Presentation of a recommender system with ensemble learning and graph embedding: a case on MovieLens

Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select data that are in accordance with user needs. For the resolution of the above issue, recommender systems have emerged, which much help users...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 5; pp. 7805 - 7832
Main Authors Forouzandeh, Saman, Berahmand, Kamal, Rostami, Mehrdad
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select data that are in accordance with user needs. For the resolution of the above issue, recommender systems have emerged, which much help users go through the process of decision-making and selecting relevant data. A recommender system predicts users’ behavior to be capable of detecting their interests and needs, and it often uses the classification technique for this purpose. It may not be sufficiently accurate to employ single classification, where not all cases can be examined, which makes the method inappropriate to specific problems. In this research, group classification and the ensemble learning technique were used for increasing prediction accuracy in recommender systems. Another issue that is raised here concerns user analysis. Given the large size of the data and a large number of users, the process of user needs analysis and prediction (using a graph in most cases, representing the relations between users and their selected items) is complicated and cumbersome in recommender systems. Graph embedding was also proposed for resolution of this issue, where all or part of user behavior can be simulated through the generation of several vectors, resolving the problem of user behavior analysis to a large extent while maintaining high efficiency. In this research, individuals most similar to the target user were classified using ensemble learning, fuzzy rules, and the decision tree, and relevant recommendations were then made to each user with a heterogeneous knowledge graph and embedding vectors. This study was performed on the MovieLens datasets, and the obtained results indicated the high efficiency of the presented method.
AbstractList Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select data that are in accordance with user needs. For the resolution of the above issue, recommender systems have emerged, which much help users go through the process of decision-making and selecting relevant data. A recommender system predicts users’ behavior to be capable of detecting their interests and needs, and it often uses the classification technique for this purpose. It may not be sufficiently accurate to employ single classification, where not all cases can be examined, which makes the method inappropriate to specific problems. In this research, group classification and the ensemble learning technique were used for increasing prediction accuracy in recommender systems. Another issue that is raised here concerns user analysis. Given the large size of the data and a large number of users, the process of user needs analysis and prediction (using a graph in most cases, representing the relations between users and their selected items) is complicated and cumbersome in recommender systems. Graph embedding was also proposed for resolution of this issue, where all or part of user behavior can be simulated through the generation of several vectors, resolving the problem of user behavior analysis to a large extent while maintaining high efficiency. In this research, individuals most similar to the target user were classified using ensemble learning, fuzzy rules, and the decision tree, and relevant recommendations were then made to each user with a heterogeneous knowledge graph and embedding vectors. This study was performed on the MovieLens datasets, and the obtained results indicated the high efficiency of the presented method.
Author Forouzandeh, Saman
Rostami, Mehrdad
Berahmand, Kamal
Author_xml – sequence: 1
  givenname: Saman
  orcidid: 0000-0002-5952-156X
  surname: Forouzandeh
  fullname: Forouzandeh, Saman
  email: saman.forouzandeh@gmail.com
  organization: Department of Computer Engineering, University of Applied Science and Technologys
– sequence: 2
  givenname: Kamal
  surname: Berahmand
  fullname: Berahmand, Kamal
  organization: Department of Science and Engineering, Queensland University of Technology
– sequence: 3
  givenname: Mehrdad
  surname: Rostami
  fullname: Rostami, Mehrdad
  organization: Department of Computer Engineering, University of Kurdistan
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6v52Gx2vUnxCyp60HPIbiZ1y25Sk63Sf2_qCoKHniZM5nlneGZo4rwDhM4puaSEyKtIKclZRhjJSFXlVSaO0JQKyTMpGZ2kNy9JJgWhJ2gW45oQWgiWT5F5CRDBDXpovcPeYo0DNL7vwRkIOO7iAD3-aod3DC5CX3eAO9DBtW6FtTN4FfQm_fU1GJN61ymg0RFwSnvyny0sE3aKjq3uIpz91jl6u7t9XTxky-f7x8XNMms4rYZMFkZaCzy3nNdaFjW3XOagc8J1XmgpQDBmyhKoEJWkDYeGGFk2pJSWMVvyOboYczfBf2whDmrtt8GllYrlFZMVL_h-io1TTfAxBrBqE9peh52iRO1tqtGmSjbVj00lElT-g5p2lDYE3XaHUT6iMe1xKwh_Vx2gvgHei4uj
CitedBy_id crossref_primary_10_1186_s40537_020_00398_3
crossref_primary_10_1007_s41060_024_00623_9
crossref_primary_10_1007_s12559_024_10372_3
crossref_primary_10_1016_j_jcmds_2022_100036
crossref_primary_10_1016_j_compbiomed_2021_104933
crossref_primary_10_1007_s10489_024_05313_4
crossref_primary_10_1007_s11042_022_13936_3
crossref_primary_10_1108_DTA_09_2020_0232
crossref_primary_10_1016_j_patcog_2021_108493
crossref_primary_10_1016_j_joitmc_2024_100261
crossref_primary_10_1007_s11042_024_19585_y
crossref_primary_10_1016_j_artmed_2021_102228
crossref_primary_10_1016_j_ins_2024_120563
crossref_primary_10_1007_s11042_021_11883_z
crossref_primary_10_1016_j_knosys_2021_107534
crossref_primary_10_3390_info12060232
crossref_primary_10_1007_s11042_024_19468_2
crossref_primary_10_1016_j_measurement_2023_113625
crossref_primary_10_1007_s11042_023_18081_z
crossref_primary_10_1007_s11042_024_19965_4
crossref_primary_10_1007_s11042_024_19967_2
crossref_primary_10_1002_cpe_6560
crossref_primary_10_1007_s11042_022_13942_5
crossref_primary_10_1016_j_techfore_2024_123736
crossref_primary_10_3389_fphy_2021_768006
crossref_primary_10_1186_s40537_021_00539_2
crossref_primary_10_1186_s12859_022_05102_1
crossref_primary_10_1145_3582562
crossref_primary_10_1007_s00521_022_08088_2
crossref_primary_10_3390_app12094168
crossref_primary_10_1080_00051144_2023_2284026
crossref_primary_10_1016_j_compeleceng_2022_107916
crossref_primary_10_1109_TCBB_2022_3225234
crossref_primary_10_1007_s11227_024_05950_z
crossref_primary_10_1007_s13278_023_01043_6
crossref_primary_10_1007_s11042_024_18885_7
crossref_primary_10_1155_2022_2347641
crossref_primary_10_1007_s11257_024_09417_x
crossref_primary_10_1007_s11042_023_17082_2
crossref_primary_10_1007_s11128_023_03844_2
crossref_primary_10_1016_j_eswa_2023_120487
crossref_primary_10_1109_ACCESS_2022_3175317
crossref_primary_10_1007_s00521_023_08410_6
crossref_primary_10_1016_j_eswa_2024_123151
crossref_primary_10_1007_s11042_022_12144_3
crossref_primary_10_3390_app11209554
crossref_primary_10_1016_j_treng_2024_100272
crossref_primary_10_1371_journal_pone_0297404
crossref_primary_10_1007_s11042_024_20579_z
crossref_primary_10_1007_s11227_024_06088_8
crossref_primary_10_1016_j_iswa_2022_200157
Cites_doi 10.1109/TKDE.2018.2807452
10.1109/MCSE.2018.2875321
10.1016/j.inffus.2013.04.006
10.1016/j.eswa.2020.113235
10.1016/j.is.2018.11.008
10.1016/j.ygeno.2020.07.027
10.1016/j.eswa.2016.10.024
10.1016/j.chaos.2018.03.014
10.1016/j.procs.2018.01.092
10.1016/j.dss.2019.113115
10.1016/j.eswa.2019.06.045
10.1016/j.inffus.2017.02.004
10.1016/j.is.2019.07.001
10.1016/j.ins.2019.03.064
10.1016/j.neucom.2019.01.028
10.1109/10.959324
10.1007/s00607-018-0684-8
10.1016/j.engappai.2019.06.020
10.1016/j.knosys.2015.12.025
10.1016/j.eswa.2017.09.058
10.1016/j.knosys.2017.01.014
10.1016/j.neucom.2015.08.054
10.1016/j.ins.2019.05.001
10.1016/j.eswa.2014.06.007
10.1016/j.cie.2017.05.016
10.1016/j.physa.2019.121269
10.1016/j.eswa.2013.12.023
10.1016/j.neucom.2017.05.100
10.1016/j.ygeno.2019.01.001
10.1016/j.ins.2018.04.022
10.1016/j.cosrev.2018.01.003
10.1109/34.273716
10.1016/j.ins.2019.04.033
10.1145/2959100.2959160
10.1609/aaai.v31i1.10488
10.1145/3038912.3052575
10.1093/bioinformatics/btz718
10.1007/s12652-019-01451-7
10.1108/IJWIS-07-2017-0053
10.1007/978-1-4899-7637-6_3
10.1145/1835804.1835893
10.1145/2792838.2799676
10.1145/2623330.2623732
10.3115/v1/D14-1162
10.1109/CCCS.2015.7374146
10.1007/978-0-387-85820-3_1
10.1145/2783258.2783296
10.1007/3-540-44795-4_49
10.1007/978-1-4471-0123-9_3
10.14704/WEB/V16I1/a178
10.1145/2664551.2664556
10.1007/978-3-319-12024-9_19
10.1145/2939672.2939754
10.1145/2783258.2788627
10.1609/aaai.v29i1.9491
10.1609/aaai.v31i1.10814
10.1145/2736277.2741093
10.1609/aaai.v31i1.10878
10.1016/j.neucom.2019.09.080
10.1007/978-3-030-16148-4_3
10.1609/aaai.v28i1.8870
10.1007/3-540-45014-9_1
10.1145/2806416.2806512
10.1145/3097983.3098189
10.1109/MLSP.2016.7738886
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-09949-5
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 7832
ExternalDocumentID 10_1007_s11042_020_09949_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-76d7ffe34f33ba76b3f374ea403a46a75e522d88e155971c3ec0d78c087f22f83
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 22:05:07 EDT 2025
Tue Jul 01 04:13:07 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Fri Feb 21 02:49:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Fuzzy rules
Graph embedding
Heterogeneous knowledge graph
Ensemble learning
Decision tree
Recommender systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-76d7ffe34f33ba76b3f374ea403a46a75e522d88e155971c3ec0d78c087f22f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5952-156X
PQID 2492793638
PQPubID 54626
PageCount 28
ParticipantIDs proquest_journals_2492793638
crossref_primary_10_1007_s11042_020_09949_5
crossref_citationtrail_10_1007_s11042_020_09949_5
springer_journals_10_1007_s11042_020_09949_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Woźniak, Graña, Corchado (CR64) 2014; 16
CR38
CR37
CR36
Borràs, Moreno, Valls (CR9) 2014; 41
CR35
CR34
CR33
CR31
CR75
CR30
Bai, Li, Zeng (CR1) 2019; 81
Zareie, Sheikhahmadi, Jalili (CR68) 2019; 493
Forouzandeh (CR19) 2017; 17
Berahmand, Bouyer, Samadi (CR7) 2019; 101
Ren, Long, Xu (CR50) 2019; 125
Golzardi, Sheikhahmadi, Abdollahpouri (CR21) 2019; 527
Wang (CR61) 2018
CR2
Ben-Lhachemi (CR5) 2018; 127
Berahmand, Bouyer, Samadi (CR6) 2018; 110
CR3
Rostami, Forouzandeh, Berahmand, Soltani (CR53) 2020; 112
Basile, Greco, Suglia, Semeraro (CR4) 2019; 86
CR46
CR45
CR40
Nilashi, Ibrahim, Ithnin (CR43) 2014; 41
Forouzandeh, Soltanpanah, Sheikhahmadi (CR18) 2015; 124
Cai, Zheng, Chang (CR10) 2018; 30
Pujahari, Sisodia (CR48) 2019; 490
Krawczyk, Minku, Gama, Stefanowski, Woźniak (CR32) 2017; 37
CR17
Zhang, Gong, Lee, Zhao, Rong, Qu (CR70) 2016; 96
CR15
CR59
Zhang, Zhang, Wang, Chen (CR72) 2019; 334
CR14
CR58
CR13
CR12
CR56
CR11
CR54
CR52
CR51
Porta, Guzzetti, Montano, Furlan, Pagani, Malliani, Cerutti (CR47) 2001; 48
Qiu, Gao, Lyu, Guo, Gallinari (CR49) 2018; 278
Zhang, Zou, Luo, Liu, Wu, Xiao (CR73) 2016; 173
Jendoubi, Martin, Liétard, Ben Hadji, Ben Yaghlane (CR29) 2017; 121
Zhou, Zhao, Li, Liang, Zeng (CR74) 2019; 136
Nilashi, Ibrahim, Bagherifard (CR42) 2018; 92
Valcarce, Landin, Parapar, Barreiro (CR57) 2019; 85
Zhang, Wang, Wang (CR71) 2018; 453
Forouzandeh, Aghdam, Forouzandeh, Xu (CR16) 2020; 22
Seo, Kim, Lee, Baik (CR55) 2017; 69
CR28
CR27
CR25
CR69
CR24
CR23
CR22
Nilashi, Bagherifard, Rahmani, Rafe (CR41) 2017; 109
CR66
CR20
Boongoen, Iam-On (CR8) 2018; 28
CR63
CR62
Palumbo, Monti, Rizzo, Troncy, Baralis (CR44) 2020; 151
CR60
Xie, Gong, Wang, Liu, Yu (CR65) 2019; 495
Yue, Wang, Huang, Parthasarathy, Moosavinasab, Huang, Lin, Zhang, Zhang, Sun (CR67) 2020; 36
Mohammadpour, Bidgoli, Enayatifar, Javadi (CR39) 2019; 111
Ho, Hull, Srihari (CR26) 1994; 16
E Palumbo (9949_CR44) 2020; 151
A Zareie (9949_CR68) 2019; 493
9949_CR60
M Woźniak (9949_CR64) 2014; 16
Y-D Seo (9949_CR55) 2017; 69
9949_CR63
Y Xie (9949_CR65) 2019; 495
9949_CR20
9949_CR62
9949_CR23
J Bai (9949_CR1) 2019; 81
9949_CR24
9949_CR22
M Nilashi (9949_CR41) 2017; 109
9949_CR66
9949_CR27
9949_CR28
9949_CR25
9949_CR69
H Cai (9949_CR10) 2018; 30
S Forouzandeh (9949_CR19) 2017; 17
S Jendoubi (9949_CR29) 2017; 121
J Ren (9949_CR50) 2019; 125
W Zhang (9949_CR73) 2016; 173
9949_CR30
9949_CR31
9949_CR75
9949_CR34
N Ben-Lhachemi (9949_CR5) 2018; 127
9949_CR35
9949_CR33
9949_CR38
K Berahmand (9949_CR7) 2019; 101
9949_CR36
9949_CR37
H Wang (9949_CR61) 2018
H Zhou (9949_CR74) 2019; 136
M Nilashi (9949_CR43) 2014; 41
TK Ho (9949_CR26) 1994; 16
W Zhang (9949_CR72) 2019; 334
F Zhang (9949_CR70) 2016; 96
T Boongoen (9949_CR8) 2018; 28
S Forouzandeh (9949_CR16) 2020; 22
9949_CR40
9949_CR45
9949_CR46
A Porta (9949_CR47) 2001; 48
J Borràs (9949_CR9) 2014; 41
D Valcarce (9949_CR57) 2019; 85
P Basile (9949_CR4) 2019; 86
M Zhang (9949_CR71) 2018; 453
K Berahmand (9949_CR6) 2018; 110
S Forouzandeh (9949_CR18) 2015; 124
L Qiu (9949_CR49) 2018; 278
9949_CR52
T Mohammadpour (9949_CR39) 2019; 111
X Yue (9949_CR67) 2020; 36
M Rostami (9949_CR53) 2020; 112
M Nilashi (9949_CR42) 2018; 92
9949_CR51
9949_CR12
9949_CR56
9949_CR13
9949_CR54
9949_CR11
9949_CR17
9949_CR14
9949_CR58
9949_CR15
9949_CR59
A Pujahari (9949_CR48) 2019; 490
9949_CR2
E Golzardi (9949_CR21) 2019; 527
B Krawczyk (9949_CR32) 2017; 37
9949_CR3
References_xml – ident: CR45
– ident: CR22
– volume: 30
  start-page: 1616
  issue: 9
  year: 2018
  end-page: 1637
  ident: CR10
  article-title: A comprehensive survey of graph embedding: problems, techniques, and applications
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2807452
– volume: 22
  start-page: 62
  issue: 4
  year: 2020
  end-page: 73
  ident: CR16
  article-title: Addressing the cold-start problem using data mining techniques and improving recommender systems by cuckoo algorithm: a case study of Facebook
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2018.2875321
– volume: 16
  start-page: 3
  year: 2014
  end-page: 17
  ident: CR64
  article-title: A survey of multiple classifier systems as hybrid systems
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2013.04.006
– volume: 151
  start-page: 113235
  year: 2020
  ident: CR44
  article-title: entity2rec: Property-specific knowledge graph embeddings for item recommendation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113235
– ident: CR51
– volume: 81
  start-page: 82
  year: 2019
  end-page: 91
  ident: CR1
  article-title: HiWalk: learning node embeddings from heterogeneous networks
  publication-title: Inf Syst
  doi: 10.1016/j.is.2018.11.008
– ident: CR12
– volume: 36
  start-page: 1241
  issue: 4
  year: 2020
  end-page: 1251
  ident: CR67
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
– ident: CR35
– ident: CR54
– volume: 112
  start-page: 4370
  issue: 8
  year: 2020
  end-page: 4384
  ident: CR53
  article-title: Integration of multi-objective PSO based feature selection and node centrality for medical datasets
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.07.027
– volume: 69
  start-page: 135
  year: 2017
  end-page: 148
  ident: CR55
  article-title: Personalized recommender system based on friendship strength in social network services
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.024
– volume: 110
  start-page: 41
  year: 2018
  end-page: 54
  ident: CR6
  article-title: A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2018.03.014
– ident: CR58
– ident: CR25
– volume: 127
  start-page: 7
  year: 2018
  end-page: 15
  ident: CR5
  article-title: Using tweets embeddings for hashtag recommendation in twitter
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.01.092
– ident: CR46
– volume: 125
  start-page: 113115
  year: 2019
  ident: CR50
  article-title: Financial news recommendation based on graph embeddings
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2019.113115
– ident: CR75
– volume: 136
  start-page: 276
  year: 2019
  end-page: 287
  ident: CR74
  article-title: Rank2vec: learning node embeddings with local structure and global ranking
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.06.045
– ident: CR15
– volume: 37
  start-page: 132
  year: 2017
  end-page: 156
  ident: CR32
  article-title: Ensemble learning for data stream analysis: a survey
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.02.004
– volume: 86
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR4
  article-title: Bridging the gap between linked open data-based recommender systems and distributed representations
  publication-title: Inf Syst
  doi: 10.1016/j.is.2019.07.001
– volume: 490
  start-page: 126
  year: 2019
  end-page: 145
  ident: CR48
  article-title: Modeling side information in preference relation based restricted boltzmann machine for recommender systems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.03.064
– ident: CR11
– ident: CR60
– volume: 334
  start-page: 206
  year: 2019
  end-page: 218
  ident: CR72
  article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.028
– ident: CR36
– volume: 48
  start-page: 1282
  issue: 11
  year: 2001
  end-page: 1291
  ident: CR47
  article-title: Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.959324
– volume: 101
  start-page: 1711
  issue: 11
  year: 2019
  end-page: 1733
  ident: CR7
  article-title: A new local and multidimensional ranking measure to detect spreaders in social networks
  publication-title: Computing
  doi: 10.1007/s00607-018-0684-8
– volume: 124
  start-page: 1
  issue: 1
  year: 2015
  end-page: 7
  ident: CR18
  article-title: Application of data mining in designing a recommender system on social networks
  publication-title: Int J Comput Appl
– volume: 85
  start-page: 347
  year: 2019
  end-page: 356
  ident: CR57
  article-title: Collaborative filtering embeddings for memory-based recommender systems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.06.020
– ident: CR66
– volume: 96
  start-page: 96
  year: 2016
  end-page: 103
  ident: CR70
  article-title: Fast algorithms to evaluate collaborative filtering recommender systems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.025
– volume: 92
  start-page: 507
  year: 2018
  end-page: 520
  ident: CR42
  article-title: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.09.058
– volume: 17
  start-page: 46
  issue: 8
  year: 2017
  ident: CR19
  article-title: Recommender system for users of internet of things (IOT)
  publication-title: IJCSNS
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR30
– volume: 121
  start-page: 58
  year: 2017
  end-page: 70
  ident: CR29
  article-title: Two evidential data based models for influence maximization in twitter
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.01.014
– volume: 173
  start-page: 979
  year: 2016
  end-page: 987
  ident: CR73
  article-title: Predicting potential side effects of drugs by recommender methods and ensemble learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.054
– volume: 495
  start-page: 37
  year: 2019
  end-page: 51
  ident: CR65
  article-title: Sim2vec: node similarity preserving network embedding
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.05.001
– volume: 41
  start-page: 7370
  issue: 16
  year: 2014
  end-page: 7389
  ident: CR9
  article-title: Intelligent tourism recommender systems: a survey
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.06.007
– ident: CR33
– volume: 109
  start-page: 357
  year: 2017
  end-page: 368
  ident: CR41
  article-title: A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2017.05.016
– volume: 527
  start-page: 121269
  year: 2019
  ident: CR21
  article-title: Detection of trust links on social networks using dynamic features
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121269
– ident: CR56
– ident: CR40
– ident: CR63
– ident: CR27
– ident: CR23
– ident: CR69
– volume: 41
  start-page: 3879
  issue: 8
  year: 2014
  end-page: 3900
  ident: CR43
  article-title: Hybrid recommendation approaches for multi-criteria collaborative filtering
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.12.023
– volume: 278
  start-page: 144
  year: 2018
  end-page: 152
  ident: CR49
  article-title: A novel non-Gaussian embedding based model for recommender systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.100
– volume: 111
  start-page: 1902
  issue: 6
  year: 2019
  end-page: 1912
  ident: CR39
  article-title: Efficient clustering in collaborative filtering recommender system: hybrid method based on genetic algorithm and gravitational emulation local search algorithm
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.01.001
– year: 2018
  ident: CR61
  article-title: Ripplenet: Propagating user preferences on the knowledge graph for recommender systems
  publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management
– volume: 453
  start-page: 389
  year: 2018
  end-page: 407
  ident: CR71
  article-title: HeteRank: a general similarity measure in heterogeneous information networks by integrating multi-type relationships
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.04.022
– ident: CR3
– ident: CR38
– volume: 28
  start-page: 1
  year: 2018
  end-page: 25
  ident: CR8
  article-title: Cluster ensembles: a survey of approaches with recent extensions and applications
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2018.01.003
– ident: CR52
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR34
– volume: 16
  start-page: 66
  issue: 1
  year: 1994
  end-page: 75
  ident: CR26
  article-title: Decision combination in multiple classifier systems
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.273716
– ident: CR59
– ident: CR28
– ident: CR62
– volume: 493
  start-page: 217
  year: 2019
  end-page: 231
  ident: CR68
  article-title: Identification of influential users in social networks based on users’ interest
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.033
– ident: CR24
– ident: CR20
– ident: 9949_CR34
– ident: 9949_CR58
  doi: 10.1145/2959100.2959160
– volume: 527
  start-page: 121269
  year: 2019
  ident: 9949_CR21
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121269
– volume: 278
  start-page: 144
  year: 2018
  ident: 9949_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.100
– ident: 9949_CR60
  doi: 10.1609/aaai.v31i1.10488
– volume: 16
  start-page: 3
  year: 2014
  ident: 9949_CR64
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2013.04.006
– ident: 9949_CR62
  doi: 10.1145/3038912.3052575
– volume: 121
  start-page: 58
  year: 2017
  ident: 9949_CR29
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.01.014
– volume: 48
  start-page: 1282
  issue: 11
  year: 2001
  ident: 9949_CR47
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.959324
– ident: 9949_CR38
– volume: 111
  start-page: 1902
  issue: 6
  year: 2019
  ident: 9949_CR39
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.01.001
– volume: 136
  start-page: 276
  year: 2019
  ident: 9949_CR74
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.06.045
– volume: 92
  start-page: 507
  year: 2018
  ident: 9949_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.09.058
– volume: 36
  start-page: 1241
  issue: 4
  year: 2020
  ident: 9949_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz718
– ident: 9949_CR2
  doi: 10.1007/s12652-019-01451-7
– volume: 22
  start-page: 62
  issue: 4
  year: 2020
  ident: 9949_CR16
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2018.2875321
– ident: 9949_CR20
  doi: 10.1108/IJWIS-07-2017-0053
– ident: 9949_CR31
  doi: 10.1007/978-1-4899-7637-6_3
– ident: 9949_CR28
  doi: 10.1145/1835804.1835893
– ident: 9949_CR24
  doi: 10.1145/2792838.2799676
– ident: 9949_CR25
– volume: 30
  start-page: 1616
  issue: 9
  year: 2018
  ident: 9949_CR10
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2807452
– ident: 9949_CR37
– ident: 9949_CR46
  doi: 10.1145/2623330.2623732
– volume: 173
  start-page: 979
  year: 2016
  ident: 9949_CR73
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.054
– ident: 9949_CR33
– ident: 9949_CR54
– volume: 112
  start-page: 4370
  issue: 8
  year: 2020
  ident: 9949_CR53
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.07.027
– volume: 16
  start-page: 66
  issue: 1
  year: 1994
  ident: 9949_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.273716
– ident: 9949_CR45
  doi: 10.3115/v1/D14-1162
– ident: 9949_CR35
  doi: 10.1109/CCCS.2015.7374146
– volume-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management
  year: 2018
  ident: 9949_CR61
– volume: 41
  start-page: 7370
  issue: 16
  year: 2014
  ident: 9949_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.06.007
– volume: 334
  start-page: 206
  year: 2019
  ident: 9949_CR72
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.028
– volume: 37
  start-page: 132
  year: 2017
  ident: 9949_CR32
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.02.004
– ident: 9949_CR51
  doi: 10.1007/978-0-387-85820-3_1
– ident: 9949_CR12
  doi: 10.1145/2783258.2783296
– volume: 110
  start-page: 41
  year: 2018
  ident: 9949_CR6
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2018.03.014
– volume: 41
  start-page: 3879
  issue: 8
  year: 2014
  ident: 9949_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.12.023
– ident: 9949_CR69
  doi: 10.1007/3-540-44795-4_49
– volume: 101
  start-page: 1711
  issue: 11
  year: 2019
  ident: 9949_CR7
  publication-title: Computing
  doi: 10.1007/s00607-018-0684-8
– ident: 9949_CR63
  doi: 10.1007/978-1-4471-0123-9_3
– volume: 127
  start-page: 7
  year: 2018
  ident: 9949_CR5
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.01.092
– ident: 9949_CR15
  doi: 10.14704/WEB/V16I1/a178
– ident: 9949_CR13
  doi: 10.1145/2664551.2664556
– volume: 17
  start-page: 46
  issue: 8
  year: 2017
  ident: 9949_CR19
  publication-title: IJCSNS
– volume: 96
  start-page: 96
  year: 2016
  ident: 9949_CR70
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.025
– volume: 81
  start-page: 82
  year: 2019
  ident: 9949_CR1
  publication-title: Inf Syst
  doi: 10.1016/j.is.2018.11.008
– volume: 493
  start-page: 217
  year: 2019
  ident: 9949_CR68
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.033
– ident: 9949_CR52
  doi: 10.1007/978-3-319-12024-9_19
– ident: 9949_CR23
  doi: 10.1145/2939672.2939754
– ident: 9949_CR17
– volume: 28
  start-page: 1
  year: 2018
  ident: 9949_CR8
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2018.01.003
– ident: 9949_CR22
  doi: 10.1145/2783258.2788627
– volume: 109
  start-page: 357
  year: 2017
  ident: 9949_CR41
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2017.05.016
– ident: 9949_CR36
  doi: 10.1609/aaai.v29i1.9491
– ident: 9949_CR40
  doi: 10.1609/aaai.v31i1.10814
– ident: 9949_CR56
  doi: 10.1145/2736277.2741093
– volume: 85
  start-page: 347
  year: 2019
  ident: 9949_CR57
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.06.020
– volume: 151
  start-page: 113235
  year: 2020
  ident: 9949_CR44
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113235
– ident: 9949_CR75
  doi: 10.1609/aaai.v31i1.10878
– volume: 124
  start-page: 1
  issue: 1
  year: 2015
  ident: 9949_CR18
  publication-title: Int J Comput Appl
– volume: 125
  start-page: 113115
  year: 2019
  ident: 9949_CR50
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2019.113115
– volume: 495
  start-page: 37
  year: 2019
  ident: 9949_CR65
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.05.001
– ident: 9949_CR30
  doi: 10.1016/j.neucom.2019.09.080
– ident: 9949_CR27
  doi: 10.1007/978-3-030-16148-4_3
– ident: 9949_CR59
  doi: 10.1609/aaai.v28i1.8870
– ident: 9949_CR14
  doi: 10.1007/3-540-45014-9_1
– volume: 69
  start-page: 135
  year: 2017
  ident: 9949_CR55
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.024
– volume: 490
  start-page: 126
  year: 2019
  ident: 9949_CR48
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.03.064
– ident: 9949_CR11
  doi: 10.1145/2806416.2806512
– volume: 86
  start-page: 1
  year: 2019
  ident: 9949_CR4
  publication-title: Inf Syst
  doi: 10.1016/j.is.2019.07.001
– volume: 453
  start-page: 389
  year: 2018
  ident: 9949_CR71
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.04.022
– ident: 9949_CR66
  doi: 10.1145/3097983.3098189
– ident: 9949_CR3
  doi: 10.1109/MLSP.2016.7738886
SSID ssj0016524
Score 2.5156567
Snippet Information technology has spread widely, and extraordinarily large amounts of data have been made accessible to users, which has made it challenging to select...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7805
SubjectTerms Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Decision making
Decision trees
Embedding
Ensemble learning
Graphical representations
Knowledge representation
Multimedia Information Systems
Recommender systems
Special Purpose and Application-Based Systems
User behavior
User needs
Title Presentation of a recommender system with ensemble learning and graph embedding: a case on MovieLens
URI https://link.springer.com/article/10.1007/s11042-020-09949-5
https://www.proquest.com/docview/2492793638
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdoGBjwKiUCoPbBApiZ3YYSuoHwJaVYhKZYoS22GhKYLy_zmnTgMIkJgyOL4hZ_u9y_neAZwpHqUMeagjAkUxQJHUiVIROszjqdCKSl3INY3G4XDKbmbBzBaFvZW33cuUZHFSV8VuniklMeEOshoWOUENGoGJ3XEVT_3uOncQBraVrXAdxEPPlsr8bOMrHFUc81tatECb_i5sW5pIuiu_7sGGzpuwU7ZgIHZHNmHrk57gPqhJVUyUk0VGEmIC3vm86BdHVqrNxPx6JRi96nn6rIltG_FEklyRQr6a4IBWBtMu0YBEmCNobbRABL3DaQcw7fceroeObaPgSNxfS4eHimeZpiyjNE14mNKMcqYT5tKEhQkPNHIwJYQ2GUruSaqlq7iQruCZ72eCHkI9X-T6CAjSg0QLpjgiK_OZSKSUXFAdudqXSkYt8MqvGUurMW5aXTzHlTqy8UCMHogLD8RBC87Xc15WCht_vt0unRTb3fYWG9VDPGfwKGnBRem4avh3a8f_e_0ENn1zpaW4tN2G-vL1XZ8iJ1mmHaiJ_qADje7g8baHz6veeHLfKRbmB7hZ2tY
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2l4UB74CMFNRDABzi1Frtr79pbqUIICClJqh5Sqbdl157lkmzSJgjxp_iNjPcj2yLRW8_enYPn2TNje94DeGtVnEnKQ7kOraACxQgeZzri0leZRisMlnRN07NodCG_XYaXHfjT9MK4Z5XNnlhu1HZp3Bn5e8dsR1giuHxYXXGnGuVuVxsJjQoWY_z9i0q29cnpZ_LvuyAYfpl9GvFaVYAbgtuGq8iqPEchcyGyVEWZyIWSmEpPpDJKVYiUklit0V3YKd8INJ5V2nha5UGQa0F2d-CBFCJ2K0oPv25vLaKwFtHVHqdI7NdNOlWrnu8aYVyxRjmZjHl4OxC22e0_F7JlnBs-gUd1gso-Voh6Ch0sevC4EX9g9V7Qg70bTIb7YM_bNqaCLXOWMldqLxalUh2r-KKZO_RlVDfjIpsjqwUrfrC0sKwkzmY0gNZF02MyYCjAMrI2XZJrJvTbM7i4l6l-Dt1iWeABMEpMUtTSKorpMpA6NcYoLTD2MDDWxH3wm9lMTM1u7kQ25knLy-w8kJAHktIDSdiHw-0_q4rb486vB42Tknqdr5MWlX04ahzXDv_f2ou7rb2Bh6PZdJJMTs_GL2E3cA9pyqfiA-hurn_iK8qENtnrEn4Mvt833v8ChycWbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIlVwKC2lYltofYBTa5HETuwgIUQLKyiwWiGQuIXEnvTCZmlZhPrX-HWME4e0SOXG2fEcPC-eGc_HA1i3Ki0k-aFcx1ZQgGIETwudcBmqQqMVButxTSfD5OBc_riIL2bgvu2FcWWV7Z1YX9R2Ytwb-aabbEdYIrhslr4sYrQ32Ln-xR2DlMu0tnQaDUSO8M8dhW8324d7pOuNKBrsn30_4J5hgBuC3pSrxKqyRCFLIYpcJYUohZKYy0DkMslVjOSeWK3RJe9UaASawCptAq3KKCq1ILmzMKcoKgp6MPdtfzg6fcxhJLGn1NUBJ7sc-padpnEvdG0xLnQjD02mPP7XLHa-7pP0bG31Bm_gtXdX2W6Dr7cwg9USLLZUEMzfDEuw8Ndcw3dgR11TU8UmJcuZC7zH45q3jjXTo5l7AmYUReO4uELm6St-sryyrB6jzWgBrbOtWyTAkLllJO1kQoo6pm3LcP4ih_0eetWkwhVg5KbkqKVVZOFlJHVujFFaYBpgZKxJ-xC2p5kZP-vcUW5cZd2UZqeBjDSQ1RrI4j58edxz3Uz6ePbr1VZJmf_rb7IOo3342iquW_6_tA_PS_sMrwjr2fHh8OgjzEeuqqauG1-F3vT3La6RWzQtPnn8Mbh8acg_AEn1HAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Presentation+of+a+recommender+system+with+ensemble+learning+and+graph+embedding%3A+a+case+on+MovieLens&rft.jtitle=Multimedia+tools+and+applications&rft.au=Forouzandeh%2C+Saman&rft.au=Berahmand%2C+Kamal&rft.au=Rostami%2C+Mehrdad&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=5&rft.spage=7805&rft.epage=7832&rft_id=info:doi/10.1007%2Fs11042-020-09949-5&rft.externalDocID=10_1007_s11042_020_09949_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon