Fairness, explainability and in-between: understanding the impact of different explanation methods on non-expert users’ perceptions of fairness toward an algorithmic system
In light of the widespread use of algorithmic (intelligent) systems across numerous domains, there is an increasing awareness about the need to explain their underlying decision-making process and resulting outcomes. Since oftentimes these systems are being considered as black boxes, adding explanat...
Saved in:
Published in | Ethics and information technology Vol. 24; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In light of the widespread use of algorithmic (intelligent) systems across numerous domains, there is an increasing awareness about the need to explain their underlying decision-making process and resulting outcomes. Since oftentimes these systems are being considered as black boxes, adding explanations to their outcomes may contribute to the perception of their transparency and, as a result, increase users’ trust and fairness perception towards the system, regardless of its actual fairness, which can be measured using various fairness tests and measurements. Different explanation styles may have a different impact on users’ perception of fairness towards the system and on their understanding of the outcome of the system. Hence, there is a need to understand how various explanation styles may impact non-expert users’ perceptions of fairness and understanding of the system’s outcome. In this study we aimed at fulfilling this need. We performed a between-subject user study in order to examine the effect of various explanation styles on users’ fairness perception and understanding of the outcome. In the experiment we examined four known styles of textual explanations (case-based, demographic-based, input influence-based and sensitivity-based) along with a new style (certification-based) that reflect the results of an auditing process of the system. The results suggest that providing some kind of explanation contributes to users’ understanding of the outcome and that some explanation styles are more beneficial than others. Moreover, while explanations provided by the system are important and can indeed enhance users’ perception of fairness, their perception mainly depends on the outcome of the system. The results may shed light on one of the main problems in explainability of algorithmic systems, which is choosing the best explanation to promote users’ fairness perception towards a particular system, with respect to the outcome of the system. The contribution of this study is reflected in the new and realistic case study that was examined, in the creation and evaluation of a new explanation style that can be used as the link between the actual (computational) fairness of the system and users’ fairness perception and in the need of analyzing and evaluating explanations while taking into account the outcome of the system. |
---|---|
AbstractList | In light of the widespread use of algorithmic (intelligent) systems across numerous domains, there is an increasing awareness about the need to explain their underlying decision-making process and resulting outcomes. Since oftentimes these systems are being considered as black boxes, adding explanations to their outcomes may contribute to the perception of their transparency and, as a result, increase users’ trust and fairness perception towards the system, regardless of its actual fairness, which can be measured using various fairness tests and measurements. Different explanation styles may have a different impact on users’ perception of fairness towards the system and on their understanding of the outcome of the system. Hence, there is a need to understand how various explanation styles may impact non-expert users’ perceptions of fairness and understanding of the system’s outcome. In this study we aimed at fulfilling this need. We performed a between-subject user study in order to examine the effect of various explanation styles on users’ fairness perception and understanding of the outcome. In the experiment we examined four known styles of textual explanations (case-based, demographic-based, input influence-based and sensitivity-based) along with a new style (certification-based) that reflect the results of an auditing process of the system. The results suggest that providing some kind of explanation contributes to users’ understanding of the outcome and that some explanation styles are more beneficial than others. Moreover, while explanations provided by the system are important and can indeed enhance users’ perception of fairness, their perception mainly depends on the outcome of the system. The results may shed light on one of the main problems in explainability of algorithmic systems, which is choosing the best explanation to promote users’ fairness perception towards a particular system, with respect to the outcome of the system. The contribution of this study is reflected in the new and realistic case study that was examined, in the creation and evaluation of a new explanation style that can be used as the link between the actual (computational) fairness of the system and users’ fairness perception and in the need of analyzing and evaluating explanations while taking into account the outcome of the system. |
ArticleNumber | 2 |
Author | Shulner-Tal, Avital Kuflik, Tsvi Kliger, Doron |
Author_xml | – sequence: 1 givenname: Avital orcidid: 0000-0003-2091-2966 surname: Shulner-Tal fullname: Shulner-Tal, Avital email: avitalshulner@gmail.com organization: Department of Information Systems, University of Haifa – sequence: 2 givenname: Tsvi surname: Kuflik fullname: Kuflik, Tsvi organization: Department of Information Systems, University of Haifa – sequence: 3 givenname: Doron surname: Kliger fullname: Kliger, Doron organization: Department of Economics, University of Haifa |
BookMark | eNp9UU1u1DAUjlCRaAsXYGWJLQb_JHbCDlUUkCqxgbX1Yr_MuErsYHtUZsc1uASH4iR4mkpILLqxn-3vT_4umrMQAzbNS87ecMb028yZ0ooyISgblJC0fdKc804L2rdyOKuz7HvKh04_ay5yvmWMdZrr8-b3NfgUMOfXBH-sM_gAo599ORIIjvhARyx3iOEdOQSHKZd67cOOlD0Sv6xgC4kTcX6aMGEom0iA4mMgC5Z9dJnUscal9QlTIYdcZf78_EXqyeJ6QuaTxvQQhJR4B8lVfwLzLiZf9ou3JB9zweV583SCOeOLh_2y-Xb94evVJ3rz5ePnq_c31Eo-FKoVR9Uq2Q4OpFNWMzFCOwySAaK1euxEb52cHBvV2GkQMIKCumg79Z1w8rJ5temuKX4_YC7mNh5SqJZGKNEyqTsuK0psKJtizgknsya_QDoazsypF7P1Ymov5r4X01ZS_x_J-nL_YSWBnx-nyo2aq0_YYfqX6hHWX-nsqyU |
CitedBy_id | crossref_primary_10_1145_3716394 crossref_primary_10_1109_MTS_2023_3340238 crossref_primary_10_1177_20539517221115189 crossref_primary_10_14712_23366478_2024_24 crossref_primary_10_3390_electronics12122594 crossref_primary_10_1155_2024_4628855 crossref_primary_10_1016_j_tele_2023_101954 crossref_primary_10_1080_10447318_2024_2348843 crossref_primary_10_1177_09636625241291192 crossref_primary_10_1007_s11257_024_09400_6 crossref_primary_10_1080_0960085X_2024_2395531 crossref_primary_10_3390_bdcc8090105 crossref_primary_10_1080_10447318_2023_2210890 crossref_primary_10_1007_s10676_024_09746_w crossref_primary_10_1016_j_tourman_2022_104716 crossref_primary_10_3389_fpsyg_2024_1221177 crossref_primary_10_3389_frobt_2024_1375490 crossref_primary_10_3389_frai_2022_879603 crossref_primary_10_1057_s41599_024_02759_2 crossref_primary_10_1080_10447318_2022_2095705 crossref_primary_10_1016_j_im_2024_103969 |
Cites_doi | 10.1145/3172944.3172961 10.1109/ACCESS.2018.2870052 10.23919/MIPRO.2018.8400040 10.1109/MCI.2018.2881645 10.1007/s13218-020-00636-z 10.2753/MIS0742-1222230410 10.1145/3442188.3445941 10.1609/aimag.v38i3.2741 10.1007/978-3-319-90403-0_2 10.1145/506443.506619 10.1016/j.inffus.2019.12.012 10.1038/s42256-019-0048-x 10.1109/SMAP.2019.8864914 10.1080/09540091.2017.1310182 10.1016/j.ijhcs.2013.12.007 10.1145/3301275.3302310 10.1007/s11257-017-9195-0 10.1145/2939672.2939778 10.1016/j.dsp.2017.10.011 10.1007/s11747-019-00710-5 10.1145/3173574.3173951 10.1007/978-0-387-85820-3_15 10.1109/ACCESS.2019.2949286 10.1145/3236009 10.1609/aimag.v40i2.2850 10.1145/3359130 10.1089/big.2016.0007 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FE 8FG 8FK 8FL 8G5 AABKS ABSDQ ABUWG AEUYN AFKRA ALSLI ARAPS AVQMV AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ K50 K60 K6~ L.- M0C M1D M1O M2O MBDVC P5Z P62 PEJEM PGAAH PHGZM PHGZT PKEHL PMKZF PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRQQA Q9U |
DOI | 10.1007/s10676-022-09623-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Philosophy Collection Philosophy Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Arts Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection Art, Design & Architecture Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Arts & Humanities Database Library Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Visual Arts & Design ProQuest One Religion & Philosophy ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Digital Collections ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete ProQuest One Religion & Philosophy Philosophy Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Arts Premium Collection Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Arts & Humanities Full Text ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea ProQuest Research Library ProQuest Art, Design and Architecture Collection ABI/INFORM Complete (Alumni Edition) ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection ProQuest Digital Collections Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest One Visual Arts & Design ProQuest Central (Alumni) Business Premium Collection (Alumni) Philosophy Database |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science Philosophy Computer Science |
EISSN | 1572-8439 |
ExternalDocumentID | 10_1007_s10676_022_09623_4 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABKS AACDK AACJB AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSDQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHQT ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVQMV AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FD6 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K50 K60 K6~ KDC KOV LAK LLZTM M0C M1D M1O M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF- PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7W Z7X Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PMKZF 7XB 8FK ABRTQ L.- MBDVC PEJEM PGAAH PKEHL PQEST PQGLB PQUKI PRQQA Q9U |
ID | FETCH-LOGICAL-c319t-761e646349da3d6c702ba49930aeecc7b528cd3fd0b6b57a2aba6aaba7cf852d3 |
IEDL.DBID | U2A |
ISSN | 1388-1957 |
IngestDate | Sat Aug 23 14:07:56 EDT 2025 Tue Jul 01 01:27:47 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Fri Feb 21 02:47:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Decision support systems Users perception Explainability Fairness Algorithmic systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-761e646349da3d6c702ba49930aeecc7b528cd3fd0b6b57a2aba6aaba7cf852d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2091-2966 |
PQID | 2624037513 |
PQPubID | 25743 |
ParticipantIDs | proquest_journals_2624037513 crossref_primary_10_1007_s10676_022_09623_4 crossref_citationtrail_10_1007_s10676_022_09623_4 springer_journals_10_1007_s10676_022_09623_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Ethics and information technology |
PublicationTitleAbbrev | Ethics Inf Technol |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigital Signal Processing201873115373787010.1016/j.dsp.2017.10.011 Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In: Advances in neural information processing systems (pp. 4765–4774). Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135–1144). ACM. Griffin, R. W., Phillips, J., & Gully, S. M. (2017). Organizational behavior: Managing people and organizations. Singh, C., Murdoch, W. J., & Yu, B. (2018). Hierarchical interpretations for neural network predictions. arXiv preprint arXiv:1806.05337 RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNature Machine Intelligence20191520621510.1038/s42256-019-0048-x Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 Arya, V., Bellamy, R. K., Chen, P. Y., Dhurandhar, A., Hind, M., Hoffman, S. C., ... Mourad, S. (2019). One explanation does not fit all: A toolkit and taxonomy of AI explainability techniques. arXiv preprint arXiv:1909.03012 Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490 Felfernig, A., Gula, B. (2006). Consumer behavior in the interaction with knowledge-based recommender applications. In: ECAI 2006 workshop on recommender systems, pp. 37–41 GoodmanBFlaxmanSEuropean Union regulations on algorithmic decision-making and a “right to explanation”AI Magazine2017383505710.1609/aimag.v38i3.2741 Tintarev, N., & Masthoff, J. (2011). Designing and evaluating explanations for recommender systems. Recommender systems handbook (pp. 479–510). Springer. Wortham, R. H., Theodorou, A., & Bryson, J. J. (2016, June). What does the robot think? Transparency as a fundamental design requirement for intelligent systems. In: Ijcai-2016 ethics for artificial intelligence workshop. GuidottiRMonrealeARuggieriSTuriniFGiannottiFPedreschiDA survey of methods for explaining black box modelsACM Computing Surveys (CSUR)201851514210.1145/3236009 Jesus, S., Belém, C., Balayan, V., Bento, J., Saleiro, P., Bizarro, P., & Gama, J. (2021). How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations. arXiv preprint arXiv:2101.08758 Eiband, M., Schneider, H., & Buschek, D. (2018). Normative vs. Pragmatic: Two perspectives on the design of explanations in intelligent systems. In: IUI workshops on explainable smart systems (EXSS) NunesIJannachDA systematic review and taxonomy of explanations in decision support and recommender systemsUser Modeling and User-Adapted Interaction2017273–539344410.1007/s11257-017-9195-0 Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018, April). ‘It’s reducing a human being to a percentage’ perceptions of justice in algorithmic decisions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–14). RaiAExplainable AI: From black box to glass boxJournal of the Academy of Marketing Science202048113714110.1007/s11747-019-00710-5 WangWBenbasatIRecommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefsJournal of Management Information Systems200723421724610.2753/MIS0742-1222230410 Eiband, M., Schneider, H., Bilandzic, M., Fazekas-Con, J., Haug, M., & Hussmann, H. (2018). Bringing transparency design into practice. 23rd International conference on intelligent user interfaces (pp. 211–223). ACM. Craven, M. W. (1996). Extracting comprehensible models from trained neural networks. University of Wisconsin-Madison Department of Computer Sciences. Van BerkelNGoncalvesJHettiachchiDWijenayakeSKellyRMKostakosVCrowdsourcing perceptions of fair predictors for machine learning: A recidivism case studyProceedings of the ACM on Human-Computer Interaction20193CSCW12110.1145/3359130 Dodge, J., Liao, Q. V., Zhang, Y., Bellamy, R. K., & Dugan, C. (2019, March). Explaining models: an empirical study of how explanations impact fairness judgment. In Proceedings of the 24th International Conference on Intelligent User Interfaces (pp. 275–285). Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2019). Machine learning testing: Survey, landscapes and horizons. arXiv preprint arXiv:1906.10742 Barocas, S., Hardt, M., & Narayanan, A. (2018). Fairness and Machine Learning. fairmlbook. org. Retrieved from http://www.fairmlbook.org Green, B. (2018). “Fair” risk assessments: A precarious approach for criminal justice reform. In: 5th Workshop on fairness, accountability, and transparency in machine learning. HolzingerALangsGDenkHZatloukalKMüllerHCausability and explainability of artificial intelligence in medicineWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery201994e1312 Fernandez, A., Herrera, F., Cordon, O., del Jesus, M. J., & Marcelloni, F. (2019). Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to? IEEE Computational Intelligence Magazine,14(1), 69–81. Došilović, F. K., Brčić, M., & Hlupić, N. (2018). Explainable artificial intelligence: A survey. 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 0210–0215). IEEE. Kilbertus, N., Gascón, A., Kusner, M. J., Veale, M., Gummadi, K. P., & Weller, A. (2018). Blind justice: Fairness with encrypted sensitive attributes. arXiv preprint arXiv:1806.03281 GedikliFJannachDGeMHow should I explain? A comparison of different explanation types for recommender systemsInternational Journal of Human-Computer Studies201472436738210.1016/j.ijhcs.2013.12.007 Holzinger, A., Carrington, A., & Müller, H. (2020). Measuring the quality of explanations: The system causability scale (SCS) (pp. 1–6). KI-Künstliche Intelligenz. Loyola-GonzalezOBlack-box vs. white-box: Understanding their advantages and weaknesses from a practical point of viewIEEE Access2019715409615411310.1109/ACCESS.2019.2949286 Sinha, R., Swearingen, K. (2002). The role of transparency in recommender systems. In: Conference on Human Factors in Computing Systems, pp. 830–831 GunningDAhaDWDARPA’s explainable artificial intelligence programAI Magazine2019402445810.1609/aimag.v40i2.2850 Kim, B., Glassman, E., Johnson, B., & Shah, J. (2015). iBCM: Interactive Bayesian case model empowering humans via intuitive interaction. GleicherMA framework for considering comprehensibility in modelingBig Data201642758810.1089/big.2016.0007 TheodorouAWorthamRHBrysonJJDesigning and implementing transparency for real time inspection of autonomous robotsConnection Science201729323024110.1080/09540091.2017.1310182 AdadiABerradaMPeeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)IEEE Access20186521385216010.1109/ACCESS.2018.2870052 Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2, 2. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... Chatila, R. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. Tal, A. S., Batsuren, K., Bogina, V., Giunchiglia, F., Hartman, A., Loizou, S. K., Kuflik, T. & Otterbacher, J. (2019) “End to End” towards a framework for reducing biases and promoting transparency of algorithmic systems. In: 2019 14th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Larnaca, Cyprus, , pp. 1-6. https://doi.org/10.1109/SMAP.2019.8864914 Abdollahi, B., & Nasraoui, O. (2018). Transparency in fair machine learning: The case of explainable recommender systems. Human and Machine Learning (pp. 21–35). Springer. 9623_CR38 9623_CR1 9623_CR37 9623_CR18 G Montavon (9623_CR30) 2018; 73 N Van Berkel (9623_CR41) 2019; 3 9623_CR3 9623_CR17 9623_CR4 9623_CR12 9623_CR5 9623_CR11 9623_CR33 9623_CR6 9623_CR36 9623_CR7 9623_CR13 9623_CR35 9623_CR8 9623_CR9 A Theodorou (9623_CR39) 2017; 29 C Rudin (9623_CR34) 2019; 1 F Gedikli (9623_CR14) 2014; 72 I Nunes (9623_CR31) 2017; 27 M Gleicher (9623_CR15) 2016; 4 R Guidotti (9623_CR19) 2018; 51 A Rai (9623_CR32) 2020; 48 A Holzinger (9623_CR23) 2019; 9 9623_CR10 O Loyola-Gonzalez (9623_CR28) 2019; 7 W Wang (9623_CR42) 2007; 23 9623_CR27 9623_CR26 9623_CR29 9623_CR22 9623_CR44 A Adadi (9623_CR2) 2018; 6 9623_CR25 9623_CR24 B Goodman (9623_CR16) 2017; 38 D Gunning (9623_CR21) 2019; 40 9623_CR40 9623_CR43 9623_CR20 |
References_xml | – reference: RaiAExplainable AI: From black box to glass boxJournal of the Academy of Marketing Science202048113714110.1007/s11747-019-00710-5 – reference: Tal, A. S., Batsuren, K., Bogina, V., Giunchiglia, F., Hartman, A., Loizou, S. K., Kuflik, T. & Otterbacher, J. (2019) “End to End” towards a framework for reducing biases and promoting transparency of algorithmic systems. In: 2019 14th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Larnaca, Cyprus, , pp. 1-6. https://doi.org/10.1109/SMAP.2019.8864914 – reference: GleicherMA framework for considering comprehensibility in modelingBig Data201642758810.1089/big.2016.0007 – reference: HolzingerALangsGDenkHZatloukalKMüllerHCausability and explainability of artificial intelligence in medicineWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery201994e1312 – reference: WangWBenbasatIRecommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefsJournal of Management Information Systems200723421724610.2753/MIS0742-1222230410 – reference: Kim, B., Glassman, E., Johnson, B., & Shah, J. (2015). iBCM: Interactive Bayesian case model empowering humans via intuitive interaction. – reference: Abdollahi, B., & Nasraoui, O. (2018). Transparency in fair machine learning: The case of explainable recommender systems. Human and Machine Learning (pp. 21–35). Springer. – reference: Jesus, S., Belém, C., Balayan, V., Bento, J., Saleiro, P., Bizarro, P., & Gama, J. (2021). How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations. arXiv preprint arXiv:2101.08758 – reference: TheodorouAWorthamRHBrysonJJDesigning and implementing transparency for real time inspection of autonomous robotsConnection Science201729323024110.1080/09540091.2017.1310182 – reference: Eiband, M., Schneider, H., & Buschek, D. (2018). Normative vs. Pragmatic: Two perspectives on the design of explanations in intelligent systems. In: IUI workshops on explainable smart systems (EXSS) – reference: Griffin, R. W., Phillips, J., & Gully, S. M. (2017). Organizational behavior: Managing people and organizations. – reference: Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv:1606.03490 – reference: Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135–1144). ACM. – reference: Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018, April). ‘It’s reducing a human being to a percentage’ perceptions of justice in algorithmic decisions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–14). – reference: GoodmanBFlaxmanSEuropean Union regulations on algorithmic decision-making and a “right to explanation”AI Magazine2017383505710.1609/aimag.v38i3.2741 – reference: Loyola-GonzalezOBlack-box vs. white-box: Understanding their advantages and weaknesses from a practical point of viewIEEE Access2019715409615411310.1109/ACCESS.2019.2949286 – reference: Kilbertus, N., Gascón, A., Kusner, M. J., Veale, M., Gummadi, K. P., & Weller, A. (2018). Blind justice: Fairness with encrypted sensitive attributes. arXiv preprint arXiv:1806.03281 – reference: NunesIJannachDA systematic review and taxonomy of explanations in decision support and recommender systemsUser Modeling and User-Adapted Interaction2017273–539344410.1007/s11257-017-9195-0 – reference: Barocas, S., Hardt, M., & Narayanan, A. (2018). Fairness and Machine Learning. fairmlbook. org. Retrieved from http://www.fairmlbook.org – reference: GunningDAhaDWDARPA’s explainable artificial intelligence programAI Magazine2019402445810.1609/aimag.v40i2.2850 – reference: Fernandez, A., Herrera, F., Cordon, O., del Jesus, M. J., & Marcelloni, F. (2019). Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to? IEEE Computational Intelligence Magazine,14(1), 69–81. – reference: Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 – reference: Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... Chatila, R. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. – reference: Felfernig, A., Gula, B. (2006). Consumer behavior in the interaction with knowledge-based recommender applications. In: ECAI 2006 workshop on recommender systems, pp. 37–41 – reference: Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In: Advances in neural information processing systems (pp. 4765–4774). – reference: RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNature Machine Intelligence20191520621510.1038/s42256-019-0048-x – reference: Craven, M. W. (1996). Extracting comprehensible models from trained neural networks. University of Wisconsin-Madison Department of Computer Sciences. – reference: Singh, C., Murdoch, W. J., & Yu, B. (2018). Hierarchical interpretations for neural network predictions. arXiv preprint arXiv:1806.05337 – reference: AdadiABerradaMPeeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)IEEE Access20186521385216010.1109/ACCESS.2018.2870052 – reference: Dodge, J., Liao, Q. V., Zhang, Y., Bellamy, R. K., & Dugan, C. (2019, March). Explaining models: an empirical study of how explanations impact fairness judgment. In Proceedings of the 24th International Conference on Intelligent User Interfaces (pp. 275–285). – reference: Wortham, R. H., Theodorou, A., & Bryson, J. J. (2016, June). What does the robot think? Transparency as a fundamental design requirement for intelligent systems. In: Ijcai-2016 ethics for artificial intelligence workshop. – reference: Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2019). Machine learning testing: Survey, landscapes and horizons. arXiv preprint arXiv:1906.10742 – reference: Došilović, F. K., Brčić, M., & Hlupić, N. (2018). Explainable artificial intelligence: A survey. 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 0210–0215). IEEE. – reference: Sinha, R., Swearingen, K. (2002). The role of transparency in recommender systems. In: Conference on Human Factors in Computing Systems, pp. 830–831 – reference: Arya, V., Bellamy, R. K., Chen, P. Y., Dhurandhar, A., Hind, M., Hoffman, S. C., ... Mourad, S. (2019). One explanation does not fit all: A toolkit and taxonomy of AI explainability techniques. arXiv preprint arXiv:1909.03012 – reference: Van BerkelNGoncalvesJHettiachchiDWijenayakeSKellyRMKostakosVCrowdsourcing perceptions of fair predictors for machine learning: A recidivism case studyProceedings of the ACM on Human-Computer Interaction20193CSCW12110.1145/3359130 – reference: GuidottiRMonrealeARuggieriSTuriniFGiannottiFPedreschiDA survey of methods for explaining black box modelsACM Computing Surveys (CSUR)201851514210.1145/3236009 – reference: Tintarev, N., & Masthoff, J. (2011). Designing and evaluating explanations for recommender systems. Recommender systems handbook (pp. 479–510). Springer. – reference: GedikliFJannachDGeMHow should I explain? A comparison of different explanation types for recommender systemsInternational Journal of Human-Computer Studies201472436738210.1016/j.ijhcs.2013.12.007 – reference: MontavonGSamekWMüllerKRMethods for interpreting and understanding deep neural networksDigital Signal Processing201873115373787010.1016/j.dsp.2017.10.011 – reference: Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2, 2. – reference: Green, B. (2018). “Fair” risk assessments: A precarious approach for criminal justice reform. In: 5th Workshop on fairness, accountability, and transparency in machine learning. – reference: Eiband, M., Schneider, H., Bilandzic, M., Fazekas-Con, J., Haug, M., & Hussmann, H. (2018). Bringing transparency design into practice. 23rd International conference on intelligent user interfaces (pp. 211–223). ACM. – reference: Holzinger, A., Carrington, A., & Müller, H. (2020). Measuring the quality of explanations: The system causability scale (SCS) (pp. 1–6). KI-Künstliche Intelligenz. – ident: 9623_CR11 doi: 10.1145/3172944.3172961 – ident: 9623_CR25 – volume: 6 start-page: 52138 year: 2018 ident: 9623_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: 9623_CR27 – ident: 9623_CR5 – ident: 9623_CR7 – ident: 9623_CR17 – ident: 9623_CR9 doi: 10.23919/MIPRO.2018.8400040 – ident: 9623_CR13 doi: 10.1109/MCI.2018.2881645 – ident: 9623_CR22 doi: 10.1007/s13218-020-00636-z – volume: 9 start-page: e1312 issue: 4 year: 2019 ident: 9623_CR23 publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 23 start-page: 217 issue: 4 year: 2007 ident: 9623_CR42 publication-title: Journal of Management Information Systems doi: 10.2753/MIS0742-1222230410 – ident: 9623_CR24 doi: 10.1145/3442188.3445941 – volume: 38 start-page: 50 issue: 3 year: 2017 ident: 9623_CR16 publication-title: AI Magazine doi: 10.1609/aimag.v38i3.2741 – ident: 9623_CR35 – ident: 9623_CR10 – ident: 9623_CR1 doi: 10.1007/978-3-319-90403-0_2 – ident: 9623_CR12 – ident: 9623_CR37 doi: 10.1145/506443.506619 – ident: 9623_CR3 doi: 10.1016/j.inffus.2019.12.012 – volume: 1 start-page: 206 issue: 5 year: 2019 ident: 9623_CR34 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-019-0048-x – ident: 9623_CR43 – ident: 9623_CR38 doi: 10.1109/SMAP.2019.8864914 – volume: 29 start-page: 230 issue: 3 year: 2017 ident: 9623_CR39 publication-title: Connection Science doi: 10.1080/09540091.2017.1310182 – volume: 72 start-page: 367 issue: 4 year: 2014 ident: 9623_CR14 publication-title: International Journal of Human-Computer Studies doi: 10.1016/j.ijhcs.2013.12.007 – ident: 9623_CR8 doi: 10.1145/3301275.3302310 – volume: 27 start-page: 393 issue: 3–5 year: 2017 ident: 9623_CR31 publication-title: User Modeling and User-Adapted Interaction doi: 10.1007/s11257-017-9195-0 – ident: 9623_CR33 doi: 10.1145/2939672.2939778 – volume: 73 start-page: 1 year: 2018 ident: 9623_CR30 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2017.10.011 – ident: 9623_CR26 – ident: 9623_CR4 – ident: 9623_CR20 – volume: 48 start-page: 137 issue: 1 year: 2020 ident: 9623_CR32 publication-title: Journal of the Academy of Marketing Science doi: 10.1007/s11747-019-00710-5 – ident: 9623_CR18 – ident: 9623_CR6 doi: 10.1145/3173574.3173951 – ident: 9623_CR40 doi: 10.1007/978-0-387-85820-3_15 – volume: 7 start-page: 154096 year: 2019 ident: 9623_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949286 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 9623_CR19 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3236009 – ident: 9623_CR36 – volume: 40 start-page: 44 issue: 2 year: 2019 ident: 9623_CR21 publication-title: AI Magazine doi: 10.1609/aimag.v40i2.2850 – ident: 9623_CR29 – ident: 9623_CR44 – volume: 3 start-page: 1 issue: CSCW year: 2019 ident: 9623_CR41 publication-title: Proceedings of the ACM on Human-Computer Interaction doi: 10.1145/3359130 – volume: 4 start-page: 75 issue: 2 year: 2016 ident: 9623_CR15 publication-title: Big Data doi: 10.1089/big.2016.0007 |
SSID | ssj0005717 |
Score | 2.4647048 |
Snippet | In light of the widespread use of algorithmic (intelligent) systems across numerous domains, there is an increasing awareness about the need to explain their... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Computer Science Decision making Ethics Evaluation Innovation/Technology Management Library Science Management of Computing and Information Systems Original Paper Perception Perceptions User Interfaces and Human Computer Interaction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvfTCTwGxpUVzQL1Qi8RO7IRLVVBXFVKrClGpt2j8E1hpm912U4neeA1egofiSRgnTlOQ6CWKlGRiecb2ePzNfIy9qb3WtjCeY4K0QRE64YgWeV56j-QvFApDvOP4RB2dZZ_O8_MYcFtFWOUwJ3YTtVvYECN_J1SoHKfzVO4vL3lgjQqnq5FC4yFbpym4oM3X-ofDk9PPI8hDd5y7qSR7SMtcx7SZmDyndADgCk5uvJA8-3tpGv3Nf45Iu5Vn-oQ9ii4jHPQ6fsoe-GaTPR7oGCCOzk22E3MQYBdiklHo9PH5xulAW3DzjP2a4uwqTHN74L8v510OVYDJ3gA2DmYNjwCu93B9N_0FyF-EPrMSFjUM9CptL6SPLELPSr0Cum0WDe9IBFoI4ZDV7x8_YTliaYKMOjYE2g7BS_8HnH-lrm-_Xcws9KWmn7Oz6eGXj0c8cjdwS4O65VqlXmVKZqVD6ZTViTBIuyuZoCer0SYXhXWydolRJtco0KBCumhbF7lw8gVboyb6lwyUlGXwK0pnssySAIuFtYYUXpLv54oJSwe1VTYWNg_8GvNqLMkcVF2RqqtO1VU2YW9vv1n2ZT3ufXt7sIYqDvFVNRrkhO0NFjI-_r-0rfulvWIbojPKgHPbZmvt1bXfIcenNa-jdf8BQ2EFJA priority: 102 providerName: ProQuest |
Title | Fairness, explainability and in-between: understanding the impact of different explanation methods on non-expert users’ perceptions of fairness toward an algorithmic system |
URI | https://link.springer.com/article/10.1007/s10676-022-09623-4 https://www.proquest.com/docview/2624037513 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVoe-mF0gJiabuaA-JCLSV2YifcFrrbCtRSIVYqp8h2HFhpya52U4ne-A1-go_iSxg7TtMiQOLiRLEzsTIz9tiemUfIs8pKaTJtqYoULlCYjKhSRtE0t1ahvZAJ5fY7zs7F6TR5c5lehqCwdeft3h1J-pH6VrCbkM5hllE0uxmnyQbZSt3aHaV4yka9Y4f0OLsxRxmI81SGUJk_07g7HfU25m_Hon62mTwg94OZCKOWr7vknq33yE4HwQBBI_fIYYg7gOcQAovcj-7rty86qILrh-THRM1Wbmg7Avt1OfdxU8419hpUXcKspsFp6yVc3Q55AbQRoY2mhEUFHaRK0xJpdxOhRaJeA97Wi5p64IAG3BbI-ue377Ds_WccjSp0BBrvtYvfBzX_tFjNms9fZgba9NKPyHQy_vD6lAa8BmpQkRsqRWxFIniSl4qXwsiIaYUrKh4pi5IidcoyU_KqjLTQqVRMaSUUFtJUWcpK_phsYhftEwKC89zZEnmpk8QgAaMyYzTOsznae2U2IHHHtsKEZOYOU2Ne9GmYHasLZHXhWV0kA_Li5p1lm8rjn60POmkoglqvCyZc-kKZxnxAjjoJ6av_Tu3p_zXfJ9vMC6nzdTsgm83qyh6i8dPoIdnIJidDsjU6-fh2jNdX4_OL9_j0LD725buh14Zf75cGpg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcqAXfgqILS3MAbhQi6yd2AkSQghYtvRHHFqpt2A7Dqy0zS7dVLA3XoOX6EPxJIwThwASvfUSRUoySfR9GY-dmfkAHpVOKZsax3SkaYLCVcS0tpolmXOa4oVUar_esX8gx0fx--PkeAXOu1oYn1bZ-cTGURcz69fIn3HpO8epZChezr8wrxrl_652EhotLXbd8itN2RYvdt4Qvo85H709fD1mQVWAWaJbzWje7mQsRZwVWhTSqogbTXG_iLSj91Em4aktRFlERppEaa6Nlpo2ypZpwgtBdq_A1ViIzH9R6ehdn1KiGoXfoSD2DbNEhSKdUKonlU_35YwmDVyw-O-BsI9u__kh24xzo5twPQSo-Kpl1C1YcdU63OjEHzD4gnXYChUP-ARDSZOHuD--9qETSVjehvORnpx6p7qN7tt82lRs-aTcJeqqwEnFQrrYczz7s9gGKTrFto4TZyV2Yi51a6Rdx8RWA3uBtFvNKtZIFtToF18WP7__wHmfueNtlOFBsG7yhen-qKefCOj688nEYtvY-g4cXQqmd2GVHtHdA5SEq49issLEsSUDVqfWGhrhM4o0i3QAww623IY26l7NY5r3DaA91DlBnTdQ5_EAnv6-Zt42Ebnw7M2ODXlwKIu8p_8AtjuG9If_b23jYmsP4dr4cH8v39s52L0Pa7whqM-w24TV-vTMbVHIVZsHDc8RPl72h_ULhWdCjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYR64aeA2NLCHIALtZq1EztBQghoVy2F1QpRqbfUcRxYaZtduqlgb7wGL8ED8Dg8CePEIYBEb71EkZJMHM14PON8Mx_Aw8IqZeLMMh1oSlC4CpjWRrMosVZTvBBL7fY73o7k_lH4-jg6XoEfbS2Mg1W2PrF21PnMuD3yHS5d5zgVDcRO4WER493h8_kn5hik3J_Wlk6jMZFDu_xM6dvi2cEu6foR58O996_2mWcYYIZMr2KUw1sZShEmuRa5NCrgmaYcQATa0repLOKxyUWRB5nMIqW5zrTUdFCmiCOeC5J7BVYVZUVBD1Zf7o3G7zqAiar5fgeCbHGQRMqX7PjCPakc-JczSiG4YOHfy2IX6_7ze7Ze9YY34JoPV_FFY183YcWW63C9pYJA7xnWYcvXP-Bj9AVOTuHd9bVxS5mwvAXfh3py5lzsNtov82ldv-UgukvUZY6Tknnw2FM8_7P0BilWxaaqE2cFttQuVSOk2dXEhhF7gXRazkpWExhU6LZiFj-_fsN5h-NxMgo_EKxq9DC9H_X0A6m6-ng6Mdi0ub4NR5ei1TvQoyHau4BSiMTFNEmehaEhAUbHxmS03icUd-ZxHwat2lLjm6o7bo9p2rWDdqpOSdVpreo07MOT38_Mm5YiF9692VpD6t3LIu0mQx-2WwvpLv9f2sbF0h7AVZpU6ZuD0eE9WOO1fTq43Sb0qrNzu0XxV5Xd94aOcHLZc-sXpVpIHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fairness%2C+explainability+and+in-between%3A+understanding+the+impact+of+different+explanation+methods+on+non-expert+users%E2%80%99+perceptions+of+fairness+toward+an+algorithmic+system&rft.jtitle=Ethics+and+information+technology&rft.au=Shulner-Tal%2C+Avital&rft.au=Kuflik%2C+Tsvi&rft.au=Kliger%2C+Doron&rft.date=2022-03-01&rft.issn=1388-1957&rft.eissn=1572-8439&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1007%2Fs10676-022-09623-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10676_022_09623_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-1957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-1957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-1957&client=summon |