeroelastic limit cycle oscillationsJ. Fluids Struct.20112781182119810.1016/j.jfluidstructs.2011.02.003 SemlerCLiGXPaïdoussisMPThe non-linear equations of motion of pipes conveying fluidJ. Sound Vib.1994169557759910.1006/jsvi.1994.1035 EloyCLagrangeRSouilliezCSchouveilerLAeroelastic instability of cantilevered flexible plates in uniform flowJ. Fluid Mech.200861197106245676110.1017/S002211200800284X TangLPaïdoussisMPJiangJCantilevered flexible plates in axial flow: energy transfer and the concept of flutter-millJ. Sound Vib.20093261–226327610.1016/j.jsv.2009.04.041 StantonSCErturkAMannBPDowellEHInmanDJNonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effectsJ. Intell. Mater. Syst. Struct.201223218319910.1177/1045389X11432656 E Dowell (2157_CR13) 2014 2157_CR29 I Chueshov (2157_CR8) 2010 M Deliyianni (2157_CR11) 2021; 84 VV Bolotin (2157_CR7) 1963 M Mahran Kasem (2157_CR25) 2018; 27 MR Sayag (2157_CR38) 2019 C Semler (2157_CR39) 1994; 169 SF Bassily (2157_CR4) 1975; 1975 J Howell (2157_CR23) 2018; 50 Arthur W Leissa (2157_CR31) 1969 J Howell (2157_CR22) 2019; 1 MP Païdoussis (2157_CR36) 1998 SC Stanton (2157_CR41) 2012; 23 M Deliyianni (2157_CR12) 2020; 15 D Tang (2157_CR42) 2015; 53 MA Shubov (2157_CR40) 2016; 7 2157_CR45 2157_CR21 P Ciarlet (2157_CR9) 2006 D Culver (2157_CR10) 2019; 134 JE Lagnese (2157_CR28) 1991; 91 DM Tang (2157_CR43) 2018; 76 C Eloy (2157_CR17) 2008; 611 L Tang (2157_CR46) 2009; 326 L Huang (2157_CR24) 1995; 9 JM Ball (2157_CR3) 1973; 42 RD Blevins (2157_CR6) 2015 2157_CR37 JA Dunnmon (2157_CR15) 2011; 27 H Berger (2157_CR5) 1955; 22 S Antman (2157_CR2) 2005 SM Han (2157_CR20) 1999; 225 DM Tang (2157_CR44) 2003; 17 S Woinowsky-Krieger (2157_CR47) 1950; 17 E Dowell (2157_CR14) 2016; 83 SC Gibbs (2157_CR19) 2012; 34 H Koch (2157_CR26) 2002 2157_CR1 A Eden (2157_CR16) 1993; 6 E Erturk (2157_CR18) 2011 2157_CR34 2157_CR32 2157_CR33 2157_CR30 VV Novozhilov (2157_CR35) 1999 J Lagnese (2157_CR27) 1989 |
References_xml | – reference: BlevinsRDFormulas for Dynamics, Acoustics and Vibration2015LondonWiley10.1002/9781119038122 – reference: NovozhilovVVFoundations of the Nonlinear Theory of Elasticity1999North ChelmsfordCourier Corporation – reference: BolotinVVNonconservative Problems of Elastic Stability1963OxfordPergamon Press0121.41305 – reference: PaïdoussisMPFluid–Structure Interactions: Slender Structures and Axial Flow, 11998San DiegoAcademic Press – reference: DunnmonJAStantonSCMannBPDowellEHPower extraction from aeroelastic limit cycle oscillationsJ. Fluids Struct.20112781182119810.1016/j.jfluidstructs.2011.02.003 – reference: HuangLFlutter of cantilevered plates in axial flowJ. Fluids Struct.19959212714710.1006/jfls.1995.1007 – reference: StantonSCErturkAMannBPDowellEHInmanDJNonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effectsJ. Intell. Mater. Syst. Struct.201223218319910.1177/1045389X11432656 – reference: DowellEMcHughKEquations of motion for an inextensible beam undergoing large deflectionsJ. Appl. Mech.201683505100710.1115/1.4032795 – reference: EdenAMilaniAJExponential attractors for extensible beam equationsNonlinearity199363457122374310.1088/0951-7715/6/3/007 – reference: CiarletPRabierPLes Equations de Von Karman2006BerlinSpringer0433.73019 – reference: McHugh, K.A.: Large deflection inextensible beams and plates and their responses to nonconservative forces: theory and computations. Doctoral dissertation, Duke University (2020) – reference: ChueshovILasieckaIVon Karman Evolution Equations2010BerlinSpringer10.1007/978-0-387-87712-9 – reference: CulverDMcHughKDowellEAn assessment and extension of geometrically nonlinear beam theoriesMech. Syst. Signal Process.201913410634010.1016/j.ymssp.2019.106340 – reference: KochHLasieckaINeumannWRLorenziAHadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systemsEvolution Equations, Semigroups and Functional Analysis2002BaselBirkhäuser19721610.1007/978-3-0348-8221-7_11 – reference: LagneseJELeugeringGUniform stabilization of a nonlinear beam by nonlinear boundary feedbackJ. Differ. Equ.1991912355388111118010.1016/0022-0396(91)90145-Y – reference: TangDMDowellEHAeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plateJ. Fluids Struct.201876143610.1016/j.jfluidstructs.2017.09.007 – reference: DowellEA Modern Course in Aeroelasticity2014BerlinSpringer1297.74001 – reference: AntmanSNonlinear Problems of Elasticity20052BerlinSpringer1098.74001 – reference: BergerHA new approach to the analysis of large deflections of platesJ. Appl. Mech.19552219554654727340710.1115/1.4011138 – reference: TangDMYamamotoHDowellEHFlutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flowJ. Fluids Struct.200317222524210.1016/S0889-9746(02)00121-4 – reference: Hodges, D.H., Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA technical note TN D-7818 (1974) – reference: GibbsSCWangIDowellETheory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flowJ. Fluids Struct.201234688310.1016/j.jfluidstructs.2012.06.009 – reference: BallJMInitial-boundary value problems for an extensible beamJ. Math. Anal. Appl.1973421619031944010.1016/0022-247X(73)90121-2 – reference: HanSMBenaroyaHWeiTDynamics of transversely vibrating beams using four engineering theoriesJ. Sound Vib.1999225593598810.1006/jsvi.1999.2257 – reference: Sayag, M.R., Dowell, E.H.: Linear versus nonlinear response of a cantilevered beam under harmonic base excitation: theory and experiment. J. Appl. Mech. 83(10), 101002-1–101002-8 (2016) – reference: BassilySFDickinsonSMOn the use of beam functions for problems of plates involving free edgesTrans. ASME1975197585886410.1115/1.3423720 – reference: DeliyianniMGudibandaVHowellJWebsterJTLarge deflections of inextensible cantilevers: modeling, theory, and simulationMath. Model. Nat. Phenom.20201544415314910.1051/mmnp/2020033 – reference: HowellJHuneycuttKWebsterJTWilderSA thorough look at the (in) stability of piston-theoretic beamsMath. Eng.201913614647413680610.3934/mine.2019.3.614 – reference: SemlerCLiGXPaïdoussisMPThe non-linear equations of motion of pipes conveying fluidJ. Sound Vib.1994169557759910.1006/jsvi.1994.1035 – reference: LeissaArthur WVibration of Plates1969WashingtonScientific and Technical Information Division, NASA – reference: TangDGibbsSCDowellEHNonlinear aeroelastic analysis with inextensible plate theory including correlation with experimentAIAA J.20155351299130810.2514/1.J053385 – reference: Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Doctoral dissertation, Virginia Tech University (2003) – reference: ErturkEInmanDPiezoelectric Energy Harvesting2011LondonWiley10.1002/9781119991151 – reference: ShubovMAShubovVIAsymptotic and spectral analysis and control problems for mathematical model of piezoelectric energy harvesterMath. Eng. Sci. Aerosp.2016722492681371.74132 – reference: Aittokallio, T., Gyllenberg, M., Polo, O.: A model of a snorer’s upper airway. Math. Biosci. 170(1), 79–90 (2001) – reference: Lagnese, J., Lions, J.L.: Modelling analysis and control of thin plates. Recherches en Mathematiques Appliques (1988) – reference: Tang, D., Zhao, M., Dowell, E.H.: Inextensible beam and plate theory: computational analysis and comparison with experiment. J. Appl. Mech. 81(6), 061009-1–061009-10 (2014) – reference: HowellJToundykovDWebsterJTA cantilevered extensible beam in axial flow: semigroup solutions and post-flutter regimesSIAM J. Math. Anal.201850220482085378490310.1137/17M1140261 – reference: SayagMRDowellEHKerschenGNonlinear structural, inertial and damping effects in an oscillating cantilever beamNonlinear Dynamics2019ChamSpringer387400 – reference: TangLPaïdoussisMPJiangJCantilevered flexible plates in axial flow: energy transfer and the concept of flutter-millJ. Sound Vib.20093261–226327610.1016/j.jsv.2009.04.041 – reference: Levin, D., Dowell, E.: Improving piezoelectric energy harvesting from an aeroelastic system. In: International Forum on Aeroelasticity and Structural Dynamics IFASD, pp. 9–13 (2019) – reference: DeliyianniMWebsterJTTheory of solutions for an inextensible cantileverAppl. Math. Optim.20218413451399435689810.1007/s00245-021-09798-0 – reference: McHugh, K.A., Dowell, E.H.: Nonlinear response of an inextensible, cantilevered beam subjected to a nonconservative follower force. J. Comput. Nonlinear Dyn. 14(3) (2019). https://doi.org/10.1115/DETC2018-85447 – reference: EloyCLagrangeRSouilliezCSchouveilerLAeroelastic instability of cantilevered flexible plates in uniform flowJ. Fluid Mech.200861197106245676110.1017/S002211200800284X – reference: Woinowsky-KriegerSThe effect of an axial force on the vibration of hinged barsJ. Appl. Mech.195017135363420210.1115/1.4010053 – reference: LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM10.1137/1.9781611970821 – reference: Mahran KasemMDowellEHA study of the natural modes of vibration and aeroelastic stability of a plate with a piezoelectric materialSmart Mater. Struct.201827707504310.1088/1361-665X/aac8a7 – volume-title: Nonconservative Problems of Elastic Stability year: 1963 ident: 2157_CR7 – ident: 2157_CR30 – ident: 2157_CR32 – ident: 2157_CR34 doi: 10.1115/DETC2018-85447 – ident: 2157_CR37 doi: 10.1115/1.4034117 – volume: 22 start-page: 465 issue: 1955 year: 1955 ident: 2157_CR5 publication-title: J. Appl. Mech. doi: 10.1115/1.4011138 – volume: 134 start-page: 106340 year: 2019 ident: 2157_CR10 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106340 – volume-title: Nonlinear Problems of Elasticity year: 2005 ident: 2157_CR2 – volume: 27 start-page: 1182 issue: 8 year: 2011 ident: 2157_CR15 publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2011.02.003 – volume: 34 start-page: 68 year: 2012 ident: 2157_CR19 publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2012.06.009 – volume: 1 start-page: 614 issue: 3 year: 2019 ident: 2157_CR22 publication-title: Math. Eng. doi: 10.3934/mine.2019.3.614 – volume: 17 start-page: 35 issue: 1 year: 1950 ident: 2157_CR47 publication-title: J. Appl. Mech. doi: 10.1115/1.4010053 – ident: 2157_CR21 – volume: 169 start-page: 577 issue: 5 year: 1994 ident: 2157_CR39 publication-title: J. Sound Vib. doi: 10.1006/jsvi.1994.1035 – volume: 611 start-page: 97 year: 2008 ident: 2157_CR17 publication-title: J. Fluid Mech. doi: 10.1017/S002211200800284X – start-page: 387 volume-title: Nonlinear Dynamics year: 2019 ident: 2157_CR38 – volume: 326 start-page: 263 issue: 1–2 year: 2009 ident: 2157_CR46 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.04.041 – volume-title: A Modern Course in Aeroelasticity year: 2014 ident: 2157_CR13 – volume: 225 start-page: 935 issue: 5 year: 1999 ident: 2157_CR20 publication-title: J. Sound Vib. doi: 10.1006/jsvi.1999.2257 – volume-title: Von Karman Evolution Equations year: 2010 ident: 2157_CR8 doi: 10.1007/978-0-387-87712-9 – volume: 9 start-page: 127 issue: 2 year: 1995 ident: 2157_CR24 publication-title: J. Fluids Struct. doi: 10.1006/jfls.1995.1007 – ident: 2157_CR29 – volume: 7 start-page: 249 issue: 2 year: 2016 ident: 2157_CR40 publication-title: Math. Eng. Sci. Aerosp. – volume-title: Boundary Stabilization of Thin Plates year: 1989 ident: 2157_CR27 doi: 10.1137/1.9781611970821 – ident: 2157_CR33 – volume-title: Foundations of the Nonlinear Theory of Elasticity year: 1999 ident: 2157_CR35 – volume: 23 start-page: 183 issue: 2 year: 2012 ident: 2157_CR41 publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11432656 – volume: 27 start-page: 075043 issue: 7 year: 2018 ident: 2157_CR25 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aac8a7 – volume: 17 start-page: 225 issue: 2 year: 2003 ident: 2157_CR44 publication-title: J. Fluids Struct. doi: 10.1016/S0889-9746(02)00121-4 – volume-title: Piezoelectric Energy Harvesting year: 2011 ident: 2157_CR18 doi: 10.1002/9781119991151 – volume: 53 start-page: 1299 issue: 5 year: 2015 ident: 2157_CR42 publication-title: AIAA J. doi: 10.2514/1.J053385 – ident: 2157_CR45 doi: 10.1115/1.4026800 – ident: 2157_CR1 doi: 10.1016/S0025-5564(00)00062-6 – volume: 1975 start-page: 858 year: 1975 ident: 2157_CR4 publication-title: Trans. ASME doi: 10.1115/1.3423720 – volume: 15 start-page: 44 year: 2020 ident: 2157_CR12 publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/2020033 – volume: 50 start-page: 2048 issue: 2 year: 2018 ident: 2157_CR23 publication-title: SIAM J. Math. Anal. doi: 10.1137/17M1140261 – volume: 42 start-page: 61 issue: 1 year: 1973 ident: 2157_CR3 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(73)90121-2 – volume: 6 start-page: 457 issue: 3 year: 1993 ident: 2157_CR16 publication-title: Nonlinearity doi: 10.1088/0951-7715/6/3/007 – volume: 83 start-page: 051007 issue: 5 year: 2016 ident: 2157_CR14 publication-title: J. Appl. Mech. doi: 10.1115/1.4032795 – volume-title: Formulas for Dynamics, Acoustics and Vibration year: 2015 ident: 2157_CR6 doi: 10.1002/9781119038122 – volume: 84 start-page: 1345 year: 2021 ident: 2157_CR11 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-021-09798-0 – volume-title: Vibration of Plates year: 1969 ident: 2157_CR31 – start-page: 197 volume-title: Evolution Equations, Semigroups and Functional Analysis year: 2002 ident: 2157_CR26 doi: 10.1007/978-3-0348-8221-7_11 – volume: 91 start-page: 355 issue: 2 year: 1991 ident: 2157_CR28 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(91)90145-Y – volume: 76 start-page: 14 year: 2018 ident: 2157_CR43 publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.09.007 – volume-title: Les Equations de Von Karman year: 2006 ident: 2157_CR9 – volume-title: Fluid–Structure Interactions: Slender Structures and Axial Flow, 1 year: 1998 ident: 2157_CR36 |
SSID | ssj0004520 |
Score | 2.3006582 |
Snippet | The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1929 |
SubjectTerms | Cantilever beams Cantilever plates Classical Mechanics Engineering Equations of motion Lagrange multiplier Mathematical models Nonlinear differential equations One dimensional models Original Partial differential equations Rectangular plates Stiffness Theoretical and Applied Mechanics |
Title | Dynamic equations of motion for inextensible beams and plates |
URI | https://link.springer.com/article/10.1007/s00419-022-02157-7 https://www.proquest.com/docview/2661999485 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUnlgA0tJHNvJwNDSlgoEE5XKFNmxPZW2kCLx87GdpBQESEwZcrGUF1_u2b57B3BOeKAYCwxOlSA4joz1uYQlOMh5GjFlGbfX7rx_YKNxfDuhk6oorKiz3esjSf-nXhW7OWmoFLvscxenOOab0KR27e4SucZRd10j3O-spCTFjs1UpTI_j_E1HH1yzG_Hoj7aDHdhp6KJqFt-1z3Y0LN92F4TDzyAq37ZTB7pl1Kuu0Bzg8quPMhSUWRN331-upxqJLV4LpCYKbSYOnp5COPh4PF6hKtmCDi3XrLEPOVSydAIpaUlUcIirI0MiV3hRDKlARMRUUTal1YmyUMuwkB68qPyUIaKkyNozOYzfQxI0SAwxKTU5DQm0ggbpHSSayYoSyRhLQhrTLK8Ugp3DSum2Urj2OOYWRwzj2PGW3CxemZR6mT8ad2uoc4qnykyRxUsXY0T2oLLGv7P27-PdvI_81PYivwMcFspbWgsX9_0mWUWS9mBZrfX7w3d9ebpbtDxE-sDtLnEzQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywgaUkTuxkYKiAqkDbqZW6WXZsT6UtpEj8fGwnKQUBEnMulvJyl3ux794BXBIWKEoDgzMlCI4jY2MupSkOcpZFVFnG7bU7-wPaHcWP42RcNYUVdbV7fSTpv9TLZjcnDZVhV33u8hTDbB02LBlInS-PovaqRrjfWclIhh2bqVplfl7jazr65JjfjkV9tunswk5FE1G7fK97sKan-7C9Ih54ADd35TB5pF9Kue4CzQwqp_IgS0WRNX339elyopHU4rlAYqrQfOLo5SGMOvfD2y6uhiHg3EbJArOMSSVDI5SWlkQJi7A2MiT2DyeSWRJQERFFpH1oZdI8ZCIMpCc_Kg9lqBg5gsZ0NtXHgFQSBIaYLDF5EhNphE1SOs01FQlNJaFNCGtMeF4phbuBFRO-1Dj2OHKLI_c4ctaEq-U981In40_rVg01r2Km4I4qWLoap0kTrmv4Py__vtrJ_8wvYLM77Pd472HwdApbkfcGt63Sgsbi9U2fWZaxkOfeqT4AyzDEug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGxKcoFPDABlaTOLHjgaGiVOWrYqBSN8uO7amkhQaJn4_tJG1BgMSciyW_3Ole7Lt3AJxjGihCAoOYEhjFkbExl5IUBRllEVGWcXvtzscB6Q_ju1EyWuri99Xu9ZVk2dPgVJryoj1Vpj1vfHMyUQy5SnSXsyiiq2Atdt3A1qOHUWdZL9yfsjDMkGM2VdvMz2t8TU0LvvntitRnnt422KooI-yU33gHrOh8F2wuCQnugatuOVge6tdSunsGJwaWE3qgpaXQmn74WnU51lBq8TKDIldwOnZUcx8MezfP131UDUZAmY2YAlFGpZKhEUpLS6iERVsbGWL7txNJlgRERFhhaTetTJqFVISB9ERIZaEMFcUHoJFPcn0IoEqCwGDDEpMlMZZG2ISl00wTkZBUYtIEYY0JzyrVcDe8YsznesceR25x5B5HTpvgYv7OtNTM-NO6VUPNq_iZcUcbLHWN06QJLmv4F49_X-3of-ZnYP2p2-MPt4P7Y7AReWdwJywt0Cje3vWJJRyFPPU-9Ql5pMjt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+equations+of+motion+for+inextensible+beams+and+plates&rft.jtitle=Archive+of+applied+mechanics+%281991%29&rft.au=Deliyianni%2C+Maria&rft.au=McHugh%2C+Kevin&rft.au=Webster%2C+Justin+T&rft.au=Dowell%2C+Earl&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0939-1533&rft.eissn=1432-0681&rft.volume=92&rft.issue=6&rft.spage=1929&rft.epage=1952&rft_id=info:doi/10.1007%2Fs00419-022-02157-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-1533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-1533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-1533&client=summon |