Immersion-and Invariance-Based Adaptive Control of Asteroid-Orbiting and - Hovering Spacecraft

The development of an immersion-and invariance-based adaptive state variable feedback control law for the closed orbit and hovering control of spacecraft in the vicinity of asteroids is the subject of this paper. The celestial body is assumed to be rotating with constant angular velocity about a fix...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the astronautical sciences Vol. 66; no. 4; pp. 537 - 553
Main Authors Lee, Keum W., Singh, Sahjendra N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0021-9142
2195-0571
DOI10.1007/s40295-019-00163-6

Cover

Loading…
Abstract The development of an immersion-and invariance-based adaptive state variable feedback control law for the closed orbit and hovering control of spacecraft in the vicinity of asteroids is the subject of this paper. The celestial body is assumed to be rotating with constant angular velocity about a fixed axis. Also, it is assumed that the mass and moments of inertia matrix of the asteroid, and the mass of the spacecraft are not known. The objective is to control the orbit of the spacecraft despite uncertainties in the system parameters. Based on the immersion and invariance theory, a noncertainty-equivalence adaptive control system is designed for steering the spacecraft along prescribe closed orbits or to fixed points for hovering control. The control system has a modular structure - consisting of an stabilizing control module and an parameter identifier. The control law is synthesized using filtered signals so as to circumvent the complexity of the immersion and immersion methodology. Unlike certainty-equivalence systems, the parameter estimates include judiciously selected nonlinear state-dependent algebraic functions and partial estimates derived from an integral update law. By the Lyapunov analysis, it is shown that the trajectory tracking error asymptotically converges to zero and all the signals in the closed-loop system are bounded. For illustration, numerical results are presented for control around 433 Eros and Ida asteroids. These results show that, despite uncertainties in the relative spacecraft dynamics, the adaptive law accomplishes closed orbit as well as hovering control.
AbstractList The development of an immersion-and invariance-based adaptive state variable feedback control law for the closed orbit and hovering control of spacecraft in the vicinity of asteroids is the subject of this paper. The celestial body is assumed to be rotating with constant angular velocity about a fixed axis. Also, it is assumed that the mass and moments of inertia matrix of the asteroid, and the mass of the spacecraft are not known. The objective is to control the orbit of the spacecraft despite uncertainties in the system parameters. Based on the immersion and invariance theory, a noncertainty-equivalence adaptive control system is designed for steering the spacecraft along prescribe closed orbits or to fixed points for hovering control. The control system has a modular structure - consisting of an stabilizing control module and an parameter identifier. The control law is synthesized using filtered signals so as to circumvent the complexity of the immersion and immersion methodology. Unlike certainty-equivalence systems, the parameter estimates include judiciously selected nonlinear state-dependent algebraic functions and partial estimates derived from an integral update law. By the Lyapunov analysis, it is shown that the trajectory tracking error asymptotically converges to zero and all the signals in the closed-loop system are bounded. For illustration, numerical results are presented for control around 433 Eros and Ida asteroids. These results show that, despite uncertainties in the relative spacecraft dynamics, the adaptive law accomplishes closed orbit as well as hovering control.
Author Singh, Sahjendra N.
Lee, Keum W.
Author_xml – sequence: 1
  givenname: Keum W.
  surname: Lee
  fullname: Lee, Keum W.
  organization: Department of Electronic Engineering, Catholic Kwandong University
– sequence: 2
  givenname: Sahjendra N.
  surname: Singh
  fullname: Singh, Sahjendra N.
  email: sahjendra.singh@unlv.edu
  organization: Department of Electrical and Computer Engineering, University of Nevada Las Vegas
BookMark eNp9kEtLAzEQgIMoWB9_wNOC5-jksZvdYy1qC4IH9WpIsxNJaZM1iQX_vV0rCB48DTPMN4_vhByGGJCQCwZXDEBdZwm8qymwjgKwRtDmgEw4G0u1YodkAsAZ7Zjkx-Qk5xWAYNCxCXldbDaYso-BmtBXi7A1yZtgkd6YjH017c1Q_BarWQwlxXUVXTXNBVP0PX1MS198eKtGlFbzuMU0pk-DsWiTceWMHDmzznj-E0_Jy93t82xOHx7vF7PpA7WCdYWqdumMsFw2tbKAvXV2KTuOCAKVVX1jHFcSO6GkEla2tXWy7g24VtaGKyZOyeV-7pDi-wfmolfxI4XdSs0FtG3D2g52Xe2-y6aYc0KnrS-m-PE149eagR5t6r1NvbOpv23qZofyP-iQ_Makz_8hsYfyMHrB9HvVP9QX5vSJcQ
CitedBy_id crossref_primary_10_1016_j_actaastro_2019_10_031
crossref_primary_10_3390_aerospace9030159
crossref_primary_10_1007_s40295_021_00296_7
crossref_primary_10_1016_j_actaastro_2022_10_014
crossref_primary_10_1007_s11071_021_06694_8
crossref_primary_10_1155_2021_6624222
crossref_primary_10_2514_1_G007270
crossref_primary_10_1109_TAES_2022_3164011
crossref_primary_10_1016_j_jfranklin_2020_03_036
crossref_primary_10_1007_s40295_019_00207_x
crossref_primary_10_15406_aaoaj_2021_05_00128
Cites_doi 10.1016/j.actaastro.2015.09.006
10.1016/j.ast.2014.07.013
10.1006/icar.1993.1134
10.2514/1.20179
10.1109/TAES.2014.140197
10.2514/4.102752
10.2514/1.G000158
10.1007/978-1-84800-066-7
10.1016/j.actaastro.2014.05.016
10.2514/2.4552
10.1007/BF03256495
10.1007/BF00053511
10.2514/1.G000631
10.2514/1.33308
10.1016/j.ast.2015.09.001
10.1109/TAES.2017.2650778
10.1109/TAES.2015.140295
10.1016/j.actaastro.2016.12.012
10.2514/1.58140
10.1016/j.pss.2010.07.017
10.1061/(ASCE)AS.1943-5525.0000741
10.1016/j.actaastro.2017.04.035
10.2514/1.G002617
10.1007/s00707-007-0508-y
10.2514/1.58246
10.2514/4.861550
ContentType Journal Article
Copyright American Astronautical Society 2019
2019© American Astronautical Society 2019
Copyright_xml – notice: American Astronautical Society 2019
– notice: 2019© American Astronautical Society 2019
DBID AAYXX
CITATION
DOI 10.1007/s40295-019-00163-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2195-0571
EndPage 553
ExternalDocumentID 10_1007_s40295_019_00163_6
GroupedDBID -EM
-~X
.DC
06D
0R~
199
203
29L
29~
2LR
30V
4.4
406
6TJ
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AECCQ
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AI.
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HF~
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PF0
PT4
PZZ
ROL
RSV
SC5
SHS
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TN5
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
Z7R
Z83
ZCA
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-78bfa3c24657c0edcfcb492ee03e7c7d6af274e937473c485cf45da0f845a2713
IEDL.DBID AGYKE
ISSN 0021-9142
IngestDate Sun Jul 13 04:42:30 EDT 2025
Thu Apr 24 22:51:16 EDT 2025
Tue Jul 01 01:49:08 EDT 2025
Fri Feb 21 02:26:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Design via immersion and invariance asteroid
Nonlinear adaptive control
Adaptive spacecraft control
Asteroid orbiting spacecraft
Noncertainty equivalence adaptive control
Hovering spacecraft control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-78bfa3c24657c0edcfcb492ee03e7c7d6af274e937473c485cf45da0f845a2713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2308861890
PQPubID 2043592
PageCount 17
ParticipantIDs proquest_journals_2308861890
crossref_citationtrail_10_1007_s40295_019_00163_6
crossref_primary_10_1007_s40295_019_00163_6
springer_journals_10_1007_s40295_019_00163_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of the astronautical sciences
PublicationTitleAbbrev J Astronaut Sci
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Guelman (CR13) 2015; 38
Astolfi, Karagiannis, Ortega (CR25) 2008
Gui, Ruiter (CR18) 2017; 40
Vukovich, Gui (CR23) 2017; 53
Guelman (CR14) 2017; 137
Tricarico, Sykes (CR6) 2010; 58
Furfaro (CR16) 2015; 38
Lee, Sanyal, Butcher, Scheeres (CR20) 2014; 38
Werner, Scheeres (CR1) 1997; 65
Yang (CR11) 2015; 51
Wang, Xu (CR19) 2015; 117
Wie (CR7) 2015
Broschart, Scheeres (CR10) 2007; 30
Furfaro, Cersosimo, Wibben (CR15) 2013; 36
Kumar (CR9) 2008; 198
Scheeres, Williams, Miller (CR5) 2000; 23
Chauvineau, Farinella, Mignard (CR3) 1993; 105
CR28
Lee, Vukovich (CR22) 2015; 46
Herrera-Sucarrat, Palmer, Roberts (CR2) 2013; 36
Nazari, Wauson, Critz, Butcher, Scheeres (CR12) 2014; 102
Seo, Akella (CR26) 2008; 31
Yang, Bai (CR17) 2017; 132
Scheeres (CR4) 1994; 110
Lee, Sanyal, Butcher, Scheeres (CR21) 2015; 51
Krstic, Kokotovic (CR24) 1995
Lee, Singh (CR27) 2017; 30
Misra (CR8) 2006; 54
KD Kumar (163_CR9) 2008; 198
KW Lee (163_CR27) 2017; 30
B Wie (163_CR7) 2015
M Guelman (163_CR14) 2017; 137
D Seo (163_CR26) 2008; 31
M Nazari (163_CR12) 2014; 102
R Furfaro (163_CR16) 2015; 38
R Furfaro (163_CR15) 2013; 36
D Lee (163_CR20) 2014; 38
DJ Scheeres (163_CR4) 1994; 110
M Krstic (163_CR24) 1995
D Lee (163_CR22) 2015; 46
SB Broschart (163_CR10) 2007; 30
DJ Scheeres (163_CR5) 2000; 23
D Lee (163_CR21) 2015; 51
P Tricarico (163_CR6) 2010; 58
E Herrera-Sucarrat (163_CR2) 2013; 36
RA Werner (163_CR1) 1997; 65
H Yang (163_CR11) 2015; 51
H Yang (163_CR17) 2017; 132
M Guelman (163_CR13) 2015; 38
A Astolfi (163_CR25) 2008
163_CR28
G Vukovich (163_CR23) 2017; 53
AK Misra (163_CR8) 2006; 54
H Gui (163_CR18) 2017; 40
Y Wang (163_CR19) 2015; 117
B Chauvineau (163_CR3) 1993; 105
References_xml – volume: 117
  start-page: 450
  year: 2015
  end-page: 468
  ident: CR19
  article-title: Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.09.006
– volume: 38
  start-page: 105
  year: 2014
  end-page: 115
  ident: CR20
  article-title: Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2014.07.013
– year: 1995
  ident: CR24
  publication-title: Nonlinear and Adaptive Control Design
– volume: 105
  start-page: 370
  issue: 2
  year: 1993
  end-page: 384
  ident: CR3
  article-title: Planar orbits about a triaxial body: Application to asteroidal satellites
  publication-title: Icarus
  doi: 10.1006/icar.1993.1134
– volume: 30
  start-page: 601
  issue: 2
  year: 2007
  end-page: 610
  ident: CR10
  article-title: Boundedness of spacecraft hovering under dead-band control in time-invariant systems
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.20179
– volume: 51
  start-page: 506
  issue: 1
  year: 2015
  end-page: 518
  ident: CR21
  article-title: Finite-time control for spacecraft body-fixed hovering over an asteroid
  publication-title: IEEE Trans. Aerosp. Electron.
  doi: 10.1109/TAES.2014.140197
– year: 2015
  ident: CR7
  publication-title: Space vehicle guidance, control, and astrodynamics
  doi: 10.2514/4.102752
– volume: 38
  start-page: 854
  issue: 5
  year: 2015
  end-page: 860
  ident: CR13
  article-title: Closed-loop control of close orbits around asteroids
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/1.G000158
– year: 2008
  ident: CR25
  publication-title: Nonlinear and Adaptive Control with Applications
  doi: 10.1007/978-1-84800-066-7
– volume: 102
  start-page: 124
  year: 2014
  end-page: 139
  ident: CR12
  article-title: Observer-based body-frame hovering control over a tumbling asteroid
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2014.05.016
– volume: 23
  start-page: 466
  issue: 3
  year: 2000
  end-page: 475
  ident: CR5
  article-title: Evaluation of the dynamic environment of an asteroid: applications to 433 eros
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4552
– volume: 54
  start-page: 369
  issue: 3 &4
  year: 2006
  end-page: 381
  ident: CR8
  article-title: Panchenko attitude dynamics of satellites orbiting an asteroid
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03256495
– volume: 65
  start-page: 313
  year: 1997
  end-page: 344
  ident: CR1
  article-title: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representation of asteroid 4769 castalia
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF00053511
– volume: 38
  start-page: 263
  issue: 2
  year: 2015
  end-page: 279
  ident: CR16
  article-title: Hovering in asteroid dynamic environments using higher-order sliding control
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G000631
– volume: 31
  start-page: 884
  issue: 4
  year: 2008
  end-page: 891
  ident: CR26
  article-title: High-performance spacecraft adaptive attitude-tracking control through attractive-manifold design
  publication-title: J. Guid., Contr., Dynamics
  doi: 10.2514/1.33308
– volume: 46
  start-page: 471
  year: 2015
  end-page: 483
  ident: CR22
  article-title: Adaptive sliding mode control for spacecraft body-fixed hovering in proximity of an asteroid
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.09.001
– volume: 53
  start-page: 419
  issue: 1
  year: 2017
  end-page: 430
  ident: CR23
  article-title: Robust adaptive tracking of rigid-body motion with application to asteroid proximity operations
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2650778
– volume: 51
  start-page: 1688
  issue: 3
  year: 2015
  end-page: 16907
  ident: CR11
  article-title: Baoyin fuel-optimal control for soft landing on an irregular asteroid
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2015.140295
– volume: 110
  start-page: 225
  year: 1994
  end-page: 238
  ident: CR4
  article-title: Dynamics about uniformly rotating ellipsoids: applications to asteroids
  publication-title: Iracuse
– volume: 132
  start-page: 78
  year: 2017
  end-page: 89
  ident: CR17
  article-title: Baoyin finite-time control for asteroid hovering and landing via terminal sliding-mode control
  publication-title: Acta Astronautica.
  doi: 10.1016/j.actaastro.2016.12.012
– volume: 36
  start-page: 790
  issue: 3
  year: 2013
  end-page: 798
  ident: CR2
  article-title: Modeling the gravitational potential of a nonspherical asteroid
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/1.58140
– volume: 58
  start-page: 1516
  year: 2010
  end-page: 1525
  ident: CR6
  article-title: The dynamical environment of dawn at vesta
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2010.07.017
– volume: 30
  start-page: 04017029
  issue: 5
  year: 2017
  ident: CR27
  article-title: Noncertainty-equivalence spacecraft adaptive formation control with filtered signals
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000741
– volume: 137
  start-page: 353
  year: 2017
  end-page: 361
  ident: CR14
  article-title: Closed-loop control for global coverage and equatorial hovering about an asteroid
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.04.035
– volume: 40
  start-page: 2401
  issue: 10
  year: 2017
  end-page: 2416
  ident: CR18
  article-title: Control of asteroid-hovering spacecraft with disturbance rejection using position-only measurements
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/1.G002617
– ident: CR28
– volume: 198
  start-page: 99
  issue: 12
  year: 2008
  end-page: 118
  ident: CR9
  article-title: Attitude dynamics and control of satellites orbiting rotating asteroids
  publication-title: Acta Mech.
  doi: 10.1007/s00707-007-0508-y
– volume: 36
  start-page: 1075
  issue: 4
  year: 2013
  end-page: 1092
  ident: CR15
  article-title: Asteroid precision landing via multiple sliding surfaces guidance techniques
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.58246
– volume: 132
  start-page: 78
  year: 2017
  ident: 163_CR17
  publication-title: Acta Astronautica.
  doi: 10.1016/j.actaastro.2016.12.012
– volume: 117
  start-page: 450
  year: 2015
  ident: 163_CR19
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.09.006
– volume: 137
  start-page: 353
  year: 2017
  ident: 163_CR14
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.04.035
– volume: 38
  start-page: 263
  issue: 2
  year: 2015
  ident: 163_CR16
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G000631
– volume: 65
  start-page: 313
  year: 1997
  ident: 163_CR1
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF00053511
– volume: 36
  start-page: 790
  issue: 3
  year: 2013
  ident: 163_CR2
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/1.58140
– volume: 30
  start-page: 04017029
  issue: 5
  year: 2017
  ident: 163_CR27
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000741
– volume: 40
  start-page: 2401
  issue: 10
  year: 2017
  ident: 163_CR18
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/1.G002617
– volume: 51
  start-page: 1688
  issue: 3
  year: 2015
  ident: 163_CR11
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2015.140295
– volume: 105
  start-page: 370
  issue: 2
  year: 1993
  ident: 163_CR3
  publication-title: Icarus
  doi: 10.1006/icar.1993.1134
– volume: 31
  start-page: 884
  issue: 4
  year: 2008
  ident: 163_CR26
  publication-title: J. Guid., Contr., Dynamics
  doi: 10.2514/1.33308
– volume: 58
  start-page: 1516
  year: 2010
  ident: 163_CR6
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2010.07.017
– volume: 198
  start-page: 99
  issue: 12
  year: 2008
  ident: 163_CR9
  publication-title: Acta Mech.
  doi: 10.1007/s00707-007-0508-y
– volume-title: Nonlinear and Adaptive Control Design
  year: 1995
  ident: 163_CR24
– volume: 46
  start-page: 471
  year: 2015
  ident: 163_CR22
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.09.001
– volume: 38
  start-page: 854
  issue: 5
  year: 2015
  ident: 163_CR13
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/1.G000158
– volume-title: Space vehicle guidance, control, and astrodynamics
  year: 2015
  ident: 163_CR7
  doi: 10.2514/4.102752
– volume: 30
  start-page: 601
  issue: 2
  year: 2007
  ident: 163_CR10
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.20179
– volume: 38
  start-page: 105
  year: 2014
  ident: 163_CR20
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2014.07.013
– ident: 163_CR28
  doi: 10.2514/4.861550
– volume: 54
  start-page: 369
  issue: 3 &4
  year: 2006
  ident: 163_CR8
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03256495
– volume: 110
  start-page: 225
  year: 1994
  ident: 163_CR4
  publication-title: Iracuse
– volume: 23
  start-page: 466
  issue: 3
  year: 2000
  ident: 163_CR5
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4552
– volume: 102
  start-page: 124
  year: 2014
  ident: 163_CR12
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2014.05.016
– volume: 51
  start-page: 506
  issue: 1
  year: 2015
  ident: 163_CR21
  publication-title: IEEE Trans. Aerosp. Electron.
  doi: 10.1109/TAES.2014.140197
– volume-title: Nonlinear and Adaptive Control with Applications
  year: 2008
  ident: 163_CR25
  doi: 10.1007/978-1-84800-066-7
– volume: 36
  start-page: 1075
  issue: 4
  year: 2013
  ident: 163_CR15
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.58246
– volume: 53
  start-page: 419
  issue: 1
  year: 2017
  ident: 163_CR23
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2650778
SSID ssj0031091
Score 2.2805507
Snippet The development of an immersion-and invariance-based adaptive state variable feedback control law for the closed orbit and hovering control of spacecraft in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 537
SubjectTerms Adaptive control
Aerospace Technology and Astronautics
Angular velocity
Asteroids
Control systems
Control systems design
Control theory
Engineering
Equivalence
EROS asteroid
Feedback control
Hovering
Invariance
Mathematical Applications in the Physical Sciences
Modular structures
Modular systems
Moments of inertia
Orbital mechanics
Parameter estimation
Parameter identification
Rotating bodies
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Spacecraft orbits
State variable
Steering
Submerging
Tracking errors
Title Immersion-and Invariance-Based Adaptive Control of Asteroid-Orbiting and - Hovering Spacecraft
URI https://link.springer.com/article/10.1007/s40295-019-00163-6
https://www.proquest.com/docview/2308861890
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSgveWADV4njJO5YEFBAggEqlYXI8UNCoBRBYODXc3aSAhUgdYxiO4nvbH9ffPcZYJ8lMrUsjmjcNUhQZGhxSNmAGvQPzqRGiO7VPq-S_oBfDONhnRT22kS7N1uSfqYeJ7sh03HZxC7pBnFKRJNZmEP8EbAWzPXO7i5PmhnYi11WoR0hPpmzOlnm91Z-LkhfKHNiY9SvN6dLMGjetAozeey8lXlHfUyIOE77KcuwWANQ0qs8ZgVmTLEKC99kCdfg_tz_zUaLUVlocl68I6F23kGPcM3TpKfls5slyXEV505GlvSc4MLoQdPrl_zBhVITV5WSvgsRdZc3SM4RokpbrsPg9OT2uE_rcxiowgFa0lTkVkaK8SROVWC0sirnXWZMEJlUpTqRFrmtQaDD00hxESvLYy0DK3gsGbLgDWgVo8JsAgmFzE3CtNeoMaGUQiqkUKFRNrJG6DaEjTEyVYuUu7MynrKxvLLvuwz7LvN9lyVtOBjXea4kOv4tvdPYOKuH62uGPEyIJBTdoA2Hjcm-bv_d2tZ0xbdhnjmr-3CYHWiVL29mF0FNme_VPvwJGzzq-g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6x5cBy4LW7ojx94AZGieMk7rEgoOV5gEpw2cjxQ6oWpYimHPj1jJ2kPMQicYxiO4lnbM8Xf_MZYIclMrUsjmjcMQhQZGhxSNmAGvQPzqTGEN2rfV4mvQE_vY1v66SwccN2b7Yk_Uw9TXZDpOOyiV3SDcYpEU1-wCxHDM5bMNs9uTs7amZgL3ZZUTtCfDJndbLM5628X5Beo8wPG6N-vTlehEHzphXN5N_-pMz31fMHEcfvfsoSLNQBKOlWHrMMM6ZYgfk3soS_4G_f_81Gi1FZaNIvnhBQO--gB7jmadLV8sHNkuSw4rmTkSVdJ7gwGmp69ZgPHZWauKqU9BxF1F1eIzjHEFXa8jcMjo9uDnu0PoeBKhygJU1FbmWkGE_iVAVGK6ty3mHGBJFJVaoTaRHbGgx0eBopLmJleaxlYAWPJUMU_Adaxagwq0BCIXOTMO01akwopZAKIVRolI2sEboNYWOMTNUi5e6sjPtsKq_s-y7Dvst832VJG3andR4qiY4vS280Ns7q4TrOEIcJkYSiE7RhrzHZ6-3_t7b2veLbMNe7uTjPzvuXZ-vwkzkP8NSYDWiVjxOziQFOmW_V_vwCTWjt6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5irYTGgV_bREdhPnBj3hLHcdxjKS0tQwWJVdouRI5_SBUorbaMA389z07SjQmQph2j2Jbj92x_X_zeZ4A3TKjMsTSh6cAiQVGxwynlImrRPzhTBiF6UPuci-mCfzxLz25k8Ydo9_ZIss5p8CpNZXW8Nu54k_iGrMdnFvsEHMQsCRVb0OVenL0D3eGH85NxuxoH4cs6zCPGXnDWJM78vZU_N6drxHnrkDTsPZMnoNpe1yEn34-uquJI_7ol6Hifz3oKjxtgSoa1Jz2DB7Z8Do9uyBXuwLdZ-MuNlqSqNGRW_kSi7b2GvsO90JChUWu_epJRHf9OVo4MvRDDamno54ti6UOsia9KydSHjvrHr0jaEboqV-3CYjI-HU1pcz8D1ThxK5rJwqlEMy7STEfWaKcLPmDWRonNdGaEcsh5LQIgniWay1Q7nhoVOclTxZAd70GnXJX2BZBYqsIKZoJ2jY2VkkojtYqtdomz0vQgbg2T60a83N-h8SPfyC6Hsctx7PIwdrnowdtNnXUt3fHf0v3W3nkzjS9z5GdSilgOoh4ctua7fv3v1vbvVvwAHn55P8k_zeYnL2GbeQcIETN96FQXV_YV4p6qeN249m8hDPbN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immersion-and+Invariance-Based+Adaptive+Control+of+Asteroid-Orbiting+and+-+Hovering+Spacecraft&rft.jtitle=The+Journal+of+the+astronautical+sciences&rft.au=Lee%2C+Keum+W.&rft.au=Singh%2C+Sahjendra+N.&rft.date=2019-12-01&rft.issn=0021-9142&rft.eissn=2195-0571&rft.volume=66&rft.issue=4&rft.spage=537&rft.epage=553&rft_id=info:doi/10.1007%2Fs40295-019-00163-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40295_019_00163_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9142&client=summon