Dynamic equations of motion for inextensible beams and plates

The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work...

Full description

Saved in:
Bibliographic Details
Published inArchive of applied mechanics (1991) Vol. 92; no. 6; pp. 1929 - 1952
Main Authors Deliyianni, Maria, McHugh, Kevin, Webster, Justin T., Dowell, Earl
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work indicates that elastic cantilevers are subject to nonlinear inertial and stiffness effects. We review a recently established (quasilinear and nonlocal) cantilevered beam model, and consider some extensions to two spatial dimensions, namely inextensible plates. Our principal configuration is that of a thin, isotropic, homogeneous rectangular plate, clamped on the one edge and free on the remaining three. We proceed through the geometric and elastic modeling to obtain equations of motion via Hamilton’s principle for the appropriately specified energies. We then enforce effective inextensibility constraints through Lagrange multipliers. Multiple plate analogs of the established 1D model are obtained, based on assumptions. In total, we present three distinct nonlinear partial differential equation models and, additionally, describe a class of “higher-order” models. Each model has particular advantages and drawbacks for both mathematical and engineering analyses. We conclude with a discussion of the various models, as well as some analytical problems.
AbstractList The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work indicates that elastic cantilevers are subject to nonlinear inertial and stiffness effects. We review a recently established (quasilinear and nonlocal) cantilevered beam model, and consider some extensions to two spatial dimensions, namely inextensible plates. Our principal configuration is that of a thin, isotropic, homogeneous rectangular plate, clamped on the one edge and free on the remaining three. We proceed through the geometric and elastic modeling to obtain equations of motion via Hamilton’s principle for the appropriately specified energies. We then enforce effective inextensibility constraints through Lagrange multipliers. Multiple plate analogs of the established 1D model are obtained, based on assumptions. In total, we present three distinct nonlinear partial differential equation models and, additionally, describe a class of “higher-order” models. Each model has particular advantages and drawbacks for both mathematical and engineering analyses. We conclude with a discussion of the various models, as well as some analytical problems.
The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect of stretching on bending, and these are less applicable to cantilevers. Recent experimental work indicates that elastic cantilevers are subject to nonlinear inertial and stiffness effects. We review a recently established (quasilinear and nonlocal) cantilevered beam model, and consider some extensions to two spatial dimensions, namely inextensible plates. Our principal configuration is that of a thin, isotropic, homogeneous rectangular plate, clamped on the one edge and free on the remaining three. We proceed through the geometric and elastic modeling to obtain equations of motion via Hamilton’s principle for the appropriately specified energies. We then enforce effective inextensibility constraints through Lagrange multipliers. Multiple plate analogs of the established 1D model are obtained, based on assumptions. In total, we present three distinct nonlinear partial differential equation models and, additionally, describe a class of “higher-order” models. Each model has particular advantages and drawbacks for both mathematical and engineering analyses. We conclude with a discussion of the various models, as well as some analytical problems.
Author Deliyianni, Maria
McHugh, Kevin
Dowell, Earl
Webster, Justin T.
Author_xml – sequence: 1
  givenname: Maria
  surname: Deliyianni
  fullname: Deliyianni, Maria
  organization: University of Maryland, Baltimore County
– sequence: 2
  givenname: Kevin
  surname: McHugh
  fullname: McHugh, Kevin
  organization: Air Force Research Lab, Wright-Patterson AFB
– sequence: 3
  givenname: Justin T.
  orcidid: 0000-0002-2443-3789
  surname: Webster
  fullname: Webster, Justin T.
  email: websterj@umbc.edu
  organization: University of Maryland, Baltimore County
– sequence: 4
  givenname: Earl
  surname: Dowell
  fullname: Dowell, Earl
  organization: Duke University
BookMark eNp9UE1LAzEQDVLBtvoHPAU8r2aS_crBg9RPKHjRc0g2WUnZTdpkF-y_N-0KgocehpmB9-a9eQs0c94ZhK6B3AIh1V0kJAeeEUpTQVFl1RmaQ87SWtYwQ3PCGc-gYOwCLWLckIQvKJmj-8e9k71tsNmNcrDeRexb3PvDiFsfsHXmezAuWtUZrIzsI5ZO420nBxMv0Xkru2iufvsSfT4_faxes_X7y9vqYZ01DPiQVbxSWkErtVE5lFKXpWkVMMg5VbwgpaRMM5Us6rZuoJJAVM045boBBbpiS3Qz3d0GvxtNHMTGj8ElSUHLEjjneV0kVD2hmuBjDKYVjR2OTw1B2k4AEYewxBSWSGGJY1jiIED_UbfB9jLsT5PYRIoJ7L5M-HN1gvUDqX997w
CitedBy_id crossref_primary_10_1007_s00245_021_09798_0
crossref_primary_10_1007_s11071_024_09774_7
crossref_primary_10_1007_s00419_022_02320_0
crossref_primary_10_1007_s11012_024_01821_2
crossref_primary_10_1007_s11071_022_08162_3
Cites_doi 10.1115/DETC2018-85447
10.1115/1.4034117
10.1115/1.4011138
10.1016/j.ymssp.2019.106340
10.1016/j.jfluidstructs.2011.02.003
10.1016/j.jfluidstructs.2012.06.009
10.3934/mine.2019.3.614
10.1115/1.4010053
10.1006/jsvi.1994.1035
10.1017/S002211200800284X
10.1016/j.jsv.2009.04.041
10.1006/jsvi.1999.2257
10.1007/978-0-387-87712-9
10.1006/jfls.1995.1007
10.1137/1.9781611970821
10.1177/1045389X11432656
10.1088/1361-665X/aac8a7
10.1016/S0889-9746(02)00121-4
10.1002/9781119991151
10.2514/1.J053385
10.1115/1.4026800
10.1016/S0025-5564(00)00062-6
10.1115/1.3423720
10.1051/mmnp/2020033
10.1137/17M1140261
10.1016/0022-247X(73)90121-2
10.1088/0951-7715/6/3/007
10.1115/1.4032795
10.1002/9781119038122
10.1007/s00245-021-09798-0
10.1007/978-3-0348-8221-7_11
10.1016/0022-0396(91)90145-Y
10.1016/j.jfluidstructs.2017.09.007
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s00419-022-02157-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-0681
EndPage 1952
ExternalDocumentID 10_1007_s00419_022_02157_7
GrantInformation_xml – fundername: directorate for mathematical and physical sciences
  grantid: 1907500; 1907620
  funderid: http://dx.doi.org/10.13039/100000086
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
ZMTXR
ZY4
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-797bdb1fadeb416ad66efb131492b9506a23d3b939df8c17a10b83929dc1b1d73
IEDL.DBID U2A
ISSN 0939-1533
IngestDate Fri Jul 25 11:03:51 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Tue Jul 01 02:24:25 EDT 2025
Fri Feb 21 02:47:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 74K20
Inextensibility
Cantilever
Nonlinear elasticity
Energy harvesting
74B20
35L77
quasilinear PDE
93A30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-797bdb1fadeb416ad66efb131492b9506a23d3b939df8c17a10b83929dc1b1d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2443-3789
PQID 2661999485
PQPubID 2043580
PageCount 24
ParticipantIDs proquest_journals_2661999485
crossref_citationtrail_10_1007_s00419_022_02157_7
crossref_primary_10_1007_s00419_022_02157_7
springer_journals_10_1007_s00419_022_02157_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Archive of applied mechanics (1991)
PublicationTitleAbbrev Arch Appl Mech
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References PaïdoussisMPFluid–Structure Interactions: Slender Structures and Axial Flow, 11998San DiegoAcademic Press
Mahran KasemMDowellEHA study of the natural modes of vibration and aeroelastic stability of a plate with a piezoelectric materialSmart Mater. Struct.201827707504310.1088/1361-665X/aac8a7
Levin, D., Dowell, E.: Improving piezoelectric energy harvesting from an aeroelastic system. In: International Forum on Aeroelasticity and Structural Dynamics IFASD, pp. 9–13 (2019)
DeliyianniMWebsterJTTheory of solutions for an inextensible cantileverAppl. Math. Optim.20218413451399435689810.1007/s00245-021-09798-0
KochHLasieckaINeumannWRLorenziAHadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systemsEvolution Equations, Semigroups and Functional Analysis2002BaselBirkhäuser19721610.1007/978-3-0348-8221-7_11
Lagnese, J., Lions, J.L.: Modelling analysis and control of thin plates. Recherches en Mathematiques Appliques (1988)
TangDMDowellEHAeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plateJ. Fluids Struct.201876143610.1016/j.jfluidstructs.2017.09.007
TangDGibbsSCDowellEHNonlinear aeroelastic analysis with inextensible plate theory including correlation with experimentAIAA J.20155351299130810.2514/1.J053385
Hodges, D.H., Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA technical note TN D-7818 (1974)
LeissaArthur WVibration of Plates1969WashingtonScientific and Technical Information Division, NASA
DeliyianniMGudibandaVHowellJWebsterJTLarge deflections of inextensible cantilevers: modeling, theory, and simulationMath. Model. Nat. Phenom.20201544415314910.1051/mmnp/2020033
BergerHA new approach to the analysis of large deflections of platesJ. Appl. Mech.19552219554654727340710.1115/1.4011138
McHugh, K.A., Dowell, E.H.: Nonlinear response of an inextensible, cantilevered beam subjected to a nonconservative follower force. J. Comput. Nonlinear Dyn. 14(3) (2019). https://doi.org/10.1115/DETC2018-85447
HowellJHuneycuttKWebsterJTWilderSA thorough look at the (in) stability of piston-theoretic beamsMath. Eng.201913614647413680610.3934/mine.2019.3.614
Sayag, M.R., Dowell, E.H.: Linear versus nonlinear response of a cantilevered beam under harmonic base excitation: theory and experiment. J. Appl. Mech. 83(10), 101002-1–101002-8 (2016)
LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM10.1137/1.9781611970821
ChueshovILasieckaIVon Karman Evolution Equations2010BerlinSpringer10.1007/978-0-387-87712-9
BolotinVVNonconservative Problems of Elastic Stability1963OxfordPergamon Press0121.41305
ShubovMAShubovVIAsymptotic and spectral analysis and control problems for mathematical model of piezoelectric energy harvesterMath. Eng. Sci. Aerosp.2016722492681371.74132
EdenAMilaniAJExponential attractors for extensible beam equationsNonlinearity199363457122374310.1088/0951-7715/6/3/007
Aittokallio, T., Gyllenberg, M., Polo, O.: A model of a snorer’s upper airway. Math. Biosci. 170(1), 79–90 (2001)
GibbsSCWangIDowellETheory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flowJ. Fluids Struct.201234688310.1016/j.jfluidstructs.2012.06.009
LagneseJELeugeringGUniform stabilization of a nonlinear beam by nonlinear boundary feedbackJ. Differ. Equ.1991912355388111118010.1016/0022-0396(91)90145-Y
BassilySFDickinsonSMOn the use of beam functions for problems of plates involving free edgesTrans. ASME1975197585886410.1115/1.3423720
HowellJToundykovDWebsterJTA cantilevered extensible beam in axial flow: semigroup solutions and post-flutter regimesSIAM J. Math. Anal.201850220482085378490310.1137/17M1140261
BlevinsRDFormulas for Dynamics, Acoustics and Vibration2015LondonWiley10.1002/9781119038122
HanSMBenaroyaHWeiTDynamics of transversely vibrating beams using four engineering theoriesJ. Sound Vib.1999225593598810.1006/jsvi.1999.2257
Tang, D., Zhao, M., Dowell, E.H.: Inextensible beam and plate theory: computational analysis and comparison with experiment. J. Appl. Mech. 81(6), 061009-1–061009-10 (2014)
Woinowsky-KriegerSThe effect of an axial force on the vibration of hinged barsJ. Appl. Mech.195017135363420210.1115/1.4010053
CiarletPRabierPLes Equations de Von Karman2006BerlinSpringer0433.73019
McHugh, K.A.: Large deflection inextensible beams and plates and their responses to nonconservative forces: theory and computations. Doctoral dissertation, Duke University (2020)
TangDMYamamotoHDowellEHFlutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flowJ. Fluids Struct.200317222524210.1016/S0889-9746(02)00121-4
DowellEMcHughKEquations of motion for an inextensible beam undergoing large deflectionsJ. Appl. Mech.201683505100710.1115/1.4032795
ErturkEInmanDPiezoelectric Energy Harvesting2011LondonWiley10.1002/9781119991151
NovozhilovVVFoundations of the Nonlinear Theory of Elasticity1999North ChelmsfordCourier Corporation
Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Doctoral dissertation, Virginia Tech University (2003)
SayagMRDowellEHKerschenGNonlinear structural, inertial and damping effects in an oscillating cantilever beamNonlinear Dynamics2019ChamSpringer387400
AntmanSNonlinear Problems of Elasticity20052BerlinSpringer1098.74001
HuangLFlutter of cantilevered plates in axial flowJ. Fluids Struct.19959212714710.1006/jfls.1995.1007
DowellEA Modern Course in Aeroelasticity2014BerlinSpringer1297.74001
CulverDMcHughKDowellEAn assessment and extension of geometrically nonlinear beam theoriesMech. Syst. Signal Process.201913410634010.1016/j.ymssp.2019.106340
BallJMInitial-boundary value problems for an extensible beamJ. Math. Anal. Appl.1973421619031944010.1016/0022-247X(73)90121-2
DunnmonJAStantonSCMannBPDowellEHPower extraction from aeroelastic limit cycle oscillationsJ. Fluids Struct.20112781182119810.1016/j.jfluidstructs.2011.02.003
SemlerCLiGXPaïdoussisMPThe non-linear equations of motion of pipes conveying fluidJ. Sound Vib.1994169557759910.1006/jsvi.1994.1035
EloyCLagrangeRSouilliezCSchouveilerLAeroelastic instability of cantilevered flexible plates in uniform flowJ. Fluid Mech.200861197106245676110.1017/S002211200800284X
TangLPaïdoussisMPJiangJCantilevered flexible plates in axial flow: energy transfer and the concept of flutter-millJ. Sound Vib.20093261–226327610.1016/j.jsv.2009.04.041
StantonSCErturkAMannBPDowellEHInmanDJNonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effectsJ. Intell. Mater. Syst. Struct.201223218319910.1177/1045389X11432656
E Dowell (2157_CR13) 2014
2157_CR29
I Chueshov (2157_CR8) 2010
M Deliyianni (2157_CR11) 2021; 84
VV Bolotin (2157_CR7) 1963
M Mahran Kasem (2157_CR25) 2018; 27
MR Sayag (2157_CR38) 2019
C Semler (2157_CR39) 1994; 169
SF Bassily (2157_CR4) 1975; 1975
J Howell (2157_CR23) 2018; 50
Arthur W Leissa (2157_CR31) 1969
J Howell (2157_CR22) 2019; 1
MP Païdoussis (2157_CR36) 1998
SC Stanton (2157_CR41) 2012; 23
M Deliyianni (2157_CR12) 2020; 15
D Tang (2157_CR42) 2015; 53
MA Shubov (2157_CR40) 2016; 7
2157_CR45
2157_CR21
P Ciarlet (2157_CR9) 2006
D Culver (2157_CR10) 2019; 134
JE Lagnese (2157_CR28) 1991; 91
DM Tang (2157_CR43) 2018; 76
C Eloy (2157_CR17) 2008; 611
L Tang (2157_CR46) 2009; 326
L Huang (2157_CR24) 1995; 9
JM Ball (2157_CR3) 1973; 42
RD Blevins (2157_CR6) 2015
2157_CR37
JA Dunnmon (2157_CR15) 2011; 27
H Berger (2157_CR5) 1955; 22
S Antman (2157_CR2) 2005
SM Han (2157_CR20) 1999; 225
DM Tang (2157_CR44) 2003; 17
S Woinowsky-Krieger (2157_CR47) 1950; 17
E Dowell (2157_CR14) 2016; 83
SC Gibbs (2157_CR19) 2012; 34
H Koch (2157_CR26) 2002
2157_CR1
A Eden (2157_CR16) 1993; 6
E Erturk (2157_CR18) 2011
2157_CR34
2157_CR32
2157_CR33
2157_CR30
VV Novozhilov (2157_CR35) 1999
J Lagnese (2157_CR27) 1989
References_xml – reference: BlevinsRDFormulas for Dynamics, Acoustics and Vibration2015LondonWiley10.1002/9781119038122
– reference: NovozhilovVVFoundations of the Nonlinear Theory of Elasticity1999North ChelmsfordCourier Corporation
– reference: BolotinVVNonconservative Problems of Elastic Stability1963OxfordPergamon Press0121.41305
– reference: PaïdoussisMPFluid–Structure Interactions: Slender Structures and Axial Flow, 11998San DiegoAcademic Press
– reference: DunnmonJAStantonSCMannBPDowellEHPower extraction from aeroelastic limit cycle oscillationsJ. Fluids Struct.20112781182119810.1016/j.jfluidstructs.2011.02.003
– reference: HuangLFlutter of cantilevered plates in axial flowJ. Fluids Struct.19959212714710.1006/jfls.1995.1007
– reference: StantonSCErturkAMannBPDowellEHInmanDJNonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effectsJ. Intell. Mater. Syst. Struct.201223218319910.1177/1045389X11432656
– reference: DowellEMcHughKEquations of motion for an inextensible beam undergoing large deflectionsJ. Appl. Mech.201683505100710.1115/1.4032795
– reference: EdenAMilaniAJExponential attractors for extensible beam equationsNonlinearity199363457122374310.1088/0951-7715/6/3/007
– reference: CiarletPRabierPLes Equations de Von Karman2006BerlinSpringer0433.73019
– reference: McHugh, K.A.: Large deflection inextensible beams and plates and their responses to nonconservative forces: theory and computations. Doctoral dissertation, Duke University (2020)
– reference: ChueshovILasieckaIVon Karman Evolution Equations2010BerlinSpringer10.1007/978-0-387-87712-9
– reference: CulverDMcHughKDowellEAn assessment and extension of geometrically nonlinear beam theoriesMech. Syst. Signal Process.201913410634010.1016/j.ymssp.2019.106340
– reference: KochHLasieckaINeumannWRLorenziAHadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systemsEvolution Equations, Semigroups and Functional Analysis2002BaselBirkhäuser19721610.1007/978-3-0348-8221-7_11
– reference: LagneseJELeugeringGUniform stabilization of a nonlinear beam by nonlinear boundary feedbackJ. Differ. Equ.1991912355388111118010.1016/0022-0396(91)90145-Y
– reference: TangDMDowellEHAeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plateJ. Fluids Struct.201876143610.1016/j.jfluidstructs.2017.09.007
– reference: DowellEA Modern Course in Aeroelasticity2014BerlinSpringer1297.74001
– reference: AntmanSNonlinear Problems of Elasticity20052BerlinSpringer1098.74001
– reference: BergerHA new approach to the analysis of large deflections of platesJ. Appl. Mech.19552219554654727340710.1115/1.4011138
– reference: TangDMYamamotoHDowellEHFlutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flowJ. Fluids Struct.200317222524210.1016/S0889-9746(02)00121-4
– reference: Hodges, D.H., Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA technical note TN D-7818 (1974)
– reference: GibbsSCWangIDowellETheory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flowJ. Fluids Struct.201234688310.1016/j.jfluidstructs.2012.06.009
– reference: BallJMInitial-boundary value problems for an extensible beamJ. Math. Anal. Appl.1973421619031944010.1016/0022-247X(73)90121-2
– reference: HanSMBenaroyaHWeiTDynamics of transversely vibrating beams using four engineering theoriesJ. Sound Vib.1999225593598810.1006/jsvi.1999.2257
– reference: Sayag, M.R., Dowell, E.H.: Linear versus nonlinear response of a cantilevered beam under harmonic base excitation: theory and experiment. J. Appl. Mech. 83(10), 101002-1–101002-8 (2016)
– reference: BassilySFDickinsonSMOn the use of beam functions for problems of plates involving free edgesTrans. ASME1975197585886410.1115/1.3423720
– reference: DeliyianniMGudibandaVHowellJWebsterJTLarge deflections of inextensible cantilevers: modeling, theory, and simulationMath. Model. Nat. Phenom.20201544415314910.1051/mmnp/2020033
– reference: HowellJHuneycuttKWebsterJTWilderSA thorough look at the (in) stability of piston-theoretic beamsMath. Eng.201913614647413680610.3934/mine.2019.3.614
– reference: SemlerCLiGXPaïdoussisMPThe non-linear equations of motion of pipes conveying fluidJ. Sound Vib.1994169557759910.1006/jsvi.1994.1035
– reference: LeissaArthur WVibration of Plates1969WashingtonScientific and Technical Information Division, NASA
– reference: TangDGibbsSCDowellEHNonlinear aeroelastic analysis with inextensible plate theory including correlation with experimentAIAA J.20155351299130810.2514/1.J053385
– reference: Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Doctoral dissertation, Virginia Tech University (2003)
– reference: ErturkEInmanDPiezoelectric Energy Harvesting2011LondonWiley10.1002/9781119991151
– reference: ShubovMAShubovVIAsymptotic and spectral analysis and control problems for mathematical model of piezoelectric energy harvesterMath. Eng. Sci. Aerosp.2016722492681371.74132
– reference: Aittokallio, T., Gyllenberg, M., Polo, O.: A model of a snorer’s upper airway. Math. Biosci. 170(1), 79–90 (2001)
– reference: Lagnese, J., Lions, J.L.: Modelling analysis and control of thin plates. Recherches en Mathematiques Appliques (1988)
– reference: Tang, D., Zhao, M., Dowell, E.H.: Inextensible beam and plate theory: computational analysis and comparison with experiment. J. Appl. Mech. 81(6), 061009-1–061009-10 (2014)
– reference: HowellJToundykovDWebsterJTA cantilevered extensible beam in axial flow: semigroup solutions and post-flutter regimesSIAM J. Math. Anal.201850220482085378490310.1137/17M1140261
– reference: SayagMRDowellEHKerschenGNonlinear structural, inertial and damping effects in an oscillating cantilever beamNonlinear Dynamics2019ChamSpringer387400
– reference: TangLPaïdoussisMPJiangJCantilevered flexible plates in axial flow: energy transfer and the concept of flutter-millJ. Sound Vib.20093261–226327610.1016/j.jsv.2009.04.041
– reference: Levin, D., Dowell, E.: Improving piezoelectric energy harvesting from an aeroelastic system. In: International Forum on Aeroelasticity and Structural Dynamics IFASD, pp. 9–13 (2019)
– reference: DeliyianniMWebsterJTTheory of solutions for an inextensible cantileverAppl. Math. Optim.20218413451399435689810.1007/s00245-021-09798-0
– reference: McHugh, K.A., Dowell, E.H.: Nonlinear response of an inextensible, cantilevered beam subjected to a nonconservative follower force. J. Comput. Nonlinear Dyn. 14(3) (2019). https://doi.org/10.1115/DETC2018-85447
– reference: EloyCLagrangeRSouilliezCSchouveilerLAeroelastic instability of cantilevered flexible plates in uniform flowJ. Fluid Mech.200861197106245676110.1017/S002211200800284X
– reference: Woinowsky-KriegerSThe effect of an axial force on the vibration of hinged barsJ. Appl. Mech.195017135363420210.1115/1.4010053
– reference: LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM10.1137/1.9781611970821
– reference: Mahran KasemMDowellEHA study of the natural modes of vibration and aeroelastic stability of a plate with a piezoelectric materialSmart Mater. Struct.201827707504310.1088/1361-665X/aac8a7
– volume-title: Nonconservative Problems of Elastic Stability
  year: 1963
  ident: 2157_CR7
– ident: 2157_CR30
– ident: 2157_CR32
– ident: 2157_CR34
  doi: 10.1115/DETC2018-85447
– ident: 2157_CR37
  doi: 10.1115/1.4034117
– volume: 22
  start-page: 465
  issue: 1955
  year: 1955
  ident: 2157_CR5
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4011138
– volume: 134
  start-page: 106340
  year: 2019
  ident: 2157_CR10
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106340
– volume-title: Nonlinear Problems of Elasticity
  year: 2005
  ident: 2157_CR2
– volume: 27
  start-page: 1182
  issue: 8
  year: 2011
  ident: 2157_CR15
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.02.003
– volume: 34
  start-page: 68
  year: 2012
  ident: 2157_CR19
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2012.06.009
– volume: 1
  start-page: 614
  issue: 3
  year: 2019
  ident: 2157_CR22
  publication-title: Math. Eng.
  doi: 10.3934/mine.2019.3.614
– volume: 17
  start-page: 35
  issue: 1
  year: 1950
  ident: 2157_CR47
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4010053
– ident: 2157_CR21
– volume: 169
  start-page: 577
  issue: 5
  year: 1994
  ident: 2157_CR39
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1994.1035
– volume: 611
  start-page: 97
  year: 2008
  ident: 2157_CR17
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200800284X
– start-page: 387
  volume-title: Nonlinear Dynamics
  year: 2019
  ident: 2157_CR38
– volume: 326
  start-page: 263
  issue: 1–2
  year: 2009
  ident: 2157_CR46
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.04.041
– volume-title: A Modern Course in Aeroelasticity
  year: 2014
  ident: 2157_CR13
– volume: 225
  start-page: 935
  issue: 5
  year: 1999
  ident: 2157_CR20
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1999.2257
– volume-title: Von Karman Evolution Equations
  year: 2010
  ident: 2157_CR8
  doi: 10.1007/978-0-387-87712-9
– volume: 9
  start-page: 127
  issue: 2
  year: 1995
  ident: 2157_CR24
  publication-title: J. Fluids Struct.
  doi: 10.1006/jfls.1995.1007
– ident: 2157_CR29
– volume: 7
  start-page: 249
  issue: 2
  year: 2016
  ident: 2157_CR40
  publication-title: Math. Eng. Sci. Aerosp.
– volume-title: Boundary Stabilization of Thin Plates
  year: 1989
  ident: 2157_CR27
  doi: 10.1137/1.9781611970821
– ident: 2157_CR33
– volume-title: Foundations of the Nonlinear Theory of Elasticity
  year: 1999
  ident: 2157_CR35
– volume: 23
  start-page: 183
  issue: 2
  year: 2012
  ident: 2157_CR41
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11432656
– volume: 27
  start-page: 075043
  issue: 7
  year: 2018
  ident: 2157_CR25
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aac8a7
– volume: 17
  start-page: 225
  issue: 2
  year: 2003
  ident: 2157_CR44
  publication-title: J. Fluids Struct.
  doi: 10.1016/S0889-9746(02)00121-4
– volume-title: Piezoelectric Energy Harvesting
  year: 2011
  ident: 2157_CR18
  doi: 10.1002/9781119991151
– volume: 53
  start-page: 1299
  issue: 5
  year: 2015
  ident: 2157_CR42
  publication-title: AIAA J.
  doi: 10.2514/1.J053385
– ident: 2157_CR45
  doi: 10.1115/1.4026800
– ident: 2157_CR1
  doi: 10.1016/S0025-5564(00)00062-6
– volume: 1975
  start-page: 858
  year: 1975
  ident: 2157_CR4
  publication-title: Trans. ASME
  doi: 10.1115/1.3423720
– volume: 15
  start-page: 44
  year: 2020
  ident: 2157_CR12
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/2020033
– volume: 50
  start-page: 2048
  issue: 2
  year: 2018
  ident: 2157_CR23
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M1140261
– volume: 42
  start-page: 61
  issue: 1
  year: 1973
  ident: 2157_CR3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90121-2
– volume: 6
  start-page: 457
  issue: 3
  year: 1993
  ident: 2157_CR16
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/6/3/007
– volume: 83
  start-page: 051007
  issue: 5
  year: 2016
  ident: 2157_CR14
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4032795
– volume-title: Formulas for Dynamics, Acoustics and Vibration
  year: 2015
  ident: 2157_CR6
  doi: 10.1002/9781119038122
– volume: 84
  start-page: 1345
  year: 2021
  ident: 2157_CR11
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-021-09798-0
– volume-title: Vibration of Plates
  year: 1969
  ident: 2157_CR31
– start-page: 197
  volume-title: Evolution Equations, Semigroups and Functional Analysis
  year: 2002
  ident: 2157_CR26
  doi: 10.1007/978-3-0348-8221-7_11
– volume: 91
  start-page: 355
  issue: 2
  year: 1991
  ident: 2157_CR28
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(91)90145-Y
– volume: 76
  start-page: 14
  year: 2018
  ident: 2157_CR43
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.09.007
– volume-title: Les Equations de Von Karman
  year: 2006
  ident: 2157_CR9
– volume-title: Fluid–Structure Interactions: Slender Structures and Axial Flow, 1
  year: 1998
  ident: 2157_CR36
SSID ssj0004520
Score 2.3006582
Snippet The large deflections of cantilevered beams and rectangular plates are modeled and discussed. Traditional nonlinear elastic models (e.g., von Karman’s) employ...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1929
SubjectTerms Cantilever beams
Cantilever plates
Classical Mechanics
Engineering
Equations of motion
Lagrange multiplier
Mathematical models
Nonlinear differential equations
One dimensional models
Original
Partial differential equations
Rectangular plates
Stiffness
Theoretical and Applied Mechanics
Title Dynamic equations of motion for inextensible beams and plates
URI https://link.springer.com/article/10.1007/s00419-022-02157-7
https://www.proquest.com/docview/2661999485
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSFUnlgA0tJHNvJwNDSlgoEE5XKFNmxPZW2kCLx87GdpBQESEwZcrGUF1_u2b57B3BOeKAYCwxOlSA4joz1uYQlOMh5GjFlGbfX7rx_YKNxfDuhk6oorKiz3esjSf-nXhW7OWmoFLvscxenOOab0KR27e4SucZRd10j3O-spCTFjs1UpTI_j_E1HH1yzG_Hoj7aDHdhp6KJqFt-1z3Y0LN92F4TDzyAq37ZTB7pl1Kuu0Bzg8quPMhSUWRN331-upxqJLV4LpCYKbSYOnp5COPh4PF6hKtmCDi3XrLEPOVSydAIpaUlUcIirI0MiV3hRDKlARMRUUTal1YmyUMuwkB68qPyUIaKkyNozOYzfQxI0SAwxKTU5DQm0ggbpHSSayYoSyRhLQhrTLK8Ugp3DSum2Urj2OOYWRwzj2PGW3CxemZR6mT8ad2uoc4qnykyRxUsXY0T2oLLGv7P27-PdvI_81PYivwMcFspbWgsX9_0mWUWS9mBZrfX7w3d9ebpbtDxE-sDtLnEzQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywgaUkTuxkYKiAqkDbqZW6WXZsT6UtpEj8fGwnKQUBEnMulvJyl3ux794BXBIWKEoDgzMlCI4jY2MupSkOcpZFVFnG7bU7-wPaHcWP42RcNYUVdbV7fSTpv9TLZjcnDZVhV33u8hTDbB02LBlInS-PovaqRrjfWclIhh2bqVplfl7jazr65JjfjkV9tunswk5FE1G7fK97sKan-7C9Ih54ADd35TB5pF9Kue4CzQwqp_IgS0WRNX339elyopHU4rlAYqrQfOLo5SGMOvfD2y6uhiHg3EbJArOMSSVDI5SWlkQJi7A2MiT2DyeSWRJQERFFpH1oZdI8ZCIMpCc_Kg9lqBg5gsZ0NtXHgFQSBIaYLDF5EhNphE1SOs01FQlNJaFNCGtMeF4phbuBFRO-1Dj2OHKLI_c4ctaEq-U981In40_rVg01r2Km4I4qWLoap0kTrmv4Py__vtrJ_8wvYLM77Pd472HwdApbkfcGt63Sgsbi9U2fWZaxkOfeqT4AyzDEug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGxKcoFPDABlaTOLHjgaGiVOWrYqBSN8uO7amkhQaJn4_tJG1BgMSciyW_3Ole7Lt3AJxjGihCAoOYEhjFkbExl5IUBRllEVGWcXvtzscB6Q_ju1EyWuri99Xu9ZVk2dPgVJryoj1Vpj1vfHMyUQy5SnSXsyiiq2Atdt3A1qOHUWdZL9yfsjDMkGM2VdvMz2t8TU0LvvntitRnnt422KooI-yU33gHrOh8F2wuCQnugatuOVge6tdSunsGJwaWE3qgpaXQmn74WnU51lBq8TKDIldwOnZUcx8MezfP131UDUZAmY2YAlFGpZKhEUpLS6iERVsbGWL7txNJlgRERFhhaTetTJqFVISB9ERIZaEMFcUHoJFPcn0IoEqCwGDDEpMlMZZG2ISl00wTkZBUYtIEYY0JzyrVcDe8YsznesceR25x5B5HTpvgYv7OtNTM-NO6VUPNq_iZcUcbLHWN06QJLmv4F49_X-3of-ZnYP2p2-MPt4P7Y7AReWdwJywt0Cje3vWJJRyFPPU-9Ql5pMjt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+equations+of+motion+for+inextensible+beams+and+plates&rft.jtitle=Archive+of+applied+mechanics+%281991%29&rft.au=Deliyianni%2C+Maria&rft.au=McHugh%2C+Kevin&rft.au=Webster%2C+Justin+T&rft.au=Dowell%2C+Earl&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0939-1533&rft.eissn=1432-0681&rft.volume=92&rft.issue=6&rft.spage=1929&rft.epage=1952&rft_id=info:doi/10.1007%2Fs00419-022-02157-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-1533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-1533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-1533&client=summon