Nanocavity enriched CuPd alloy with high selectivity for CO2 electroreduction toward C2H4

Electrocatalysis of CO 2 reduction reaction is an effective way to convert CO 2 into high value-added products, but the selectivity of Cu-based catalysts for C 2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease en...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 43; no. 4; pp. 1513 - 1523
Main Authors Zhang, Ze-Yu, Wang, Hai-Bin, Zhang, Fei-Fei, Li, Jing-Wei, Hu, Xin-Zhuo, Yan, Si-Wei, Bai, Yi-Ming, Zhang, Xun, Shen, Gu-Rong, Yin, Peng-Fei, Yang, Jing, Dong, Cun-Ku, Mao, Jing, Liu, Hui, Du, Xi-Wen
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalysis of CO 2 reduction reaction is an effective way to convert CO 2 into high value-added products, but the selectivity of Cu-based catalysts for C 2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease energy barrier of C–C coupling should be put forward. Here, a nanocavity-enriched CuPd single atom alloy (CuPd SAA) catalyst is designed to promote C–C coupling process. The faradaic efficiency of CuPd SAA for ethylene and C 2+ reaches 75.6% and 85.7% at − 0.7 V versus reversible hydrogen electrode (RHE), respectively. Based on the results given by in situ characterization, the porous hollow structure dramatically increases the ratio of the linear-bond *CO, thus enhancing the faradaic efficiency for ethylene. Density functional theory (DFT) calculation reveals that the Pd doping can regulate the electronic structure of neighboring Cu atoms to decrease the energy barrier of C–C coupling, further improving the faradaic efficiency. This work provides a new idea for designing catalyst with high selectivity for ethylene. Graphical abstract
AbstractList Electrocatalysis of CO2 reduction reaction is an effective way to convert CO2 into high value-added products, but the selectivity of Cu-based catalysts for C2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease energy barrier of C–C coupling should be put forward. Here, a nanocavity-enriched CuPd single atom alloy (CuPd SAA) catalyst is designed to promote C–C coupling process. The faradaic efficiency of CuPd SAA for ethylene and C2+ reaches 75.6% and 85.7% at − 0.7 V versus reversible hydrogen electrode (RHE), respectively. Based on the results given by in situ characterization, the porous hollow structure dramatically increases the ratio of the linear-bond *CO, thus enhancing the faradaic efficiency for ethylene. Density functional theory (DFT) calculation reveals that the Pd doping can regulate the electronic structure of neighboring Cu atoms to decrease the energy barrier of C–C coupling, further improving the faradaic efficiency. This work provides a new idea for designing catalyst with high selectivity for ethylene.
Electrocatalysis of CO 2 reduction reaction is an effective way to convert CO 2 into high value-added products, but the selectivity of Cu-based catalysts for C 2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease energy barrier of C–C coupling should be put forward. Here, a nanocavity-enriched CuPd single atom alloy (CuPd SAA) catalyst is designed to promote C–C coupling process. The faradaic efficiency of CuPd SAA for ethylene and C 2+ reaches 75.6% and 85.7% at − 0.7 V versus reversible hydrogen electrode (RHE), respectively. Based on the results given by in situ characterization, the porous hollow structure dramatically increases the ratio of the linear-bond *CO, thus enhancing the faradaic efficiency for ethylene. Density functional theory (DFT) calculation reveals that the Pd doping can regulate the electronic structure of neighboring Cu atoms to decrease the energy barrier of C–C coupling, further improving the faradaic efficiency. This work provides a new idea for designing catalyst with high selectivity for ethylene. Graphical abstract
Author Hu, Xin-Zhuo
Du, Xi-Wen
Li, Jing-Wei
Yan, Si-Wei
Bai, Yi-Ming
Wang, Hai-Bin
Zhang, Xun
Zhang, Fei-Fei
Dong, Cun-Ku
Mao, Jing
Yin, Peng-Fei
Shen, Gu-Rong
Yang, Jing
Liu, Hui
Zhang, Ze-Yu
Author_xml – sequence: 1
  givenname: Ze-Yu
  surname: Zhang
  fullname: Zhang, Ze-Yu
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 2
  givenname: Hai-Bin
  surname: Wang
  fullname: Wang, Hai-Bin
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 3
  givenname: Fei-Fei
  surname: Zhang
  fullname: Zhang, Fei-Fei
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 4
  givenname: Jing-Wei
  surname: Li
  fullname: Li, Jing-Wei
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 5
  givenname: Xin-Zhuo
  surname: Hu
  fullname: Hu, Xin-Zhuo
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 6
  givenname: Si-Wei
  surname: Yan
  fullname: Yan, Si-Wei
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 7
  givenname: Yi-Ming
  surname: Bai
  fullname: Bai, Yi-Ming
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 8
  givenname: Xun
  surname: Zhang
  fullname: Zhang, Xun
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 9
  givenname: Gu-Rong
  surname: Shen
  fullname: Shen, Gu-Rong
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 10
  givenname: Peng-Fei
  surname: Yin
  fullname: Yin, Peng-Fei
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 11
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 12
  givenname: Cun-Ku
  surname: Dong
  fullname: Dong, Cun-Ku
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 13
  givenname: Jing
  orcidid: 0000-0002-6882-9136
  surname: Mao
  fullname: Mao, Jing
  email: maojing@tju.edu.cn
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 14
  givenname: Hui
  orcidid: 0000-0001-8183-9446
  surname: Liu
  fullname: Liu, Hui
  email: hui_liu@tju.edu.cn
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
– sequence: 15
  givenname: Xi-Wen
  orcidid: 0000-0002-2811-147X
  surname: Du
  fullname: Du, Xi-Wen
  email: xwdu@tju.edu.cn
  organization: Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University
BookMark eNp9kE9LwzAYxoNMcJt-AU8Bz9X8bdKjFHXCcB704Cmkbbpm1GYmrWPf3mwVBA87hIQ3z-953_eZgUnnOgPANUa3GCFxFzDhmUwQofFwIhJyBqZYpiIRWPJJfCOEE8QJvgCzEDYIMZamaAo-XnTnSv1t-z00nbdlYyqYD68V1G3r9nBn-wY2dt3AYFpT9vaorJ2H-YrAY8k7b6ohfrkO9m6nfTQgC3YJzmvdBnP1e8_B--PDW75Ilqun5_x-mZQUZ30iZFVISrSsGdaGpVmFUYloUddUcC4KQYRgkmVMIklxrTGpSsTSQlQYsywzdA5uRt-td1-DCb3auMF3saUiGReEZoynUUVGVeldCN7Uauvtp_Z7hZE6RKjGCFWMUB0jVCRC8h9U2l4fFu29tu1plI5oiH26tfF_U52gfgCaEIZx
CitedBy_id crossref_primary_10_1002_adma_202414169
crossref_primary_10_1007_s12598_024_02919_y
crossref_primary_10_1002_cctc_202401785
crossref_primary_10_1002_smll_202407554
crossref_primary_10_1002_ange_202409206
crossref_primary_10_1016_j_apcatb_2024_124822
crossref_primary_10_1039_D4TA06805J
crossref_primary_10_1002_anie_202409206
crossref_primary_10_1016_j_apsusc_2024_160550
crossref_primary_10_1016_j_cclet_2024_110276
crossref_primary_10_1002_adma_202310912
crossref_primary_10_1002_aic_18678
crossref_primary_10_1016_j_tet_2025_134586
crossref_primary_10_1007_s12598_025_03236_8
Cites_doi 10.1103/PhysRevB.59.1758
10.1016/j.cogsc.2022.100589
10.1103/PhysRevB.54.11169
10.1021/acscatal.5b01967
10.1002/anie.202200039
10.1002/anie.202111136
10.1021/acscatal.1c01478
10.1021/acscatal.7b03477
10.1039/d0gc03051a
10.1016/j.susc.2016.08.006
10.1002/anie.202104114
10.1016/j.jelechem.2011.06.008
10.1021/acs.nanolett.2c00945
10.1002/anie.202000617
10.1103/physrevb.40.3616
10.1016/j.jechem.2022.03.041
10.1126/sciadv.aay3111
10.1038/s41929-019-0380-x
10.1039/d0ta02395g
10.1039/C9TA11966C
10.1002/smtd.202100736
10.1007/s12598-021-01736-x
10.1021/acs.jpclett.6b00358
10.1039/d0cs00835d
10.1039/d0gc02279a
10.1038/s41929-018-0168-4
10.1021/acs.jpclett.5b00722
10.1038/s41467-022-31498-8
10.1021/jacs.9b04638
10.1038/s41557-018-0092-x
10.1038/s41467-020-17690-8
10.1039/c2cs35360a
10.1021/jacs.8b02173
10.1063/1.3382344
10.1021/jacs.5b11390
10.1002/advs.202207187
10.1021/jacs.6b13287
10.1039/d2ee01334g
10.1021/jacs.0c01699
10.1007/s12274-021-3532-7
10.1126/science.aas9100
10.1021/jacs.6b06846
10.1039/c6ta00487c
10.1002/jrs.921
10.1021/acscatal.9b05532
10.1021/jacs.2c01044
10.1021/jacs.0c02354
10.1021/acsnano.2c08453
10.1038/nmat4778
10.1038/s41467-020-17499-5
10.1038/s41467-018-07970-9
10.1007/s12598-022-02139-2
10.1038/s41467-021-23582-2
10.1103/physrevb.50.17953
10.1021/acsami.0c17668
10.1021/acsami.2c05992
10.1002/anie.202113498
10.1039/d1gc04284j
10.1016/j.nanoen.2016.04.009
10.1002/anie.201301470
10.1021/acscatal.8b03780
10.1039/d1ee03861c
10.1021/acs.chemrev.8b00705
10.1021/acsenergylett.8b00553
10.1103/PhysRevLett.82.351
10.1021/jacs.1c01466
10.1021/acscatal.6b03147
10.1021/acscatal.8b01552
10.1038/s41467-019-13190-6
10.1039/d2qi01977a
10.1038/s41467-021-26053-w
10.1103/physrevb.49.14251
10.1021/acscatal.2c04275
10.1021/jz201461
10.1002/anie.202204967
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-023-02527-2
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 1523
ExternalDocumentID 10_1007_s12598_023_02527_2
GrantInformation_xml – fundername: Natural Science Foundation of China (NSFC)
  grantid: 51971154; 52022064
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c319t-78db832a8f41ae469d10c03bff37557b72774849480831fa12dc046b7d11499e3
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Fri Jul 25 12:27:18 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Tue Jul 01 01:30:15 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords C–C coupling
CO
electrocatalysis
Single atom alloy
Adsorption configuration
Ethylene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-78db832a8f41ae469d10c03bff37557b72774849480831fa12dc046b7d11499e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8183-9446
0000-0002-6882-9136
0000-0002-2811-147X
PQID 2957239456
PQPubID 326325
PageCount 11
ParticipantIDs proquest_journals_2957239456
crossref_primary_10_1007_s12598_023_02527_2
crossref_citationtrail_10_1007_s12598_023_02527_2
springer_journals_10_1007_s12598_023_02527_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2024
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Lu, Jiao (CR6) 2016; 29
Xiao, Cheng, Goddard, Sundararaman (CR18) 2016; 138
Sandberg, Montoya, Chan, Nørskov (CR27) 2016; 654
Lee, Jung, Kim, Oh, Min, Hwang (CR9) 2018; 140
Kim, Shin, Park, Jung, Song (CR53) 2023; 10
Liu, Gao, Ren, Meng, Yang, Gao, Yang, Ma (CR45) 2020; 8
Chen, Huang, Zheng, Li (CR43) 2011; 660
He, Duan, Low, Bai, Jiang, Wang, Chen, Long, Song, Xiong (CR52) 2021; 16
Wang, Wang, Zhuang, Dinh, Li, Nam, Li, Huang, Tan, Chen, Chi, Gabardo, Seifitokaldani, Todorovic, Proppe, Pang, Kirmani, Wang, Ip, Richter, Scheffel, Xu, Lo, Kelley, Sinton, Sargent (CR31) 2019; 10
Du, Li, Wu, Wang, Yang, Fan, Qiu, Yan, Wang, Zhao, Zhao, Chen (CR55) 2022; 14
Guo, He, Yang, Wang, Wang, Li, Wei, Liu, Han (CR56) 2022; 24
Xiao, Cheng, Goddard (CR15) 2017; 139
Chang, Liu, Wei, Yang, Bai (CR54) 2023; 10
Goodpaster, Bell, Head-Gordon (CR16) 2016; 7
Dinh, Burdyny, Kibria, Seifitokaldani, Gabardo, Arquer, Kiani, Edwards, Luna, Bushuyev, Zou, Quintero-Bermudez, Pang, Sinton, Sargent (CR73) 2018; 360
Kong, Zhao, Ke, Wang, Li, Si, Liu, Zeng, Geng (CR24) 2022; 22
Li, Chang, Zhang, Malkani, Cheng, Xu, Lu (CR34) 2021; 12
Tang, Nishiwaki, Fritz, Hanrath, Suntivich (CR47) 2021; 13
Wang, Li, Cui, Zhang, Hu, Ding, Deng, Han, Hu (CR4) 2021; 40
Liu, Zhang, Li, Xue, Zheng, Xia, Zeng (CR30) 2022; 61
Zhuang, Pang, Liang, Wang, Li, Tan, Li, Dinh, De Luna, Hsieh, Burdyny, Li, Liu, Wang, Li, Proppe, Johnston, Nam, Wu, Zheng, Ip, Tan, Chen, Yu, Kelley, Sinton, Sargent (CR29) 2018; 1
Zhan, Dattila, Rettenmaier, Bergmann, Kuhl, Garcia-Muelas, Lopez, Cuenya (CR64) 2021; 11
Xue, Guo, Cui, Zhou (CR46) 2021; 5
Liu, Schlexer, Xiao, Ji, Wang, Sandberg, Tang, Brown, Peng, Ringe, Hahn, Jaramillo, Nørskov, Chan (CR19) 2019; 10
Nitopi, Bertheussen, Scott, Liu, Engstfeld, Horch, Seger, Stephens, Chan, Hahn, Nørskov, Jaramillo, Chorkendorff (CR7) 2019; 119
Zhao, Zhang, Bodappa, Yang, Liang, Radjenovica, Wang, Zhang, Dong, Tian, Li (CR62) 2022; 15
Grimme, Antony, Ehrlich, Krieg (CR37) 2010; 132
He, Li, Zhang, Chang, Chen, Goddard, Cheng, Xu, Lu (CR75) 2020; 11
Luo, Nie, Janik, Asthagiri (CR14) 2015; 6
Gunathunge, Li, Li, Hong, Waegele (CR69) 2020; 10
An, Wu, Mandemaker, Yang, de Ruiter, Wijten, Janssens, Hartman, van der Stam, Weckhuysen (CR66) 2021; 60
Kresse, Hafner (CR36) 1994; 49
Fan, Xia, Yang, Wang, Wang, Lu (CR13) 2020; 6
Ulrich, Göbel, Syassen, Cardona (CR41) 1999; 82
Popovic, Smiljanic, Jovanovic, Vavra, Buonsanti, Hodnik (CR11) 2020; 59
Franco, Rettenmaier, Jeon, Roldan (CR12) 2020; 49
Frost, Martens, Kloprogge, Williams (CR42) 2002; 33
Meng, Zhang, Si, Mao, Hou, Huang, Cao (CR58) 2021; 60
Li, Wang, McCallum, Xu, Li, Wang, Gabardo, Dinh, Zhuang, Wang, Howe, Ren, Sargent, Sinton (CR28) 2019; 2
Liu, Zhang, Huang, Guan, Xu, Gu (CR48) 2022; 12
Costentin, Robert, Savéant (CR1) 2013; 42
Qiu, Zhu, Huang, Liao, Chen (CR57) 2021; 143
Yang, Zhang, Gao, Zheng, Niu, Yu, Liu, Wu, Qin, Ch, Duan, Ma, Zheng, Zhu, Wang, Gao, Yu (CR44) 2020; 142
Liu, Zhang, Zhang, Sun (CR71) 2022; 71
Calle-Vallejo, Koper (CR20) 2013; 52
Li, Zhang (CR3) 2022; 41
Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Nørskov (CR2) 2016; 16
Li, Wei, Gao, Wang (CR67) 2022; 34
Li, Xu, Li, Wang, Zou, Gabardo, Wang, Ozden, Xu, Nam, Lum, Wicks, Chen, Wang, Chen, Wen, Zhuang, Luo, Du, Sham, Zhang, Sargent, Sinton (CR23) 2020; 11
Montoya, Shi, Chan, Nørskov (CR21) 2015; 6
Garza, Bell, Head-Gordon (CR17) 2018; 8
Zhou, Che, Liu, Zou, Liang, De Luna, Yuan, Li, Wang, Xie, Li, Chen, Bladt, Quintero-Bermudez, Sham, Bals, Hofkens, Sinton, Chen, Sargent (CR70) 2018; 10
Chu, Yan, Choi, Hong, Robertson, Masa, Han, Jung, Sun (CR60) 2020; 22
Yao, Li, Wang, Lu, Yang, Luo, Wang, Wang, Liu, Jing, Chen, Cortes, Maier, Zhang, Li, Yu, Liu, Kang, Liang (CR22) 2022; 144
Blochl (CR39) 1994; 50
Sultan, Lee, Park, Kim, Yoon, Choi, Kong, Koe, Oh, Lee, Kim, Kim, Kwon (CR50) 2022; 15
Kresse, Joubert (CR38) 1999; 59
Bodappa, Su, Zhao, Le, Yang, Radjenovic, Dong, Cheng, Tian, Li (CR72) 2019; 141
Methfessel, Paxton (CR40) 1989; 40
Zhang, Zhao, Cheng, Li, Yu, Wang, Gao, Guo, Wang, Ozin, Wang, Gong (CR25) 2021; 12
Zhuo, Chen, Zheng, Zhang, Wu, Lin, Liu, Wang, Liu, Zhou, Zhang (CR59) 2022; 61
Zhang, Li, Cheng, Lu (CR5) 2018; 9
Sha, Zhang, Cheng, Xu, Su, Wang, Hu, Han, Zheng (CR51) 2022; 61
Peterson, Nørskov (CR10) 2012; 3
Huang, Handoko, Hirunsit, Yeo (CR68) 2017; 7
Li, Wang, Li, Chang, Li, Wang, Jiang, Zhang, Liu, Yamauchi, Umezawa, Ye (CR32) 2016; 4
Zhao, Chang, Malkani, Yang, Thompson, Jiao, Xu (CR65) 2020; 142
Raciti, Wang (CR8) 2018; 3
Yao, Xia, Li, Wang, Han, Gao, Han, Shen, Liu, Seifitokaldani, Sun, Liang (CR49) 2020; 8
Kresse, Furthmüller (CR35) 1996; 54
Mu, Lu, Wu, Li, Zhao, Long, Cui (CR63) 2022; 13
Dunwell, Lu, Heyes, Rosen, Chen, Yan, Jiao, Xu (CR33) 2017; 139
Wang, Zhang, Huang, Wang, Ozden, Yao, Li, Guo, Liu, Vomiero, Wang, Qian, Li, Wang, Sun, Liang (CR74) 2023; 17
Gunathunge, Ovalle, Li, Janik, Waegele (CR26) 2018; 8
Feng, Zhu, Chu, Jia, Zhai, Wu, Wu, Han (CR61) 2020; 22
Q Lu (2527_CR6) 2016; 29
L Fan (2527_CR13) 2020; 6
Y Zhou (2527_CR70) 2018; 10
JJ Wang (2527_CR4) 2021; 40
S Nitopi (2527_CR7) 2019; 119
S Chu (2527_CR60) 2020; 22
S Mu (2527_CR63) 2022; 13
N Bodappa (2527_CR72) 2019; 141
JH Montoya (2527_CR21) 2015; 6
XF Qiu (2527_CR57) 2021; 143
L Li (2527_CR3) 2022; 41
CT Dinh (2527_CR73) 2018; 360
M Methfessel (2527_CR40) 1989; 40
LL Zhuo (2527_CR59) 2022; 61
PE Blochl (2527_CR39) 1994; 50
C He (2527_CR52) 2021; 16
X Liu (2527_CR19) 2019; 10
G Kresse (2527_CR35) 1996; 54
Y Huang (2527_CR68) 2017; 7
RB Sandberg (2527_CR27) 2016; 654
H Li (2527_CR67) 2022; 34
S Liu (2527_CR71) 2022; 71
F Chang (2527_CR54) 2023; 10
SY Lee (2527_CR9) 2018; 140
JH Montoya (2527_CR2) 2016; 16
J Li (2527_CR28) 2019; 2
F Franco (2527_CR12) 2020; 49
AA Peterson (2527_CR10) 2012; 3
CM Gunathunge (2527_CR26) 2018; 8
S Sultan (2527_CR50) 2022; 15
R Du (2527_CR55) 2022; 14
H Xiao (2527_CR18) 2016; 138
C Liu (2527_CR48) 2022; 12
AJ Garza (2527_CR17) 2018; 8
Y Xue (2527_CR46) 2021; 5
W Luo (2527_CR14) 2015; 6
H An (2527_CR66) 2021; 60
TT Zhuang (2527_CR29) 2018; 1
G Kresse (2527_CR36) 1994; 49
H Wang (2527_CR74) 2023; 17
F Calle-Vallejo (2527_CR20) 2013; 52
PP Guo (2527_CR56) 2022; 24
M Li (2527_CR32) 2016; 4
J Li (2527_CR34) 2021; 12
S Grimme (2527_CR37) 2010; 132
X Wang (2527_CR31) 2019; 10
A Liu (2527_CR45) 2020; 8
DL Meng (2527_CR58) 2021; 60
C Costentin (2527_CR1) 2013; 42
H Xiao (2527_CR15) 2017; 139
M He (2527_CR75) 2020; 11
PP Yang (2527_CR44) 2020; 142
M Dunwell (2527_CR33) 2017; 139
R Feng (2527_CR61) 2020; 22
Y Zhao (2527_CR65) 2020; 142
K Yao (2527_CR22) 2022; 144
G Kresse (2527_CR38) 1999; 59
C Ulrich (2527_CR41) 1999; 82
C Zhan (2527_CR64) 2021; 11
Y Zhao (2527_CR62) 2022; 15
CM Gunathunge (2527_CR69) 2020; 10
X Kong (2527_CR24) 2022; 22
S Kim (2527_CR53) 2023; 10
C Liu (2527_CR30) 2022; 61
RL Frost (2527_CR42) 2002; 33
JD Goodpaster (2527_CR16) 2016; 7
Z Tang (2527_CR47) 2021; 13
S Popovic (2527_CR11) 2020; 59
K Yao (2527_CR49) 2020; 8
G Zhang (2527_CR25) 2021; 12
D Raciti (2527_CR8) 2018; 3
J Li (2527_CR23) 2020; 11
S Chen (2527_CR43) 2011; 660
Y Sha (2527_CR51) 2022; 61
H Zhang (2527_CR5) 2018; 9
References_xml – volume: 59
  start-page: 1758
  issue: 3
  year: 1999
  ident: CR38
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.1758
– volume: 34
  start-page: 100589
  year: 2022
  ident: CR67
  article-title: In situ Raman spectroscopy studies for electrochemical CO reduction over Cu catalysts
  publication-title: Curr Opin Green Sustain Chem.
  doi: 10.1016/j.cogsc.2022.100589
– volume: 54
  start-page: 11169
  issue: 1
  year: 1996
  ident: CR35
  article-title: Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.54.11169
– volume: 6
  start-page: 219
  issue: 1
  year: 2015
  ident: CR14
  article-title: Facet dependence of CO reduction paths on Cu electrodes
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b01967
– volume: 61
  start-page: e202200039
  issue: 13
  year: 2022
  ident: CR51
  article-title: Anchoring ionic liquid in copper electrocatalyst for improving CO conversion to ethylene
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202200039
– volume: 60
  start-page: 25485
  issue: 48
  year: 2021
  ident: CR58
  article-title: Highly selective tandem electroreduction of CO to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202111136
– volume: 11
  start-page: 7694
  issue: 13
  year: 2021
  ident: CR64
  article-title: Revealing the CO coverage-driven C-C coupling mechanism for electrochemical CO reduction on Cu O nanocubes via operando raman spectroscopy
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c01478
– volume: 8
  start-page: 1490
  issue: 2
  year: 2018
  ident: CR17
  article-title: Mechanism of CO reduction at copper surfaces: pathways to C products
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b03477
– volume: 22
  start-page: 7560
  issue: 21
  year: 2020
  ident: CR61
  article-title: Electrodeposited Cu–Pd bimetallic catalysts for the selective electroreduction of CO to ethylene
  publication-title: Green Chem
  doi: 10.1039/d0gc03051a
– volume: 654
  start-page: 56
  year: 2016
  ident: CR27
  article-title: CO-CO coupling on Cu facets: coverage, strain and field effects
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2016.08.006
– volume: 60
  start-page: 16576
  issue: 30
  year: 2021
  ident: CR66
  article-title: Sub-second time-resolved surface-enhanced raman spectroscopy reveals dynamic CO intermediates during electrochemical CO reduction on copper
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202104114
– volume: 660
  start-page: 80
  issue: 1
  year: 2011
  ident: CR43
  article-title: Study on the electrodissolution and roughening of a palladium electrode in chloride containing solutions
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2011.06.008
– volume: 22
  start-page: 3801
  issue: 9
  year: 2022
  ident: CR24
  article-title: Understanding the effect of *CO coverage on C–C coupling toward CO electroreduction
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.2c00945
– volume: 59
  start-page: 14736
  issue: 35
  year: 2020
  ident: CR11
  article-title: Stability and degradation mechanisms of copper-based catalysts for electrochemical CO reduction
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202000617
– volume: 40
  start-page: 3616
  issue: 6
  year: 1989
  ident: CR40
  article-title: High-precision sampling for Brillouin-zone integration in metals
  publication-title: Phys Rev B Condens Matter
  doi: 10.1103/physrevb.40.3616
– volume: 71
  start-page: 63
  issue: 1
  year: 2022
  ident: CR71
  article-title: Rational design strategies of Cu-based electrocatalysts for CO electroreduction to C products
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2022.03.041
– volume: 6
  start-page: 3111
  year: 2020
  ident: CR13
  article-title: Strategies in catalysts and electrolyzer design for electrochemical CO reduction toward C products
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aay3111
– volume: 2
  start-page: 1124
  issue: 12
  year: 2019
  ident: CR28
  article-title: Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0380-x
– volume: 8
  start-page: 11117
  issue: 22
  year: 2020
  ident: CR49
  article-title: Metal–organic framework derived copper catalysts for CO to ethylene conversion
  publication-title: J Mater Chem A
  doi: 10.1039/d0ta02395g
– volume: 8
  start-page: 3541
  year: 2020
  ident: CR45
  article-title: Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA11966C
– volume: 5
  start-page: 2100736
  issue: 10
  year: 2021
  ident: CR46
  article-title: Catalyst design for electrochemical reduction of CO to multicarbon products
  publication-title: Small Methods
  doi: 10.1002/smtd.202100736
– volume: 40
  start-page: 3019
  issue: 11
  year: 2021
  end-page: 3037
  ident: CR4
  article-title: A review of non-noble metal-based electrocatalysts for CO electroreduction
  publication-title: Rare Met
  doi: 10.1007/s12598-021-01736-x
– volume: 7
  start-page: 1471
  issue: 8
  year: 2016
  ident: CR16
  article-title: Identification of possible pathways for C-C bond formation during electrochemical reduction of CO : new theoretical insights from an improved electrochemical model
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b00358
– volume: 49
  start-page: 6884
  issue: 19
  year: 2020
  ident: CR12
  article-title: Transition metal-based catalysts for the electrochemical CO reduction: from atoms and molecules to nanostructured materials
  publication-title: Chem Soc Rev
  doi: 10.1039/d0cs00835d
– volume: 22
  start-page: 6540
  issue: 19
  year: 2020
  ident: CR60
  article-title: Stabilization of Cu by tuning a CuO–CeO interface for selective electrochemical CO reduction to ethylene
  publication-title: Green Chem
  doi: 10.1039/d0gc02279a
– volume: 1
  start-page: 946
  issue: 12
  year: 2018
  ident: CR29
  article-title: Copper nanocavities confine intermediates for efficient electrosynthesis of C alcohol fuels from carbon monoxide
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0168-4
– volume: 6
  start-page: 2032
  issue: 11
  year: 2015
  ident: CR21
  article-title: Theoretical insights into a CO dimerization mechanism in CO electroreduction
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b00722
– volume: 13
  start-page: 3694
  issue: 1
  year: 2022
  ident: CR63
  article-title: Hydroxyl radicals dominate reoxidation of oxide-derived Cu in electrochemical CO reduction
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-31498-8
– volume: 141
  start-page: 12192
  issue: 31
  year: 2019
  ident: CR72
  article-title: Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ raman spectroscopy
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b04638
– volume: 10
  start-page: 974
  issue: 9
  year: 2018
  ident: CR70
  article-title: Dopant-induced electron localization drives CO reduction to C hydrocarbons
  publication-title: Nat Chem
  doi: 10.1038/s41557-018-0092-x
– volume: 11
  start-page: 3844
  issue: 1
  year: 2020
  ident: CR75
  article-title: Oxygen induced promotion of electrochemical reduction of CO via co-electrolysis
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17690-8
– volume: 42
  start-page: 2423
  issue: 6
  year: 2013
  ident: CR1
  article-title: Catalysis of the electrochemical reduction of carbon dioxide
  publication-title: Chem Soc Rev
  doi: 10.1039/c2cs35360a
– volume: 140
  start-page: 8681
  issue: 28
  year: 2018
  ident: CR9
  article-title: Production from CO reduction
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b02173
– volume: 132
  start-page: 154014
  issue: 15
  year: 2010
  ident: CR37
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J Chem Phys
  doi: 10.1063/1.3382344
– volume: 138
  start-page: 483
  issue: 2
  year: 2016
  ident: CR18
  article-title: Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111)
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b11390
– volume: 10
  start-page: e2207187
  year: 2023
  ident: CR53
  article-title: Grain boundary-rich copper nanocatalysts generated from metal-organic framework nanoparticles for CO -to-C electroconversion
  publication-title: Adv Sci
  doi: 10.1002/advs.202207187
– volume: 139
  start-page: 3774
  issue: 10
  year: 2017
  ident: CR33
  article-title: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b13287
– volume: 15
  start-page: 3968
  issue: 9
  year: 2022
  ident: CR62
  article-title: Elucidating electrochemical CO reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy
  publication-title: Energy Environ Sci
  doi: 10.1039/d2ee01334g
– volume: 142
  start-page: 6400
  issue: 13
  year: 2020
  ident: CR44
  article-title: Protecting copper oxidation state via intermediate confinement for selective CO electroreduction to C fuels
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c01699
– volume: 16
  start-page: 4494
  year: 2021
  end-page: 4498
  ident: CR52
  article-title: Cu S derived copper nanoparticles: a platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO -to-C H conversion
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3532-7
– volume: 360
  start-page: 783
  issue: 6390
  year: 2018
  ident: CR73
  article-title: CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
  publication-title: Science
  doi: 10.1126/science.aas9100
– volume: 139
  start-page: 130
  issue: 1
  year: 2017
  ident: CR15
  article-title: Atomistic mechanisms underlying selectivities in C and C products from electrochemical reduction of CO on Cu(111)
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b06846
– volume: 4
  start-page: 4776
  issue: 13
  year: 2016
  ident: CR32
  article-title: Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO to CO
  publication-title: J Mater Chem A
  doi: 10.1039/c6ta00487c
– volume: 33
  start-page: 801
  issue: 10
  year: 2002
  ident: CR42
  article-title: Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.921
– volume: 10
  start-page: 6908
  issue: 12
  year: 2020
  ident: CR69
  article-title: Revealing the predominant surface facets of rough Cu electrodes under electrochemical conditions
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b05532
– volume: 144
  start-page: 14005
  issue: 31
  year: 2022
  ident: CR22
  article-title: Mechanistic insights into OC–COH coupling in CO electroreduction on fragmented copper
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.2c01044
– volume: 142
  start-page: 9735
  issue: 21
  year: 2020
  ident: CR65
  article-title: Speciation of Cu surfaces during the electrochemical CO reduction reaction
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c02354
– volume: 17
  start-page: 346
  issue: 1
  year: 2023
  ident: CR74
  article-title: Strain in copper/ceria heterostruc-ture promotes electrosynthesis of multicarbon products
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08453
– volume: 16
  start-page: 70
  issue: 1
  year: 2016
  ident: CR2
  article-title: Materials for solar fuels and chemicals
  publication-title: Nat Mater
  doi: 10.1038/nmat4778
– volume: 11
  start-page: 3685
  issue: 1
  year: 2020
  ident: CR23
  article-title: Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17499-5
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: CR19
  article-title: pH effects on the electrochemical reduction of CO towards C products on stepped copper
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07970-9
– volume: 41
  start-page: 3943
  issue: 12
  year: 2022
  end-page: 3945
  ident: CR3
  article-title: Sn-Bi bimetallic interface induced by nano-crumples for CO electroreduction to formate
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02139-2
– volume: 12
  start-page: 3264
  issue: 1
  year: 2021
  ident: CR34
  article-title: Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23582-2
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  ident: CR39
  article-title: Projector augmented-wave method
  publication-title: Phys Rev B Condens Matter
  doi: 10.1103/physrevb.50.17953
– volume: 13
  start-page: 14050
  issue: 12
  year: 2021
  ident: CR47
  article-title: Cu(I) reducibility controls ethylene vs. ethanol selectivity on (100)-textured copper during pulsed CO reduction
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c17668
– volume: 14
  start-page: 36527
  issue: 32
  year: 2022
  ident: CR55
  article-title: In situ engineering of the Cu /Cu interface to boost C selectivity in CO electroreduction
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c05992
– volume: 61
  start-page: 1
  issue: 3
  year: 2022
  ident: CR30
  article-title: Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202113498
– volume: 24
  start-page: 1527
  issue: 4
  year: 2022
  ident: CR56
  article-title: Electrocatalytic CO reduction to ethylene over ZrO /Cu-Cu O catalysts in aqueous electrolytes
  publication-title: Green Chem
  doi: 10.1039/d1gc04284j
– volume: 29
  start-page: 439
  year: 2016
  ident: CR6
  article-title: Electrochemical CO reduction: electrocatalyst, reaction mechanism, and process engineering
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.009
– volume: 52
  start-page: 7282
  issue: 28
  year: 2013
  ident: CR20
  article-title: Theoretical considerations on the electroreduction of CO to C species on Cu(100) electrodes
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201301470
– volume: 9
  start-page: 49
  issue: 1
  year: 2018
  ident: CR5
  article-title: CO electroreduction: current development and understanding of Cu-based catalysts
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b03780
– volume: 15
  start-page: 2397
  issue: 6
  year: 2022
  ident: CR50
  article-title: Interface rich CuO/Al CuO surface for selective ethylene production from electrochemical CO conversion
  publication-title: Energy Environ Sci
  doi: 10.1039/d1ee03861c
– volume: 119
  start-page: 7610
  issue: 12
  year: 2019
  ident: CR7
  article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00705
– volume: 3
  start-page: 1545
  issue: 7
  year: 2018
  ident: CR8
  article-title: Recent advances in CO reduction electrocatalysis on copper
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b00553
– volume: 82
  start-page: 351
  issue: 2
  year: 1999
  ident: CR41
  article-title: Pressure-induced disappearance of the Raman anomaly in CuCl
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.82.351
– volume: 143
  start-page: 7242
  issue: 19
  year: 2021
  ident: CR57
  article-title: Highly selective CO electroreduction to C H using a metal-organic framework with dual active sites
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c01466
– volume: 7
  start-page: 1749
  issue: 3
  year: 2017
  ident: CR68
  article-title: Electrochemical reduction of CO using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03147
– volume: 8
  start-page: 7507
  issue: 8
  year: 2018
  ident: CR26
  article-title: Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b01552
– volume: 10
  start-page: 5186
  issue: 1
  year: 2019
  ident: CR31
  article-title: Efficient upgrading of CO to C fuel using asymmetric C–C coupling active sites
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13190-6
– volume: 10
  start-page: 240
  issue: 1
  year: 2023
  ident: CR54
  article-title: In situ surface/interface generation on Cu O nanostructures toward enhanced electrocatalytic CO reduction to ethylene using operando spectroscopy
  publication-title: Inorg Chem Front
  doi: 10.1039/d2qi01977a
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: CR25
  article-title: Efficient CO electroreduction on facet-selective copper films with high conversion rate
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26053-w
– volume: 49
  start-page: 14251
  issue: 20
  year: 1994
  ident: CR36
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
  publication-title: Phys Rev B Condens Matter
  doi: 10.1103/physrevb.49.14251
– volume: 12
  start-page: 15230
  issue: 24
  year: 2022
  ident: CR48
  article-title: In situ reconstruction of Cu-N coordinated MOFs to generate dispersive Cu/Cu O nanoclusters for selective electroreduction of CO to C H
  publication-title: ACS Catal
  doi: 10.1021/acscatal.2c04275
– volume: 3
  start-page: 251
  issue: 2
  year: 2012
  ident: CR10
  article-title: Activity descriptors for CO electroreduction to methane on transition-metal catalysts
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz201461
– volume: 61
  start-page: 1
  issue: 28
  year: 2022
  ident: CR59
  article-title: Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO reduction with tunable C H /CH selectivity
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202204967
– volume: 22
  start-page: 6540
  issue: 19
  year: 2020
  ident: 2527_CR60
  publication-title: Green Chem
  doi: 10.1039/d0gc02279a
– volume: 140
  start-page: 8681
  issue: 28
  year: 2018
  ident: 2527_CR9
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b02173
– volume: 2
  start-page: 1124
  issue: 12
  year: 2019
  ident: 2527_CR28
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0380-x
– volume: 12
  start-page: 3264
  issue: 1
  year: 2021
  ident: 2527_CR34
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23582-2
– volume: 132
  start-page: 154014
  issue: 15
  year: 2010
  ident: 2527_CR37
  publication-title: J Chem Phys
  doi: 10.1063/1.3382344
– volume: 22
  start-page: 7560
  issue: 21
  year: 2020
  ident: 2527_CR61
  publication-title: Green Chem
  doi: 10.1039/d0gc03051a
– volume: 33
  start-page: 801
  issue: 10
  year: 2002
  ident: 2527_CR42
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.921
– volume: 139
  start-page: 130
  issue: 1
  year: 2017
  ident: 2527_CR15
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b06846
– volume: 4
  start-page: 4776
  issue: 13
  year: 2016
  ident: 2527_CR32
  publication-title: J Mater Chem A
  doi: 10.1039/c6ta00487c
– volume: 60
  start-page: 16576
  issue: 30
  year: 2021
  ident: 2527_CR66
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202104114
– volume: 9
  start-page: 49
  issue: 1
  year: 2018
  ident: 2527_CR5
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b03780
– volume: 144
  start-page: 14005
  issue: 31
  year: 2022
  ident: 2527_CR22
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.2c01044
– volume: 59
  start-page: 1758
  issue: 3
  year: 1999
  ident: 2527_CR38
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.1758
– volume: 54
  start-page: 11169
  issue: 1
  year: 1996
  ident: 2527_CR35
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.54.11169
– volume: 40
  start-page: 3616
  issue: 6
  year: 1989
  ident: 2527_CR40
  publication-title: Phys Rev B Condens Matter
  doi: 10.1103/physrevb.40.3616
– volume: 13
  start-page: 3694
  issue: 1
  year: 2022
  ident: 2527_CR63
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-31498-8
– volume: 12
  start-page: 15230
  issue: 24
  year: 2022
  ident: 2527_CR48
  publication-title: ACS Catal
  doi: 10.1021/acscatal.2c04275
– volume: 40
  start-page: 3019
  issue: 11
  year: 2021
  ident: 2527_CR4
  publication-title: Rare Met
  doi: 10.1007/s12598-021-01736-x
– volume: 3
  start-page: 1545
  issue: 7
  year: 2018
  ident: 2527_CR8
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b00553
– volume: 660
  start-page: 80
  issue: 1
  year: 2011
  ident: 2527_CR43
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2011.06.008
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 2527_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07970-9
– volume: 142
  start-page: 9735
  issue: 21
  year: 2020
  ident: 2527_CR65
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c02354
– volume: 71
  start-page: 63
  issue: 1
  year: 2022
  ident: 2527_CR71
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2022.03.041
– volume: 34
  start-page: 100589
  year: 2022
  ident: 2527_CR67
  publication-title: Curr Opin Green Sustain Chem.
  doi: 10.1016/j.cogsc.2022.100589
– volume: 138
  start-page: 483
  issue: 2
  year: 2016
  ident: 2527_CR18
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b11390
– volume: 6
  start-page: 3111
  year: 2020
  ident: 2527_CR13
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aay3111
– volume: 41
  start-page: 3943
  issue: 12
  year: 2022
  ident: 2527_CR3
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02139-2
– volume: 49
  start-page: 6884
  issue: 19
  year: 2020
  ident: 2527_CR12
  publication-title: Chem Soc Rev
  doi: 10.1039/d0cs00835d
– volume: 139
  start-page: 3774
  issue: 10
  year: 2017
  ident: 2527_CR33
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b13287
– volume: 11
  start-page: 3685
  issue: 1
  year: 2020
  ident: 2527_CR23
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17499-5
– volume: 14
  start-page: 36527
  issue: 32
  year: 2022
  ident: 2527_CR55
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c05992
– volume: 22
  start-page: 3801
  issue: 9
  year: 2022
  ident: 2527_CR24
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.2c00945
– volume: 5
  start-page: 2100736
  issue: 10
  year: 2021
  ident: 2527_CR46
  publication-title: Small Methods
  doi: 10.1002/smtd.202100736
– volume: 61
  start-page: 1
  issue: 3
  year: 2022
  ident: 2527_CR30
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202113498
– volume: 10
  start-page: 974
  issue: 9
  year: 2018
  ident: 2527_CR70
  publication-title: Nat Chem
  doi: 10.1038/s41557-018-0092-x
– volume: 59
  start-page: 14736
  issue: 35
  year: 2020
  ident: 2527_CR11
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202000617
– volume: 24
  start-page: 1527
  issue: 4
  year: 2022
  ident: 2527_CR56
  publication-title: Green Chem
  doi: 10.1039/d1gc04284j
– volume: 61
  start-page: 1
  issue: 28
  year: 2022
  ident: 2527_CR59
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202204967
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  ident: 2527_CR39
  publication-title: Phys Rev B Condens Matter
  doi: 10.1103/physrevb.50.17953
– volume: 7
  start-page: 1749
  issue: 3
  year: 2017
  ident: 2527_CR68
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03147
– volume: 42
  start-page: 2423
  issue: 6
  year: 2013
  ident: 2527_CR1
  publication-title: Chem Soc Rev
  doi: 10.1039/c2cs35360a
– volume: 6
  start-page: 219
  issue: 1
  year: 2015
  ident: 2527_CR14
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b01967
– volume: 10
  start-page: 5186
  issue: 1
  year: 2019
  ident: 2527_CR31
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13190-6
– volume: 60
  start-page: 25485
  issue: 48
  year: 2021
  ident: 2527_CR58
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202111136
– volume: 8
  start-page: 11117
  issue: 22
  year: 2020
  ident: 2527_CR49
  publication-title: J Mater Chem A
  doi: 10.1039/d0ta02395g
– volume: 8
  start-page: 1490
  issue: 2
  year: 2018
  ident: 2527_CR17
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b03477
– volume: 1
  start-page: 946
  issue: 12
  year: 2018
  ident: 2527_CR29
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0168-4
– volume: 49
  start-page: 14251
  issue: 20
  year: 1994
  ident: 2527_CR36
  publication-title: Phys Rev B Condens Matter
  doi: 10.1103/physrevb.49.14251
– volume: 7
  start-page: 1471
  issue: 8
  year: 2016
  ident: 2527_CR16
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b00358
– volume: 119
  start-page: 7610
  issue: 12
  year: 2019
  ident: 2527_CR7
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00705
– volume: 654
  start-page: 56
  year: 2016
  ident: 2527_CR27
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2016.08.006
– volume: 82
  start-page: 351
  issue: 2
  year: 1999
  ident: 2527_CR41
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.82.351
– volume: 15
  start-page: 3968
  issue: 9
  year: 2022
  ident: 2527_CR62
  publication-title: Energy Environ Sci
  doi: 10.1039/d2ee01334g
– volume: 29
  start-page: 439
  year: 2016
  ident: 2527_CR6
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.009
– volume: 52
  start-page: 7282
  issue: 28
  year: 2013
  ident: 2527_CR20
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201301470
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 2527_CR25
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26053-w
– volume: 10
  start-page: e2207187
  year: 2023
  ident: 2527_CR53
  publication-title: Adv Sci
  doi: 10.1002/advs.202207187
– volume: 360
  start-page: 783
  issue: 6390
  year: 2018
  ident: 2527_CR73
  publication-title: Science
  doi: 10.1126/science.aas9100
– volume: 16
  start-page: 70
  issue: 1
  year: 2016
  ident: 2527_CR2
  publication-title: Nat Mater
  doi: 10.1038/nmat4778
– volume: 10
  start-page: 240
  issue: 1
  year: 2023
  ident: 2527_CR54
  publication-title: Inorg Chem Front
  doi: 10.1039/d2qi01977a
– volume: 10
  start-page: 6908
  issue: 12
  year: 2020
  ident: 2527_CR69
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b05532
– volume: 13
  start-page: 14050
  issue: 12
  year: 2021
  ident: 2527_CR47
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c17668
– volume: 61
  start-page: e202200039
  issue: 13
  year: 2022
  ident: 2527_CR51
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202200039
– volume: 17
  start-page: 346
  issue: 1
  year: 2023
  ident: 2527_CR74
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08453
– volume: 8
  start-page: 7507
  issue: 8
  year: 2018
  ident: 2527_CR26
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b01552
– volume: 8
  start-page: 3541
  year: 2020
  ident: 2527_CR45
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA11966C
– volume: 11
  start-page: 7694
  issue: 13
  year: 2021
  ident: 2527_CR64
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c01478
– volume: 11
  start-page: 3844
  issue: 1
  year: 2020
  ident: 2527_CR75
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17690-8
– volume: 16
  start-page: 4494
  year: 2021
  ident: 2527_CR52
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3532-7
– volume: 6
  start-page: 2032
  issue: 11
  year: 2015
  ident: 2527_CR21
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b00722
– volume: 3
  start-page: 251
  issue: 2
  year: 2012
  ident: 2527_CR10
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz201461
– volume: 143
  start-page: 7242
  issue: 19
  year: 2021
  ident: 2527_CR57
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c01466
– volume: 15
  start-page: 2397
  issue: 6
  year: 2022
  ident: 2527_CR50
  publication-title: Energy Environ Sci
  doi: 10.1039/d1ee03861c
– volume: 142
  start-page: 6400
  issue: 13
  year: 2020
  ident: 2527_CR44
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c01699
– volume: 141
  start-page: 12192
  issue: 31
  year: 2019
  ident: 2527_CR72
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b04638
SSID ssj0044660
Score 2.40823
Snippet Electrocatalysis of CO 2 reduction reaction is an effective way to convert CO 2 into high value-added products, but the selectivity of Cu-based catalysts for C...
Electrocatalysis of CO2 reduction reaction is an effective way to convert CO2 into high value-added products, but the selectivity of Cu-based catalysts for C2+...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1513
SubjectTerms Biomaterials
Carbon dioxide
Chemical reduction
Chemistry and Materials Science
Coupling
Density functional theory
Efficiency
Electronic structure
Energy
Ethylene
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Original Article
Physical Chemistry
Single atom catalysts
Title Nanocavity enriched CuPd alloy with high selectivity for CO2 electroreduction toward C2H4
URI https://link.springer.com/article/10.1007/s12598-023-02527-2
https://www.proquest.com/docview/2957239456
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAeIpCqTywgaXEseN4rEJLBRSQoFI7RXHiTKigNh3499ylDgEESAxRhjgZfOd75O6-j5CzQGY2lEozW5iUicxGLJVGMxNawU1uchHiNPL4LhxNxPVUTt1Q2LLudq9LkpWlbobdIFKPGPgYuCRXDAxvW2LuDlo84f3a_mKBco1BgIkyeCc3KvPzN766oybG_FYWrbzNcIdsuzCR9tdy3SUbdr5Htj6BB-6TGRhGcETI_UBBCbClM6fx6iGnWEt_o_iHlSIaMV1WXDcVSwSFGJXG95w6-psFIreibGhZ9c_SmI_EAZkMB0_xiDmiBJbBCSqZinIDJzONCuGnFhLe3PcyLzBFESgplYEYBSFDtYiQV6xIfZ5nkBcblUM2pLUNDklr_jK3R4SazAi_KFLNPRCWJ6OwyGwaidQqo400HeLX-5VkDkUcySyekwb_GPc4gT1Oqj1OeIecf7zzusbQ-HN1txZD4s7TMuFaKiRxl2GHXNSiaR7__rXj_y0_IZugUa41p0ta5WJlTyHqKE2PtPuX49tHvF_Nbga9SuneAeB8z9g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMCAeIpCAQ9sYClx7DzGKqIq0BaGViqTFT8yoYLadODfc5cHAQRIDJnieLiz75G7-z5CLgNpXCijhLlcZ0wYF7NM6oTp0AmurbYixGnk0TgcTMXdTM7qobBl0-3elCRLS90Ou0GkHjPwMfBIHjEwvBsQDMTYyDXlvcb-YoGywiDARBm8Uz0q8_MeX91RG2N-K4uW3qa_S3bqMJH2Kr3ukTU33yfbn8ADD8gTGEZwRMj9QOEQYEunpenq0VKspb9R_MNKEY2YLkuum5IlgkKMStMHTmv6mwUit6JuaFH2z9KUD8QhmfZvJumA1UQJzMANKlgUWw03M4tz4WcOEl7re8YLdJ4HkZSRhhgFIUMTESOvWJ753BrIi3VkIRtKEhcckfX5y9wdE6qNFn6eZwn3QFmejMPcuCwWmYt0oqXuEL-RlzI1ijiSWTyrFv8YZaxAxqqUseIdcvXxzWuFofHn6m6jBlXfp6XiiYyQxF2GHXLdqKZ9_ftuJ_9bfkE2B5PRUA1vx_enZItDBFO16XTJerFYuTOIQAp9Xh64d8orz6M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMiKcoFPDABlYbx85jrAJVeZUOVCpTFMf2hELVpgP_nrs8SEGAxJApiaXc2ffI3X0fIReuTI0n_ZAZqxImUhOwRKqQKc8IrrTSwsNp5MeRN5yIu6mcrkzxF93udUmynGlAlKYs78607TaDbxC1Bwz8DVyS-wyM8DqYYwf39YT3a1uMxcoSjwCTZvBU1djMz2t8dU1NvPmtRFp4nsEO2a5CRtovdbxL1ky2R7ZWgAT3yQsYSXBKyANBYUNge6em0XKsKdbV3yn-baWITEwXBe9NwRhBIV6l0ROnFRXOHFFcUU80L3ppacSH4oBMBjfP0ZBVpAkshc_PmR9oBac0CaxwEgPJr3Z6ac9V1rq-lL6CeAXhQ0MRIMeYTRyuU8iRla8hMwpD4x6SVvaWmSNCVaqEY20S8h4oricDz6YmCURifBUqqdrEqeUVpxWiOBJbvMYNFjLKOAYZx4WMY94ml5_vzEo8jT-f7tRqiKuztYh5KH0kdJdem1zVqmlu_77a8f8ePycb4-tB_HA7uj8hmxyCmbJjp0Na-XxpTiEYydVZsd8-ABnz098
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocavity+enriched+CuPd+alloy+with+high+selectivity+for+CO2+electroreduction+toward+C2H4&rft.jtitle=Rare+metals&rft.au=Ze-Yu%2C+Zhang&rft.au=Wang%2C+Hai-Bin&rft.au=Zhang%2C+Fei-Fei&rft.au=Jing-Wei%2C+Li&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=43&rft.issue=4&rft.spage=1513&rft.epage=1523&rft_id=info:doi/10.1007%2Fs12598-023-02527-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon