Attention guided grad-CAM : an improved explainable artificial intelligence model for infrared breast cancer detection

Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification. XAI can help explain the reasoning behind predictions, which can help healthcare professionals understand and trust the AI model. This paper p...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 19; pp. 57551 - 57578
Main Authors Raghavan, Kaushik, B, Sivaselvan, v, Kamakoti
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-023-17776-7

Cover

Loading…
Abstract Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification. XAI can help explain the reasoning behind predictions, which can help healthcare professionals understand and trust the AI model. This paper presents a novel, ’attention-guided Grad-CAM,’ a class of explainability algorithms that will visually reveal the reasons for prediction in image classification. To implement the proposed methods, we used infrared breast images from the” Database of Mastology Research” First; we built a classifier for detecting breast cancer using an ensemble of three pre-trained networks. Then we implemented an attention-guided Grad-CAM using channel and spatial attention to visualize the critical regions of infrared breast image that will explain the reasons for the predictions. The proposed ensemble of the pre-trained network was able to classify the breast thermograms (Healthy / Tumour) with an accuracy of 98.04% (Precision: 97.22%, Specificity: 97.77%, Sensitivity: 98.21%, F1-Score: 97.49, AUC: 0.97). The proposed Attention guided Grad-CAM method was able distinctively show the hottest regions of the thermograms (tumor regions). The ablation study also showed an average drop in the model’s 42.5% when the explanation maps were used instead of the original image. The activation score also increased by 25.35%. The proposed ensemble of pre-trained networks was able to classify the breast thermograms accurately, and the attention-guided Grad-CAM was able to visually explain the AI model’s prediction using a heat map. The proposed model will aid in the adoption of AI techniques by healthcare professionals with trust.
AbstractList Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification. XAI can help explain the reasoning behind predictions, which can help healthcare professionals understand and trust the AI model. This paper presents a novel, ’attention-guided Grad-CAM,’ a class of explainability algorithms that will visually reveal the reasons for prediction in image classification. To implement the proposed methods, we used infrared breast images from the” Database of Mastology Research” First; we built a classifier for detecting breast cancer using an ensemble of three pre-trained networks. Then we implemented an attention-guided Grad-CAM using channel and spatial attention to visualize the critical regions of infrared breast image that will explain the reasons for the predictions. The proposed ensemble of the pre-trained network was able to classify the breast thermograms (Healthy / Tumour) with an accuracy of 98.04% (Precision: 97.22%, Specificity: 97.77%, Sensitivity: 98.21%, F1-Score: 97.49, AUC: 0.97). The proposed Attention guided Grad-CAM method was able distinctively show the hottest regions of the thermograms (tumor regions). The ablation study also showed an average drop in the model’s 42.5% when the explanation maps were used instead of the original image. The activation score also increased by 25.35%. The proposed ensemble of pre-trained networks was able to classify the breast thermograms accurately, and the attention-guided Grad-CAM was able to visually explain the AI model’s prediction using a heat map. The proposed model will aid in the adoption of AI techniques by healthcare professionals with trust.
Author v, Kamakoti
Raghavan, Kaushik
B, Sivaselvan
Author_xml – sequence: 1
  givenname: Kaushik
  orcidid: 0000-0003-4710-8994
  surname: Raghavan
  fullname: Raghavan, Kaushik
  email: kaushik.gr@gmail.com
  organization: Indian Institute of Information Technology, Design and Manufacturing
– sequence: 2
  givenname: Sivaselvan
  surname: B
  fullname: B, Sivaselvan
  organization: Indian Institute of Information Technology, Design and Manufacturing
– sequence: 3
  givenname: Kamakoti
  surname: v
  fullname: v, Kamakoti
  organization: Indain Institute of Technology Madras
BookMark eNp9kE1LxDAQhoMo-PkHPAU8VydN02m9LYtfoHjRc8im0yXSTdckK_rvTV1B8eApYeZ9MpPnkO360RNjpwLOBQBeRCGgKgsoZSEQsS5whx0IhbJALMXur_s-O4zxBUDUqqwO2NssJfLJjZ4vN66jji-D6Yr57IFfcuO5W63D-JbL9L4ejPNmMRA3IbneWWcG7nyiYXBL8pb4auxo4P0YcrkPJmRsEcjExK3J_cA7SmSnYcdsrzdDpJPv84g9X189zW-L-8ebu_nsvrBStKnAui5VI6uuU7avZddWEknVQsq2garBGsAqbFpUCntsVY0IrbGwIAOtBZBH7Gz7bv7F64Zi0i_jJvg8UkvI9ORqSjXblA1jjIF6bV0y054pGDdoAXqyrLeWdbasvyxrzGj5B10HtzLh439IbqGYw35J4Werf6hPXz-Q4Q
CitedBy_id crossref_primary_10_1016_j_patter_2025_101175
crossref_primary_10_1088_1361_6560_ad869f
crossref_primary_10_32604_cmc_2024_058932
crossref_primary_10_1016_j_imu_2024_101587
crossref_primary_10_1002_ima_70000
crossref_primary_10_1002_jmri_29687
crossref_primary_10_1080_24751839_2024_2447191
crossref_primary_10_1016_j_engappai_2025_110427
crossref_primary_10_1016_j_rineng_2024_103436
crossref_primary_10_1007_s10462_024_10777_4
crossref_primary_10_1515_ntrev_2024_0019
Cites_doi 10.1016/j.cmpb.2020.105608
10.1080/17686733.2021.2025018
10.1166/jmihi.2014.1226
10.3390/diagnostics13030551
10.1016/j.bbe.2022.08.005
10.1007/s42979-022-01536-9
10.1016/j.jneumeth.2021.109098
10.1371/journal.pone.0262349
10.1007/s11747-019-00710-5
10.1016/j.bspc.2023.104704
10.1007/s00330-019-06652-4
10.1016/j.compbiomed.2022.105550
10.3322/caac.21763
10.1177/03611981221076121
10.1016/j.compbiomed.2020.103869
10.1148/radiol.2020190925
10.1016/j.ijheatmasstransfer.2019.119215
10.1007/s11042-022-12030-y
10.3390/s21175813
10.1007/s11042-021-11477-9
10.3390/jimaging6060052
10.3390/app12157592
10.1109/TMI.2020.2968765
10.1016/j.neucom.2018.10.014
10.1109/TMI.2019.2899534
10.1007/s00234-020-02465-1
10.3390/jcm12041284
10.1073/pnas.1900654116
10.1080/17686733.2021.1918514
10.1016/j.bspc.2023.104722
10.1016/j.bspc.2021.103408
10.1002/mp.13891
10.1016/j.inffus.2021.07.016
10.1109/ACCESS.2018.2870052
10.1007/s10462-022-10231-3
10.1117/12.2643867
10.1109/CVPRW50498.2020.00020
10.1007/s11036-022-02021-6
10.1007/978-3-030-01234-2_1
10.1109/EIECS53707.2021.9587953
10.1109/CVPR.2018.00745
10.1080/17686733.2022.2129135
10.1109/BHI56158.2022.9926782
10.1007/978-981-16-0425-6_13
10.1007/978-981-15-3651-9_12
10.1117/12.2549532
10.1007/978-3-030-84060-0_16
10.1109/ICCV.2017.74
10.1080/17686733.2023.2167459
10.1109/CVPR.2017.243
10.1007/978-981-15-6048-4_2
10.1111/epi.16447
10.1109/ICPCSN58827.2023.00117
10.1109/EMBC.2019.8857160
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-17776-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 57578
ExternalDocumentID 10_1007_s11042_023_17776_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-76625834dd5cf63d9437e56133980487600c57897557f79567709ac0bea09c003
IEDL.DBID BENPR
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 09:38:06 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Tue Jul 01 04:13:30 EDT 2025
Fri Feb 21 02:40:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Ensemble pre-trained networks
Explainable AI
Clinical thermography
Bio-medical image analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-76625834dd5cf63d9437e56133980487600c57897557f79567709ac0bea09c003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4710-8994
PQID 3060077760
PQPubID 54626
PageCount 28
ParticipantIDs proquest_journals_3060077760
crossref_citationtrail_10_1007_s11042_023_17776_7
crossref_primary_10_1007_s11042_023_17776_7
springer_journals_10_1007_s11042_023_17776_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ahamed, Islam, Uddin, Akhter, Acharjee, Paul, Moni (CR16) 2023; 13
Sobahi, Atila, Deniz, Sengur, Acharya (CR36) 2022; 42
Singh, Sengupta, Lakshminarayanan (CR3) 2020; 6
Afify, Mohammed, Hassanien (CR15) 2023; 83
Altini, Brunetti, Puro, Taccogna, Saponaro, Zito, De Summa, Bevilacqua (CR17) 2022; 9
Qjidaa, Ben-Fares, Amakdouf, El Mallahi, Alami, Maaroufi, Lakhssassi, Qjidaa (CR22) 2022; 81
CR35
Rai (CR4) 2020; 48
CR32
CR31
Olah, Mordvintsev, Schubert (CR10) 2017; 2
Meng, Preston, Ferdousi, Azmi, Petropoulos, Kaye, Malik, Alam, Zheng (CR30) 2023; 12
Silva, Saade, Sequeiros, Silva, Paiva, Bravo, Conci (CR47) 2014; 4
Schacky, Sohn, Liu, Ozhinsky, Jungmann, Nardo, Posadzy, Foreman, Nevitt, Link (CR39) 2020; 295
Brunese, Mercaldo, Reginelli, Santone (CR18) 2020; 196
De Vos, Wolterink, Leiner, De Jong, Lessmann, Išgum (CR11) 2019; 38
Abhishek, Jha, Sinha, Jha (CR14) 2023; 83
CR48
Mahmud, Rahman, Fattah (CR28) 2020; 122
CR45
CR44
CR42
CR40
Mohamed, Rashed, Gaber, Karam (CR53) 2022; 17
Papandrianos, Feleki, Moustakidis, Papageorgiou, Apostolopoulos, Apostolopoulos (CR34) 2022; 12
Chebbah, Ouslim, Benabid (CR54) 2023; 20
Vila-Blanco, Carreira, Varas-Quintana, Balsa-Castro, Tomas (CR38) 2020; 39
Siegel, Miller, Wagle (CR1) 2023; 73
Li, Xiao, Ouyang (CR49) 2019; 323
Özbay (CR33) 2023; 56
Murdoch, Singh, Kumbier, Abbasi-Asl, Yu (CR7) 2019; 116
CR19
CR58
CR13
CR57
CR12
CR55
Karim, Li, Qin (CR6) 2022; 2676
CR52
CR51
CR50
Bezerra, Ribeiro, Lyra, Lima (CR59) 2020; 149
Dey, Roychoudhury, Malakar, Sarkar (CR56) 2022; 81
Windisch, Weber, Fürweger, Ehret, Kufeld, Zwahlen, Muacevic (CR41) 2020; 62
Torres-Galván, Guevara, Kolosovas-Machuca, Oceguera-Villanueva, Flores, González (CR2) 2022; 19
Aidossov, Zarikas, Zhao, Mashekova, Ng, Mukhmetov, Mirasbekov, Omirbayev (CR46) 2023; 4
Umair, Khan, Ahmed, Baothman, Alqahtani, Alian, Ahmad (CR37) 2021; 21
Yang, Ye, Xia (CR5) 2022; 77
CR29
CR26
Kim, Jung, Park, Han (CR25) 2022; 73
Zhang, Hong, McClement, Oladosu, Pridham, Slaney (CR43) 2021; 353
CR23
Jahmunah, Ng, Tan, Oh, Acharya (CR24) 2022; 146
CR21
CR20
Adadi, Berrada (CR9) 2018; 6
CR60
Lee, Ha, Kim, Jung, Heo, Jang, An, Lee (CR27) 2020; 30
Jia, Ren, Cai (CR8) 2020; 47
L Bezerra (17776_CR59) 2020; 149
17776_CR40
L Silva (17776_CR47) 2014; 4
17776_CR42
17776_CR45
NK Chebbah (17776_CR54) 2023; 20
17776_CR44
RL Siegel (17776_CR1) 2023; 73
HM Afify (17776_CR15) 2023; 83
Y Zhang (17776_CR43) 2021; 353
17776_CR35
EA Mohamed (17776_CR53) 2022; 17
17776_CR50
N Altini (17776_CR17) 2022; 9
17776_CR52
17776_CR51
17776_CR12
17776_CR55
P Windisch (17776_CR41) 2020; 62
X Jia (17776_CR8) 2020; 47
JH Lee (17776_CR27) 2020; 30
Y Li (17776_CR49) 2019; 323
G Yang (17776_CR5) 2022; 77
A Abhishek (17776_CR14) 2023; 83
L Brunese (17776_CR18) 2020; 196
17776_CR48
S Dey (17776_CR56) 2022; 81
T Mahmud (17776_CR28) 2020; 122
17776_CR60
A Singh (17776_CR3) 2020; 6
17776_CR21
17776_CR20
NI Papandrianos (17776_CR34) 2022; 12
WJ Murdoch (17776_CR7) 2019; 116
17776_CR23
Y Meng (17776_CR30) 2023; 12
JC Torres-Galván (17776_CR2) 2022; 19
C Olah (17776_CR10) 2017; 2
MM Karim (17776_CR6) 2022; 2676
BD De Vos (17776_CR11) 2019; 38
17776_CR58
17776_CR13
17776_CR57
N Aidossov (17776_CR46) 2023; 4
17776_CR19
M Umair (17776_CR37) 2021; 21
J-K Kim (17776_CR25) 2022; 73
M Qjidaa (17776_CR22) 2022; 81
17776_CR32
17776_CR31
A Adadi (17776_CR9) 2018; 6
CE Schacky (17776_CR39) 2020; 295
N Sobahi (17776_CR36) 2022; 42
N Vila-Blanco (17776_CR38) 2020; 39
V Jahmunah (17776_CR24) 2022; 146
E Özbay (17776_CR33) 2023; 56
17776_CR26
A Rai (17776_CR4) 2020; 48
MKU Ahamed (17776_CR16) 2023; 13
17776_CR29
References_xml – ident: CR45
– volume: 196
  year: 2020
  ident: CR18
  article-title: Explainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-rays
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105608
– volume: 20
  start-page: 62
  issue: 2
  year: 2023
  end-page: 77
  ident: CR54
  article-title: New computer aided diagnostic system using deep neural network and svm to detect breast cancer in thermography
  publication-title: Quantitative InfraRed Thermograph J
  doi: 10.1080/17686733.2021.2025018
– volume: 4
  start-page: 92
  issue: 1
  year: 2014
  end-page: 100
  ident: CR47
  article-title: A new database for breast research with infrared image
  publication-title: J Med Imaging Health Inf
  doi: 10.1166/jmihi.2014.1226
– volume: 13
  start-page: 551
  issue: 3
  year: 2023
  ident: CR16
  article-title: Dtlcx: An improved resnet architecture to classify normal and conventional pneumonia cases from covid-19 instances with grad-cam-based superimposed visualization utilizing chest x-ray images
  publication-title: Diagn
  doi: 10.3390/diagnostics13030551
– ident: CR51
– ident: CR12
– volume: 9
  start-page: 475
  issue: 9
  year: 2022
  ident: CR17
  article-title: Ndg-cam: Nuclei detection in histopathology images with semantic segmentation networks and grad-cam
  publication-title: Bioeng
– ident: CR35
– ident: CR29
– volume: 42
  start-page: 1066
  issue: 3
  year: 2022
  end-page: 1080
  ident: CR36
  article-title: Explainable covid-19 detection using fractal dimension and vision transformer with grad-cam on cough sounds
  publication-title: Biocybernet Biomed Eng
  doi: 10.1016/j.bbe.2022.08.005
– volume: 4
  start-page: 184
  issue: 2
  year: 2023
  ident: CR46
  article-title: An integrated intelligent system for breast cancer detection at early stages using ir images and machine learning methods with explainability
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-022-01536-9
– volume: 353
  year: 2021
  ident: CR43
  article-title: Grad-cam helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2021.109098
– ident: CR58
– volume: 17
  start-page: 0262349
  issue: 1
  year: 2022
  ident: CR53
  article-title: Deep learning model for fully automated breast cancer detection system from thermograms
  publication-title: PloS one
  doi: 10.1371/journal.pone.0262349
– ident: CR42
– ident: CR21
– ident: CR19
– volume: 48
  start-page: 137
  year: 2020
  end-page: 141
  ident: CR4
  article-title: Explainable ai: From black box to glass box
  publication-title: J Acad Mark Sci
  doi: 10.1007/s11747-019-00710-5
– volume: 83
  year: 2023
  ident: CR15
  article-title: Novel prediction model on oscc histopathological images via deep transfer learning combined with grad-cam interpretation
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104704
– volume: 30
  start-page: 3066
  year: 2020
  end-page: 3072
  ident: CR27
  article-title: Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with ct: external validation and clinical utility for resident training
  publication-title: Euro Radiol
  doi: 10.1007/s00330-019-06652-4
– volume: 146
  year: 2022
  ident: CR24
  article-title: Explainable detection of myocardial infarction using deep learning models with grad-cam technique on ecg signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105550
– ident: CR50
– volume: 2
  start-page: 7
  issue: 11
  year: 2017
  ident: CR10
  publication-title: Feature visualization. Distill
– volume: 73
  start-page: 17
  issue: 1
  year: 2023
  end-page: 48
  ident: CR1
  article-title: Jemal A (2023) Cancer statistics
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21763
– volume: 2676
  start-page: 743
  issue: 6
  year: 2022
  end-page: 755
  ident: CR6
  article-title: Toward explainable artificial intelligence for early anticipation of traffic accidents
  publication-title: Transp Res Record
  doi: 10.1177/03611981221076121
– ident: CR57
– volume: 122
  year: 2020
  ident: CR28
  article-title: Covxnet: A multi-dilation convolutional neural network for automatic covid-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimization
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103869
– ident: CR32
– ident: CR60
– volume: 295
  start-page: 136
  issue: 1
  year: 2020
  end-page: 145
  ident: CR39
  article-title: Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs
  publication-title: Radiol
  doi: 10.1148/radiol.2020190925
– volume: 149
  year: 2020
  ident: CR59
  article-title: An empirical correlation to estimate thermal properties of the breast and of the breast nodule using thermographic images and optimization techniques
  publication-title: Inter J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.119215
– volume: 81
  start-page: 13115
  issue: 9
  year: 2022
  end-page: 13135
  ident: CR22
  article-title: Recognizing covid-19 from chest x-ray images for people in rural and remote areas based on deep transfer learning model
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12030-y
– volume: 21
  start-page: 5813
  issue: 17
  year: 2021
  ident: CR37
  article-title: Detection of covid-19 using transfer learning and grad-cam visualization on indigenously collected x-ray dataset
  publication-title: Sensors
  doi: 10.3390/s21175813
– ident: CR26
– volume: 81
  start-page: 9331
  issue: 7
  year: 2022
  end-page: 9349
  ident: CR56
  article-title: Screening of breast cancer from thermogram images by edge detection aided deep transfer learning model
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11477-9
– volume: 6
  start-page: 52
  issue: 6
  year: 2020
  ident: CR3
  article-title: Explainable deep learning models in medical image analysis
  publication-title: J Imaging
  doi: 10.3390/jimaging6060052
– volume: 12
  start-page: 7592
  issue: 15
  year: 2022
  ident: CR34
  article-title: An explainable classification method of spect myocardial perfusion images in nuclear cardiology using deep learning and grad-cam
  publication-title: Appl Sci
  doi: 10.3390/app12157592
– volume: 39
  start-page: 2374
  issue: 7
  year: 2020
  end-page: 2384
  ident: CR38
  article-title: Deep neural networks for chronological age estimation from opg images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2968765
– ident: CR40
– volume: 323
  start-page: 363
  year: 2019
  end-page: 372
  ident: CR49
  article-title: Improved generative adversarial networks with reconstruction loss
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2018.10.014
– ident: CR23
– volume: 38
  start-page: 2127
  issue: 9
  year: 2019
  end-page: 2138
  ident: CR11
  article-title: Direct automatic coronary calcium scoring in cardiac and chest ct
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2899534
– ident: CR44
– ident: CR48
– ident: CR52
– ident: CR31
– volume: 62
  start-page: 1515
  year: 2020
  end-page: 1518
  ident: CR41
  article-title: Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on mri slices
  publication-title: Neuroradiol
  doi: 10.1007/s00234-020-02465-1
– ident: CR13
– volume: 12
  start-page: 1284
  issue: 4
  year: 2023
  ident: CR30
  article-title: Artificial intelligence based analysis of corneal confocal microscopy images for diagnosing peripheral neuropathy: a binary classification model
  publication-title: J Clin Med
  doi: 10.3390/jcm12041284
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  end-page: 22080
  ident: CR7
  article-title: Definitions, methods, and applications in interpretable machine learning
  publication-title: Proc National Acad Sci
  doi: 10.1073/pnas.1900654116
– volume: 19
  start-page: 283
  issue: 4
  year: 2022
  end-page: 294
  ident: CR2
  article-title: Deep convolutional neural networks for classifying breast cancer using infrared thermography
  publication-title: Quantitative InfraRed Thermograph J
  doi: 10.1080/17686733.2021.1918514
– ident: CR55
– volume: 83
  year: 2023
  ident: CR14
  article-title: Automated detection and classification of leukemia on a subject-independent test dataset using deep transfer learning supported by grad-cam visualization
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104722
– volume: 73
  year: 2022
  ident: CR25
  article-title: Arrhythmia detection model using modified densenet for comprehensible grad-cam visualization
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103408
– volume: 47
  start-page: 1
  issue: 1
  year: 2020
  end-page: 4
  ident: CR8
  article-title: Clinical implementation of ai technologies will require interpretable ai models
  publication-title: Med Phys
  doi: 10.1002/mp.13891
– volume: 77
  start-page: 29
  year: 2022
  end-page: 52
  ident: CR5
  article-title: Unbox the black-box for the medical explainable ai via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2021.07.016
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  ident: CR9
  article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (xai)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: CR20
– volume: 56
  start-page: 3291
  issue: 4
  year: 2023
  end-page: 3318
  ident: CR33
  article-title: An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10231-3
– volume: 21
  start-page: 5813
  issue: 17
  year: 2021
  ident: 17776_CR37
  publication-title: Sensors
  doi: 10.3390/s21175813
– volume: 9
  start-page: 475
  issue: 9
  year: 2022
  ident: 17776_CR17
  publication-title: Bioeng
– volume: 196
  year: 2020
  ident: 17776_CR18
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105608
– ident: 17776_CR21
  doi: 10.1117/12.2643867
– volume: 73
  year: 2022
  ident: 17776_CR25
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103408
– ident: 17776_CR40
  doi: 10.1109/CVPRW50498.2020.00020
– ident: 17776_CR29
  doi: 10.1007/s11036-022-02021-6
– volume: 39
  start-page: 2374
  issue: 7
  year: 2020
  ident: 17776_CR38
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2968765
– volume: 146
  year: 2022
  ident: 17776_CR24
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105550
– volume: 20
  start-page: 62
  issue: 2
  year: 2023
  ident: 17776_CR54
  publication-title: Quantitative InfraRed Thermograph J
  doi: 10.1080/17686733.2021.2025018
– ident: 17776_CR48
– ident: 17776_CR57
  doi: 10.1007/978-3-030-01234-2_1
– volume: 13
  start-page: 551
  issue: 3
  year: 2023
  ident: 17776_CR16
  publication-title: Diagn
  doi: 10.3390/diagnostics13030551
– volume: 2
  start-page: 7
  issue: 11
  year: 2017
  ident: 17776_CR10
  publication-title: Feature visualization. Distill
– volume: 149
  year: 2020
  ident: 17776_CR59
  publication-title: Inter J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.119215
– volume: 73
  start-page: 17
  issue: 1
  year: 2023
  ident: 17776_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21763
– volume: 353
  year: 2021
  ident: 17776_CR43
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2021.109098
– volume: 12
  start-page: 1284
  issue: 4
  year: 2023
  ident: 17776_CR30
  publication-title: J Clin Med
  doi: 10.3390/jcm12041284
– ident: 17776_CR42
  doi: 10.1109/EIECS53707.2021.9587953
– volume: 81
  start-page: 9331
  issue: 7
  year: 2022
  ident: 17776_CR56
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11477-9
– ident: 17776_CR58
  doi: 10.1109/CVPR.2018.00745
– volume: 83
  year: 2023
  ident: 17776_CR14
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104722
– volume: 6
  start-page: 52138
  year: 2018
  ident: 17776_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 122
  year: 2020
  ident: 17776_CR28
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103869
– volume: 19
  start-page: 283
  issue: 4
  year: 2022
  ident: 17776_CR2
  publication-title: Quantitative InfraRed Thermograph J
  doi: 10.1080/17686733.2021.1918514
– ident: 17776_CR55
  doi: 10.1080/17686733.2022.2129135
– ident: 17776_CR20
  doi: 10.1109/BHI56158.2022.9926782
– volume: 30
  start-page: 3066
  year: 2020
  ident: 17776_CR27
  publication-title: Euro Radiol
  doi: 10.1007/s00330-019-06652-4
– ident: 17776_CR51
– ident: 17776_CR35
  doi: 10.1007/978-981-16-0425-6_13
– ident: 17776_CR32
  doi: 10.1007/978-981-15-3651-9_12
– volume: 295
  start-page: 136
  issue: 1
  year: 2020
  ident: 17776_CR39
  publication-title: Radiol
  doi: 10.1148/radiol.2020190925
– volume: 4
  start-page: 184
  issue: 2
  year: 2023
  ident: 17776_CR46
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-022-01536-9
– volume: 56
  start-page: 3291
  issue: 4
  year: 2023
  ident: 17776_CR33
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10231-3
– ident: 17776_CR23
  doi: 10.1117/12.2549532
– ident: 17776_CR60
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  ident: 17776_CR7
  publication-title: Proc National Acad Sci
  doi: 10.1073/pnas.1900654116
– ident: 17776_CR31
  doi: 10.1007/978-3-030-84060-0_16
– volume: 83
  year: 2023
  ident: 17776_CR15
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104704
– ident: 17776_CR13
  doi: 10.1109/ICCV.2017.74
– volume: 62
  start-page: 1515
  year: 2020
  ident: 17776_CR41
  publication-title: Neuroradiol
  doi: 10.1007/s00234-020-02465-1
– volume: 48
  start-page: 137
  year: 2020
  ident: 17776_CR4
  publication-title: J Acad Mark Sci
  doi: 10.1007/s11747-019-00710-5
– volume: 4
  start-page: 92
  issue: 1
  year: 2014
  ident: 17776_CR47
  publication-title: J Med Imaging Health Inf
  doi: 10.1166/jmihi.2014.1226
– volume: 17
  start-page: 0262349
  issue: 1
  year: 2022
  ident: 17776_CR53
  publication-title: PloS one
  doi: 10.1371/journal.pone.0262349
– ident: 17776_CR45
  doi: 10.1080/17686733.2023.2167459
– ident: 17776_CR52
– volume: 323
  start-page: 363
  year: 2019
  ident: 17776_CR49
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2018.10.014
– volume: 38
  start-page: 2127
  issue: 9
  year: 2019
  ident: 17776_CR11
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2899534
– ident: 17776_CR50
  doi: 10.1109/CVPR.2017.243
– ident: 17776_CR19
  doi: 10.1007/978-981-15-6048-4_2
– volume: 42
  start-page: 1066
  issue: 3
  year: 2022
  ident: 17776_CR36
  publication-title: Biocybernet Biomed Eng
  doi: 10.1016/j.bbe.2022.08.005
– volume: 47
  start-page: 1
  issue: 1
  year: 2020
  ident: 17776_CR8
  publication-title: Med Phys
  doi: 10.1002/mp.13891
– ident: 17776_CR26
  doi: 10.1111/epi.16447
– volume: 81
  start-page: 13115
  issue: 9
  year: 2022
  ident: 17776_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12030-y
– volume: 12
  start-page: 7592
  issue: 15
  year: 2022
  ident: 17776_CR34
  publication-title: Appl Sci
  doi: 10.3390/app12157592
– ident: 17776_CR44
  doi: 10.1109/ICPCSN58827.2023.00117
– ident: 17776_CR12
  doi: 10.1109/EMBC.2019.8857160
– volume: 77
  start-page: 29
  year: 2022
  ident: 17776_CR5
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2021.07.016
– volume: 6
  start-page: 52
  issue: 6
  year: 2020
  ident: 17776_CR3
  publication-title: J Imaging
  doi: 10.3390/jimaging6060052
– volume: 2676
  start-page: 743
  issue: 6
  year: 2022
  ident: 17776_CR6
  publication-title: Transp Res Record
  doi: 10.1177/03611981221076121
SSID ssj0016524
Score 2.478271
Snippet Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57551
SubjectTerms Ablation
Algorithms
Artificial intelligence
Breast cancer
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Explainable artificial intelligence
Health care
Image classification
Infrared imagery
Medical imaging
Medical personnel
Multimedia Information Systems
Special Purpose and Application-Based Systems
Track 2: Medical Applications of Multimedia
Trustworthiness
Tumors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_TBj6k4v8iDbxpY23wsvpXhGMJ8crC3kibZGIw6uk7887206TpFBV_TpNDcXfK73t3vELpjImQ2kJIobgWhgluiJJUkMmEqJXMM5652ePTCh2P6PGETXxS2qrPd65BkeVI3xW6BKyWBO4YEQghOxC7aY-C7u0S-cRhvYgechdSXx_y87usV1ODKb6HQ8oYZHKNDDw1xXMnyBO3YrI2O6rYL2FthGx1scQieove4KKqURTxbz401eJYrQ_rxCD9ileF5-dcAhu3HcuFLpbDTl4o6As-3ODlx2RcHA46F4WnuctNx6rLWC6ydduTY2KLM3crO0Hjw9NofEt9MgWiwsoIIDp5OL6LGMD3lkZE0EtZ5D5HsgRW7-JwG65WCMTEV4DUJ0ZVKd1OrulKD7Z-jVvaW2QuE3RZbQC4iBTQGgCPlMlQWpvaspVqFHRTU-5tozzTuGl4skoYj2ckkAZkkpUwS0UH3mzXLimfjz9nXtdgSb3OrBJwfR04EX9JBD7Uom8e_v-3yf9Ov0D5oHa3yxa5Rq8jX9gaQSZHelor4Cel-2RU
  priority: 102
  providerName: Springer Nature
Title Attention guided grad-CAM : an improved explainable artificial intelligence model for infrared breast cancer detection
URI https://link.springer.com/article/10.1007/s11042-023-17776-7
https://www.proquest.com/docview/3060077760
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be4EDLOwiCmzlAzfW2rwcx1xQQC0IBEKrrQSnKLHdqhIKpQTEz2cmcSggwdVxfPC8Ptsz3wDsCxkI6yvF89hKHsnY8lxFiocmKJQSxHBOtcOXV_HZKDq_ETfuwu3RpVW2PrF21OZe0x35X4S2RD0jY-9o9sCpaxS9rroWGsvQRReciA50jwdX1__e3hFi4draJh7H2Oi7spmmeM6n0hSMWdyndbn8GJoWePPTE2kdeYY_YM1BRpY2Mt6AJVtuwnrbjoE569yE1Xfcgj_hOa2qJpWRTZ6mxho2meeGn6SX7JDlJZvWtwk4bF9md66EipEeNZQSbPqOq5PV_XIY4lscHs8pZ50VlM1eMU1aM2fGVnVOV_kLRsPB_5Mz7poscI3WV3EZ4wkoCSNjhB7HoVFRKC2dKkKVoHXTu51Gq1ZSCDmWeJqS0lO59gqbe0qjT9iCTnlf2m1gtN0WEY0sEKUhECliFeQWpybWRjoPeuC3-5tpx0BOjTDusgV3MskkQ5lktUwy2YODt39mDf_Gt7P3WrFlzhYfs4Xm9OBPK8rF569X2_l-tV1YCRDhNHlje9Cp5k_2NyKUqujDcjI87UM3Pb29GPSdUuLoKEhfAbwR4rY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB6xHOAdHrvoY_MBTmCR3TUSQmVTWVohBBK3kNguqoRCXwnbn-I3MpM4FJDgxjVxLMXzjeezZwNYDYUXGldKnkRG8EBEhicykNzXXiplSBXOKXe41Y6al8HxVXg1BK9VLgyFVVZ7YrFR6ztFd-SbSG2p9IyInJ3ef05do8i7WrXQKGFxYl6e8Mh2v320j_Jd87zDg4u9JrddBbhCuOVcREj5636gdag6ka9l4AtDNNqXdYQzOaoUwliKMBQdgccHIRyZKCc1iSMVKgHOOwyjSDMkatHo7kH77PzdbxGFto1u3eFoi12bplMm67mUCoM2krv0H1x8NoUDfvvFJVtYusNJ-GspKmuUmJqCIZNNw0TV_oHZ3WAa_nyoZTgDj408L0Mn2c1DVxvNbvqJ5nuNFttiSca6xe0FPjbPvVubssUIt2UJC9b9UBuUFf15GPJpfNzpU4w8Syl6PmeKUNpn2uRFDFk2C5e_svxzMJLdZWYeGC23QQYlUmSFSHzSSHqJwaF1YwKVeDVwq_WNla14To03buNBrWaSSYwyiQuZxKIG6-_f9Mp6Hz-OXqzEFlvdv48HSK3BRiXKwevvZ_v382wrMNa8aJ3Gp0ftkwUY95BdlTFrizCS9x_MErKjPF22kGRw_dta8AbMZxin
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD7qWmkaDxtjm-i4zA_jabPI3THSNJVCBYNW1TQk3rLEdlElFLoSBvw1ft3OSRxaJtG3viaOpfh8Puezzw3gcyi80LhS8jQyggciMjyVgeS-9jIpQ6pwTrnD_UF0dBb8OA_PG_BQ58JQWGWtE0tFra8U3ZHvIrWl0jMicnZHNixieND7PvnDqYMUeVrrdhoVRE7M_S0e366_HR-grHc8r3f4q3vEbYcBrhB6BRcR0v_YD7QO1SjytQx8YYhS-zJGaJPTSiGkpQhDMRJ4lBDCkalyMpM6UuGGwHlfQEugVYyb0No_HAx_PvowotC21I0djnbZtSk7VeKeS2kxaC-5S__ExVOzOOO6_7lnS6vXW4XXlq6yToWvt9Aw-Rq8qVtBMKsZ1mBlrq7hO_jbKYoqjJJd3Iy10eximmre7fTZHktzNi5vMvCxuZtc2vQtRhiuylmw8VydUFb26mHIrfHxaErx8iyjSPqCKULslGlTlPFk-Xs4W8ryf4BmfpWbdWC03AbZlMiQISIJyiLppQaHxsYEKvXa4Nbrmyhb_ZyacFwms7rNJJMEZZKUMklEG748fjOpan8sHL1Ziy2xeuA6maG2DV9rUc5ePz_bx8WzfYKXiP7k9HhwsgGvPCRaVfjaJjSL6Y3ZQqJUZNsWkQx-L3sT_AMNFhzT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+guided+grad-CAM+%3A+an+improved+explainable+artificial+intelligence+model+for+infrared+breast+cancer+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Raghavan%2C+Kaushik&rft.au=B%2C+Sivaselvan&rft.au=v%2C+Kamakoti&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=19&rft.spage=57551&rft.epage=57578&rft_id=info:doi/10.1007%2Fs11042-023-17776-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon