Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval

Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as texture description and object proposal generation, but these tasks require annotations for images in the new domain. In this paper, we focus on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 26; no. 6; pp. 2868 - 2881
Main Authors Wei, Xiu-Shen, Luo, Jian-Hao, Wu, Jianxin, Zhou, Zhi-Hua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as texture description and object proposal generation, but these tasks require annotations for images in the new domain. In this paper, we focus on a novel and challenging task in the pure unsupervised setting: fine-grained image retrieval. Even with image labels, fine-grained images are difficult to classify, letting alone the unsupervised retrieval task. We propose the selective convolutional descriptor aggregation (SCDA) method. The SCDA first localizes the main object in fine-grained images, a step that discards the noisy background and keeps useful deep descriptors. The selected descriptors are then aggregated and the dimensionality is reduced into a short feature vector using the best practices we found. The SCDA is unsupervised, using no image label or bounding box annotation. Experiments on six fine-grained data sets confirm the effectiveness of the SCDA for fine-grained image retrieval. Besides, visualization of the SCDA features shows that they correspond to visual attributes (even subtle ones), which might explain SCDA's high-mean average precision in fine-grained retrieval. Moreover, on general image retrieval data sets, the SCDA achieves comparable retrieval results with the state-of-the-art general image retrieval approaches.
AbstractList Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as texture description and object proposal generation, but these tasks require annotations for images in the new domain. In this paper, we focus on a novel and challenging task in the pure unsupervised setting: fine-grained image retrieval. Even with image labels, fine-grained images are difficult to classify, letting alone the unsupervised retrieval task. We propose the selective convolutional descriptor aggregation (SCDA) method. The SCDA first localizes the main object in fine-grained images, a step that discards the noisy background and keeps useful deep descriptors. The selected descriptors are then aggregated and the dimensionality is reduced into a short feature vector using the best practices we found. The SCDA is unsupervised, using no image label or bounding box annotation. Experiments on six fine-grained data sets confirm the effectiveness of the SCDA for fine-grained image retrieval. Besides, visualization of the SCDA features shows that they correspond to visual attributes (even subtle ones), which might explain SCDA's high-mean average precision in fine-grained retrieval. Moreover, on general image retrieval data sets, the SCDA achieves comparable retrieval results with the state-of-the-art general image retrieval approaches.
Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as texture description and object proposal generation, but these tasks require annotations for images in the new domain. In this paper, we focus on a novel and challenging task in the pure unsupervised setting: fine-grained image retrieval. Even with image labels, fine-grained images are difficult to classify, letting alone the unsupervised retrieval task. We propose the selective convolutional descriptor aggregation (SCDA) method. The SCDA first localizes the main object in fine-grained images, a step that discards the noisy background and keeps useful deep descriptors. The selected descriptors are then aggregated and the dimensionality is reduced into a short feature vector using the best practices we found. The SCDA is unsupervised, using no image label or bounding box annotation. Experiments on six fine-grained data sets confirm the effectiveness of the SCDA for fine-grained image retrieval. Besides, visualization of the SCDA features shows that they correspond to visual attributes (even subtle ones), which might explain SCDA's high-mean average precision in fine-grained retrieval. Moreover, on general image retrieval data sets, the SCDA achieves comparable retrieval results with the state-of-the-art general image retrieval approaches.Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as texture description and object proposal generation, but these tasks require annotations for images in the new domain. In this paper, we focus on a novel and challenging task in the pure unsupervised setting: fine-grained image retrieval. Even with image labels, fine-grained images are difficult to classify, letting alone the unsupervised retrieval task. We propose the selective convolutional descriptor aggregation (SCDA) method. The SCDA first localizes the main object in fine-grained images, a step that discards the noisy background and keeps useful deep descriptors. The selected descriptors are then aggregated and the dimensionality is reduced into a short feature vector using the best practices we found. The SCDA is unsupervised, using no image label or bounding box annotation. Experiments on six fine-grained data sets confirm the effectiveness of the SCDA for fine-grained image retrieval. Besides, visualization of the SCDA features shows that they correspond to visual attributes (even subtle ones), which might explain SCDA's high-mean average precision in fine-grained retrieval. Moreover, on general image retrieval data sets, the SCDA achieves comparable retrieval results with the state-of-the-art general image retrieval approaches.
Author Jian-Hao Luo
Xiu-Shen Wei
Jianxin Wu
Zhi-Hua Zhou
Author_xml – sequence: 1
  givenname: Xiu-Shen
  surname: Wei
  fullname: Wei, Xiu-Shen
– sequence: 2
  givenname: Jian-Hao
  surname: Luo
  fullname: Luo, Jian-Hao
– sequence: 3
  givenname: Jianxin
  orcidid: 0000-0002-2085-7568
  surname: Wu
  fullname: Wu, Jianxin
– sequence: 4
  givenname: Zhi-Hua
  surname: Zhou
  fullname: Zhou, Zhi-Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28368819$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9PwjAUxxuDEUHvJiZmRy_Dvq2s7ZGgIAkJRvG8dOVtqdkPbAeJ_72dIAcPnl5_fL7vtZ8B6dVNjYTcAB0BUPmwXryMIgp8FCVCQByfkUuQDEJKWdTzazrmIQcm-2Tg3AelwMaQXJB-JOIuIC_J6g1L1K3ZYzBt6n1T7lrT1KoMHtFpa7ZtY4NJUVgsVHcR5H4_MzWGc6t82QSLShUYvGJrDe5VeUXOc1U6vD7WIXmfPa2nz-FyNV9MJ8tQxyDbkLOEQSIx34wzIXU-ptK_TuUZY1JThI3k_ltUK6Z4xhN_BhlmoHUGGVAq4iG5P_Td2uZzh65NK-M0lqWqsdm5FITwAzgT0qN3R3SXVbhJt9ZUyn6lvxI8QA-Ato1zFvMTAjTtPKfec9p5To-efST5E9Gm_THUei_lf8HbQ9Ag4mkOF4LziMbfdP2Jjw
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_image_2021_116515
crossref_primary_10_1007_s00371_024_03335_0
crossref_primary_10_3390_e22040419
crossref_primary_10_1007_s00779_023_01730_3
crossref_primary_10_1049_iet_cvi_2018_5325
crossref_primary_10_1109_TIP_2018_2867104
crossref_primary_10_1109_TIP_2019_2901407
crossref_primary_10_1145_3314051
crossref_primary_10_3389_fpls_2023_1091600
crossref_primary_10_1049_iet_cvi_2018_5206
crossref_primary_10_1145_3659943
crossref_primary_10_1016_j_jvcir_2021_103418
crossref_primary_10_1007_s00138_023_01379_1
crossref_primary_10_1016_j_scitotenv_2023_163786
crossref_primary_10_1016_j_jvcir_2021_103414
crossref_primary_10_1007_s13042_023_02057_4
crossref_primary_10_1109_TCSVT_2023_3284405
crossref_primary_10_1109_ACCESS_2020_3011102
crossref_primary_10_3233_JIFS_223434
crossref_primary_10_1016_j_neucom_2023_03_035
crossref_primary_10_1016_j_patrec_2024_04_005
crossref_primary_10_1049_iet_cvi_2017_0155
crossref_primary_10_1002_mp_16144
crossref_primary_10_1016_j_patcog_2023_110248
crossref_primary_10_1109_LSP_2020_3048638
crossref_primary_10_1007_s00530_022_00899_6
crossref_primary_10_1016_j_eswa_2021_116014
crossref_primary_10_1016_j_eswa_2023_122016
crossref_primary_10_1142_S0218001424560044
crossref_primary_10_1587_transinf_2021EDP7094
crossref_primary_10_1587_transinf_2019EDL8204
crossref_primary_10_1007_s13755_023_00266_3
crossref_primary_10_1109_TCSVT_2021_3080920
crossref_primary_10_1016_j_cviu_2024_104201
crossref_primary_10_1016_j_bspc_2021_103120
crossref_primary_10_1007_s13042_018_0898_2
crossref_primary_10_1007_s11042_020_09274_x
crossref_primary_10_1007_s00521_024_09501_8
crossref_primary_10_1109_TCYB_2020_2995496
crossref_primary_10_1109_TIP_2021_3131042
crossref_primary_10_1016_j_neucom_2019_07_082
crossref_primary_10_1109_TIFS_2019_2959921
crossref_primary_10_3390_app13074453
crossref_primary_10_1109_TIP_2019_2891888
crossref_primary_10_1109_TNNLS_2020_3029613
crossref_primary_10_1016_j_neucom_2018_02_109
crossref_primary_10_1007_s10489_020_01665_9
crossref_primary_10_3788_LOP212616
crossref_primary_10_1007_s10489_022_03287_9
crossref_primary_10_1162_neco_a_01302
crossref_primary_10_2112_SI97_039_1
crossref_primary_10_1109_LGRS_2022_3233374
crossref_primary_10_26599_TST_2023_9010022
crossref_primary_10_1109_TCSVT_2020_2980283
crossref_primary_10_1007_s11042_022_13658_6
crossref_primary_10_1109_TPAMI_2024_3355461
crossref_primary_10_1109_TIP_2021_3126490
crossref_primary_10_1016_j_eswa_2023_122913
crossref_primary_10_1109_TPAMI_2023_3329498
crossref_primary_10_1007_s13198_021_01210_y
crossref_primary_10_3390_s23156804
crossref_primary_10_1007_s11042_019_08260_2
crossref_primary_10_1016_j_neucom_2019_04_098
crossref_primary_10_1109_TMM_2019_2919469
crossref_primary_10_1109_TKDE_2024_3393512
crossref_primary_10_1109_TGRS_2024_3407857
crossref_primary_10_1016_j_neucom_2022_12_028
crossref_primary_10_1109_TAFFC_2017_2762299
crossref_primary_10_1016_j_neucom_2021_04_030
crossref_primary_10_1016_j_neucom_2021_09_016
crossref_primary_10_1109_TIP_2020_2986599
crossref_primary_10_1109_TCSVT_2018_2872503
crossref_primary_10_1109_TMM_2021_3090274
crossref_primary_10_1109_TIP_2021_3055062
crossref_primary_10_1016_j_cviu_2022_103408
crossref_primary_10_1016_j_imavis_2020_104008
crossref_primary_10_1109_TIP_2022_3145159
crossref_primary_10_1093_bib_bbaf003
crossref_primary_10_1109_ACCESS_2019_2960203
crossref_primary_10_1007_s11263_022_01613_9
crossref_primary_10_1109_ACCESS_2019_2936118
crossref_primary_10_1109_TNNLS_2020_3027589
crossref_primary_10_1007_s11432_023_3922_2
crossref_primary_10_1109_TBME_2023_3265033
crossref_primary_10_1109_ACCESS_2022_3167397
crossref_primary_10_1016_j_eswa_2025_126668
crossref_primary_10_1109_TIP_2020_2975918
crossref_primary_10_1109_TIP_2020_2996736
crossref_primary_10_1007_s11633_022_1404_6
crossref_primary_10_1007_s00521_021_06638_8
crossref_primary_10_1016_j_bspc_2024_107203
crossref_primary_10_1016_j_jvcir_2020_102860
crossref_primary_10_1049_iet_ipr_2020_0478
crossref_primary_10_1109_TPAMI_2018_2858232
crossref_primary_10_1088_1742_6596_2171_1_012036
crossref_primary_10_1117_1_JEI_28_1_013041
crossref_primary_10_1109_TIP_2019_2924811
crossref_primary_10_1109_TMM_2023_3279990
crossref_primary_10_1109_TPAMI_2021_3126648
crossref_primary_10_1016_j_neucom_2020_07_139
crossref_primary_10_1016_j_patcog_2021_108304
crossref_primary_10_1109_TGRS_2023_3309091
crossref_primary_10_1109_ACCESS_2019_2935011
crossref_primary_10_1109_ACCESS_2020_3018875
crossref_primary_10_1016_j_compag_2024_109104
crossref_primary_10_1109_ACCESS_2020_2970223
crossref_primary_10_32604_csse_2023_025293
crossref_primary_10_1016_j_patcog_2019_02_007
crossref_primary_10_1007_s13042_021_01330_8
crossref_primary_10_1016_j_patcog_2017_10_002
crossref_primary_10_1016_j_patcog_2023_109543
crossref_primary_10_1109_ACCESS_2019_2922416
crossref_primary_10_1109_TIP_2021_3094744
crossref_primary_10_1007_s00521_023_08787_4
crossref_primary_10_1016_j_jvcir_2019_01_029
crossref_primary_10_3390_plants12142701
crossref_primary_10_3390_e24020156
crossref_primary_10_1016_j_tust_2024_105692
crossref_primary_10_1109_TPAMI_2022_3141433
crossref_primary_10_1109_TPAMI_2023_3299563
crossref_primary_10_3389_fpls_2023_1150748
crossref_primary_10_1016_j_patcog_2022_108618
crossref_primary_10_1109_TCSS_2021_3067806
crossref_primary_10_1109_TIP_2021_3115658
crossref_primary_10_1109_TPAMI_2019_2933510
crossref_primary_10_1007_s10489_020_02107_2
crossref_primary_10_1007_s11063_023_11297_y
crossref_primary_10_1016_j_jmapro_2021_07_046
crossref_primary_10_1109_TIP_2019_2908795
crossref_primary_10_1049_cvi2_12095
crossref_primary_10_3788_LOP213313
crossref_primary_10_1007_s10489_021_03096_6
crossref_primary_10_1109_TMM_2017_2710803
crossref_primary_10_1145_3636552
crossref_primary_10_1520_JTE20230038
crossref_primary_10_4218_etrij_2018_0621
crossref_primary_10_1109_TIP_2020_2971105
crossref_primary_10_3390_sym13010038
crossref_primary_10_54097_hset_v9i_1858
crossref_primary_10_1109_TMM_2017_2766842
crossref_primary_10_1109_ACCESS_2020_2966220
crossref_primary_10_1177_00405175211037186
crossref_primary_10_3390_math10152767
crossref_primary_10_1007_s10489_021_02573_2
crossref_primary_10_3390_s24134127
crossref_primary_10_1016_j_patcog_2022_108869
crossref_primary_10_1088_1742_6596_1533_3_032099
crossref_primary_10_3390_sym11081033
crossref_primary_10_3390_electronics11040639
crossref_primary_10_1109_TMC_2019_2944371
crossref_primary_10_3390_app9020301
crossref_primary_10_1145_3492221
crossref_primary_10_1109_ACCESS_2018_2839720
crossref_primary_10_3390_rs14205242
crossref_primary_10_1109_TIP_2019_2950796
crossref_primary_10_1109_TIP_2019_2921878
crossref_primary_10_1016_j_neucom_2020_04_092
crossref_primary_10_1007_s00371_020_02052_8
crossref_primary_10_1016_j_asoc_2020_106281
crossref_primary_10_1016_j_neucom_2017_12_020
crossref_primary_10_3390_rs13163113
crossref_primary_10_1109_TCSVT_2023_3263870
crossref_primary_10_1109_TIP_2019_2921861
crossref_primary_10_1145_3418215
crossref_primary_10_32604_cmc_2023_028333
crossref_primary_10_3390_app10134652
crossref_primary_10_1007_s11432_021_3489_1
crossref_primary_10_1016_j_patcog_2021_107935
crossref_primary_10_1109_LSP_2019_2947185
crossref_primary_10_1109_TIP_2022_3184813
crossref_primary_10_1016_j_neucom_2025_129688
crossref_primary_10_3390_rs13030475
crossref_primary_10_1002_int_22938
crossref_primary_10_1109_TIP_2020_3015543
crossref_primary_10_1177_03611981211019743
crossref_primary_10_3390_s22062188
crossref_primary_10_1109_TPAMI_2018_2885764
crossref_primary_10_1093_sysbio_syz014
crossref_primary_10_1007_s00138_022_01349_z
crossref_primary_10_1016_j_imavis_2019_10_006
crossref_primary_10_1109_TIFS_2019_2922331
crossref_primary_10_1016_j_jmapro_2024_07_003
crossref_primary_10_1109_TIFS_2020_2994738
crossref_primary_10_7717_peerj_cs_1116
crossref_primary_10_1016_j_compag_2023_108244
crossref_primary_10_1007_s11042_020_10491_7
crossref_primary_10_1109_TPAMI_2024_3408913
crossref_primary_10_1109_TPAMI_2020_2999099
crossref_primary_10_1590_fst_104322
crossref_primary_10_1109_TCSVT_2023_3265751
crossref_primary_10_1016_j_ins_2021_06_002
crossref_primary_10_1016_j_neucom_2022_08_031
crossref_primary_10_1016_j_imavis_2024_104925
crossref_primary_10_1155_2019_9794202
crossref_primary_10_1109_TNNLS_2022_3202534
crossref_primary_10_1007_s00521_022_07873_3
crossref_primary_10_1109_TCSVT_2022_3197844
crossref_primary_10_1016_j_jvcir_2019_05_017
crossref_primary_10_1016_j_neunet_2020_03_015
crossref_primary_10_1109_TNNLS_2024_3363163
crossref_primary_10_1109_ACCESS_2022_3183224
crossref_primary_10_1088_1742_6596_1237_3_032077
crossref_primary_10_1155_2022_5816565
crossref_primary_10_1016_j_sigpro_2020_107519
crossref_primary_10_1109_TII_2023_3308771
crossref_primary_10_1016_j_patcog_2022_108792
crossref_primary_10_1007_s10115_022_01669_6
crossref_primary_10_1007_s11042_022_12348_7
crossref_primary_10_1016_j_future_2017_11_002
crossref_primary_10_3233_AIC_220187
crossref_primary_10_1007_s11036_022_01924_8
crossref_primary_10_1109_TMM_2020_2993960
crossref_primary_10_1016_j_patcog_2021_108159
crossref_primary_10_3390_e24121755
crossref_primary_10_3390_electronics12102193
crossref_primary_10_1016_j_asoc_2022_108622
crossref_primary_10_1016_j_jvcir_2022_103592
crossref_primary_10_1145_3510004
crossref_primary_10_1587_transinf_2019EDL8119
crossref_primary_10_20965_jaciii_2023_p0182
crossref_primary_10_1016_j_image_2022_116885
crossref_primary_10_1109_JBHI_2022_3233535
crossref_primary_10_1088_1742_6596_1345_3_032098
crossref_primary_10_1088_1361_6501_ad8592
crossref_primary_10_1109_TPAMI_2019_2932058
crossref_primary_10_1109_ACCESS_2019_2927230
crossref_primary_10_1007_s11760_023_02889_1
crossref_primary_10_1109_ACCESS_2023_3287630
crossref_primary_10_1109_TCSVT_2020_3033165
crossref_primary_10_3390_ani13020264
Cites_doi 10.1145/2733373.2807412
10.1109/CVPR.2015.7298965
10.1109/TMM.2015.2408566
10.1109/ICCV.2015.296
10.1109/CVPR.2012.6248092
10.1109/TPAMI.2013.50
10.1109/CVPR.2015.7298775
10.1109/CVPR.2015.7298724
10.1109/CVPR.2015.7299007
10.1109/CVPR.2010.5540039
10.1109/ICCVW.2013.77
10.1109/ICVGIP.2008.47
10.1109/TIP.2015.2493446
10.1007/s11263-013-0636-x
10.1109/TIP.2016.2545300
10.1109/TIP.2015.2497145
10.1109/ICCV.2015.19
10.1109/CVPR.2014.180
10.1109/ICCV.2015.170
10.1109/ICCV.2015.136
10.1109/CVPR.2007.383172
10.1109/ICCVW.2015.45
10.1126/science.3749885
10.1109/CVPR.2015.7298642
10.1007/s11704-016-6906-3
10.1109/TIP.2016.2531289
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2688133
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2881
ExternalDocumentID 28368819
10_1109_TIP_2017_2688133
7887720
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61422203; 61333014
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c319t-7464169efd5b89cf509001afb449c0e1d970170ca4a7b769c01beb1ccb1b10083
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 16:22:50 EDT 2025
Thu Apr 03 07:05:31 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Tue Jul 01 02:03:14 EDT 2025
Tue Aug 26 17:00:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7464169efd5b89cf509001afb449c0e1d970170ca4a7b769c01beb1ccb1b10083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2085-7568
PMID 28368819
PQID 1884167489
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1884167489
crossref_primary_10_1109_TIP_2017_2688133
pubmed_primary_28368819
crossref_citationtrail_10_1109_TIP_2017_2688133
ieee_primary_7887720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-June
2017-6-00
2017-Jun
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-June
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References babenko (ref22) 2014; 8689
azizpour (ref38) 2012; 7572
ref12
ref37
ref15
ref36
ref14
jégou (ref17) 2008; 5302
yandex (ref23) 2015
ref30
ref33
jaderberg (ref31) 2015
ref11
ref32
ref2
ref39
ref19
ref18
tolias (ref27) 2016
xiao (ref6) 2015
wah (ref10) 2011
simonyan (ref34) 2015
zhang (ref4) 2014; 8689
ref46
ref24
gong (ref21) 2014; 8695
razavian (ref20) 2015
ref42
ref41
hinton (ref35) 1986
ref43
maji (ref16) 2013
ref28
khosla (ref13) 2011
ref29
ref8
ref7
ref9
ref3
zheng (ref26) 2016
ref5
krizhevsky (ref1) 2012
kalantidis (ref25) 2015
ref40
rodner (ref45) 2015
fan (ref44) 2008; 9
References_xml – volume: 9
  start-page: 1871
  year: 2008
  ident: ref44
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J Mach Learn Res
– ident: ref43
  doi: 10.1145/2733373.2807412
– ident: ref42
  doi: 10.1109/CVPR.2015.7298965
– ident: ref33
  doi: 10.1109/TMM.2015.2408566
– ident: ref3
  doi: 10.1109/ICCV.2015.296
– ident: ref15
  doi: 10.1109/CVPR.2012.6248092
– ident: ref36
  doi: 10.1109/TPAMI.2013.50
– ident: ref5
  doi: 10.1109/CVPR.2015.7298775
– year: 2016
  ident: ref26
  article-title: Good practice in CNN feature transfer
– volume: 8689
  start-page: 834
  year: 2014
  ident: ref4
  article-title: Part-based R-CNNs for fine-grained category detection
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1
  year: 2015
  ident: ref34
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref39
  doi: 10.1109/CVPR.2015.7298724
– ident: ref2
  doi: 10.1109/CVPR.2015.7299007
– ident: ref18
  doi: 10.1109/CVPR.2010.5540039
– ident: ref11
  doi: 10.1109/ICCVW.2013.77
– ident: ref14
  doi: 10.1109/ICVGIP.2008.47
– ident: ref30
  doi: 10.1109/TIP.2015.2493446
– start-page: 1
  year: 1986
  ident: ref35
  article-title: Learning distributed representations of concepts
  publication-title: Proc 8th Annu Conf Cognit Sci Soc
– ident: ref19
  doi: 10.1007/s11263-013-0636-x
– volume: 8689
  start-page: 584
  year: 2014
  ident: ref22
  article-title: Neural codes for image retrieval
  publication-title: Proc Eur Conf Comput Vis
– volume: 7572
  start-page: 836
  year: 2012
  ident: ref38
  article-title: Object detection using strongly-supervised deformable part models
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2013
  ident: ref16
  article-title: Fine-grained visual classification of aircraft
– start-page: 1
  year: 2016
  ident: ref27
  article-title: Particular object retrieval with integral max-pooling of CNN activations
  publication-title: Proc Int Conf Learn Represent
– ident: ref28
  doi: 10.1109/TIP.2016.2545300
– start-page: 806
  year: 2011
  ident: ref13
  article-title: Novel dataset for fine-grained image categorization
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit Workshop Fine-Grained Vis Categorization
– ident: ref29
  doi: 10.1109/TIP.2015.2497145
– ident: ref24
  doi: 10.1109/ICCV.2015.19
– ident: ref32
  doi: 10.1109/CVPR.2014.180
– ident: ref8
  doi: 10.1109/ICCV.2015.170
– ident: ref7
  doi: 10.1109/ICCV.2015.136
– ident: ref12
  doi: 10.1109/CVPR.2007.383172
– start-page: 1269
  year: 2015
  ident: ref23
  article-title: Aggregating deep convolutional features for image retrieval
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref40
  doi: 10.1109/ICCVW.2015.45
– volume: 5302
  start-page: 304
  year: 2008
  ident: ref17
  article-title: Hamming embedding and weak geometric consistency for large scale image search
  publication-title: Proc Eur Conf Comput Vis
– ident: ref37
  doi: 10.1126/science.3749885
– ident: ref41
  doi: 10.1109/CVPR.2015.7298642
– start-page: 2008
  year: 2015
  ident: ref31
  article-title: Spatial transformer networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref25
  article-title: Crossdimensional weighting for aggregated deep convolutional features
– start-page: 806
  year: 2015
  ident: ref20
  article-title: CNN features off-the-shelf: An astounding baseline for recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog Workshop Deep Vis
– start-page: 1
  year: 2015
  ident: ref45
  article-title: Fine-grained recognition datasets for biodiversity analysis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit Workshop
– ident: ref46
  doi: 10.1007/s11704-016-6906-3
– year: 2011
  ident: ref10
  article-title: The Caltech-UCSD birds-200-2011 dataset
– start-page: 842
  year: 2015
  ident: ref6
  article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref9
  doi: 10.1109/TIP.2016.2531289
– volume: 8695
  start-page: 392
  year: 2014
  ident: ref21
  article-title: Multi-scale orderless pooling of deep convolutional activation features
  publication-title: Proc Eur Conf Comput Vis
SSID ssj0014516
Score 2.6593795
Snippet Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2868
SubjectTerms Automobiles
Birds
Buildings
Convolution
Dogs
Fine-grained image retrieval
Image retrieval
Machine learning
selection and aggregation
unsupervised object localization
Title Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval
URI https://ieeexplore.ieee.org/document/7887720
https://www.ncbi.nlm.nih.gov/pubmed/28368819
https://www.proquest.com/docview/1884167489
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BT3BgX8qmIHFBwm3SOHF8RIiySCxikbhF8dIegATRlgNfz4yzCBAgblbkcZY3tmcy4zcAe3Fok8DPOEOHljOeZBGTuE0xdIZMLzBCRyGdd764jE_v-flD9DAFB81ZGGutSz6zHWq6WL4p9IR-lXUp80300EGfxlZ5VquJGFDBWRfZjAQTaPbXIUlfdu_OrimHS3R6cZKgT0YEwElIbfllN3LlVX63NN2O05-Hi_pZy0STx85krDr6_RuN439fZgHmKtPTOyx1ZRGmbL4E85UZ6lWTfLQEs584Cpfh6tZVysFF0Tsq8rdKU3Ec9FjdilO8eodD9NqHDmMPjWCvj-LshIpP4MBnz7hkeTeucheq9Qrc94_vjk5ZVYWBaZyeYyZ4jEabtAMTqUTqAVoY-LmzgeJcat8GRgri4NEZz4QSMV4LFG4AWqtAEXNQuAqtvMjtOnhhPDDWRKEWWnIje0oQnZrMjJYo6ts2dGs0Ul1RlFOljKfUuSq-TBHKlKBMKyjbsN9IvJT0HH_0XSYUmn4VAG3YrQFPcWpRvCTLbTEZpUFCMVmi52nDWqkJjXCtQBs_D7oJM3TrMqdsC1rj14ndRutlrHac2n4A6ZLn2g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOACHZXluYReCxAUJt0njxPERoS0tUEBskbhF8aMcgARBu4f99cw4DwFiETcrsi0nM_Z8kxl_A7AXhzYJ_IwzdGg540kWMYlmiqEzZLqBEToK6b7z8DzuX_OTm-hmBg6auzDWWpd8ZtvUdLF8U-gp_SrrUOab6KKDPod2PwrK21pNzIBKzrrYZiSYQOBfByV92RkNLimLS7S7cZKgV0YUwElIbfnGHrkCK__Hms7m9JZgWK-2TDW5a08nqq3_vSNy_OrrfIdvFfj0DkttWYYZm6_AUgVEvWqbP6_A4iuWwlW4-ONq5eCx6B0V-d9KV3Ee9FndmVM8eYe36LffOil7CIO9Hg5nx1R-AicePOCh5V252l2o2Gtw3fs9Ouqzqg4D07hBJ0zwGGGbtGMTqUTqMWIM_NzZWHEutW8DIwWx8OiMZ0KJGJ8FCk2A1ipQxB0UrsNsXuT2B3hhPDbWRKEWWnIju0oQoZrMjJY41Lct6NTSSHVFUk61Mu5T56z4MkVRpiTKtBJlC_abEY8lQccnfVdJCk2_SgAt2K0FnuLmoohJltti-pwGCUVliaCnBRulJjSDawXa_HjSHZjvj4Zn6dng_HQLFmgZZYbZT5idPE3tL8QyE7XtVPgFKebrIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Convolutional+Descriptor+Aggregation+for+Fine-Grained+Image+Retrieval&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Xiu-Shen+Wei&rft.au=Jian-Hao+Luo&rft.au=Jianxin+Wu&rft.au=Zhi-Hua+Zhou&rft.date=2017-06-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=26&rft.issue=6&rft.spage=2868&rft.epage=2881&rft_id=info:doi/10.1109%2FTIP.2017.2688133&rft_id=info%3Apmid%2F28368819&rft.externalDocID=7887720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon