Nanocavity enriched CuPd alloy with high selectivity for CO2 electroreduction toward C2H4
Electrocatalysis of CO 2 reduction reaction is an effective way to convert CO 2 into high value-added products, but the selectivity of Cu-based catalysts for C 2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease en...
Saved in:
Published in | Rare metals Vol. 43; no. 4; pp. 1513 - 1523 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Nonferrous Metals Society of China
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalysis of CO
2
reduction reaction is an effective way to convert CO
2
into high value-added products, but the selectivity of Cu-based catalysts for C
2+
products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease energy barrier of C–C coupling should be put forward. Here, a nanocavity-enriched CuPd single atom alloy (CuPd SAA) catalyst is designed to promote C–C coupling process. The faradaic efficiency of CuPd SAA for ethylene and C
2+
reaches 75.6% and 85.7% at − 0.7 V versus reversible hydrogen electrode (RHE), respectively. Based on the results given by in situ characterization, the porous hollow structure dramatically increases the ratio of the linear-bond *CO, thus enhancing the faradaic efficiency for ethylene. Density functional theory (DFT) calculation reveals that the Pd doping can regulate the electronic structure of neighboring Cu atoms to decrease the energy barrier of C–C coupling, further improving the faradaic efficiency. This work provides a new idea for designing catalyst with high selectivity for ethylene.
Graphical abstract |
---|---|
AbstractList | Electrocatalysis of CO2 reduction reaction is an effective way to convert CO2 into high value-added products, but the selectivity of Cu-based catalysts for C2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease energy barrier of C–C coupling should be put forward. Here, a nanocavity-enriched CuPd single atom alloy (CuPd SAA) catalyst is designed to promote C–C coupling process. The faradaic efficiency of CuPd SAA for ethylene and C2+ reaches 75.6% and 85.7% at − 0.7 V versus reversible hydrogen electrode (RHE), respectively. Based on the results given by in situ characterization, the porous hollow structure dramatically increases the ratio of the linear-bond *CO, thus enhancing the faradaic efficiency for ethylene. Density functional theory (DFT) calculation reveals that the Pd doping can regulate the electronic structure of neighboring Cu atoms to decrease the energy barrier of C–C coupling, further improving the faradaic efficiency. This work provides a new idea for designing catalyst with high selectivity for ethylene. Electrocatalysis of CO 2 reduction reaction is an effective way to convert CO 2 into high value-added products, but the selectivity of Cu-based catalysts for C 2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease energy barrier of C–C coupling should be put forward. Here, a nanocavity-enriched CuPd single atom alloy (CuPd SAA) catalyst is designed to promote C–C coupling process. The faradaic efficiency of CuPd SAA for ethylene and C 2+ reaches 75.6% and 85.7% at − 0.7 V versus reversible hydrogen electrode (RHE), respectively. Based on the results given by in situ characterization, the porous hollow structure dramatically increases the ratio of the linear-bond *CO, thus enhancing the faradaic efficiency for ethylene. Density functional theory (DFT) calculation reveals that the Pd doping can regulate the electronic structure of neighboring Cu atoms to decrease the energy barrier of C–C coupling, further improving the faradaic efficiency. This work provides a new idea for designing catalyst with high selectivity for ethylene. Graphical abstract |
Author | Hu, Xin-Zhuo Du, Xi-Wen Li, Jing-Wei Yan, Si-Wei Bai, Yi-Ming Wang, Hai-Bin Zhang, Xun Zhang, Fei-Fei Dong, Cun-Ku Mao, Jing Yin, Peng-Fei Shen, Gu-Rong Yang, Jing Liu, Hui Zhang, Ze-Yu |
Author_xml | – sequence: 1 givenname: Ze-Yu surname: Zhang fullname: Zhang, Ze-Yu organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 2 givenname: Hai-Bin surname: Wang fullname: Wang, Hai-Bin organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 3 givenname: Fei-Fei surname: Zhang fullname: Zhang, Fei-Fei organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 4 givenname: Jing-Wei surname: Li fullname: Li, Jing-Wei organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 5 givenname: Xin-Zhuo surname: Hu fullname: Hu, Xin-Zhuo organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 6 givenname: Si-Wei surname: Yan fullname: Yan, Si-Wei organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 7 givenname: Yi-Ming surname: Bai fullname: Bai, Yi-Ming organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 8 givenname: Xun surname: Zhang fullname: Zhang, Xun organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 9 givenname: Gu-Rong surname: Shen fullname: Shen, Gu-Rong organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 10 givenname: Peng-Fei surname: Yin fullname: Yin, Peng-Fei organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 11 givenname: Jing surname: Yang fullname: Yang, Jing organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 12 givenname: Cun-Ku surname: Dong fullname: Dong, Cun-Ku organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 13 givenname: Jing orcidid: 0000-0002-6882-9136 surname: Mao fullname: Mao, Jing email: maojing@tju.edu.cn organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 14 givenname: Hui orcidid: 0000-0001-8183-9446 surname: Liu fullname: Liu, Hui email: hui_liu@tju.edu.cn organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University – sequence: 15 givenname: Xi-Wen orcidid: 0000-0002-2811-147X surname: Du fullname: Du, Xi-Wen email: xwdu@tju.edu.cn organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University |
BookMark | eNp9kE9LwzAYxoNMcJt-AU8Bz9X8bdKjFHXCcB704Cmkbbpm1GYmrWPf3mwVBA87hIQ3z-953_eZgUnnOgPANUa3GCFxFzDhmUwQofFwIhJyBqZYpiIRWPJJfCOEE8QJvgCzEDYIMZamaAo-XnTnSv1t-z00nbdlYyqYD68V1G3r9nBn-wY2dt3AYFpT9vaorJ2H-YrAY8k7b6ohfrkO9m6nfTQgC3YJzmvdBnP1e8_B--PDW75Ilqun5_x-mZQUZ30iZFVISrSsGdaGpVmFUYloUddUcC4KQYRgkmVMIklxrTGpSsTSQlQYsywzdA5uRt-td1-DCb3auMF3saUiGReEZoynUUVGVeldCN7Uauvtp_Z7hZE6RKjGCFWMUB0jVCRC8h9U2l4fFu29tu1plI5oiH26tfF_U52gfgCaEIZx |
CitedBy_id | crossref_primary_10_1002_adma_202414169 crossref_primary_10_1007_s12598_024_02919_y crossref_primary_10_1002_cctc_202401785 crossref_primary_10_1002_smll_202407554 crossref_primary_10_1002_ange_202409206 crossref_primary_10_1016_j_apcatb_2024_124822 crossref_primary_10_1039_D4TA06805J crossref_primary_10_1002_anie_202409206 crossref_primary_10_1016_j_apsusc_2024_160550 crossref_primary_10_1016_j_cclet_2024_110276 crossref_primary_10_1002_adma_202310912 crossref_primary_10_1002_aic_18678 crossref_primary_10_1016_j_tet_2025_134586 crossref_primary_10_1007_s12598_025_03236_8 |
Cites_doi | 10.1103/PhysRevB.59.1758 10.1016/j.cogsc.2022.100589 10.1103/PhysRevB.54.11169 10.1021/acscatal.5b01967 10.1002/anie.202200039 10.1002/anie.202111136 10.1021/acscatal.1c01478 10.1021/acscatal.7b03477 10.1039/d0gc03051a 10.1016/j.susc.2016.08.006 10.1002/anie.202104114 10.1016/j.jelechem.2011.06.008 10.1021/acs.nanolett.2c00945 10.1002/anie.202000617 10.1103/physrevb.40.3616 10.1016/j.jechem.2022.03.041 10.1126/sciadv.aay3111 10.1038/s41929-019-0380-x 10.1039/d0ta02395g 10.1039/C9TA11966C 10.1002/smtd.202100736 10.1007/s12598-021-01736-x 10.1021/acs.jpclett.6b00358 10.1039/d0cs00835d 10.1039/d0gc02279a 10.1038/s41929-018-0168-4 10.1021/acs.jpclett.5b00722 10.1038/s41467-022-31498-8 10.1021/jacs.9b04638 10.1038/s41557-018-0092-x 10.1038/s41467-020-17690-8 10.1039/c2cs35360a 10.1021/jacs.8b02173 10.1063/1.3382344 10.1021/jacs.5b11390 10.1002/advs.202207187 10.1021/jacs.6b13287 10.1039/d2ee01334g 10.1021/jacs.0c01699 10.1007/s12274-021-3532-7 10.1126/science.aas9100 10.1021/jacs.6b06846 10.1039/c6ta00487c 10.1002/jrs.921 10.1021/acscatal.9b05532 10.1021/jacs.2c01044 10.1021/jacs.0c02354 10.1021/acsnano.2c08453 10.1038/nmat4778 10.1038/s41467-020-17499-5 10.1038/s41467-018-07970-9 10.1007/s12598-022-02139-2 10.1038/s41467-021-23582-2 10.1103/physrevb.50.17953 10.1021/acsami.0c17668 10.1021/acsami.2c05992 10.1002/anie.202113498 10.1039/d1gc04284j 10.1016/j.nanoen.2016.04.009 10.1002/anie.201301470 10.1021/acscatal.8b03780 10.1039/d1ee03861c 10.1021/acs.chemrev.8b00705 10.1021/acsenergylett.8b00553 10.1103/PhysRevLett.82.351 10.1021/jacs.1c01466 10.1021/acscatal.6b03147 10.1021/acscatal.8b01552 10.1038/s41467-019-13190-6 10.1039/d2qi01977a 10.1038/s41467-021-26053-w 10.1103/physrevb.49.14251 10.1021/acscatal.2c04275 10.1021/jz201461 10.1002/anie.202204967 |
ContentType | Journal Article |
Copyright | Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1007/s12598-023-02527-2 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1867-7185 |
EndPage | 1523 |
ExternalDocumentID | 10_1007_s12598_023_02527_2 |
GrantInformation_xml | – fundername: Natural Science Foundation of China (NSFC) grantid: 51971154; 52022064 |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 92R 93N 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8BQ 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c319t-78db832a8f41ae469d10c03bff37557b72774849480831fa12dc046b7d11499e3 |
IEDL.DBID | U2A |
ISSN | 1001-0521 |
IngestDate | Fri Jul 25 12:27:18 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Tue Jul 01 01:30:15 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | C–C coupling CO electrocatalysis Single atom alloy Adsorption configuration Ethylene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-78db832a8f41ae469d10c03bff37557b72774849480831fa12dc046b7d11499e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8183-9446 0000-0002-6882-9136 0000-0002-2811-147X |
PQID | 2957239456 |
PQPubID | 326325 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2957239456 crossref_primary_10_1007_s12598_023_02527_2 crossref_citationtrail_10_1007_s12598_023_02527_2 springer_journals_10_1007_s12598_023_02527_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Rare metals |
PublicationTitleAbbrev | Rare Met |
PublicationYear | 2024 |
Publisher | Nonferrous Metals Society of China Springer Nature B.V |
Publisher_xml | – name: Nonferrous Metals Society of China – name: Springer Nature B.V |
References | Lu, Jiao (CR6) 2016; 29 Xiao, Cheng, Goddard, Sundararaman (CR18) 2016; 138 Sandberg, Montoya, Chan, Nørskov (CR27) 2016; 654 Lee, Jung, Kim, Oh, Min, Hwang (CR9) 2018; 140 Kim, Shin, Park, Jung, Song (CR53) 2023; 10 Liu, Gao, Ren, Meng, Yang, Gao, Yang, Ma (CR45) 2020; 8 Chen, Huang, Zheng, Li (CR43) 2011; 660 He, Duan, Low, Bai, Jiang, Wang, Chen, Long, Song, Xiong (CR52) 2021; 16 Wang, Wang, Zhuang, Dinh, Li, Nam, Li, Huang, Tan, Chen, Chi, Gabardo, Seifitokaldani, Todorovic, Proppe, Pang, Kirmani, Wang, Ip, Richter, Scheffel, Xu, Lo, Kelley, Sinton, Sargent (CR31) 2019; 10 Du, Li, Wu, Wang, Yang, Fan, Qiu, Yan, Wang, Zhao, Zhao, Chen (CR55) 2022; 14 Guo, He, Yang, Wang, Wang, Li, Wei, Liu, Han (CR56) 2022; 24 Xiao, Cheng, Goddard (CR15) 2017; 139 Chang, Liu, Wei, Yang, Bai (CR54) 2023; 10 Goodpaster, Bell, Head-Gordon (CR16) 2016; 7 Dinh, Burdyny, Kibria, Seifitokaldani, Gabardo, Arquer, Kiani, Edwards, Luna, Bushuyev, Zou, Quintero-Bermudez, Pang, Sinton, Sargent (CR73) 2018; 360 Kong, Zhao, Ke, Wang, Li, Si, Liu, Zeng, Geng (CR24) 2022; 22 Li, Chang, Zhang, Malkani, Cheng, Xu, Lu (CR34) 2021; 12 Tang, Nishiwaki, Fritz, Hanrath, Suntivich (CR47) 2021; 13 Wang, Li, Cui, Zhang, Hu, Ding, Deng, Han, Hu (CR4) 2021; 40 Liu, Zhang, Li, Xue, Zheng, Xia, Zeng (CR30) 2022; 61 Zhuang, Pang, Liang, Wang, Li, Tan, Li, Dinh, De Luna, Hsieh, Burdyny, Li, Liu, Wang, Li, Proppe, Johnston, Nam, Wu, Zheng, Ip, Tan, Chen, Yu, Kelley, Sinton, Sargent (CR29) 2018; 1 Zhan, Dattila, Rettenmaier, Bergmann, Kuhl, Garcia-Muelas, Lopez, Cuenya (CR64) 2021; 11 Xue, Guo, Cui, Zhou (CR46) 2021; 5 Liu, Schlexer, Xiao, Ji, Wang, Sandberg, Tang, Brown, Peng, Ringe, Hahn, Jaramillo, Nørskov, Chan (CR19) 2019; 10 Nitopi, Bertheussen, Scott, Liu, Engstfeld, Horch, Seger, Stephens, Chan, Hahn, Nørskov, Jaramillo, Chorkendorff (CR7) 2019; 119 Zhao, Zhang, Bodappa, Yang, Liang, Radjenovica, Wang, Zhang, Dong, Tian, Li (CR62) 2022; 15 Grimme, Antony, Ehrlich, Krieg (CR37) 2010; 132 He, Li, Zhang, Chang, Chen, Goddard, Cheng, Xu, Lu (CR75) 2020; 11 Luo, Nie, Janik, Asthagiri (CR14) 2015; 6 Gunathunge, Li, Li, Hong, Waegele (CR69) 2020; 10 An, Wu, Mandemaker, Yang, de Ruiter, Wijten, Janssens, Hartman, van der Stam, Weckhuysen (CR66) 2021; 60 Kresse, Hafner (CR36) 1994; 49 Fan, Xia, Yang, Wang, Wang, Lu (CR13) 2020; 6 Ulrich, Göbel, Syassen, Cardona (CR41) 1999; 82 Popovic, Smiljanic, Jovanovic, Vavra, Buonsanti, Hodnik (CR11) 2020; 59 Franco, Rettenmaier, Jeon, Roldan (CR12) 2020; 49 Frost, Martens, Kloprogge, Williams (CR42) 2002; 33 Meng, Zhang, Si, Mao, Hou, Huang, Cao (CR58) 2021; 60 Li, Wang, McCallum, Xu, Li, Wang, Gabardo, Dinh, Zhuang, Wang, Howe, Ren, Sargent, Sinton (CR28) 2019; 2 Liu, Zhang, Huang, Guan, Xu, Gu (CR48) 2022; 12 Costentin, Robert, Savéant (CR1) 2013; 42 Qiu, Zhu, Huang, Liao, Chen (CR57) 2021; 143 Yang, Zhang, Gao, Zheng, Niu, Yu, Liu, Wu, Qin, Ch, Duan, Ma, Zheng, Zhu, Wang, Gao, Yu (CR44) 2020; 142 Liu, Zhang, Zhang, Sun (CR71) 2022; 71 Calle-Vallejo, Koper (CR20) 2013; 52 Li, Zhang (CR3) 2022; 41 Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Nørskov (CR2) 2016; 16 Li, Wei, Gao, Wang (CR67) 2022; 34 Li, Xu, Li, Wang, Zou, Gabardo, Wang, Ozden, Xu, Nam, Lum, Wicks, Chen, Wang, Chen, Wen, Zhuang, Luo, Du, Sham, Zhang, Sargent, Sinton (CR23) 2020; 11 Montoya, Shi, Chan, Nørskov (CR21) 2015; 6 Garza, Bell, Head-Gordon (CR17) 2018; 8 Zhou, Che, Liu, Zou, Liang, De Luna, Yuan, Li, Wang, Xie, Li, Chen, Bladt, Quintero-Bermudez, Sham, Bals, Hofkens, Sinton, Chen, Sargent (CR70) 2018; 10 Chu, Yan, Choi, Hong, Robertson, Masa, Han, Jung, Sun (CR60) 2020; 22 Yao, Li, Wang, Lu, Yang, Luo, Wang, Wang, Liu, Jing, Chen, Cortes, Maier, Zhang, Li, Yu, Liu, Kang, Liang (CR22) 2022; 144 Blochl (CR39) 1994; 50 Sultan, Lee, Park, Kim, Yoon, Choi, Kong, Koe, Oh, Lee, Kim, Kim, Kwon (CR50) 2022; 15 Kresse, Joubert (CR38) 1999; 59 Bodappa, Su, Zhao, Le, Yang, Radjenovic, Dong, Cheng, Tian, Li (CR72) 2019; 141 Methfessel, Paxton (CR40) 1989; 40 Zhang, Zhao, Cheng, Li, Yu, Wang, Gao, Guo, Wang, Ozin, Wang, Gong (CR25) 2021; 12 Zhuo, Chen, Zheng, Zhang, Wu, Lin, Liu, Wang, Liu, Zhou, Zhang (CR59) 2022; 61 Zhang, Li, Cheng, Lu (CR5) 2018; 9 Sha, Zhang, Cheng, Xu, Su, Wang, Hu, Han, Zheng (CR51) 2022; 61 Peterson, Nørskov (CR10) 2012; 3 Huang, Handoko, Hirunsit, Yeo (CR68) 2017; 7 Li, Wang, Li, Chang, Li, Wang, Jiang, Zhang, Liu, Yamauchi, Umezawa, Ye (CR32) 2016; 4 Zhao, Chang, Malkani, Yang, Thompson, Jiao, Xu (CR65) 2020; 142 Raciti, Wang (CR8) 2018; 3 Yao, Xia, Li, Wang, Han, Gao, Han, Shen, Liu, Seifitokaldani, Sun, Liang (CR49) 2020; 8 Kresse, Furthmüller (CR35) 1996; 54 Mu, Lu, Wu, Li, Zhao, Long, Cui (CR63) 2022; 13 Dunwell, Lu, Heyes, Rosen, Chen, Yan, Jiao, Xu (CR33) 2017; 139 Wang, Zhang, Huang, Wang, Ozden, Yao, Li, Guo, Liu, Vomiero, Wang, Qian, Li, Wang, Sun, Liang (CR74) 2023; 17 Gunathunge, Ovalle, Li, Janik, Waegele (CR26) 2018; 8 Feng, Zhu, Chu, Jia, Zhai, Wu, Wu, Han (CR61) 2020; 22 Q Lu (2527_CR6) 2016; 29 L Fan (2527_CR13) 2020; 6 Y Zhou (2527_CR70) 2018; 10 JJ Wang (2527_CR4) 2021; 40 S Nitopi (2527_CR7) 2019; 119 S Chu (2527_CR60) 2020; 22 S Mu (2527_CR63) 2022; 13 N Bodappa (2527_CR72) 2019; 141 JH Montoya (2527_CR21) 2015; 6 XF Qiu (2527_CR57) 2021; 143 L Li (2527_CR3) 2022; 41 CT Dinh (2527_CR73) 2018; 360 M Methfessel (2527_CR40) 1989; 40 LL Zhuo (2527_CR59) 2022; 61 PE Blochl (2527_CR39) 1994; 50 C He (2527_CR52) 2021; 16 X Liu (2527_CR19) 2019; 10 G Kresse (2527_CR35) 1996; 54 Y Huang (2527_CR68) 2017; 7 RB Sandberg (2527_CR27) 2016; 654 H Li (2527_CR67) 2022; 34 S Liu (2527_CR71) 2022; 71 F Chang (2527_CR54) 2023; 10 SY Lee (2527_CR9) 2018; 140 JH Montoya (2527_CR2) 2016; 16 J Li (2527_CR28) 2019; 2 F Franco (2527_CR12) 2020; 49 AA Peterson (2527_CR10) 2012; 3 CM Gunathunge (2527_CR26) 2018; 8 S Sultan (2527_CR50) 2022; 15 R Du (2527_CR55) 2022; 14 H Xiao (2527_CR18) 2016; 138 C Liu (2527_CR48) 2022; 12 AJ Garza (2527_CR17) 2018; 8 Y Xue (2527_CR46) 2021; 5 W Luo (2527_CR14) 2015; 6 H An (2527_CR66) 2021; 60 TT Zhuang (2527_CR29) 2018; 1 G Kresse (2527_CR36) 1994; 49 H Wang (2527_CR74) 2023; 17 F Calle-Vallejo (2527_CR20) 2013; 52 PP Guo (2527_CR56) 2022; 24 M Li (2527_CR32) 2016; 4 J Li (2527_CR34) 2021; 12 S Grimme (2527_CR37) 2010; 132 X Wang (2527_CR31) 2019; 10 A Liu (2527_CR45) 2020; 8 DL Meng (2527_CR58) 2021; 60 C Costentin (2527_CR1) 2013; 42 H Xiao (2527_CR15) 2017; 139 M He (2527_CR75) 2020; 11 PP Yang (2527_CR44) 2020; 142 M Dunwell (2527_CR33) 2017; 139 R Feng (2527_CR61) 2020; 22 Y Zhao (2527_CR65) 2020; 142 K Yao (2527_CR22) 2022; 144 G Kresse (2527_CR38) 1999; 59 C Ulrich (2527_CR41) 1999; 82 C Zhan (2527_CR64) 2021; 11 Y Zhao (2527_CR62) 2022; 15 CM Gunathunge (2527_CR69) 2020; 10 X Kong (2527_CR24) 2022; 22 S Kim (2527_CR53) 2023; 10 C Liu (2527_CR30) 2022; 61 RL Frost (2527_CR42) 2002; 33 JD Goodpaster (2527_CR16) 2016; 7 Z Tang (2527_CR47) 2021; 13 S Popovic (2527_CR11) 2020; 59 K Yao (2527_CR49) 2020; 8 G Zhang (2527_CR25) 2021; 12 D Raciti (2527_CR8) 2018; 3 J Li (2527_CR23) 2020; 11 S Chen (2527_CR43) 2011; 660 Y Sha (2527_CR51) 2022; 61 H Zhang (2527_CR5) 2018; 9 |
References_xml | – volume: 59 start-page: 1758 issue: 3 year: 1999 ident: CR38 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.1758 – volume: 34 start-page: 100589 year: 2022 ident: CR67 article-title: In situ Raman spectroscopy studies for electrochemical CO reduction over Cu catalysts publication-title: Curr Opin Green Sustain Chem. doi: 10.1016/j.cogsc.2022.100589 – volume: 54 start-page: 11169 issue: 1 year: 1996 ident: CR35 article-title: Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set publication-title: Phys Rev B doi: 10.1103/PhysRevB.54.11169 – volume: 6 start-page: 219 issue: 1 year: 2015 ident: CR14 article-title: Facet dependence of CO reduction paths on Cu electrodes publication-title: ACS Catal doi: 10.1021/acscatal.5b01967 – volume: 61 start-page: e202200039 issue: 13 year: 2022 ident: CR51 article-title: Anchoring ionic liquid in copper electrocatalyst for improving CO conversion to ethylene publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202200039 – volume: 60 start-page: 25485 issue: 48 year: 2021 ident: CR58 article-title: Highly selective tandem electroreduction of CO to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202111136 – volume: 11 start-page: 7694 issue: 13 year: 2021 ident: CR64 article-title: Revealing the CO coverage-driven C-C coupling mechanism for electrochemical CO reduction on Cu O nanocubes via operando raman spectroscopy publication-title: ACS Catal doi: 10.1021/acscatal.1c01478 – volume: 8 start-page: 1490 issue: 2 year: 2018 ident: CR17 article-title: Mechanism of CO reduction at copper surfaces: pathways to C products publication-title: ACS Catal doi: 10.1021/acscatal.7b03477 – volume: 22 start-page: 7560 issue: 21 year: 2020 ident: CR61 article-title: Electrodeposited Cu–Pd bimetallic catalysts for the selective electroreduction of CO to ethylene publication-title: Green Chem doi: 10.1039/d0gc03051a – volume: 654 start-page: 56 year: 2016 ident: CR27 article-title: CO-CO coupling on Cu facets: coverage, strain and field effects publication-title: Surf Sci doi: 10.1016/j.susc.2016.08.006 – volume: 60 start-page: 16576 issue: 30 year: 2021 ident: CR66 article-title: Sub-second time-resolved surface-enhanced raman spectroscopy reveals dynamic CO intermediates during electrochemical CO reduction on copper publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202104114 – volume: 660 start-page: 80 issue: 1 year: 2011 ident: CR43 article-title: Study on the electrodissolution and roughening of a palladium electrode in chloride containing solutions publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2011.06.008 – volume: 22 start-page: 3801 issue: 9 year: 2022 ident: CR24 article-title: Understanding the effect of *CO coverage on C–C coupling toward CO electroreduction publication-title: Nano Lett doi: 10.1021/acs.nanolett.2c00945 – volume: 59 start-page: 14736 issue: 35 year: 2020 ident: CR11 article-title: Stability and degradation mechanisms of copper-based catalysts for electrochemical CO reduction publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202000617 – volume: 40 start-page: 3616 issue: 6 year: 1989 ident: CR40 article-title: High-precision sampling for Brillouin-zone integration in metals publication-title: Phys Rev B Condens Matter doi: 10.1103/physrevb.40.3616 – volume: 71 start-page: 63 issue: 1 year: 2022 ident: CR71 article-title: Rational design strategies of Cu-based electrocatalysts for CO electroreduction to C products publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.03.041 – volume: 6 start-page: 3111 year: 2020 ident: CR13 article-title: Strategies in catalysts and electrolyzer design for electrochemical CO reduction toward C products publication-title: Sci Adv doi: 10.1126/sciadv.aay3111 – volume: 2 start-page: 1124 issue: 12 year: 2019 ident: CR28 article-title: Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction publication-title: Nat Catal doi: 10.1038/s41929-019-0380-x – volume: 8 start-page: 11117 issue: 22 year: 2020 ident: CR49 article-title: Metal–organic framework derived copper catalysts for CO to ethylene conversion publication-title: J Mater Chem A doi: 10.1039/d0ta02395g – volume: 8 start-page: 3541 year: 2020 ident: CR45 article-title: Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts publication-title: J Mater Chem A doi: 10.1039/C9TA11966C – volume: 5 start-page: 2100736 issue: 10 year: 2021 ident: CR46 article-title: Catalyst design for electrochemical reduction of CO to multicarbon products publication-title: Small Methods doi: 10.1002/smtd.202100736 – volume: 40 start-page: 3019 issue: 11 year: 2021 end-page: 3037 ident: CR4 article-title: A review of non-noble metal-based electrocatalysts for CO electroreduction publication-title: Rare Met doi: 10.1007/s12598-021-01736-x – volume: 7 start-page: 1471 issue: 8 year: 2016 ident: CR16 article-title: Identification of possible pathways for C-C bond formation during electrochemical reduction of CO : new theoretical insights from an improved electrochemical model publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b00358 – volume: 49 start-page: 6884 issue: 19 year: 2020 ident: CR12 article-title: Transition metal-based catalysts for the electrochemical CO reduction: from atoms and molecules to nanostructured materials publication-title: Chem Soc Rev doi: 10.1039/d0cs00835d – volume: 22 start-page: 6540 issue: 19 year: 2020 ident: CR60 article-title: Stabilization of Cu by tuning a CuO–CeO interface for selective electrochemical CO reduction to ethylene publication-title: Green Chem doi: 10.1039/d0gc02279a – volume: 1 start-page: 946 issue: 12 year: 2018 ident: CR29 article-title: Copper nanocavities confine intermediates for efficient electrosynthesis of C alcohol fuels from carbon monoxide publication-title: Nat Catal doi: 10.1038/s41929-018-0168-4 – volume: 6 start-page: 2032 issue: 11 year: 2015 ident: CR21 article-title: Theoretical insights into a CO dimerization mechanism in CO electroreduction publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b00722 – volume: 13 start-page: 3694 issue: 1 year: 2022 ident: CR63 article-title: Hydroxyl radicals dominate reoxidation of oxide-derived Cu in electrochemical CO reduction publication-title: Nat Commun doi: 10.1038/s41467-022-31498-8 – volume: 141 start-page: 12192 issue: 31 year: 2019 ident: CR72 article-title: Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ raman spectroscopy publication-title: J Am Chem Soc doi: 10.1021/jacs.9b04638 – volume: 10 start-page: 974 issue: 9 year: 2018 ident: CR70 article-title: Dopant-induced electron localization drives CO reduction to C hydrocarbons publication-title: Nat Chem doi: 10.1038/s41557-018-0092-x – volume: 11 start-page: 3844 issue: 1 year: 2020 ident: CR75 article-title: Oxygen induced promotion of electrochemical reduction of CO via co-electrolysis publication-title: Nat Commun doi: 10.1038/s41467-020-17690-8 – volume: 42 start-page: 2423 issue: 6 year: 2013 ident: CR1 article-title: Catalysis of the electrochemical reduction of carbon dioxide publication-title: Chem Soc Rev doi: 10.1039/c2cs35360a – volume: 140 start-page: 8681 issue: 28 year: 2018 ident: CR9 article-title: Production from CO reduction publication-title: J Am Chem Soc doi: 10.1021/jacs.8b02173 – volume: 132 start-page: 154014 issue: 15 year: 2010 ident: CR37 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J Chem Phys doi: 10.1063/1.3382344 – volume: 138 start-page: 483 issue: 2 year: 2016 ident: CR18 article-title: Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111) publication-title: J Am Chem Soc doi: 10.1021/jacs.5b11390 – volume: 10 start-page: e2207187 year: 2023 ident: CR53 article-title: Grain boundary-rich copper nanocatalysts generated from metal-organic framework nanoparticles for CO -to-C electroconversion publication-title: Adv Sci doi: 10.1002/advs.202207187 – volume: 139 start-page: 3774 issue: 10 year: 2017 ident: CR33 article-title: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold publication-title: J Am Chem Soc doi: 10.1021/jacs.6b13287 – volume: 15 start-page: 3968 issue: 9 year: 2022 ident: CR62 article-title: Elucidating electrochemical CO reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy publication-title: Energy Environ Sci doi: 10.1039/d2ee01334g – volume: 142 start-page: 6400 issue: 13 year: 2020 ident: CR44 article-title: Protecting copper oxidation state via intermediate confinement for selective CO electroreduction to C fuels publication-title: J Am Chem Soc doi: 10.1021/jacs.0c01699 – volume: 16 start-page: 4494 year: 2021 end-page: 4498 ident: CR52 article-title: Cu S derived copper nanoparticles: a platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO -to-C H conversion publication-title: Nano Res doi: 10.1007/s12274-021-3532-7 – volume: 360 start-page: 783 issue: 6390 year: 2018 ident: CR73 article-title: CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface publication-title: Science doi: 10.1126/science.aas9100 – volume: 139 start-page: 130 issue: 1 year: 2017 ident: CR15 article-title: Atomistic mechanisms underlying selectivities in C and C products from electrochemical reduction of CO on Cu(111) publication-title: J Am Chem Soc doi: 10.1021/jacs.6b06846 – volume: 4 start-page: 4776 issue: 13 year: 2016 ident: CR32 article-title: Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO to CO publication-title: J Mater Chem A doi: 10.1039/c6ta00487c – volume: 33 start-page: 801 issue: 10 year: 2002 ident: CR42 article-title: Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance publication-title: J Raman Spectrosc doi: 10.1002/jrs.921 – volume: 10 start-page: 6908 issue: 12 year: 2020 ident: CR69 article-title: Revealing the predominant surface facets of rough Cu electrodes under electrochemical conditions publication-title: ACS Catal doi: 10.1021/acscatal.9b05532 – volume: 144 start-page: 14005 issue: 31 year: 2022 ident: CR22 article-title: Mechanistic insights into OC–COH coupling in CO electroreduction on fragmented copper publication-title: J Am Chem Soc doi: 10.1021/jacs.2c01044 – volume: 142 start-page: 9735 issue: 21 year: 2020 ident: CR65 article-title: Speciation of Cu surfaces during the electrochemical CO reduction reaction publication-title: J Am Chem Soc doi: 10.1021/jacs.0c02354 – volume: 17 start-page: 346 issue: 1 year: 2023 ident: CR74 article-title: Strain in copper/ceria heterostruc-ture promotes electrosynthesis of multicarbon products publication-title: ACS Nano doi: 10.1021/acsnano.2c08453 – volume: 16 start-page: 70 issue: 1 year: 2016 ident: CR2 article-title: Materials for solar fuels and chemicals publication-title: Nat Mater doi: 10.1038/nmat4778 – volume: 11 start-page: 3685 issue: 1 year: 2020 ident: CR23 article-title: Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption publication-title: Nat Commun doi: 10.1038/s41467-020-17499-5 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: CR19 article-title: pH effects on the electrochemical reduction of CO towards C products on stepped copper publication-title: Nat Commun doi: 10.1038/s41467-018-07970-9 – volume: 41 start-page: 3943 issue: 12 year: 2022 end-page: 3945 ident: CR3 article-title: Sn-Bi bimetallic interface induced by nano-crumples for CO electroreduction to formate publication-title: Rare Met doi: 10.1007/s12598-022-02139-2 – volume: 12 start-page: 3264 issue: 1 year: 2021 ident: CR34 article-title: Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper publication-title: Nat Commun doi: 10.1038/s41467-021-23582-2 – volume: 50 start-page: 17953 issue: 24 year: 1994 ident: CR39 article-title: Projector augmented-wave method publication-title: Phys Rev B Condens Matter doi: 10.1103/physrevb.50.17953 – volume: 13 start-page: 14050 issue: 12 year: 2021 ident: CR47 article-title: Cu(I) reducibility controls ethylene vs. ethanol selectivity on (100)-textured copper during pulsed CO reduction publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c17668 – volume: 14 start-page: 36527 issue: 32 year: 2022 ident: CR55 article-title: In situ engineering of the Cu /Cu interface to boost C selectivity in CO electroreduction publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c05992 – volume: 61 start-page: 1 issue: 3 year: 2022 ident: CR30 article-title: Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202113498 – volume: 24 start-page: 1527 issue: 4 year: 2022 ident: CR56 article-title: Electrocatalytic CO reduction to ethylene over ZrO /Cu-Cu O catalysts in aqueous electrolytes publication-title: Green Chem doi: 10.1039/d1gc04284j – volume: 29 start-page: 439 year: 2016 ident: CR6 article-title: Electrochemical CO reduction: electrocatalyst, reaction mechanism, and process engineering publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.009 – volume: 52 start-page: 7282 issue: 28 year: 2013 ident: CR20 article-title: Theoretical considerations on the electroreduction of CO to C species on Cu(100) electrodes publication-title: Angew Chem Int Ed doi: 10.1002/anie.201301470 – volume: 9 start-page: 49 issue: 1 year: 2018 ident: CR5 article-title: CO electroreduction: current development and understanding of Cu-based catalysts publication-title: ACS Catal doi: 10.1021/acscatal.8b03780 – volume: 15 start-page: 2397 issue: 6 year: 2022 ident: CR50 article-title: Interface rich CuO/Al CuO surface for selective ethylene production from electrochemical CO conversion publication-title: Energy Environ Sci doi: 10.1039/d1ee03861c – volume: 119 start-page: 7610 issue: 12 year: 2019 ident: CR7 article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00705 – volume: 3 start-page: 1545 issue: 7 year: 2018 ident: CR8 article-title: Recent advances in CO reduction electrocatalysis on copper publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b00553 – volume: 82 start-page: 351 issue: 2 year: 1999 ident: CR41 article-title: Pressure-induced disappearance of the Raman anomaly in CuCl publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.82.351 – volume: 143 start-page: 7242 issue: 19 year: 2021 ident: CR57 article-title: Highly selective CO electroreduction to C H using a metal-organic framework with dual active sites publication-title: J Am Chem Soc doi: 10.1021/jacs.1c01466 – volume: 7 start-page: 1749 issue: 3 year: 2017 ident: CR68 article-title: Electrochemical reduction of CO using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene publication-title: ACS Catal doi: 10.1021/acscatal.6b03147 – volume: 8 start-page: 7507 issue: 8 year: 2018 ident: CR26 article-title: Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH publication-title: ACS Catal doi: 10.1021/acscatal.8b01552 – volume: 10 start-page: 5186 issue: 1 year: 2019 ident: CR31 article-title: Efficient upgrading of CO to C fuel using asymmetric C–C coupling active sites publication-title: Nat Commun doi: 10.1038/s41467-019-13190-6 – volume: 10 start-page: 240 issue: 1 year: 2023 ident: CR54 article-title: In situ surface/interface generation on Cu O nanostructures toward enhanced electrocatalytic CO reduction to ethylene using operando spectroscopy publication-title: Inorg Chem Front doi: 10.1039/d2qi01977a – volume: 12 start-page: 1 issue: 1 year: 2021 ident: CR25 article-title: Efficient CO electroreduction on facet-selective copper films with high conversion rate publication-title: Nat Commun doi: 10.1038/s41467-021-26053-w – volume: 49 start-page: 14251 issue: 20 year: 1994 ident: CR36 article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium publication-title: Phys Rev B Condens Matter doi: 10.1103/physrevb.49.14251 – volume: 12 start-page: 15230 issue: 24 year: 2022 ident: CR48 article-title: In situ reconstruction of Cu-N coordinated MOFs to generate dispersive Cu/Cu O nanoclusters for selective electroreduction of CO to C H publication-title: ACS Catal doi: 10.1021/acscatal.2c04275 – volume: 3 start-page: 251 issue: 2 year: 2012 ident: CR10 article-title: Activity descriptors for CO electroreduction to methane on transition-metal catalysts publication-title: J Phys Chem Lett doi: 10.1021/jz201461 – volume: 61 start-page: 1 issue: 28 year: 2022 ident: CR59 article-title: Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO reduction with tunable C H /CH selectivity publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202204967 – volume: 22 start-page: 6540 issue: 19 year: 2020 ident: 2527_CR60 publication-title: Green Chem doi: 10.1039/d0gc02279a – volume: 140 start-page: 8681 issue: 28 year: 2018 ident: 2527_CR9 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b02173 – volume: 2 start-page: 1124 issue: 12 year: 2019 ident: 2527_CR28 publication-title: Nat Catal doi: 10.1038/s41929-019-0380-x – volume: 12 start-page: 3264 issue: 1 year: 2021 ident: 2527_CR34 publication-title: Nat Commun doi: 10.1038/s41467-021-23582-2 – volume: 132 start-page: 154014 issue: 15 year: 2010 ident: 2527_CR37 publication-title: J Chem Phys doi: 10.1063/1.3382344 – volume: 22 start-page: 7560 issue: 21 year: 2020 ident: 2527_CR61 publication-title: Green Chem doi: 10.1039/d0gc03051a – volume: 33 start-page: 801 issue: 10 year: 2002 ident: 2527_CR42 publication-title: J Raman Spectrosc doi: 10.1002/jrs.921 – volume: 139 start-page: 130 issue: 1 year: 2017 ident: 2527_CR15 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b06846 – volume: 4 start-page: 4776 issue: 13 year: 2016 ident: 2527_CR32 publication-title: J Mater Chem A doi: 10.1039/c6ta00487c – volume: 60 start-page: 16576 issue: 30 year: 2021 ident: 2527_CR66 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202104114 – volume: 9 start-page: 49 issue: 1 year: 2018 ident: 2527_CR5 publication-title: ACS Catal doi: 10.1021/acscatal.8b03780 – volume: 144 start-page: 14005 issue: 31 year: 2022 ident: 2527_CR22 publication-title: J Am Chem Soc doi: 10.1021/jacs.2c01044 – volume: 59 start-page: 1758 issue: 3 year: 1999 ident: 2527_CR38 publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.1758 – volume: 54 start-page: 11169 issue: 1 year: 1996 ident: 2527_CR35 publication-title: Phys Rev B doi: 10.1103/PhysRevB.54.11169 – volume: 40 start-page: 3616 issue: 6 year: 1989 ident: 2527_CR40 publication-title: Phys Rev B Condens Matter doi: 10.1103/physrevb.40.3616 – volume: 13 start-page: 3694 issue: 1 year: 2022 ident: 2527_CR63 publication-title: Nat Commun doi: 10.1038/s41467-022-31498-8 – volume: 12 start-page: 15230 issue: 24 year: 2022 ident: 2527_CR48 publication-title: ACS Catal doi: 10.1021/acscatal.2c04275 – volume: 40 start-page: 3019 issue: 11 year: 2021 ident: 2527_CR4 publication-title: Rare Met doi: 10.1007/s12598-021-01736-x – volume: 3 start-page: 1545 issue: 7 year: 2018 ident: 2527_CR8 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b00553 – volume: 660 start-page: 80 issue: 1 year: 2011 ident: 2527_CR43 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2011.06.008 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 2527_CR19 publication-title: Nat Commun doi: 10.1038/s41467-018-07970-9 – volume: 142 start-page: 9735 issue: 21 year: 2020 ident: 2527_CR65 publication-title: J Am Chem Soc doi: 10.1021/jacs.0c02354 – volume: 71 start-page: 63 issue: 1 year: 2022 ident: 2527_CR71 publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.03.041 – volume: 34 start-page: 100589 year: 2022 ident: 2527_CR67 publication-title: Curr Opin Green Sustain Chem. doi: 10.1016/j.cogsc.2022.100589 – volume: 138 start-page: 483 issue: 2 year: 2016 ident: 2527_CR18 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b11390 – volume: 6 start-page: 3111 year: 2020 ident: 2527_CR13 publication-title: Sci Adv doi: 10.1126/sciadv.aay3111 – volume: 41 start-page: 3943 issue: 12 year: 2022 ident: 2527_CR3 publication-title: Rare Met doi: 10.1007/s12598-022-02139-2 – volume: 49 start-page: 6884 issue: 19 year: 2020 ident: 2527_CR12 publication-title: Chem Soc Rev doi: 10.1039/d0cs00835d – volume: 139 start-page: 3774 issue: 10 year: 2017 ident: 2527_CR33 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b13287 – volume: 11 start-page: 3685 issue: 1 year: 2020 ident: 2527_CR23 publication-title: Nat Commun doi: 10.1038/s41467-020-17499-5 – volume: 14 start-page: 36527 issue: 32 year: 2022 ident: 2527_CR55 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c05992 – volume: 22 start-page: 3801 issue: 9 year: 2022 ident: 2527_CR24 publication-title: Nano Lett doi: 10.1021/acs.nanolett.2c00945 – volume: 5 start-page: 2100736 issue: 10 year: 2021 ident: 2527_CR46 publication-title: Small Methods doi: 10.1002/smtd.202100736 – volume: 61 start-page: 1 issue: 3 year: 2022 ident: 2527_CR30 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202113498 – volume: 10 start-page: 974 issue: 9 year: 2018 ident: 2527_CR70 publication-title: Nat Chem doi: 10.1038/s41557-018-0092-x – volume: 59 start-page: 14736 issue: 35 year: 2020 ident: 2527_CR11 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202000617 – volume: 24 start-page: 1527 issue: 4 year: 2022 ident: 2527_CR56 publication-title: Green Chem doi: 10.1039/d1gc04284j – volume: 61 start-page: 1 issue: 28 year: 2022 ident: 2527_CR59 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202204967 – volume: 50 start-page: 17953 issue: 24 year: 1994 ident: 2527_CR39 publication-title: Phys Rev B Condens Matter doi: 10.1103/physrevb.50.17953 – volume: 7 start-page: 1749 issue: 3 year: 2017 ident: 2527_CR68 publication-title: ACS Catal doi: 10.1021/acscatal.6b03147 – volume: 42 start-page: 2423 issue: 6 year: 2013 ident: 2527_CR1 publication-title: Chem Soc Rev doi: 10.1039/c2cs35360a – volume: 6 start-page: 219 issue: 1 year: 2015 ident: 2527_CR14 publication-title: ACS Catal doi: 10.1021/acscatal.5b01967 – volume: 10 start-page: 5186 issue: 1 year: 2019 ident: 2527_CR31 publication-title: Nat Commun doi: 10.1038/s41467-019-13190-6 – volume: 60 start-page: 25485 issue: 48 year: 2021 ident: 2527_CR58 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202111136 – volume: 8 start-page: 11117 issue: 22 year: 2020 ident: 2527_CR49 publication-title: J Mater Chem A doi: 10.1039/d0ta02395g – volume: 8 start-page: 1490 issue: 2 year: 2018 ident: 2527_CR17 publication-title: ACS Catal doi: 10.1021/acscatal.7b03477 – volume: 1 start-page: 946 issue: 12 year: 2018 ident: 2527_CR29 publication-title: Nat Catal doi: 10.1038/s41929-018-0168-4 – volume: 49 start-page: 14251 issue: 20 year: 1994 ident: 2527_CR36 publication-title: Phys Rev B Condens Matter doi: 10.1103/physrevb.49.14251 – volume: 7 start-page: 1471 issue: 8 year: 2016 ident: 2527_CR16 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b00358 – volume: 119 start-page: 7610 issue: 12 year: 2019 ident: 2527_CR7 publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00705 – volume: 654 start-page: 56 year: 2016 ident: 2527_CR27 publication-title: Surf Sci doi: 10.1016/j.susc.2016.08.006 – volume: 82 start-page: 351 issue: 2 year: 1999 ident: 2527_CR41 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.82.351 – volume: 15 start-page: 3968 issue: 9 year: 2022 ident: 2527_CR62 publication-title: Energy Environ Sci doi: 10.1039/d2ee01334g – volume: 29 start-page: 439 year: 2016 ident: 2527_CR6 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.009 – volume: 52 start-page: 7282 issue: 28 year: 2013 ident: 2527_CR20 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201301470 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 2527_CR25 publication-title: Nat Commun doi: 10.1038/s41467-021-26053-w – volume: 10 start-page: e2207187 year: 2023 ident: 2527_CR53 publication-title: Adv Sci doi: 10.1002/advs.202207187 – volume: 360 start-page: 783 issue: 6390 year: 2018 ident: 2527_CR73 publication-title: Science doi: 10.1126/science.aas9100 – volume: 16 start-page: 70 issue: 1 year: 2016 ident: 2527_CR2 publication-title: Nat Mater doi: 10.1038/nmat4778 – volume: 10 start-page: 240 issue: 1 year: 2023 ident: 2527_CR54 publication-title: Inorg Chem Front doi: 10.1039/d2qi01977a – volume: 10 start-page: 6908 issue: 12 year: 2020 ident: 2527_CR69 publication-title: ACS Catal doi: 10.1021/acscatal.9b05532 – volume: 13 start-page: 14050 issue: 12 year: 2021 ident: 2527_CR47 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c17668 – volume: 61 start-page: e202200039 issue: 13 year: 2022 ident: 2527_CR51 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202200039 – volume: 17 start-page: 346 issue: 1 year: 2023 ident: 2527_CR74 publication-title: ACS Nano doi: 10.1021/acsnano.2c08453 – volume: 8 start-page: 7507 issue: 8 year: 2018 ident: 2527_CR26 publication-title: ACS Catal doi: 10.1021/acscatal.8b01552 – volume: 8 start-page: 3541 year: 2020 ident: 2527_CR45 publication-title: J Mater Chem A doi: 10.1039/C9TA11966C – volume: 11 start-page: 7694 issue: 13 year: 2021 ident: 2527_CR64 publication-title: ACS Catal doi: 10.1021/acscatal.1c01478 – volume: 11 start-page: 3844 issue: 1 year: 2020 ident: 2527_CR75 publication-title: Nat Commun doi: 10.1038/s41467-020-17690-8 – volume: 16 start-page: 4494 year: 2021 ident: 2527_CR52 publication-title: Nano Res doi: 10.1007/s12274-021-3532-7 – volume: 6 start-page: 2032 issue: 11 year: 2015 ident: 2527_CR21 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b00722 – volume: 3 start-page: 251 issue: 2 year: 2012 ident: 2527_CR10 publication-title: J Phys Chem Lett doi: 10.1021/jz201461 – volume: 143 start-page: 7242 issue: 19 year: 2021 ident: 2527_CR57 publication-title: J Am Chem Soc doi: 10.1021/jacs.1c01466 – volume: 15 start-page: 2397 issue: 6 year: 2022 ident: 2527_CR50 publication-title: Energy Environ Sci doi: 10.1039/d1ee03861c – volume: 142 start-page: 6400 issue: 13 year: 2020 ident: 2527_CR44 publication-title: J Am Chem Soc doi: 10.1021/jacs.0c01699 – volume: 141 start-page: 12192 issue: 31 year: 2019 ident: 2527_CR72 publication-title: J Am Chem Soc doi: 10.1021/jacs.9b04638 |
SSID | ssj0044660 |
Score | 2.40823 |
Snippet | Electrocatalysis of CO
2
reduction reaction is an effective way to convert CO
2
into high value-added products, but the selectivity of Cu-based catalysts for C... Electrocatalysis of CO2 reduction reaction is an effective way to convert CO2 into high value-added products, but the selectivity of Cu-based catalysts for C2+... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1513 |
SubjectTerms | Biomaterials Carbon dioxide Chemical reduction Chemistry and Materials Science Coupling Density functional theory Efficiency Electronic structure Energy Ethylene Materials Engineering Materials Science Metallic Materials Nanoscale Science and Technology Original Article Physical Chemistry Single atom catalysts |
Title | Nanocavity enriched CuPd alloy with high selectivity for CO2 electroreduction toward C2H4 |
URI | https://link.springer.com/article/10.1007/s12598-023-02527-2 https://www.proquest.com/docview/2957239456 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIpCqTywgaXEseN4rEJLBRSQoFI7RXHiTKigNh3499ylDgEESAxRhjgZfOd75O6-j5CzQGY2lEozW5iUicxGLJVGMxNawU1uchHiNPL4LhxNxPVUTt1Q2LLudq9LkpWlbobdIFKPGPgYuCRXDAxvW2LuDlo84f3a_mKBco1BgIkyeCc3KvPzN766oybG_FYWrbzNcIdsuzCR9tdy3SUbdr5Htj6BB-6TGRhGcETI_UBBCbClM6fx6iGnWEt_o_iHlSIaMV1WXDcVSwSFGJXG95w6-psFIreibGhZ9c_SmI_EAZkMB0_xiDmiBJbBCSqZinIDJzONCuGnFhLe3PcyLzBFESgplYEYBSFDtYiQV6xIfZ5nkBcblUM2pLUNDklr_jK3R4SazAi_KFLNPRCWJ6OwyGwaidQqo400HeLX-5VkDkUcySyekwb_GPc4gT1Oqj1OeIecf7zzusbQ-HN1txZD4s7TMuFaKiRxl2GHXNSiaR7__rXj_y0_IZugUa41p0ta5WJlTyHqKE2PtPuX49tHvF_Nbga9SuneAeB8z9g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeIpCAQ9sYClx7DzGKqIq0BaGViqTFT8yoYLadODfc5cHAQRIDJnieLiz75G7-z5CLgNpXCijhLlcZ0wYF7NM6oTp0AmurbYixGnk0TgcTMXdTM7qobBl0-3elCRLS90Ou0GkHjPwMfBIHjEwvBsQDMTYyDXlvcb-YoGywiDARBm8Uz0q8_MeX91RG2N-K4uW3qa_S3bqMJH2Kr3ukTU33yfbn8ADD8gTGEZwRMj9QOEQYEunpenq0VKspb9R_MNKEY2YLkuum5IlgkKMStMHTmv6mwUit6JuaFH2z9KUD8QhmfZvJumA1UQJzMANKlgUWw03M4tz4WcOEl7re8YLdJ4HkZSRhhgFIUMTESOvWJ753BrIi3VkIRtKEhcckfX5y9wdE6qNFn6eZwn3QFmejMPcuCwWmYt0oqXuEL-RlzI1ijiSWTyrFv8YZaxAxqqUseIdcvXxzWuFofHn6m6jBlXfp6XiiYyQxF2GHXLdqKZ9_ftuJ_9bfkE2B5PRUA1vx_enZItDBFO16XTJerFYuTOIQAp9Xh64d8orz6M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMiKcoFPDABlYbx85jrAJVeZUOVCpTFMf2hELVpgP_nrs8SEGAxJApiaXc2ffI3X0fIReuTI0n_ZAZqxImUhOwRKqQKc8IrrTSwsNp5MeRN5yIu6mcrkzxF93udUmynGlAlKYs78607TaDbxC1Bwz8DVyS-wyM8DqYYwf39YT3a1uMxcoSjwCTZvBU1djMz2t8dU1NvPmtRFp4nsEO2a5CRtovdbxL1ky2R7ZWgAT3yQsYSXBKyANBYUNge6em0XKsKdbV3yn-baWITEwXBe9NwRhBIV6l0ROnFRXOHFFcUU80L3ppacSH4oBMBjfP0ZBVpAkshc_PmR9oBac0CaxwEgPJr3Z6ac9V1rq-lL6CeAXhQ0MRIMeYTRyuU8iRla8hMwpD4x6SVvaWmSNCVaqEY20S8h4oricDz6YmCURifBUqqdrEqeUVpxWiOBJbvMYNFjLKOAYZx4WMY94ml5_vzEo8jT-f7tRqiKuztYh5KH0kdJdem1zVqmlu_77a8f8ePycb4-tB_HA7uj8hmxyCmbJjp0Na-XxpTiEYydVZsd8-ABnz098 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocavity+enriched+CuPd+alloy+with+high+selectivity+for+CO2+electroreduction+toward+C2H4&rft.jtitle=Rare+metals&rft.au=Ze-Yu%2C+Zhang&rft.au=Wang%2C+Hai-Bin&rft.au=Zhang%2C+Fei-Fei&rft.au=Jing-Wei%2C+Li&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=43&rft.issue=4&rft.spage=1513&rft.epage=1523&rft_id=info:doi/10.1007%2Fs12598-023-02527-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |