Rethinking modular multi-exponentiation in real-world applications
The importance of efficient multi-exponentiation algorithms in a large spectrum of cryptographic applications continues to grow. Previous literature on the subject pays attention exclusively on the minimization of the number of modular multiplications. However, a small reduction of the multiplicativ...
Saved in:
Published in | Journal of cryptographic engineering Vol. 13; no. 1; pp. 57 - 70 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The importance of efficient multi-exponentiation algorithms in a large spectrum of cryptographic applications continues to grow. Previous literature on the subject pays attention exclusively on the minimization of the number of modular multiplications. However, a small reduction of the multiplicative complexity can be easily overshadowed by other figures of merit. In this article, we demonstrate that the most efficient algorithm for computing multi-exponentiation changes if considering execution time instead of number of multi-exponentiations. We focus our work on two algorithms that perform best under the number of multi-exponentiation metric and show that some side operations affect their theoretical ranking. We provide this analysis on different hardware, such as Intel Core and ARM CPUs and the two latest generations of Raspberry Pis, to show how the machine chosen affects the execution time of multi-exponentiation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2190-8508 2190-8516 |
DOI: | 10.1007/s13389-022-00287-w |