Presentation of a recommender system with ensemble learning and graph embedding: a case on MovieLens
Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select data that are in accordance with user needs. For the resolution of the above issue, recommender systems have emerged, which much help users...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 5; pp. 7805 - 7832 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select data that are in accordance with user needs. For the resolution of the above issue, recommender systems have emerged, which much help users go through the process of decision-making and selecting relevant data. A recommender system predicts users’ behavior to be capable of detecting their interests and needs, and it often uses the classification technique for this purpose. It may not be sufficiently accurate to employ single classification, where not all cases can be examined, which makes the method inappropriate to specific problems. In this research, group classification and the ensemble learning technique were used for increasing prediction accuracy in recommender systems. Another issue that is raised here concerns user analysis. Given the large size of the data and a large number of users, the process of user needs analysis and prediction (using a graph in most cases, representing the relations between users and their selected items) is complicated and cumbersome in recommender systems. Graph embedding was also proposed for resolution of this issue, where all or part of user behavior can be simulated through the generation of several vectors, resolving the problem of user behavior analysis to a large extent while maintaining high efficiency. In this research, individuals most similar to the target user were classified using ensemble learning, fuzzy rules, and the decision tree, and relevant recommendations were then made to each user with a heterogeneous knowledge graph and embedding vectors. This study was performed on the MovieLens datasets, and the obtained results indicated the high efficiency of the presented method. |
---|---|
AbstractList | Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select data that are in accordance with user needs. For the resolution of the above issue, recommender systems have emerged, which much help users go through the process of decision-making and selecting relevant data. A recommender system predicts users’ behavior to be capable of detecting their interests and needs, and it often uses the classification technique for this purpose. It may not be sufficiently accurate to employ single classification, where not all cases can be examined, which makes the method inappropriate to specific problems. In this research, group classification and the ensemble learning technique were used for increasing prediction accuracy in recommender systems. Another issue that is raised here concerns user analysis. Given the large size of the data and a large number of users, the process of user needs analysis and prediction (using a graph in most cases, representing the relations between users and their selected items) is complicated and cumbersome in recommender systems. Graph embedding was also proposed for resolution of this issue, where all or part of user behavior can be simulated through the generation of several vectors, resolving the problem of user behavior analysis to a large extent while maintaining high efficiency. In this research, individuals most similar to the target user were classified using ensemble learning, fuzzy rules, and the decision tree, and relevant recommendations were then made to each user with a heterogeneous knowledge graph and embedding vectors. This study was performed on the MovieLens datasets, and the obtained results indicated the high efficiency of the presented method. |
Author | Forouzandeh, Saman Rostami, Mehrdad Berahmand, Kamal |
Author_xml | – sequence: 1 givenname: Saman orcidid: 0000-0002-5952-156X surname: Forouzandeh fullname: Forouzandeh, Saman email: saman.forouzandeh@gmail.com organization: Department of Computer Engineering, University of Applied Science and Technologys – sequence: 2 givenname: Kamal surname: Berahmand fullname: Berahmand, Kamal organization: Department of Science and Engineering, Queensland University of Technology – sequence: 3 givenname: Mehrdad surname: Rostami fullname: Rostami, Mehrdad organization: Department of Computer Engineering, University of Kurdistan |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6v52Gx2vUnxCyp60HPIbiZ1y25Sk63Sf2_qCoKHniZM5nlneGZo4rwDhM4puaSEyKtIKclZRhjJSFXlVSaO0JQKyTMpGZ2kNy9JJgWhJ2gW45oQWgiWT5F5CRDBDXpovcPeYo0DNL7vwRkIOO7iAD3-aod3DC5CX3eAO9DBtW6FtTN4FfQm_fU1GJN61ymg0RFwSnvyny0sE3aKjq3uIpz91jl6u7t9XTxky-f7x8XNMms4rYZMFkZaCzy3nNdaFjW3XOagc8J1XmgpQDBmyhKoEJWkDYeGGFk2pJSWMVvyOboYczfBf2whDmrtt8GllYrlFZMVL_h-io1TTfAxBrBqE9peh52iRO1tqtGmSjbVj00lElT-g5p2lDYE3XaHUT6iMe1xKwh_Vx2gvgHei4uj |
CitedBy_id | crossref_primary_10_1186_s40537_020_00398_3 crossref_primary_10_1007_s41060_024_00623_9 crossref_primary_10_1007_s12559_024_10372_3 crossref_primary_10_1016_j_jcmds_2022_100036 crossref_primary_10_1016_j_compbiomed_2021_104933 crossref_primary_10_1007_s10489_024_05313_4 crossref_primary_10_1007_s11042_022_13936_3 crossref_primary_10_1108_DTA_09_2020_0232 crossref_primary_10_1016_j_patcog_2021_108493 crossref_primary_10_1016_j_joitmc_2024_100261 crossref_primary_10_1007_s11042_024_19585_y crossref_primary_10_1016_j_artmed_2021_102228 crossref_primary_10_1016_j_ins_2024_120563 crossref_primary_10_1007_s11042_021_11883_z crossref_primary_10_1016_j_knosys_2021_107534 crossref_primary_10_3390_info12060232 crossref_primary_10_1007_s11042_024_19468_2 crossref_primary_10_1016_j_measurement_2023_113625 crossref_primary_10_1007_s11042_023_18081_z crossref_primary_10_1007_s11042_024_19965_4 crossref_primary_10_1007_s11042_024_19967_2 crossref_primary_10_1002_cpe_6560 crossref_primary_10_1007_s11042_022_13942_5 crossref_primary_10_1016_j_techfore_2024_123736 crossref_primary_10_3389_fphy_2021_768006 crossref_primary_10_1186_s40537_021_00539_2 crossref_primary_10_1186_s12859_022_05102_1 crossref_primary_10_1145_3582562 crossref_primary_10_1007_s00521_022_08088_2 crossref_primary_10_3390_app12094168 crossref_primary_10_1080_00051144_2023_2284026 crossref_primary_10_1016_j_compeleceng_2022_107916 crossref_primary_10_1109_TCBB_2022_3225234 crossref_primary_10_1007_s11227_024_05950_z crossref_primary_10_1007_s13278_023_01043_6 crossref_primary_10_1007_s11042_024_18885_7 crossref_primary_10_1155_2022_2347641 crossref_primary_10_1007_s11257_024_09417_x crossref_primary_10_1007_s11042_023_17082_2 crossref_primary_10_1007_s11128_023_03844_2 crossref_primary_10_1016_j_eswa_2023_120487 crossref_primary_10_1109_ACCESS_2022_3175317 crossref_primary_10_1007_s00521_023_08410_6 crossref_primary_10_1016_j_eswa_2024_123151 crossref_primary_10_1007_s11042_022_12144_3 crossref_primary_10_3390_app11209554 crossref_primary_10_1016_j_treng_2024_100272 crossref_primary_10_1371_journal_pone_0297404 crossref_primary_10_1007_s11042_024_20579_z crossref_primary_10_1007_s11227_024_06088_8 crossref_primary_10_1016_j_iswa_2022_200157 |
Cites_doi | 10.1109/TKDE.2018.2807452 10.1109/MCSE.2018.2875321 10.1016/j.inffus.2013.04.006 10.1016/j.eswa.2020.113235 10.1016/j.is.2018.11.008 10.1016/j.ygeno.2020.07.027 10.1016/j.eswa.2016.10.024 10.1016/j.chaos.2018.03.014 10.1016/j.procs.2018.01.092 10.1016/j.dss.2019.113115 10.1016/j.eswa.2019.06.045 10.1016/j.inffus.2017.02.004 10.1016/j.is.2019.07.001 10.1016/j.ins.2019.03.064 10.1016/j.neucom.2019.01.028 10.1109/10.959324 10.1007/s00607-018-0684-8 10.1016/j.engappai.2019.06.020 10.1016/j.knosys.2015.12.025 10.1016/j.eswa.2017.09.058 10.1016/j.knosys.2017.01.014 10.1016/j.neucom.2015.08.054 10.1016/j.ins.2019.05.001 10.1016/j.eswa.2014.06.007 10.1016/j.cie.2017.05.016 10.1016/j.physa.2019.121269 10.1016/j.eswa.2013.12.023 10.1016/j.neucom.2017.05.100 10.1016/j.ygeno.2019.01.001 10.1016/j.ins.2018.04.022 10.1016/j.cosrev.2018.01.003 10.1109/34.273716 10.1016/j.ins.2019.04.033 10.1145/2959100.2959160 10.1609/aaai.v31i1.10488 10.1145/3038912.3052575 10.1093/bioinformatics/btz718 10.1007/s12652-019-01451-7 10.1108/IJWIS-07-2017-0053 10.1007/978-1-4899-7637-6_3 10.1145/1835804.1835893 10.1145/2792838.2799676 10.1145/2623330.2623732 10.3115/v1/D14-1162 10.1109/CCCS.2015.7374146 10.1007/978-0-387-85820-3_1 10.1145/2783258.2783296 10.1007/3-540-44795-4_49 10.1007/978-1-4471-0123-9_3 10.14704/WEB/V16I1/a178 10.1145/2664551.2664556 10.1007/978-3-319-12024-9_19 10.1145/2939672.2939754 10.1145/2783258.2788627 10.1609/aaai.v29i1.9491 10.1609/aaai.v31i1.10814 10.1145/2736277.2741093 10.1609/aaai.v31i1.10878 10.1016/j.neucom.2019.09.080 10.1007/978-3-030-16148-4_3 10.1609/aaai.v28i1.8870 10.1007/3-540-45014-9_1 10.1145/2806416.2806512 10.1145/3097983.3098189 10.1109/MLSP.2016.7738886 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-020-09949-5 |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 7832 |
ExternalDocumentID | 10_1007_s11042_020_09949_5 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-76d7ffe34f33ba76b3f374ea403a46a75e522d88e155971c3ec0d78c087f22f83 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 22:05:07 EDT 2025 Tue Jul 01 04:13:07 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Fri Feb 21 02:49:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Fuzzy rules Graph embedding Heterogeneous knowledge graph Ensemble learning Decision tree Recommender systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-76d7ffe34f33ba76b3f374ea403a46a75e522d88e155971c3ec0d78c087f22f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5952-156X |
PQID | 2492793638 |
PQPubID | 54626 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2492793638 crossref_primary_10_1007_s11042_020_09949_5 crossref_citationtrail_10_1007_s11042_020_09949_5 springer_journals_10_1007_s11042_020_09949_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Woźniak, Graña, Corchado (CR64) 2014; 16 CR38 CR37 CR36 Borràs, Moreno, Valls (CR9) 2014; 41 CR35 CR34 CR33 CR31 CR75 CR30 Bai, Li, Zeng (CR1) 2019; 81 Zareie, Sheikhahmadi, Jalili (CR68) 2019; 493 Forouzandeh (CR19) 2017; 17 Berahmand, Bouyer, Samadi (CR7) 2019; 101 Ren, Long, Xu (CR50) 2019; 125 Golzardi, Sheikhahmadi, Abdollahpouri (CR21) 2019; 527 Wang (CR61) 2018 CR2 Ben-Lhachemi (CR5) 2018; 127 Berahmand, Bouyer, Samadi (CR6) 2018; 110 CR3 Rostami, Forouzandeh, Berahmand, Soltani (CR53) 2020; 112 Basile, Greco, Suglia, Semeraro (CR4) 2019; 86 CR46 CR45 CR40 Nilashi, Ibrahim, Ithnin (CR43) 2014; 41 Forouzandeh, Soltanpanah, Sheikhahmadi (CR18) 2015; 124 Cai, Zheng, Chang (CR10) 2018; 30 Pujahari, Sisodia (CR48) 2019; 490 Krawczyk, Minku, Gama, Stefanowski, Woźniak (CR32) 2017; 37 CR17 Zhang, Gong, Lee, Zhao, Rong, Qu (CR70) 2016; 96 CR15 CR59 Zhang, Zhang, Wang, Chen (CR72) 2019; 334 CR14 CR58 CR13 CR12 CR56 CR11 CR54 CR52 CR51 Porta, Guzzetti, Montano, Furlan, Pagani, Malliani, Cerutti (CR47) 2001; 48 Qiu, Gao, Lyu, Guo, Gallinari (CR49) 2018; 278 Zhang, Zou, Luo, Liu, Wu, Xiao (CR73) 2016; 173 Jendoubi, Martin, Liétard, Ben Hadji, Ben Yaghlane (CR29) 2017; 121 Zhou, Zhao, Li, Liang, Zeng (CR74) 2019; 136 Nilashi, Ibrahim, Bagherifard (CR42) 2018; 92 Valcarce, Landin, Parapar, Barreiro (CR57) 2019; 85 Zhang, Wang, Wang (CR71) 2018; 453 Forouzandeh, Aghdam, Forouzandeh, Xu (CR16) 2020; 22 Seo, Kim, Lee, Baik (CR55) 2017; 69 CR28 CR27 CR25 CR69 CR24 CR23 CR22 Nilashi, Bagherifard, Rahmani, Rafe (CR41) 2017; 109 CR66 CR20 Boongoen, Iam-On (CR8) 2018; 28 CR63 CR62 Palumbo, Monti, Rizzo, Troncy, Baralis (CR44) 2020; 151 CR60 Xie, Gong, Wang, Liu, Yu (CR65) 2019; 495 Yue, Wang, Huang, Parthasarathy, Moosavinasab, Huang, Lin, Zhang, Zhang, Sun (CR67) 2020; 36 Mohammadpour, Bidgoli, Enayatifar, Javadi (CR39) 2019; 111 Ho, Hull, Srihari (CR26) 1994; 16 E Palumbo (9949_CR44) 2020; 151 A Zareie (9949_CR68) 2019; 493 9949_CR60 M Woźniak (9949_CR64) 2014; 16 Y-D Seo (9949_CR55) 2017; 69 9949_CR63 Y Xie (9949_CR65) 2019; 495 9949_CR20 9949_CR62 9949_CR23 J Bai (9949_CR1) 2019; 81 9949_CR24 9949_CR22 M Nilashi (9949_CR41) 2017; 109 9949_CR66 9949_CR27 9949_CR28 9949_CR25 9949_CR69 H Cai (9949_CR10) 2018; 30 S Forouzandeh (9949_CR19) 2017; 17 S Jendoubi (9949_CR29) 2017; 121 J Ren (9949_CR50) 2019; 125 W Zhang (9949_CR73) 2016; 173 9949_CR30 9949_CR31 9949_CR75 9949_CR34 N Ben-Lhachemi (9949_CR5) 2018; 127 9949_CR35 9949_CR33 9949_CR38 K Berahmand (9949_CR7) 2019; 101 9949_CR36 9949_CR37 H Wang (9949_CR61) 2018 H Zhou (9949_CR74) 2019; 136 M Nilashi (9949_CR43) 2014; 41 TK Ho (9949_CR26) 1994; 16 W Zhang (9949_CR72) 2019; 334 F Zhang (9949_CR70) 2016; 96 T Boongoen (9949_CR8) 2018; 28 S Forouzandeh (9949_CR16) 2020; 22 9949_CR40 9949_CR45 9949_CR46 A Porta (9949_CR47) 2001; 48 J Borràs (9949_CR9) 2014; 41 D Valcarce (9949_CR57) 2019; 85 P Basile (9949_CR4) 2019; 86 M Zhang (9949_CR71) 2018; 453 K Berahmand (9949_CR6) 2018; 110 S Forouzandeh (9949_CR18) 2015; 124 L Qiu (9949_CR49) 2018; 278 9949_CR52 T Mohammadpour (9949_CR39) 2019; 111 X Yue (9949_CR67) 2020; 36 M Rostami (9949_CR53) 2020; 112 M Nilashi (9949_CR42) 2018; 92 9949_CR51 9949_CR12 9949_CR56 9949_CR13 9949_CR54 9949_CR11 9949_CR17 9949_CR14 9949_CR58 9949_CR15 9949_CR59 A Pujahari (9949_CR48) 2019; 490 9949_CR2 E Golzardi (9949_CR21) 2019; 527 B Krawczyk (9949_CR32) 2017; 37 9949_CR3 |
References_xml | – ident: CR45 – ident: CR22 – volume: 30 start-page: 1616 issue: 9 year: 2018 end-page: 1637 ident: CR10 article-title: A comprehensive survey of graph embedding: problems, techniques, and applications publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2807452 – volume: 22 start-page: 62 issue: 4 year: 2020 end-page: 73 ident: CR16 article-title: Addressing the cold-start problem using data mining techniques and improving recommender systems by cuckoo algorithm: a case study of Facebook publication-title: Comput Sci Eng doi: 10.1109/MCSE.2018.2875321 – volume: 16 start-page: 3 year: 2014 end-page: 17 ident: CR64 article-title: A survey of multiple classifier systems as hybrid systems publication-title: Inf Fusion doi: 10.1016/j.inffus.2013.04.006 – volume: 151 start-page: 113235 year: 2020 ident: CR44 article-title: entity2rec: Property-specific knowledge graph embeddings for item recommendation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113235 – ident: CR51 – volume: 81 start-page: 82 year: 2019 end-page: 91 ident: CR1 article-title: HiWalk: learning node embeddings from heterogeneous networks publication-title: Inf Syst doi: 10.1016/j.is.2018.11.008 – ident: CR12 – volume: 36 start-page: 1241 issue: 4 year: 2020 end-page: 1251 ident: CR67 article-title: Graph embedding on biomedical networks: methods, applications and evaluations publication-title: Bioinformatics – ident: CR35 – ident: CR54 – volume: 112 start-page: 4370 issue: 8 year: 2020 end-page: 4384 ident: CR53 article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets publication-title: Genomics doi: 10.1016/j.ygeno.2020.07.027 – volume: 69 start-page: 135 year: 2017 end-page: 148 ident: CR55 article-title: Personalized recommender system based on friendship strength in social network services publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.024 – volume: 110 start-page: 41 year: 2018 end-page: 54 ident: CR6 article-title: A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2018.03.014 – ident: CR58 – ident: CR25 – volume: 127 start-page: 7 year: 2018 end-page: 15 ident: CR5 article-title: Using tweets embeddings for hashtag recommendation in twitter publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.01.092 – ident: CR46 – volume: 125 start-page: 113115 year: 2019 ident: CR50 article-title: Financial news recommendation based on graph embeddings publication-title: Decis Support Syst doi: 10.1016/j.dss.2019.113115 – ident: CR75 – volume: 136 start-page: 276 year: 2019 end-page: 287 ident: CR74 article-title: Rank2vec: learning node embeddings with local structure and global ranking publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.06.045 – ident: CR15 – volume: 37 start-page: 132 year: 2017 end-page: 156 ident: CR32 article-title: Ensemble learning for data stream analysis: a survey publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.02.004 – volume: 86 start-page: 1 year: 2019 end-page: 8 ident: CR4 article-title: Bridging the gap between linked open data-based recommender systems and distributed representations publication-title: Inf Syst doi: 10.1016/j.is.2019.07.001 – volume: 490 start-page: 126 year: 2019 end-page: 145 ident: CR48 article-title: Modeling side information in preference relation based restricted boltzmann machine for recommender systems publication-title: Inf Sci doi: 10.1016/j.ins.2019.03.064 – ident: CR11 – ident: CR60 – volume: 334 start-page: 206 year: 2019 end-page: 218 ident: CR72 article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.028 – ident: CR36 – volume: 48 start-page: 1282 issue: 11 year: 2001 end-page: 1291 ident: CR47 article-title: Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.959324 – volume: 101 start-page: 1711 issue: 11 year: 2019 end-page: 1733 ident: CR7 article-title: A new local and multidimensional ranking measure to detect spreaders in social networks publication-title: Computing doi: 10.1007/s00607-018-0684-8 – volume: 124 start-page: 1 issue: 1 year: 2015 end-page: 7 ident: CR18 article-title: Application of data mining in designing a recommender system on social networks publication-title: Int J Comput Appl – volume: 85 start-page: 347 year: 2019 end-page: 356 ident: CR57 article-title: Collaborative filtering embeddings for memory-based recommender systems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.06.020 – ident: CR66 – volume: 96 start-page: 96 year: 2016 end-page: 103 ident: CR70 article-title: Fast algorithms to evaluate collaborative filtering recommender systems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.025 – volume: 92 start-page: 507 year: 2018 end-page: 520 ident: CR42 article-title: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.09.058 – volume: 17 start-page: 46 issue: 8 year: 2017 ident: CR19 article-title: Recommender system for users of internet of things (IOT) publication-title: IJCSNS – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR30 – volume: 121 start-page: 58 year: 2017 end-page: 70 ident: CR29 article-title: Two evidential data based models for influence maximization in twitter publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.01.014 – volume: 173 start-page: 979 year: 2016 end-page: 987 ident: CR73 article-title: Predicting potential side effects of drugs by recommender methods and ensemble learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.054 – volume: 495 start-page: 37 year: 2019 end-page: 51 ident: CR65 article-title: Sim2vec: node similarity preserving network embedding publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.001 – volume: 41 start-page: 7370 issue: 16 year: 2014 end-page: 7389 ident: CR9 article-title: Intelligent tourism recommender systems: a survey publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.007 – ident: CR33 – volume: 109 start-page: 357 year: 2017 end-page: 368 ident: CR41 article-title: A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques publication-title: Comput Ind Eng doi: 10.1016/j.cie.2017.05.016 – volume: 527 start-page: 121269 year: 2019 ident: CR21 article-title: Detection of trust links on social networks using dynamic features publication-title: Physica A doi: 10.1016/j.physa.2019.121269 – ident: CR56 – ident: CR40 – ident: CR63 – ident: CR27 – ident: CR23 – ident: CR69 – volume: 41 start-page: 3879 issue: 8 year: 2014 end-page: 3900 ident: CR43 article-title: Hybrid recommendation approaches for multi-criteria collaborative filtering publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.12.023 – volume: 278 start-page: 144 year: 2018 end-page: 152 ident: CR49 article-title: A novel non-Gaussian embedding based model for recommender systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.100 – volume: 111 start-page: 1902 issue: 6 year: 2019 end-page: 1912 ident: CR39 article-title: Efficient clustering in collaborative filtering recommender system: hybrid method based on genetic algorithm and gravitational emulation local search algorithm publication-title: Genomics doi: 10.1016/j.ygeno.2019.01.001 – year: 2018 ident: CR61 article-title: Ripplenet: Propagating user preferences on the knowledge graph for recommender systems publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management – volume: 453 start-page: 389 year: 2018 end-page: 407 ident: CR71 article-title: HeteRank: a general similarity measure in heterogeneous information networks by integrating multi-type relationships publication-title: Inf Sci doi: 10.1016/j.ins.2018.04.022 – ident: CR3 – ident: CR38 – volume: 28 start-page: 1 year: 2018 end-page: 25 ident: CR8 article-title: Cluster ensembles: a survey of approaches with recent extensions and applications publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2018.01.003 – ident: CR52 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR34 – volume: 16 start-page: 66 issue: 1 year: 1994 end-page: 75 ident: CR26 article-title: Decision combination in multiple classifier systems publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.273716 – ident: CR59 – ident: CR28 – ident: CR62 – volume: 493 start-page: 217 year: 2019 end-page: 231 ident: CR68 article-title: Identification of influential users in social networks based on users’ interest publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.033 – ident: CR24 – ident: CR20 – ident: 9949_CR34 – ident: 9949_CR58 doi: 10.1145/2959100.2959160 – volume: 527 start-page: 121269 year: 2019 ident: 9949_CR21 publication-title: Physica A doi: 10.1016/j.physa.2019.121269 – volume: 278 start-page: 144 year: 2018 ident: 9949_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.100 – ident: 9949_CR60 doi: 10.1609/aaai.v31i1.10488 – volume: 16 start-page: 3 year: 2014 ident: 9949_CR64 publication-title: Inf Fusion doi: 10.1016/j.inffus.2013.04.006 – ident: 9949_CR62 doi: 10.1145/3038912.3052575 – volume: 121 start-page: 58 year: 2017 ident: 9949_CR29 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.01.014 – volume: 48 start-page: 1282 issue: 11 year: 2001 ident: 9949_CR47 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.959324 – ident: 9949_CR38 – volume: 111 start-page: 1902 issue: 6 year: 2019 ident: 9949_CR39 publication-title: Genomics doi: 10.1016/j.ygeno.2019.01.001 – volume: 136 start-page: 276 year: 2019 ident: 9949_CR74 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.06.045 – volume: 92 start-page: 507 year: 2018 ident: 9949_CR42 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.09.058 – volume: 36 start-page: 1241 issue: 4 year: 2020 ident: 9949_CR67 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz718 – ident: 9949_CR2 doi: 10.1007/s12652-019-01451-7 – volume: 22 start-page: 62 issue: 4 year: 2020 ident: 9949_CR16 publication-title: Comput Sci Eng doi: 10.1109/MCSE.2018.2875321 – ident: 9949_CR20 doi: 10.1108/IJWIS-07-2017-0053 – ident: 9949_CR31 doi: 10.1007/978-1-4899-7637-6_3 – ident: 9949_CR28 doi: 10.1145/1835804.1835893 – ident: 9949_CR24 doi: 10.1145/2792838.2799676 – ident: 9949_CR25 – volume: 30 start-page: 1616 issue: 9 year: 2018 ident: 9949_CR10 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2807452 – ident: 9949_CR37 – ident: 9949_CR46 doi: 10.1145/2623330.2623732 – volume: 173 start-page: 979 year: 2016 ident: 9949_CR73 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.054 – ident: 9949_CR33 – ident: 9949_CR54 – volume: 112 start-page: 4370 issue: 8 year: 2020 ident: 9949_CR53 publication-title: Genomics doi: 10.1016/j.ygeno.2020.07.027 – volume: 16 start-page: 66 issue: 1 year: 1994 ident: 9949_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.273716 – ident: 9949_CR45 doi: 10.3115/v1/D14-1162 – ident: 9949_CR35 doi: 10.1109/CCCS.2015.7374146 – volume-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management year: 2018 ident: 9949_CR61 – volume: 41 start-page: 7370 issue: 16 year: 2014 ident: 9949_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.007 – volume: 334 start-page: 206 year: 2019 ident: 9949_CR72 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.028 – volume: 37 start-page: 132 year: 2017 ident: 9949_CR32 publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.02.004 – ident: 9949_CR51 doi: 10.1007/978-0-387-85820-3_1 – ident: 9949_CR12 doi: 10.1145/2783258.2783296 – volume: 110 start-page: 41 year: 2018 ident: 9949_CR6 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2018.03.014 – volume: 41 start-page: 3879 issue: 8 year: 2014 ident: 9949_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.12.023 – ident: 9949_CR69 doi: 10.1007/3-540-44795-4_49 – volume: 101 start-page: 1711 issue: 11 year: 2019 ident: 9949_CR7 publication-title: Computing doi: 10.1007/s00607-018-0684-8 – ident: 9949_CR63 doi: 10.1007/978-1-4471-0123-9_3 – volume: 127 start-page: 7 year: 2018 ident: 9949_CR5 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.01.092 – ident: 9949_CR15 doi: 10.14704/WEB/V16I1/a178 – ident: 9949_CR13 doi: 10.1145/2664551.2664556 – volume: 17 start-page: 46 issue: 8 year: 2017 ident: 9949_CR19 publication-title: IJCSNS – volume: 96 start-page: 96 year: 2016 ident: 9949_CR70 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.025 – volume: 81 start-page: 82 year: 2019 ident: 9949_CR1 publication-title: Inf Syst doi: 10.1016/j.is.2018.11.008 – volume: 493 start-page: 217 year: 2019 ident: 9949_CR68 publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.033 – ident: 9949_CR52 doi: 10.1007/978-3-319-12024-9_19 – ident: 9949_CR23 doi: 10.1145/2939672.2939754 – ident: 9949_CR17 – volume: 28 start-page: 1 year: 2018 ident: 9949_CR8 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2018.01.003 – ident: 9949_CR22 doi: 10.1145/2783258.2788627 – volume: 109 start-page: 357 year: 2017 ident: 9949_CR41 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2017.05.016 – ident: 9949_CR36 doi: 10.1609/aaai.v29i1.9491 – ident: 9949_CR40 doi: 10.1609/aaai.v31i1.10814 – ident: 9949_CR56 doi: 10.1145/2736277.2741093 – volume: 85 start-page: 347 year: 2019 ident: 9949_CR57 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.06.020 – volume: 151 start-page: 113235 year: 2020 ident: 9949_CR44 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113235 – ident: 9949_CR75 doi: 10.1609/aaai.v31i1.10878 – volume: 124 start-page: 1 issue: 1 year: 2015 ident: 9949_CR18 publication-title: Int J Comput Appl – volume: 125 start-page: 113115 year: 2019 ident: 9949_CR50 publication-title: Decis Support Syst doi: 10.1016/j.dss.2019.113115 – volume: 495 start-page: 37 year: 2019 ident: 9949_CR65 publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.001 – ident: 9949_CR30 doi: 10.1016/j.neucom.2019.09.080 – ident: 9949_CR27 doi: 10.1007/978-3-030-16148-4_3 – ident: 9949_CR59 doi: 10.1609/aaai.v28i1.8870 – ident: 9949_CR14 doi: 10.1007/3-540-45014-9_1 – volume: 69 start-page: 135 year: 2017 ident: 9949_CR55 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.024 – volume: 490 start-page: 126 year: 2019 ident: 9949_CR48 publication-title: Inf Sci doi: 10.1016/j.ins.2019.03.064 – ident: 9949_CR11 doi: 10.1145/2806416.2806512 – volume: 86 start-page: 1 year: 2019 ident: 9949_CR4 publication-title: Inf Syst doi: 10.1016/j.is.2019.07.001 – volume: 453 start-page: 389 year: 2018 ident: 9949_CR71 publication-title: Inf Sci doi: 10.1016/j.ins.2018.04.022 – ident: 9949_CR66 doi: 10.1145/3097983.3098189 – ident: 9949_CR3 doi: 10.1109/MLSP.2016.7738886 |
SSID | ssj0016524 |
Score | 2.5156567 |
Snippet | Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7805 |
SubjectTerms | Classification Computer Communication Networks Computer Science Data Structures and Information Theory Decision making Decision trees Embedding Ensemble learning Graphical representations Knowledge representation Multimedia Information Systems Recommender systems Special Purpose and Application-Based Systems User behavior User needs |
Title | Presentation of a recommender system with ensemble learning and graph embedding: a case on MovieLens |
URI | https://link.springer.com/article/10.1007/s11042-020-09949-5 https://www.proquest.com/docview/2492793638 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdoGBjwKiUCoPbBApiZ3YYSuoHwJaVYhKZYoS22GhKYLy_zmnTgMIkJgyOL4hZ_u9y_neAZwpHqUMeagjAkUxQJHUiVIROszjqdCKSl3INY3G4XDKbmbBzBaFvZW33cuUZHFSV8VuniklMeEOshoWOUENGoGJ3XEVT_3uOncQBraVrXAdxEPPlsr8bOMrHFUc81tatECb_i5sW5pIuiu_7sGGzpuwU7ZgIHZHNmHrk57gPqhJVUyUk0VGEmIC3vm86BdHVqrNxPx6JRi96nn6rIltG_FEklyRQr6a4IBWBtMu0YBEmCNobbRABL3DaQcw7fceroeObaPgSNxfS4eHimeZpiyjNE14mNKMcqYT5tKEhQkPNHIwJYQ2GUruSaqlq7iQruCZ72eCHkI9X-T6CAjSg0QLpjgiK_OZSKSUXFAdudqXSkYt8MqvGUurMW5aXTzHlTqy8UCMHogLD8RBC87Xc15WCht_vt0unRTb3fYWG9VDPGfwKGnBRem4avh3a8f_e_0ENn1zpaW4tN2G-vL1XZ8iJ1mmHaiJ_qADje7g8baHz6veeHLfKRbmB7hZ2tY |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2l4UB74CMFNRDABzi1Frtr79pbqUIICClJqh5Sqbdl157lkmzSJgjxp_iNjPcj2yLRW8_enYPn2TNje94DeGtVnEnKQ7kOraACxQgeZzri0leZRisMlnRN07NodCG_XYaXHfjT9MK4Z5XNnlhu1HZp3Bn5e8dsR1giuHxYXXGnGuVuVxsJjQoWY_z9i0q29cnpZ_LvuyAYfpl9GvFaVYAbgtuGq8iqPEchcyGyVEWZyIWSmEpPpDJKVYiUklit0V3YKd8INJ5V2nha5UGQa0F2d-CBFCJ2K0oPv25vLaKwFtHVHqdI7NdNOlWrnu8aYVyxRjmZjHl4OxC22e0_F7JlnBs-gUd1gso-Voh6Ch0sevC4EX9g9V7Qg70bTIb7YM_bNqaCLXOWMldqLxalUh2r-KKZO_RlVDfjIpsjqwUrfrC0sKwkzmY0gNZF02MyYCjAMrI2XZJrJvTbM7i4l6l-Dt1iWeABMEpMUtTSKorpMpA6NcYoLTD2MDDWxH3wm9lMTM1u7kQ25knLy-w8kJAHktIDSdiHw-0_q4rb486vB42Tknqdr5MWlX04ahzXDv_f2ou7rb2Bh6PZdJJMTs_GL2E3cA9pyqfiA-hurn_iK8qENtnrEn4Mvt833v8ChycWbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIlVwKC2lYltofYBTa5HETuwgIUQLKyiwWiGQuIXEnvTCZmlZhPrX-HWME4e0SOXG2fEcPC-eGc_HA1i3Ki0k-aFcx1ZQgGIETwudcBmqQqMVButxTSfD5OBc_riIL2bgvu2FcWWV7Z1YX9R2Ytwb-aabbEdYIrhslr4sYrQ32Ln-xR2DlMu0tnQaDUSO8M8dhW8324d7pOuNKBrsn30_4J5hgBuC3pSrxKqyRCFLIYpcJYUohZKYy0DkMslVjOSeWK3RJe9UaASawCptAq3KKCq1ILmzMKcoKgp6MPdtfzg6fcxhJLGn1NUBJ7sc-padpnEvdG0xLnQjD02mPP7XLHa-7pP0bG31Bm_gtXdX2W6Dr7cwg9USLLZUEMzfDEuw8Ndcw3dgR11TU8UmJcuZC7zH45q3jjXTo5l7AmYUReO4uELm6St-sryyrB6jzWgBrbOtWyTAkLllJO1kQoo6pm3LcP4ih_0eetWkwhVg5KbkqKVVZOFlJHVujFFaYBpgZKxJ-xC2p5kZP-vcUW5cZd2UZqeBjDSQ1RrI4j58edxz3Uz6ePbr1VZJmf_rb7IOo3342iquW_6_tA_PS_sMrwjr2fHh8OgjzEeuqqauG1-F3vT3La6RWzQtPnn8Mbh8acg_AEn1HAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Presentation+of+a+recommender+system+with+ensemble+learning+and+graph+embedding%3A+a+case+on+MovieLens&rft.jtitle=Multimedia+tools+and+applications&rft.au=Forouzandeh%2C+Saman&rft.au=Berahmand%2C+Kamal&rft.au=Rostami%2C+Mehrdad&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=5&rft.spage=7805&rft.epage=7832&rft_id=info:doi/10.1007%2Fs11042-020-09949-5&rft.externalDocID=10_1007_s11042_020_09949_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |