Deep learning-based multi-view 3D-human action recognition using skeleton and depth data

Human Action Recognition (HAR) is a fundamental challenge that smart surveillance systems must overcome. With the rising affordability of capturing human actions with more advanced depth cameras, HAR has garnered increased interest over the years, however the majority of these efforts have been on s...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 13; pp. 19829 - 19851
Main Authors Ghosh, Sampat Kumar, M, Rashmi, Mohan, Biju R, Guddeti, Ram Mohana Reddy
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human Action Recognition (HAR) is a fundamental challenge that smart surveillance systems must overcome. With the rising affordability of capturing human actions with more advanced depth cameras, HAR has garnered increased interest over the years, however the majority of these efforts have been on single-view HAR. Recognizing human actions from arbitrary viewpoints is more challenging, as the same action is observed differently from different angles. This paper proposes a multi-stream Convolutional Neural Network (CNN) model for multi-view HAR using depth and skeleton data. We also propose a novel and efficient depth descriptor, Edge Detected-Motion History Image (ED-MHI), based on Canny Edge Detection and Motion History Image. Also, the proposed skeleton descriptor, Motion and Orientation of Joints (MOJ), represent the appropriate action by using joint motion and orientation. Experimental results on two datasets of human actions: NUCLA Multiview Action3D and NTU RGB-D using a Cross-subject evaluation protocol demonstrated that the proposed system exhibits the superior performance as compared to the state-of-the-art works with 93.87% and 85.61% accuracy, respectively.
AbstractList Human Action Recognition (HAR) is a fundamental challenge that smart surveillance systems must overcome. With the rising affordability of capturing human actions with more advanced depth cameras, HAR has garnered increased interest over the years, however the majority of these efforts have been on single-view HAR. Recognizing human actions from arbitrary viewpoints is more challenging, as the same action is observed differently from different angles. This paper proposes a multi-stream Convolutional Neural Network (CNN) model for multi-view HAR using depth and skeleton data. We also propose a novel and efficient depth descriptor, Edge Detected-Motion History Image (ED-MHI), based on Canny Edge Detection and Motion History Image. Also, the proposed skeleton descriptor, Motion and Orientation of Joints (MOJ), represent the appropriate action by using joint motion and orientation. Experimental results on two datasets of human actions: NUCLA Multiview Action3D and NTU RGB-D using a Cross-subject evaluation protocol demonstrated that the proposed system exhibits the superior performance as compared to the state-of-the-art works with 93.87% and 85.61% accuracy, respectively.
Author Mohan, Biju R
M, Rashmi
Ghosh, Sampat Kumar
Guddeti, Ram Mohana Reddy
Author_xml – sequence: 1
  givenname: Sampat Kumar
  surname: Ghosh
  fullname: Ghosh, Sampat Kumar
  email: sampatghosh1995@gmail.com
  organization: Department of Information Technology, National Institute of Technology Karnataka
– sequence: 2
  givenname: Rashmi
  orcidid: 0000-0003-2101-5992
  surname: M
  fullname: M, Rashmi
  email: nm.rashmi@gmail.com
  organization: Department of Information Technology, National Institute of Technology Karnataka
– sequence: 3
  givenname: Biju R
  surname: Mohan
  fullname: Mohan, Biju R
  organization: Department of Information Technology, National Institute of Technology Karnataka
– sequence: 4
  givenname: Ram Mohana Reddy
  surname: Guddeti
  fullname: Guddeti, Ram Mohana Reddy
  organization: Department of Information Technology, National Institute of Technology Karnataka
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXkdPkrZpL2XzCwRvFLwLaXu6dXZpTVJl_95uFQQvdnXeA-9zPt4ZmdjWIiGXHK45gLrxnEMkGAjBeCR4xHYnZMpjJZlSgk8GLVNgKgZ-RmbebwB4EotoSt6XiB1t0Dhb2xXLjceSbvsm1Oyrxm8ql2zdb42lpgh1a6nDol3Z-qB7PyDUf2CDYWiNLWmJXVjT0gRzTk4r03i8-K1z8nZ_97p4ZM8vD0-L22dWSJ4FphLgGeSREonhCJXhqYEqTXIViwxknkQyASOquJCZQFGavMgxLaoEpMogyeWcXI1zO9d-9uiD3rS9s8NKLVKIYi7SOB1c6egqXOu9w0oXdTD7L4IzdaM56H2OesxRDznqQ456N6DiH9q5emvc7jgkR8gPZrtC93fVEeoHKLmHkA
CitedBy_id crossref_primary_10_1007_s00521_024_09630_0
crossref_primary_10_33851_JMIS_2024_11_1_83
crossref_primary_10_1007_s11042_024_20484_5
crossref_primary_10_3390_app14146335
crossref_primary_10_7717_peerj_cs_2054
crossref_primary_10_1016_j_knosys_2025_113232
Cites_doi 10.1109/TPAMI.2017.2691321
10.1080/17517575.2018.1557256
10.1016/j.imavis.2019.10.004
10.1109/LRA.2021.3059624
10.1016/j.patrec.2013.02.006
10.1109/TPAMI.2013.198
10.1109/ACCESS.2020.2968054
10.1080/21645515.2017.1379639
10.1109/TPAMI.2016.2533389
10.1016/j.chemosphere.2021.132569
10.1109/TGRS.2021.3090410
10.1007/s11356-021-16627-y
10.1109/TIP.2019.2937724
10.1109/JSEN.2020.3028561
10.1007/s11063-020-10400-x
10.1016/j.imavis.2020.104090
10.1049/iet-cvi.2018.5014
10.1109/TCSVT.2020.2965574
10.1016/j.ins.2019.10.047
10.1109/MMUL.2012.24
10.1109/TSMC.2018.2850149
10.1007/s10489-020-01803-3
10.1109/TIP.2020.2965299
10.1016/j.patcog.2017.12.004
10.1109/CVPR.2018.00300
10.1109/CVPR.2014.108
10.1109/CVPR.2013.365
10.1609/aaai.v32i1.12328
10.1609/aaai.v31i1.11212
10.1109/TPAMI.1986.4767851
10.1109/CVPR.2011.5995631
10.1007/978-981-19-0840-8_6
10.1109/CVPR.2013.98
10.1109/TPAMI.2022.3183112
10.1109/BigMM.2019.00-21
10.1109/CVPR.2015.7299172
10.1109/ICCV.2013.389
10.1109/ICASSP40776.2020.9053939
10.1109/CVPR.2016.167
10.1109/ICPR48806.2021.9412863
10.1007/s00530-019-00645-5
10.1109/EMBC.2014.6944534
10.1109/SPCOM.2012.6290032
10.1109/CVPR.2016.115
10.1109/CVPR.2017.486
10.1109/CVPR.2014.339
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-022-14214-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 19851
ExternalDocumentID 10_1007_s11042_022_14214_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-760190b4726a1e0fa18a0f86b752903b64360a2f5c392e2dabcbe8cf6037906b3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:08:25 EDT 2025
Tue Jul 01 04:13:18 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Fri Feb 21 02:43:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Deep learning
Human action recognition
Feature fusion
Convolutional neural networks
Score fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-760190b4726a1e0fa18a0f86b752903b64360a2f5c392e2dabcbe8cf6037906b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2101-5992
PQID 2804512858
PQPubID 54626
PageCount 23
ParticipantIDs proquest_journals_2804512858
crossref_citationtrail_10_1007_s11042_022_14214_y
crossref_primary_10_1007_s11042_022_14214_y
springer_journals_10_1007_s11042_022_14214_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shahroudy, Ng, Gong, Wang (CR38) 2017; 40
CR37
CR36
CR35
Ding, Liu, Cheng, Belyaev (CR15) 2021; 51
Fan, Weng, Zhang, Shi, Zhang (CR16) 2020; 8
CR32
Bhatti, Zeeshan, Nizamani, Bazai, Yu, Yuan (CR8) 2022; 288
CR31
CR30
Afza, Khan, Sharif, Kadry, Manogaran, Saba (CR1) 2021; 106
CR3
Wang, Liu, Wu, Yuan (CR44) 2013; 36
Bhatti, Huang, Wu, Zhang, Mehmood, Han (CR5) 2019; 13
CR9
CR49
Huynh-The, Hua, Ngo, Kim (CR20) 2020; 513
CR48
CR47
CR46
CR45
CR43
CR42
Bhatti, Huang, Wang, Zhang, Mehmood, Di (CR4) 2018; 14
CR41
CR40
Islam, Iqbal (CR21) 2021; 6
Gu, Ye, Sheng, Ou, Li (CR18) 2020; 93
Dhiman, Vishwakarma (CR13) 2020; 29
CR19
Ahmad, Khan (CR2) 2021; 21
Bhatti, Yu, Hasnain, Nawaz, Yuan, Wen (CR7) 2022; 29
CR17
Kamel, Sheng, Yang, Li, Shen, Feng (CR22) 2018; 49
CR12
CR10
Rahmani, Mahmood, Huynh, Mian (CR34) 2016; 38
Kanjilal, Uysal (CR23) 2021; 53
Shao, Li, Zhang (CR39) 2021; 31
Pham, Khoudour, Crouzil, Zegers, Velastin (CR33) 2018; 13
CR29
CR28
CR27
CR26
CR25
CR24
Zhang, Xue, Lan, Zeng, Gao, Zheng (CR51) 2019; 29
Chen, Wei, Ferryman (CR11) 2013; 34
Zhang (CR50) 2012; 19
Ding, Liu, Belyaev, Cheng (CR14) 2018; 77
Bhatti, Yu, Chanussot, Zeeshan, Yuan, Luo (CR6) 2021; 60
UA Bhatti (14214_CR6) 2021; 60
14214_CR12
14214_CR10
A Kamel (14214_CR22) 2018; 49
P Zhang (14214_CR51) 2019; 29
14214_CR49
14214_CR48
W Ding (14214_CR14) 2018; 77
Y Gu (14214_CR18) 2020; 93
H Rahmani (14214_CR34) 2016; 38
14214_CR25
14214_CR24
Z Ahmad (14214_CR2) 2021; 21
UA Bhatti (14214_CR5) 2019; 13
14214_CR19
14214_CR17
F Afza (14214_CR1) 2021; 106
MM Islam (14214_CR21) 2021; 6
14214_CR3
Z Zhang (14214_CR50) 2012; 19
Y Fan (14214_CR16) 2020; 8
14214_CR36
14214_CR9
HH Pham (14214_CR33) 2018; 13
14214_CR35
14214_CR32
14214_CR31
14214_CR30
C Ding (14214_CR15) 2021; 51
14214_CR29
14214_CR28
14214_CR27
14214_CR26
T Huynh-The (14214_CR20) 2020; 513
UA Bhatti (14214_CR8) 2022; 288
14214_CR47
14214_CR46
L Chen (14214_CR11) 2013; 34
14214_CR45
C Dhiman (14214_CR13) 2020; 29
A Shahroudy (14214_CR38) 2017; 40
14214_CR43
14214_CR42
UA Bhatti (14214_CR7) 2022; 29
14214_CR41
14214_CR40
Z Shao (14214_CR39) 2021; 31
14214_CR37
R Kanjilal (14214_CR23) 2021; 53
J Wang (14214_CR44) 2013; 36
UA Bhatti (14214_CR4) 2018; 14
References_xml – ident: CR45
– ident: CR49
– volume: 40
  start-page: 1045
  issue: 5
  year: 2017
  end-page: 1058
  ident: CR38
  article-title: Deep multimodal feature analysis for action recognition in rgb+ d videos
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2691321
– ident: CR12
– volume: 13
  start-page: 329
  issue: 3
  year: 2019
  end-page: 351
  ident: CR5
  article-title: Recommendation system using feature extraction and pattern recognition in clinical care systems
  publication-title: Enterprise Information Systems
  doi: 10.1080/17517575.2018.1557256
– volume: 93
  start-page: 103818
  year: 2020
  ident: CR18
  article-title: Multiple stream deep learning model for human action recognition
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2019.10.004
– volume: 6
  start-page: 1729
  issue: 2
  year: 2021
  end-page: 1736
  ident: CR21
  article-title: Multi-gat: a graphical attention-based hierarchical multimodal representation learning approach for human activity recognition
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2021.3059624
– volume: 34
  start-page: 1995
  issue: 15
  year: 2013
  end-page: 2006
  ident: CR11
  article-title: A survey of human motion analysis using depth imagery
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.02.006
– ident: CR35
– ident: CR29
– volume: 36
  start-page: 914
  issue: 5
  year: 2013
  end-page: 927
  ident: CR44
  article-title: Learning actionlet ensemble for 3D human action recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.198
– ident: CR25
– ident: CR42
– ident: CR46
– volume: 8
  start-page: 15280
  year: 2020
  end-page: 15290
  ident: CR16
  article-title: Context-aware cross-attention for skeleton-based human action recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968054
– ident: CR19
– volume: 14
  start-page: 165
  issue: 1
  year: 2018
  end-page: 171
  ident: CR4
  article-title: Recommendation system for immunization coverage and monitoring
  publication-title: Human Vaccines & Immunotherapeutics
  doi: 10.1080/21645515.2017.1379639
– volume: 38
  start-page: 2430
  issue: 12
  year: 2016
  end-page: 2443
  ident: CR34
  article-title: Histogram of oriented principal components for cross-view action recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2533389
– ident: CR9
– ident: CR32
– volume: 288
  start-page: 132569
  year: 2022
  ident: CR8
  article-title: Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132569
– ident: CR36
– volume: 60
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR6
  article-title: Local Similarity-Based Spatial–Spectral fusion hyperspectral image classification with deep CNN and gabor filtering
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2021.3090410
– ident: CR26
– volume: 29
  start-page: 14780
  issue: 10
  year: 2022
  end-page: 14790
  ident: CR7
  article-title: Evaluating the impact of roads on the diversity pattern and density of trees to improve the conservation of species
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-16627-y
– ident: CR43
– ident: CR47
– volume: 29
  start-page: 1061
  year: 2019
  end-page: 1073
  ident: CR51
  article-title: Eleatt-rnn: adding attentiveness to neurons in recurrent neural networks
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2937724
– volume: 21
  start-page: 3623
  issue: 3
  year: 2021
  end-page: 3634
  ident: CR2
  article-title: CNN-based multistage gated average fusion (MGAF) for human action recognition using depth and inertial sensors
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3028561
– ident: CR37
– ident: CR30
– volume: 53
  start-page: 561
  issue: 1
  year: 2021
  end-page: 579
  ident: CR23
  article-title: The future of human activity recognition: deep learning or feature engineering?
  publication-title: Neur Process Lett
  doi: 10.1007/s11063-020-10400-x
– ident: CR10
– volume: 106
  start-page: 104090
  year: 2021
  ident: CR1
  article-title: A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2020.104090
– ident: CR40
– volume: 13
  start-page: 319
  issue: 3
  year: 2018
  end-page: 328
  ident: CR33
  article-title: Learning to recognise 3D human action from a new skeleton-based representation using deep convolutional neural networks
  publication-title: IET Comput Vision
  doi: 10.1049/iet-cvi.2018.5014
– ident: CR27
– volume: 31
  start-page: 160
  issue: 1
  year: 2021
  end-page: 174
  ident: CR39
  article-title: Learning representations from skeletal self-similarities for cross-view action recognition
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2020.2965574
– ident: CR48
– volume: 513
  start-page: 112
  year: 2020
  end-page: 126
  ident: CR20
  article-title: Image representation of pose-transition feature for 3D skeleton-based action recognition
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.10.047
– volume: 19
  start-page: 4
  issue: 2
  year: 2012
  end-page: 10
  ident: CR50
  article-title: Microsoft kinect sensor and its effect
  publication-title: IEEE Multimedia
  doi: 10.1109/MMUL.2012.24
– volume: 49
  start-page: 1806
  issue: 9
  year: 2018
  end-page: 1819
  ident: CR22
  article-title: Deep convolutional neural networks for human action recognition using depth maps and postures
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2018.2850149
– volume: 51
  start-page: 560
  issue: 1
  year: 2021
  end-page: 570
  ident: CR15
  article-title: Spatio-temporal attention on manifold space for 3D human action recognition
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01803-3
– ident: CR3
– ident: CR17
– ident: CR31
– volume: 29
  start-page: 3835
  year: 2020
  end-page: 3844
  ident: CR13
  article-title: View-invariant deep architecture for human action recognition using two-stream motion and shape temporal dynamics
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.2965299
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 77
  start-page: 75
  year: 2018
  end-page: 86
  ident: CR14
  article-title: Tensor-based linear dynamical systems for action recognition from 3D skeletons
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.004
– volume: 19
  start-page: 4
  issue: 2
  year: 2012
  ident: 14214_CR50
  publication-title: IEEE Multimedia
  doi: 10.1109/MMUL.2012.24
– ident: 14214_CR3
  doi: 10.1109/CVPR.2018.00300
– volume: 34
  start-page: 1995
  issue: 15
  year: 2013
  ident: 14214_CR11
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.02.006
– ident: 14214_CR49
  doi: 10.1109/CVPR.2014.108
– volume: 6
  start-page: 1729
  issue: 2
  year: 2021
  ident: 14214_CR21
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2021.3059624
– volume: 60
  start-page: 1
  year: 2021
  ident: 14214_CR6
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2021.3090410
– volume: 29
  start-page: 3835
  year: 2020
  ident: 14214_CR13
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.2965299
– volume: 8
  start-page: 15280
  year: 2020
  ident: 14214_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968054
– ident: 14214_CR29
– ident: 14214_CR47
  doi: 10.1109/CVPR.2013.365
– ident: 14214_CR48
  doi: 10.1609/aaai.v32i1.12328
– volume: 31
  start-page: 160
  issue: 1
  year: 2021
  ident: 14214_CR39
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2020.2965574
– volume: 36
  start-page: 914
  issue: 5
  year: 2013
  ident: 14214_CR44
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.198
– ident: 14214_CR26
– ident: 14214_CR41
  doi: 10.1609/aaai.v31i1.11212
– volume: 13
  start-page: 329
  issue: 3
  year: 2019
  ident: 14214_CR5
  publication-title: Enterprise Information Systems
  doi: 10.1080/17517575.2018.1557256
– ident: 14214_CR9
  doi: 10.1109/TPAMI.1986.4767851
– volume: 40
  start-page: 1045
  issue: 5
  year: 2017
  ident: 14214_CR38
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2691321
– ident: 14214_CR30
  doi: 10.1109/CVPR.2011.5995631
– volume: 38
  start-page: 2430
  issue: 12
  year: 2016
  ident: 14214_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2533389
– volume: 106
  start-page: 104090
  year: 2021
  ident: 14214_CR1
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2020.104090
– ident: 14214_CR17
  doi: 10.1007/978-981-19-0840-8_6
– ident: 14214_CR32
  doi: 10.1109/CVPR.2013.98
– volume: 51
  start-page: 560
  issue: 1
  year: 2021
  ident: 14214_CR15
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01803-3
– volume: 53
  start-page: 561
  issue: 1
  year: 2021
  ident: 14214_CR23
  publication-title: Neur Process Lett
  doi: 10.1007/s11063-020-10400-x
– ident: 14214_CR42
  doi: 10.1109/TPAMI.2022.3183112
– ident: 14214_CR12
  doi: 10.1109/BigMM.2019.00-21
– ident: 14214_CR19
  doi: 10.1109/CVPR.2015.7299172
– volume: 77
  start-page: 75
  year: 2018
  ident: 14214_CR14
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.004
– ident: 14214_CR43
– volume: 29
  start-page: 1061
  year: 2019
  ident: 14214_CR51
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2937724
– ident: 14214_CR27
– volume: 49
  start-page: 1806
  issue: 9
  year: 2018
  ident: 14214_CR22
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2018.2850149
– volume: 513
  start-page: 112
  year: 2020
  ident: 14214_CR20
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.10.047
– ident: 14214_CR46
  doi: 10.1109/ICCV.2013.389
– volume: 14
  start-page: 165
  issue: 1
  year: 2018
  ident: 14214_CR4
  publication-title: Human Vaccines & Immunotherapeutics
  doi: 10.1080/21645515.2017.1379639
– ident: 14214_CR28
  doi: 10.1109/ICASSP40776.2020.9053939
– volume: 288
  start-page: 132569
  year: 2022
  ident: 14214_CR8
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132569
– volume: 21
  start-page: 3623
  issue: 3
  year: 2021
  ident: 14214_CR2
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3028561
– ident: 14214_CR35
  doi: 10.1109/CVPR.2016.167
– ident: 14214_CR36
  doi: 10.1109/ICPR48806.2021.9412863
– volume: 29
  start-page: 14780
  issue: 10
  year: 2022
  ident: 14214_CR7
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-16627-y
– ident: 14214_CR25
– ident: 14214_CR40
  doi: 10.1007/s00530-019-00645-5
– ident: 14214_CR10
  doi: 10.1109/EMBC.2014.6944534
– ident: 14214_CR31
  doi: 10.1109/SPCOM.2012.6290032
– ident: 14214_CR37
  doi: 10.1109/CVPR.2016.115
– ident: 14214_CR24
  doi: 10.1109/CVPR.2017.486
– volume: 13
  start-page: 319
  issue: 3
  year: 2018
  ident: 14214_CR33
  publication-title: IET Comput Vision
  doi: 10.1049/iet-cvi.2018.5014
– volume: 93
  start-page: 103818
  year: 2020
  ident: 14214_CR18
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2019.10.004
– ident: 14214_CR45
  doi: 10.1109/CVPR.2014.339
SSID ssj0016524
Score 2.3337543
Snippet Human Action Recognition (HAR) is a fundamental challenge that smart surveillance systems must overcome. With the rising affordability of capturing human...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19829
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Edge detection
Human activity recognition
Machine learning
Motion perception
Multimedia
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Surveillance systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfTgx1ScTsnBmwbTj7TpSdRtDMEh4mC30nx0gtJVVw_7781r01UFdyu0Ce17Sd6vye-9H0IXkYlCTOuQMBkp4kdKE-EzTaAUiEoNJE5S2Bp4HAejif8wZVO74bawtMp6TSwXajWXsEd-7XKohOJyxm_yDwKqUXC6aiU0NlHbLMHc_Hy17wbjp-fVOULArKwtp8S8lWPTZqrkOQdSU4DN7viu45Pl79DU4M0_R6Rl5BnuoR0LGfFt5eN9tKGzDtqt5RiwnZ0dtP2jtuABmva1zrEVhZgRiFYKl_RBAl-KvT4p9flwldmAV0wicw1k-BlevJmQZKAhTjKFlc6LVwx80kM0GQ5e7kfEyigQaeZXQYD1ElHhh26QOJqmicMTmvJAhMyNqCcMJglo4qZMGqykXZUIKTSXaUC9MKKB8I5QK5tn-hhhroRxp_AUaJQE3EuYlJylyo-kZpo6XeTUFoylrTEOUhfvcVMdGaweG6vHpdXjZRddrtrkVYWNtU_3asfEdrYt4mZsdNFV7azm9v-9nazv7RRtgbp8xW_soVbx-aXPDAYpxLkdaN8tU9dB
  priority: 102
  providerName: ProQuest
Title Deep learning-based multi-view 3D-human action recognition using skeleton and depth data
URI https://link.springer.com/article/10.1007/s11042-022-14214-y
https://www.proquest.com/docview/2804512858
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBR1Ws1rIHb7qweWyyOba2aVEsIhbqKWQfqaDUYuuh_97dZNOoqOApgWyWMLOb-ZL5Zj6A80hHIapUiKmIJPYjqTD3qcKmFYjMNCROM_Nr4HYUDMf-9YRObFHYomS7lynJ_E1dFbs5ppTEsM8d33V8vNqEOjXf7noVj93OOncQUCtlywjWT-LYUpmf5_gajiqM-S0tmkebeA92LExEncKv-7ChZg3YLSUYkN2RDdj-1E_wACY9pebICkFMsYlQEuWUQWwyAMjr4VyTDxXVDGjNHtLnhgA_RYtnHYY0HETpTCKp5ssnZDikhzCO-w9XQ2ylE7DQe2qJDdMlItwP3SB1FMlSh6UkYwEPqRsRj2scEpDUzajQ-Ei5MuWCKyaygHhhRALuHUFt9jpTx4CY5NqF3JNGlyRgXkqFYDSTfiQUVcRpglNaMBG2r7iRt3hJqo7IxuqJtnqSWz1ZNeFifc-86Krx5-hW6ZjE7rBF4jLTGcdllDXhsnRWdfn32U7-N_wUtozCfMFxbEFt-fauzjQOWfI2bLJ40IZ6J-52R-Y4eLzp62O3P7q7b-eL8gPzgdi8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHdkRZfYATWDhOnDoHhBCllPUEUm8hXlIkUFtoEepP8Y14srSABDdukZL48PzsmcRv5gHsRi4KCWtrVOjI0CAylqpAWIqtQEzqUuIkxV8DN7dh8z64bInWBHyUtTAoqyz3xGyjNl2N_8gPucROKFwKedx7oegahaerpYVGTosrO3x3n2z9o4u6m989zhtnd6dNWrgKUO3oNqAoAomYCmo8TDzL0sSTCUtlqGqCR8xXLkSHLOGp0C51sNwkSisrdRoyvxaxUPlu3EmYCnw_whUlG-ejU4tQFCa6klGHgVcU6eSleh4WwqB23gu4F9Dh90A4zm5_HMhmca6xAHNFgkpOckYtwoTtLMF8af5Air1gCWa_dDJchlbd2h4pLCjaFGOjIZlYkSKuxK_TzA2Q5HUUZKRbctcovW-T_pMLgC4RJUnHEGN7g0eC6tUVuP8XeFeh0ul27BoQaZQjj_INOqKE0k-E1lKkJoi0FZZ5VfBKBGNddDRHY43neNyLGVGPHepxhno8rML-6J1e3s_jz6c3y4mJi7Xdj8dMrMJBOVnj27-Ptv73aDsw3by7uY6vL26vNmAGfe1zZeUmVAavb3bLZT8DtZ1RjsDDf3P8EzrYEbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2lqYTaA9CWikCge4ATXXW99trrA0JAGrUUogq1Um7G--EitUpTEoTy1_h1zNjrBCrRW2-WbO_h7fPOrPfNPIBXOUYh5X3Glc0dT3LnuUmU59QKxFWYEpcV_Rr4MkqPzpNPYzXuwO-2FoZkle2aWC_U7trSP_IDqakTitRKH1RBFnE6GL6b3nBykKKT1tZOo6HIiV_8wu3b7O3xAOf6tZTDw7OPRzw4DHCL1JtzEoTkwiSZTMvIi6qMdCkqnZpMyVzEBsN1KkpZKYtphJeuNNZ4batUxFkuUhPjuGuwnuGuSHRh_cPh6PTr8gwjVcFSVwuOiEShZKcp3IuoLIaU9FEio4Qv_g2Lq1z31vFsHfWGj-FhSFfZ-4ZfW9Dxk2141FpBsLAybMPmX30Nd2A88H7KgiHFBadI6VgtXeSEMosHvPYGZE1VBVuqmPCahPgXbHaJ4RDTUlZOHHN-Ov_OSMv6BM7vBeBd6E6uJ_4pMO0MUsnEjvxRUh2XylqtKpfk1isvoh5ELYKFDf3NyWbjqlh1ZibUC0S9qFEvFj14s3xn2nT3uPPpfjsxRfjSZ8WKlz3Ybydrdfv_oz27e7Q9eID8Lj4fj06ewwaZ3Dcyyz505z9--heYCs3Ny8A5Bt_um-Z_AL8EF0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+multi-view+3D-human+action+recognition+using+skeleton+and+depth+data&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ghosh%2C+Sampat+Kumar&rft.au=M%2C+Rashmi&rft.au=Mohan%2C+Biju+R&rft.au=Guddeti%2C+Ram+Mohana+Reddy&rft.date=2023-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=13&rft.spage=19829&rft.epage=19851&rft_id=info:doi/10.1007%2Fs11042-022-14214-y&rft.externalDocID=10_1007_s11042_022_14214_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon