Attention guided grad-CAM : an improved explainable artificial intelligence model for infrared breast cancer detection
Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification. XAI can help explain the reasoning behind predictions, which can help healthcare professionals understand and trust the AI model. This paper p...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 19; pp. 57551 - 57578 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-7721 1380-7501 1573-7721 |
DOI | 10.1007/s11042-023-17776-7 |
Cover
Loading…
Abstract | Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification. XAI can help explain the reasoning behind predictions, which can help healthcare professionals understand and trust the AI model. This paper presents a novel, ’attention-guided Grad-CAM,’ a class of explainability algorithms that will visually reveal the reasons for prediction in image classification. To implement the proposed methods, we used infrared breast images from the” Database of Mastology Research” First; we built a classifier for detecting breast cancer using an ensemble of three pre-trained networks. Then we implemented an attention-guided Grad-CAM using channel and spatial attention to visualize the critical regions of infrared breast image that will explain the reasons for the predictions. The proposed ensemble of the pre-trained network was able to classify the breast thermograms (Healthy / Tumour) with an accuracy of 98.04% (Precision: 97.22%, Specificity: 97.77%, Sensitivity: 98.21%, F1-Score: 97.49, AUC: 0.97). The proposed Attention guided Grad-CAM method was able distinctively show the hottest regions of the thermograms (tumor regions). The ablation study also showed an average drop in the model’s 42.5% when the explanation maps were used instead of the original image. The activation score also increased by 25.35%. The proposed ensemble of pre-trained networks was able to classify the breast thermograms accurately, and the attention-guided Grad-CAM was able to visually explain the AI model’s prediction using a heat map. The proposed model will aid in the adoption of AI techniques by healthcare professionals with trust. |
---|---|
AbstractList | Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification. XAI can help explain the reasoning behind predictions, which can help healthcare professionals understand and trust the AI model. This paper presents a novel, ’attention-guided Grad-CAM,’ a class of explainability algorithms that will visually reveal the reasons for prediction in image classification. To implement the proposed methods, we used infrared breast images from the” Database of Mastology Research” First; we built a classifier for detecting breast cancer using an ensemble of three pre-trained networks. Then we implemented an attention-guided Grad-CAM using channel and spatial attention to visualize the critical regions of infrared breast image that will explain the reasons for the predictions. The proposed ensemble of the pre-trained network was able to classify the breast thermograms (Healthy / Tumour) with an accuracy of 98.04% (Precision: 97.22%, Specificity: 97.77%, Sensitivity: 98.21%, F1-Score: 97.49, AUC: 0.97). The proposed Attention guided Grad-CAM method was able distinctively show the hottest regions of the thermograms (tumor regions). The ablation study also showed an average drop in the model’s 42.5% when the explanation maps were used instead of the original image. The activation score also increased by 25.35%. The proposed ensemble of pre-trained networks was able to classify the breast thermograms accurately, and the attention-guided Grad-CAM was able to visually explain the AI model’s prediction using a heat map. The proposed model will aid in the adoption of AI techniques by healthcare professionals with trust. |
Author | v, Kamakoti Raghavan, Kaushik B, Sivaselvan |
Author_xml | – sequence: 1 givenname: Kaushik orcidid: 0000-0003-4710-8994 surname: Raghavan fullname: Raghavan, Kaushik email: kaushik.gr@gmail.com organization: Indian Institute of Information Technology, Design and Manufacturing – sequence: 2 givenname: Sivaselvan surname: B fullname: B, Sivaselvan organization: Indian Institute of Information Technology, Design and Manufacturing – sequence: 3 givenname: Kamakoti surname: v fullname: v, Kamakoti organization: Indain Institute of Technology Madras |
BookMark | eNp9kE1LxDAQhoMo-PkHPAU8VydN02m9LYtfoHjRc8im0yXSTdckK_rvTV1B8eApYeZ9MpPnkO360RNjpwLOBQBeRCGgKgsoZSEQsS5whx0IhbJALMXur_s-O4zxBUDUqqwO2NssJfLJjZ4vN66jji-D6Yr57IFfcuO5W63D-JbL9L4ejPNmMRA3IbneWWcG7nyiYXBL8pb4auxo4P0YcrkPJmRsEcjExK3J_cA7SmSnYcdsrzdDpJPv84g9X189zW-L-8ebu_nsvrBStKnAui5VI6uuU7avZddWEknVQsq2garBGsAqbFpUCntsVY0IrbGwIAOtBZBH7Gz7bv7F64Zi0i_jJvg8UkvI9ORqSjXblA1jjIF6bV0y054pGDdoAXqyrLeWdbasvyxrzGj5B10HtzLh439IbqGYw35J4Werf6hPXz-Q4Q |
CitedBy_id | crossref_primary_10_1016_j_patter_2025_101175 crossref_primary_10_1088_1361_6560_ad869f crossref_primary_10_32604_cmc_2024_058932 crossref_primary_10_1016_j_imu_2024_101587 crossref_primary_10_1002_ima_70000 crossref_primary_10_1002_jmri_29687 crossref_primary_10_1080_24751839_2024_2447191 crossref_primary_10_1016_j_engappai_2025_110427 crossref_primary_10_1016_j_rineng_2024_103436 crossref_primary_10_1007_s10462_024_10777_4 crossref_primary_10_1515_ntrev_2024_0019 |
Cites_doi | 10.1016/j.cmpb.2020.105608 10.1080/17686733.2021.2025018 10.1166/jmihi.2014.1226 10.3390/diagnostics13030551 10.1016/j.bbe.2022.08.005 10.1007/s42979-022-01536-9 10.1016/j.jneumeth.2021.109098 10.1371/journal.pone.0262349 10.1007/s11747-019-00710-5 10.1016/j.bspc.2023.104704 10.1007/s00330-019-06652-4 10.1016/j.compbiomed.2022.105550 10.3322/caac.21763 10.1177/03611981221076121 10.1016/j.compbiomed.2020.103869 10.1148/radiol.2020190925 10.1016/j.ijheatmasstransfer.2019.119215 10.1007/s11042-022-12030-y 10.3390/s21175813 10.1007/s11042-021-11477-9 10.3390/jimaging6060052 10.3390/app12157592 10.1109/TMI.2020.2968765 10.1016/j.neucom.2018.10.014 10.1109/TMI.2019.2899534 10.1007/s00234-020-02465-1 10.3390/jcm12041284 10.1073/pnas.1900654116 10.1080/17686733.2021.1918514 10.1016/j.bspc.2023.104722 10.1016/j.bspc.2021.103408 10.1002/mp.13891 10.1016/j.inffus.2021.07.016 10.1109/ACCESS.2018.2870052 10.1007/s10462-022-10231-3 10.1117/12.2643867 10.1109/CVPRW50498.2020.00020 10.1007/s11036-022-02021-6 10.1007/978-3-030-01234-2_1 10.1109/EIECS53707.2021.9587953 10.1109/CVPR.2018.00745 10.1080/17686733.2022.2129135 10.1109/BHI56158.2022.9926782 10.1007/978-981-16-0425-6_13 10.1007/978-981-15-3651-9_12 10.1117/12.2549532 10.1007/978-3-030-84060-0_16 10.1109/ICCV.2017.74 10.1080/17686733.2023.2167459 10.1109/CVPR.2017.243 10.1007/978-981-15-6048-4_2 10.1111/epi.16447 10.1109/ICPCSN58827.2023.00117 10.1109/EMBC.2019.8857160 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-17776-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 57578 |
ExternalDocumentID | 10_1007_s11042_023_17776_7 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-76625834dd5cf63d9437e56133980487600c57897557f79567709ac0bea09c003 |
IEDL.DBID | BENPR |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 09:38:06 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Tue Jul 01 04:13:30 EDT 2025 Fri Feb 21 02:40:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Ensemble pre-trained networks Explainable AI Clinical thermography Bio-medical image analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-76625834dd5cf63d9437e56133980487600c57897557f79567709ac0bea09c003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4710-8994 |
PQID | 3060077760 |
PQPubID | 54626 |
PageCount | 28 |
ParticipantIDs | proquest_journals_3060077760 crossref_citationtrail_10_1007_s11042_023_17776_7 crossref_primary_10_1007_s11042_023_17776_7 springer_journals_10_1007_s11042_023_17776_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Ahamed, Islam, Uddin, Akhter, Acharjee, Paul, Moni (CR16) 2023; 13 Sobahi, Atila, Deniz, Sengur, Acharya (CR36) 2022; 42 Singh, Sengupta, Lakshminarayanan (CR3) 2020; 6 Afify, Mohammed, Hassanien (CR15) 2023; 83 Altini, Brunetti, Puro, Taccogna, Saponaro, Zito, De Summa, Bevilacqua (CR17) 2022; 9 Qjidaa, Ben-Fares, Amakdouf, El Mallahi, Alami, Maaroufi, Lakhssassi, Qjidaa (CR22) 2022; 81 CR35 Rai (CR4) 2020; 48 CR32 CR31 Olah, Mordvintsev, Schubert (CR10) 2017; 2 Meng, Preston, Ferdousi, Azmi, Petropoulos, Kaye, Malik, Alam, Zheng (CR30) 2023; 12 Silva, Saade, Sequeiros, Silva, Paiva, Bravo, Conci (CR47) 2014; 4 Schacky, Sohn, Liu, Ozhinsky, Jungmann, Nardo, Posadzy, Foreman, Nevitt, Link (CR39) 2020; 295 Brunese, Mercaldo, Reginelli, Santone (CR18) 2020; 196 De Vos, Wolterink, Leiner, De Jong, Lessmann, Išgum (CR11) 2019; 38 Abhishek, Jha, Sinha, Jha (CR14) 2023; 83 CR48 Mahmud, Rahman, Fattah (CR28) 2020; 122 CR45 CR44 CR42 CR40 Mohamed, Rashed, Gaber, Karam (CR53) 2022; 17 Papandrianos, Feleki, Moustakidis, Papageorgiou, Apostolopoulos, Apostolopoulos (CR34) 2022; 12 Chebbah, Ouslim, Benabid (CR54) 2023; 20 Vila-Blanco, Carreira, Varas-Quintana, Balsa-Castro, Tomas (CR38) 2020; 39 Siegel, Miller, Wagle (CR1) 2023; 73 Li, Xiao, Ouyang (CR49) 2019; 323 Özbay (CR33) 2023; 56 Murdoch, Singh, Kumbier, Abbasi-Asl, Yu (CR7) 2019; 116 CR19 CR58 CR13 CR57 CR12 CR55 Karim, Li, Qin (CR6) 2022; 2676 CR52 CR51 CR50 Bezerra, Ribeiro, Lyra, Lima (CR59) 2020; 149 Dey, Roychoudhury, Malakar, Sarkar (CR56) 2022; 81 Windisch, Weber, Fürweger, Ehret, Kufeld, Zwahlen, Muacevic (CR41) 2020; 62 Torres-Galván, Guevara, Kolosovas-Machuca, Oceguera-Villanueva, Flores, González (CR2) 2022; 19 Aidossov, Zarikas, Zhao, Mashekova, Ng, Mukhmetov, Mirasbekov, Omirbayev (CR46) 2023; 4 Umair, Khan, Ahmed, Baothman, Alqahtani, Alian, Ahmad (CR37) 2021; 21 Yang, Ye, Xia (CR5) 2022; 77 CR29 CR26 Kim, Jung, Park, Han (CR25) 2022; 73 Zhang, Hong, McClement, Oladosu, Pridham, Slaney (CR43) 2021; 353 CR23 Jahmunah, Ng, Tan, Oh, Acharya (CR24) 2022; 146 CR21 CR20 Adadi, Berrada (CR9) 2018; 6 CR60 Lee, Ha, Kim, Jung, Heo, Jang, An, Lee (CR27) 2020; 30 Jia, Ren, Cai (CR8) 2020; 47 L Bezerra (17776_CR59) 2020; 149 17776_CR40 L Silva (17776_CR47) 2014; 4 17776_CR42 17776_CR45 NK Chebbah (17776_CR54) 2023; 20 17776_CR44 RL Siegel (17776_CR1) 2023; 73 HM Afify (17776_CR15) 2023; 83 Y Zhang (17776_CR43) 2021; 353 17776_CR35 EA Mohamed (17776_CR53) 2022; 17 17776_CR50 N Altini (17776_CR17) 2022; 9 17776_CR52 17776_CR51 17776_CR12 17776_CR55 P Windisch (17776_CR41) 2020; 62 X Jia (17776_CR8) 2020; 47 JH Lee (17776_CR27) 2020; 30 Y Li (17776_CR49) 2019; 323 G Yang (17776_CR5) 2022; 77 A Abhishek (17776_CR14) 2023; 83 L Brunese (17776_CR18) 2020; 196 17776_CR48 S Dey (17776_CR56) 2022; 81 T Mahmud (17776_CR28) 2020; 122 17776_CR60 A Singh (17776_CR3) 2020; 6 17776_CR21 17776_CR20 NI Papandrianos (17776_CR34) 2022; 12 WJ Murdoch (17776_CR7) 2019; 116 17776_CR23 Y Meng (17776_CR30) 2023; 12 JC Torres-Galván (17776_CR2) 2022; 19 C Olah (17776_CR10) 2017; 2 MM Karim (17776_CR6) 2022; 2676 BD De Vos (17776_CR11) 2019; 38 17776_CR58 17776_CR13 17776_CR57 N Aidossov (17776_CR46) 2023; 4 17776_CR19 M Umair (17776_CR37) 2021; 21 J-K Kim (17776_CR25) 2022; 73 M Qjidaa (17776_CR22) 2022; 81 17776_CR32 17776_CR31 A Adadi (17776_CR9) 2018; 6 CE Schacky (17776_CR39) 2020; 295 N Sobahi (17776_CR36) 2022; 42 N Vila-Blanco (17776_CR38) 2020; 39 V Jahmunah (17776_CR24) 2022; 146 E Özbay (17776_CR33) 2023; 56 17776_CR26 A Rai (17776_CR4) 2020; 48 MKU Ahamed (17776_CR16) 2023; 13 17776_CR29 |
References_xml | – ident: CR45 – volume: 196 year: 2020 ident: CR18 article-title: Explainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-rays publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105608 – volume: 20 start-page: 62 issue: 2 year: 2023 end-page: 77 ident: CR54 article-title: New computer aided diagnostic system using deep neural network and svm to detect breast cancer in thermography publication-title: Quantitative InfraRed Thermograph J doi: 10.1080/17686733.2021.2025018 – volume: 4 start-page: 92 issue: 1 year: 2014 end-page: 100 ident: CR47 article-title: A new database for breast research with infrared image publication-title: J Med Imaging Health Inf doi: 10.1166/jmihi.2014.1226 – volume: 13 start-page: 551 issue: 3 year: 2023 ident: CR16 article-title: Dtlcx: An improved resnet architecture to classify normal and conventional pneumonia cases from covid-19 instances with grad-cam-based superimposed visualization utilizing chest x-ray images publication-title: Diagn doi: 10.3390/diagnostics13030551 – ident: CR51 – ident: CR12 – volume: 9 start-page: 475 issue: 9 year: 2022 ident: CR17 article-title: Ndg-cam: Nuclei detection in histopathology images with semantic segmentation networks and grad-cam publication-title: Bioeng – ident: CR35 – ident: CR29 – volume: 42 start-page: 1066 issue: 3 year: 2022 end-page: 1080 ident: CR36 article-title: Explainable covid-19 detection using fractal dimension and vision transformer with grad-cam on cough sounds publication-title: Biocybernet Biomed Eng doi: 10.1016/j.bbe.2022.08.005 – volume: 4 start-page: 184 issue: 2 year: 2023 ident: CR46 article-title: An integrated intelligent system for breast cancer detection at early stages using ir images and machine learning methods with explainability publication-title: SN Comput Sci doi: 10.1007/s42979-022-01536-9 – volume: 353 year: 2021 ident: CR43 article-title: Grad-cam helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2021.109098 – ident: CR58 – volume: 17 start-page: 0262349 issue: 1 year: 2022 ident: CR53 article-title: Deep learning model for fully automated breast cancer detection system from thermograms publication-title: PloS one doi: 10.1371/journal.pone.0262349 – ident: CR42 – ident: CR21 – ident: CR19 – volume: 48 start-page: 137 year: 2020 end-page: 141 ident: CR4 article-title: Explainable ai: From black box to glass box publication-title: J Acad Mark Sci doi: 10.1007/s11747-019-00710-5 – volume: 83 year: 2023 ident: CR15 article-title: Novel prediction model on oscc histopathological images via deep transfer learning combined with grad-cam interpretation publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104704 – volume: 30 start-page: 3066 year: 2020 end-page: 3072 ident: CR27 article-title: Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with ct: external validation and clinical utility for resident training publication-title: Euro Radiol doi: 10.1007/s00330-019-06652-4 – volume: 146 year: 2022 ident: CR24 article-title: Explainable detection of myocardial infarction using deep learning models with grad-cam technique on ecg signals publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105550 – ident: CR50 – volume: 2 start-page: 7 issue: 11 year: 2017 ident: CR10 publication-title: Feature visualization. Distill – volume: 73 start-page: 17 issue: 1 year: 2023 end-page: 48 ident: CR1 article-title: Jemal A (2023) Cancer statistics publication-title: CA Cancer J Clin doi: 10.3322/caac.21763 – volume: 2676 start-page: 743 issue: 6 year: 2022 end-page: 755 ident: CR6 article-title: Toward explainable artificial intelligence for early anticipation of traffic accidents publication-title: Transp Res Record doi: 10.1177/03611981221076121 – ident: CR57 – volume: 122 year: 2020 ident: CR28 article-title: Covxnet: A multi-dilation convolutional neural network for automatic covid-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimization publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103869 – ident: CR32 – ident: CR60 – volume: 295 start-page: 136 issue: 1 year: 2020 end-page: 145 ident: CR39 article-title: Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs publication-title: Radiol doi: 10.1148/radiol.2020190925 – volume: 149 year: 2020 ident: CR59 article-title: An empirical correlation to estimate thermal properties of the breast and of the breast nodule using thermographic images and optimization techniques publication-title: Inter J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.119215 – volume: 81 start-page: 13115 issue: 9 year: 2022 end-page: 13135 ident: CR22 article-title: Recognizing covid-19 from chest x-ray images for people in rural and remote areas based on deep transfer learning model publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12030-y – volume: 21 start-page: 5813 issue: 17 year: 2021 ident: CR37 article-title: Detection of covid-19 using transfer learning and grad-cam visualization on indigenously collected x-ray dataset publication-title: Sensors doi: 10.3390/s21175813 – ident: CR26 – volume: 81 start-page: 9331 issue: 7 year: 2022 end-page: 9349 ident: CR56 article-title: Screening of breast cancer from thermogram images by edge detection aided deep transfer learning model publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11477-9 – volume: 6 start-page: 52 issue: 6 year: 2020 ident: CR3 article-title: Explainable deep learning models in medical image analysis publication-title: J Imaging doi: 10.3390/jimaging6060052 – volume: 12 start-page: 7592 issue: 15 year: 2022 ident: CR34 article-title: An explainable classification method of spect myocardial perfusion images in nuclear cardiology using deep learning and grad-cam publication-title: Appl Sci doi: 10.3390/app12157592 – volume: 39 start-page: 2374 issue: 7 year: 2020 end-page: 2384 ident: CR38 article-title: Deep neural networks for chronological age estimation from opg images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2968765 – ident: CR40 – volume: 323 start-page: 363 year: 2019 end-page: 372 ident: CR49 article-title: Improved generative adversarial networks with reconstruction loss publication-title: Neurocomput doi: 10.1016/j.neucom.2018.10.014 – ident: CR23 – volume: 38 start-page: 2127 issue: 9 year: 2019 end-page: 2138 ident: CR11 article-title: Direct automatic coronary calcium scoring in cardiac and chest ct publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2899534 – ident: CR44 – ident: CR48 – ident: CR52 – ident: CR31 – volume: 62 start-page: 1515 year: 2020 end-page: 1518 ident: CR41 article-title: Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on mri slices publication-title: Neuroradiol doi: 10.1007/s00234-020-02465-1 – ident: CR13 – volume: 12 start-page: 1284 issue: 4 year: 2023 ident: CR30 article-title: Artificial intelligence based analysis of corneal confocal microscopy images for diagnosing peripheral neuropathy: a binary classification model publication-title: J Clin Med doi: 10.3390/jcm12041284 – volume: 116 start-page: 22071 issue: 44 year: 2019 end-page: 22080 ident: CR7 article-title: Definitions, methods, and applications in interpretable machine learning publication-title: Proc National Acad Sci doi: 10.1073/pnas.1900654116 – volume: 19 start-page: 283 issue: 4 year: 2022 end-page: 294 ident: CR2 article-title: Deep convolutional neural networks for classifying breast cancer using infrared thermography publication-title: Quantitative InfraRed Thermograph J doi: 10.1080/17686733.2021.1918514 – ident: CR55 – volume: 83 year: 2023 ident: CR14 article-title: Automated detection and classification of leukemia on a subject-independent test dataset using deep transfer learning supported by grad-cam visualization publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104722 – volume: 73 year: 2022 ident: CR25 article-title: Arrhythmia detection model using modified densenet for comprehensible grad-cam visualization publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103408 – volume: 47 start-page: 1 issue: 1 year: 2020 end-page: 4 ident: CR8 article-title: Clinical implementation of ai technologies will require interpretable ai models publication-title: Med Phys doi: 10.1002/mp.13891 – volume: 77 start-page: 29 year: 2022 end-page: 52 ident: CR5 article-title: Unbox the black-box for the medical explainable ai via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.07.016 – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: CR9 article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (xai) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: CR20 – volume: 56 start-page: 3291 issue: 4 year: 2023 end-page: 3318 ident: CR33 article-title: An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10231-3 – volume: 21 start-page: 5813 issue: 17 year: 2021 ident: 17776_CR37 publication-title: Sensors doi: 10.3390/s21175813 – volume: 9 start-page: 475 issue: 9 year: 2022 ident: 17776_CR17 publication-title: Bioeng – volume: 196 year: 2020 ident: 17776_CR18 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105608 – ident: 17776_CR21 doi: 10.1117/12.2643867 – volume: 73 year: 2022 ident: 17776_CR25 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103408 – ident: 17776_CR40 doi: 10.1109/CVPRW50498.2020.00020 – ident: 17776_CR29 doi: 10.1007/s11036-022-02021-6 – volume: 39 start-page: 2374 issue: 7 year: 2020 ident: 17776_CR38 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2968765 – volume: 146 year: 2022 ident: 17776_CR24 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105550 – volume: 20 start-page: 62 issue: 2 year: 2023 ident: 17776_CR54 publication-title: Quantitative InfraRed Thermograph J doi: 10.1080/17686733.2021.2025018 – ident: 17776_CR48 – ident: 17776_CR57 doi: 10.1007/978-3-030-01234-2_1 – volume: 13 start-page: 551 issue: 3 year: 2023 ident: 17776_CR16 publication-title: Diagn doi: 10.3390/diagnostics13030551 – volume: 2 start-page: 7 issue: 11 year: 2017 ident: 17776_CR10 publication-title: Feature visualization. Distill – volume: 149 year: 2020 ident: 17776_CR59 publication-title: Inter J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.119215 – volume: 73 start-page: 17 issue: 1 year: 2023 ident: 17776_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21763 – volume: 353 year: 2021 ident: 17776_CR43 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2021.109098 – volume: 12 start-page: 1284 issue: 4 year: 2023 ident: 17776_CR30 publication-title: J Clin Med doi: 10.3390/jcm12041284 – ident: 17776_CR42 doi: 10.1109/EIECS53707.2021.9587953 – volume: 81 start-page: 9331 issue: 7 year: 2022 ident: 17776_CR56 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11477-9 – ident: 17776_CR58 doi: 10.1109/CVPR.2018.00745 – volume: 83 year: 2023 ident: 17776_CR14 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104722 – volume: 6 start-page: 52138 year: 2018 ident: 17776_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 122 year: 2020 ident: 17776_CR28 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103869 – volume: 19 start-page: 283 issue: 4 year: 2022 ident: 17776_CR2 publication-title: Quantitative InfraRed Thermograph J doi: 10.1080/17686733.2021.1918514 – ident: 17776_CR55 doi: 10.1080/17686733.2022.2129135 – ident: 17776_CR20 doi: 10.1109/BHI56158.2022.9926782 – volume: 30 start-page: 3066 year: 2020 ident: 17776_CR27 publication-title: Euro Radiol doi: 10.1007/s00330-019-06652-4 – ident: 17776_CR51 – ident: 17776_CR35 doi: 10.1007/978-981-16-0425-6_13 – ident: 17776_CR32 doi: 10.1007/978-981-15-3651-9_12 – volume: 295 start-page: 136 issue: 1 year: 2020 ident: 17776_CR39 publication-title: Radiol doi: 10.1148/radiol.2020190925 – volume: 4 start-page: 184 issue: 2 year: 2023 ident: 17776_CR46 publication-title: SN Comput Sci doi: 10.1007/s42979-022-01536-9 – volume: 56 start-page: 3291 issue: 4 year: 2023 ident: 17776_CR33 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10231-3 – ident: 17776_CR23 doi: 10.1117/12.2549532 – ident: 17776_CR60 – volume: 116 start-page: 22071 issue: 44 year: 2019 ident: 17776_CR7 publication-title: Proc National Acad Sci doi: 10.1073/pnas.1900654116 – ident: 17776_CR31 doi: 10.1007/978-3-030-84060-0_16 – volume: 83 year: 2023 ident: 17776_CR15 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104704 – ident: 17776_CR13 doi: 10.1109/ICCV.2017.74 – volume: 62 start-page: 1515 year: 2020 ident: 17776_CR41 publication-title: Neuroradiol doi: 10.1007/s00234-020-02465-1 – volume: 48 start-page: 137 year: 2020 ident: 17776_CR4 publication-title: J Acad Mark Sci doi: 10.1007/s11747-019-00710-5 – volume: 4 start-page: 92 issue: 1 year: 2014 ident: 17776_CR47 publication-title: J Med Imaging Health Inf doi: 10.1166/jmihi.2014.1226 – volume: 17 start-page: 0262349 issue: 1 year: 2022 ident: 17776_CR53 publication-title: PloS one doi: 10.1371/journal.pone.0262349 – ident: 17776_CR45 doi: 10.1080/17686733.2023.2167459 – ident: 17776_CR52 – volume: 323 start-page: 363 year: 2019 ident: 17776_CR49 publication-title: Neurocomput doi: 10.1016/j.neucom.2018.10.014 – volume: 38 start-page: 2127 issue: 9 year: 2019 ident: 17776_CR11 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2899534 – ident: 17776_CR50 doi: 10.1109/CVPR.2017.243 – ident: 17776_CR19 doi: 10.1007/978-981-15-6048-4_2 – volume: 42 start-page: 1066 issue: 3 year: 2022 ident: 17776_CR36 publication-title: Biocybernet Biomed Eng doi: 10.1016/j.bbe.2022.08.005 – volume: 47 start-page: 1 issue: 1 year: 2020 ident: 17776_CR8 publication-title: Med Phys doi: 10.1002/mp.13891 – ident: 17776_CR26 doi: 10.1111/epi.16447 – volume: 81 start-page: 13115 issue: 9 year: 2022 ident: 17776_CR22 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12030-y – volume: 12 start-page: 7592 issue: 15 year: 2022 ident: 17776_CR34 publication-title: Appl Sci doi: 10.3390/app12157592 – ident: 17776_CR44 doi: 10.1109/ICPCSN58827.2023.00117 – ident: 17776_CR12 doi: 10.1109/EMBC.2019.8857160 – volume: 77 start-page: 29 year: 2022 ident: 17776_CR5 publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.07.016 – volume: 6 start-page: 52 issue: 6 year: 2020 ident: 17776_CR3 publication-title: J Imaging doi: 10.3390/jimaging6060052 – volume: 2676 start-page: 743 issue: 6 year: 2022 ident: 17776_CR6 publication-title: Transp Res Record doi: 10.1177/03611981221076121 |
SSID | ssj0016524 |
Score | 2.478271 |
Snippet | Explainable artificial intelligence (XAI) can help build trust between AI models and healthcare professionals in the context of medical image classification.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 57551 |
SubjectTerms | Ablation Algorithms Artificial intelligence Breast cancer Computer Communication Networks Computer Science Data Structures and Information Theory Explainable artificial intelligence Health care Image classification Infrared imagery Medical imaging Medical personnel Multimedia Information Systems Special Purpose and Application-Based Systems Track 2: Medical Applications of Multimedia Trustworthiness Tumors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_TBj6k4v8iDbxpY23wsvpXhGMJ8crC3kibZGIw6uk7887206TpFBV_TpNDcXfK73t3vELpjImQ2kJIobgWhgluiJJUkMmEqJXMM5652ePTCh2P6PGETXxS2qrPd65BkeVI3xW6BKyWBO4YEQghOxC7aY-C7u0S-cRhvYgechdSXx_y87usV1ODKb6HQ8oYZHKNDDw1xXMnyBO3YrI2O6rYL2FthGx1scQieove4KKqURTxbz401eJYrQ_rxCD9ileF5-dcAhu3HcuFLpbDTl4o6As-3ODlx2RcHA46F4WnuctNx6rLWC6ydduTY2KLM3crO0Hjw9NofEt9MgWiwsoIIDp5OL6LGMD3lkZE0EtZ5D5HsgRW7-JwG65WCMTEV4DUJ0ZVKd1OrulKD7Z-jVvaW2QuE3RZbQC4iBTQGgCPlMlQWpvaspVqFHRTU-5tozzTuGl4skoYj2ckkAZkkpUwS0UH3mzXLimfjz9nXtdgSb3OrBJwfR04EX9JBD7Uom8e_v-3yf9Ov0D5oHa3yxa5Rq8jX9gaQSZHelor4Cel-2RU priority: 102 providerName: Springer Nature |
Title | Attention guided grad-CAM : an improved explainable artificial intelligence model for infrared breast cancer detection |
URI | https://link.springer.com/article/10.1007/s11042-023-17776-7 https://www.proquest.com/docview/3060077760 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be4EDLOwiCmzlAzfW2rwcx1xQQC0IBEKrrQSnKLHdqhIKpQTEz2cmcSggwdVxfPC8Ptsz3wDsCxkI6yvF89hKHsnY8lxFiocmKJQSxHBOtcOXV_HZKDq_ETfuwu3RpVW2PrF21OZe0x35X4S2RD0jY-9o9sCpaxS9rroWGsvQRReciA50jwdX1__e3hFi4draJh7H2Oi7spmmeM6n0hSMWdyndbn8GJoWePPTE2kdeYY_YM1BRpY2Mt6AJVtuwnrbjoE569yE1Xfcgj_hOa2qJpWRTZ6mxho2meeGn6SX7JDlJZvWtwk4bF9md66EipEeNZQSbPqOq5PV_XIY4lscHs8pZ50VlM1eMU1aM2fGVnVOV_kLRsPB_5Mz7poscI3WV3EZ4wkoCSNjhB7HoVFRKC2dKkKVoHXTu51Gq1ZSCDmWeJqS0lO59gqbe0qjT9iCTnlf2m1gtN0WEY0sEKUhECliFeQWpybWRjoPeuC3-5tpx0BOjTDusgV3MskkQ5lktUwy2YODt39mDf_Gt7P3WrFlzhYfs4Xm9OBPK8rF569X2_l-tV1YCRDhNHlje9Cp5k_2NyKUqujDcjI87UM3Pb29GPSdUuLoKEhfAbwR4rY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB6xHOAdHrvoY_MBTmCR3TUSQmVTWVohBBK3kNguqoRCXwnbn-I3MpM4FJDgxjVxLMXzjeezZwNYDYUXGldKnkRG8EBEhicykNzXXiplSBXOKXe41Y6al8HxVXg1BK9VLgyFVVZ7YrFR6ztFd-SbSG2p9IyInJ3ef05do8i7WrXQKGFxYl6e8Mh2v320j_Jd87zDg4u9JrddBbhCuOVcREj5636gdag6ka9l4AtDNNqXdYQzOaoUwliKMBQdgccHIRyZKCc1iSMVKgHOOwyjSDMkatHo7kH77PzdbxGFto1u3eFoi12bplMm67mUCoM2krv0H1x8NoUDfvvFJVtYusNJ-GspKmuUmJqCIZNNw0TV_oHZ3WAa_nyoZTgDj408L0Mn2c1DVxvNbvqJ5nuNFttiSca6xe0FPjbPvVubssUIt2UJC9b9UBuUFf15GPJpfNzpU4w8Syl6PmeKUNpn2uRFDFk2C5e_svxzMJLdZWYeGC23QQYlUmSFSHzSSHqJwaF1YwKVeDVwq_WNla14To03buNBrWaSSYwyiQuZxKIG6-_f9Mp6Hz-OXqzEFlvdv48HSK3BRiXKwevvZ_v382wrMNa8aJ3Gp0ftkwUY95BdlTFrizCS9x_MErKjPF22kGRw_dta8AbMZxin |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFD7qWmkaDxtjm-i4zA_jabPI3THSNJVCBYNW1TQk3rLEdlElFLoSBvw1ft3OSRxaJtG3viaOpfh8Puezzw3gcyi80LhS8jQyggciMjyVgeS-9jIpQ6pwTrnD_UF0dBb8OA_PG_BQ58JQWGWtE0tFra8U3ZHvIrWl0jMicnZHNixieND7PvnDqYMUeVrrdhoVRE7M_S0e366_HR-grHc8r3f4q3vEbYcBrhB6BRcR0v_YD7QO1SjytQx8YYhS-zJGaJPTSiGkpQhDMRJ4lBDCkalyMpM6UuGGwHlfQEugVYyb0No_HAx_PvowotC21I0djnbZtSk7VeKeS2kxaC-5S__ExVOzOOO6_7lnS6vXW4XXlq6yToWvt9Aw-Rq8qVtBMKsZ1mBlrq7hO_jbKYoqjJJd3Iy10eximmre7fTZHktzNi5vMvCxuZtc2vQtRhiuylmw8VydUFb26mHIrfHxaErx8iyjSPqCKULslGlTlPFk-Xs4W8ryf4BmfpWbdWC03AbZlMiQISIJyiLppQaHxsYEKvXa4Nbrmyhb_ZyacFwms7rNJJMEZZKUMklEG748fjOpan8sHL1Ziy2xeuA6maG2DV9rUc5ePz_bx8WzfYKXiP7k9HhwsgGvPCRaVfjaJjSL6Y3ZQqJUZNsWkQx-L3sT_AMNFhzT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+guided+grad-CAM+%3A+an+improved+explainable+artificial+intelligence+model+for+infrared+breast+cancer+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Raghavan%2C+Kaushik&rft.au=B%2C+Sivaselvan&rft.au=v%2C+Kamakoti&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=19&rft.spage=57551&rft.epage=57578&rft_id=info:doi/10.1007%2Fs11042-023-17776-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |