Analysis of computational techniques for diabetes diagnosis using the combination of iris-based features and physiological parameters
Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based f...
Saved in:
Published in | Neural computing & applications Vol. 31; no. 12; pp. 8441 - 8453 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-019-04551-9 |
Cover
Loading…
Abstract | Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based features and physiological parameters. A set of 334 subjects are investigated which are divided into diabetic and non-diabetic groups. Moreover, the diabetic group is classified into three different subgroups according to the duration of the diabetic state. Statistical features, gray-level co-occurrence matrix, and gray-level run length matrix-based features are extracted from the specific areas of iris. Nine classifiers of different application areas are selected, and subsequently, six parameters (accuracy, precision, sensitivity, specificity,
F
-score, and area under the curve) of each classifier are analyzed. The analysis provided promising results with more than 95% of accuracy. The proposed technique can be used as a noninvasive and non-contact diabetes diagnosis tool which can help to find out the duration of diabetes in patients and the prevalence of diabetes. |
---|---|
AbstractList | Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based features and physiological parameters. A set of 334 subjects are investigated which are divided into diabetic and non-diabetic groups. Moreover, the diabetic group is classified into three different subgroups according to the duration of the diabetic state. Statistical features, gray-level co-occurrence matrix, and gray-level run length matrix-based features are extracted from the specific areas of iris. Nine classifiers of different application areas are selected, and subsequently, six parameters (accuracy, precision, sensitivity, specificity,
F
-score, and area under the curve) of each classifier are analyzed. The analysis provided promising results with more than 95% of accuracy. The proposed technique can be used as a noninvasive and non-contact diabetes diagnosis tool which can help to find out the duration of diabetes in patients and the prevalence of diabetes. Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based features and physiological parameters. A set of 334 subjects are investigated which are divided into diabetic and non-diabetic groups. Moreover, the diabetic group is classified into three different subgroups according to the duration of the diabetic state. Statistical features, gray-level co-occurrence matrix, and gray-level run length matrix-based features are extracted from the specific areas of iris. Nine classifiers of different application areas are selected, and subsequently, six parameters (accuracy, precision, sensitivity, specificity, F-score, and area under the curve) of each classifier are analyzed. The analysis provided promising results with more than 95% of accuracy. The proposed technique can be used as a noninvasive and non-contact diabetes diagnosis tool which can help to find out the duration of diabetes in patients and the prevalence of diabetes. |
Author | Agarwal, Ravinder Samant, Piyush |
Author_xml | – sequence: 1 givenname: Piyush orcidid: 0000-0001-9181-9932 surname: Samant fullname: Samant, Piyush email: piyush.samant@thapar.edu organization: Thapar Institute of Engineering and Technology – sequence: 2 givenname: Ravinder surname: Agarwal fullname: Agarwal, Ravinder organization: Thapar Institute of Engineering and Technology |
BookMark | eNp9kM1OAyEUhYmpibX6Aq4mcT16GWYoLI3xL2niRteEYaClaWEEZtEH8L1lOiYmLrriwr3fOdxziWbOO43QDYY7DLC8jwBNhUvAvIS6aXDJz9Ac14SUBBo2Q3PgdW7Tmlygyxi3AFBT1szR94OTu0O0sfCmUH7fD0km6_NjkbTaOPs16FgYH4rOylanfMnF2vkRGaJ16yJt9Ei21h3JUcgGG8tWRt0VRss0hIxJ1xX9Jlv5nV9blQ16GeQ-S4Z4hc6N3EV9_Xsu0Ofz08fja7l6f3l7fFiVimCeyiV0HEsjCadUaWAtkZx2YJZKmxqWjZGggGrCZMNYRxjlHaMEV8wYRtu6JQt0O-n2wY-LJbH1Q8jLRlERjFnDoMJ5qpqmVPAxBm1EH-xehoPAIMa4xRS3yHGLY9yCZ4j9g5SdokxB2t1plExozD5urcPfr05QP5Evmbc |
CitedBy_id | crossref_primary_10_1016_j_knosys_2021_106969 crossref_primary_10_1016_j_jksuci_2020_06_013 crossref_primary_10_1007_s11042_022_14305_w crossref_primary_10_1007_s11042_023_18092_w crossref_primary_10_1142_S0218001422520176 crossref_primary_10_1002_ima_22689 crossref_primary_10_3389_fpubh_2022_860396 crossref_primary_10_3390_diagnostics13061081 |
Cites_doi | 10.1007/s10916-017-0823-3 10.1590/S0103-21002008000300015 10.1016/j.cmpb.2018.01.004 10.1109/5.628669 10.1002/cyto.a.23151 10.4103/0377-2063.123765 10.1007/s00521-017-2969-9 10.1007/978-981-10-5717-5_5 10.1007/s00521-016-2604-1 10.1016/B978-0-12-374457-9.00025-1 10.1016/j.ins.2005.01.010 10.1590/s0080-623420150000400013 10.1109/TSMCB.2007.903540 10.1109/TITB.2012.2222655 10.4236/jsip.2013.43B031 10.1007/s13410-015-0374-4 10.1016/j.kjms.2012.08.016 10.1016/j.knosys.2015.10.024 10.1016/S0965-2299(96)80025-2 10.1007/s10462-017-9565-3 10.1016/j.cviu.2007.08.005 10.1016/S0031-3203(02)00030-4 10.1016/S1672-0229(08)60011-X 10.1364/BOE.6.004529 10.1007/s00431-011-1454-1 10.1016/j.cviu.2008.08.001 10.1080/03091902.2017.1412521 10.1007/s13410-015-0296-1 10.1142/S0192415X05003090 10.1080/10255842.2012.670855 10.1016/j.bspc.2013.04.006 10.7763/IJMLC.2015.V5.511 10.1109/ICCKE.2015.7365820 10.17950/ijer/v4s10/1010 10.1109/IECBES.2010.5742211 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Neural Computing and Applications is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Neural Computing and Applications is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-019-04551-9 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 8453 |
ExternalDocumentID | 10_1007_s00521_019_04551_9 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-70d91afa3966ce08b3a96d0f7cef4075fa0c06e38a588d3869d863128ff86b4b3 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Mon Jul 14 09:28:03 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Tue Jul 01 01:46:53 EDT 2025 Fri Feb 21 02:35:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Iris Physiological parameters Iridology Diabetes diagnosis Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-70d91afa3966ce08b3a96d0f7cef4075fa0c06e38a588d3869d863128ff86b4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9181-9932 |
PQID | 2311858021 |
PQPubID | 2043988 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2311858021 crossref_primary_10_1007_s00521_019_04551_9 crossref_citationtrail_10_1007_s00521_019_04551_9 springer_journals_10_1007_s00521_019_04551_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191200 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2019 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Buchanan, Sutherland, Strettle (CR14) 1996; 4 Bansal, Agarwal, Sharma (CR22) 2015; 35 Dwivedi (CR30) 2017 Samant, Agarwal (CR36) 2018; 42 Goyal, Agarwal (CR5) 2017; 28 Um, An, Yang (CR18) 2005; 33 Ramlee, Aziz, Ranjit, Esro (CR19) 2011; 3 Kaur, Juneja (CR38) 2014; 2014 Kanawong, Obafemi-Ajayi, Liu, Zhang, Dong, Duan (CR3) 2017; 1005 CR16 Ma, Zhang, Li (CR17) 2013; 17 Sudha (CR31) 2017; 41 Xiong, Qu, Cambier, Mu (CR7) 2011; 170 Hollingsworth, Bowyer, Flynn (CR10) 2009; 113 Heydari, Teimouri, Heshmati (CR28) 2015; 36 Salles, Júlia, De (CR24) 2008; 21 Pergad, More (CR27) 2015; 4 Dwivedi (CR33) 2016 Salles, Silva (CR25) 2015; 49 Samant, Agarwal (CR43) 2018; 157 Meng, Huang, Rao (CR34) 2013; 29 Leung, Kapur, Guilliam (CR6) 2015; 6 Wildes (CR39) 1997; 85 Levin, Nilsson, Hoeve, Wu (CR12) 2011 Pang, Zhang, Wang (CR4) 2005; 175 Sharan (CR9) 1992 Hussein, Hassan, Granat (CR11) 2013; 8 CR29 Laddi, Kumar, Sharma (CR8) 2014; 59 Daugman (CR40) 2007; 37 Alvarez-betancourt, Garcia-silvente (CR35) 2016; 92 Bengtsson, Danielsen, Treanor (CR1) 2017; 91 CR21 Bowyer, Hollingsworth, Flynn (CR13) 2008; 110 CR20 Daugman (CR37) 2004; 14 Zhou, Wang (CR41) 2007; 5 Banzi, Xue (CR23) 2015; 5 Oliveira, Tavares (CR2) 2014; 17 Bhatia, Atole, Kamble, Telang (CR26) 2015; 4 Daugman (CR15) 2003; 36 Tama, Rhee (CR32) 2017 Karamizadeh, Abdullah, Manaf (CR42) 2013; 04 SE Hussein (4551_CR11) 2013; 8 AK Dwivedi (4551_CR33) 2016 TJ Buchanan (4551_CR14) 1996; 4 XH Meng (4551_CR34) 2013; 29 M Sudha (4551_CR31) 2017; 41 E Bengtsson (4551_CR1) 2017; 91 RP Wildes (4551_CR39) 1997; 85 K Goyal (4551_CR5) 2017; 28 4551_CR16 P Samant (4551_CR43) 2018; 157 TS Leung (4551_CR6) 2015; 6 A Bansal (4551_CR22) 2015; 35 M Heydari (4551_CR28) 2015; 36 AK Dwivedi (4551_CR30) 2017 BA Tama (4551_CR32) 2017 S Karamizadeh (4551_CR42) 2013; 04 LF Salles (4551_CR24) 2008; 21 FPM Oliveira (4551_CR2) 2014; 17 JF Banzi (4551_CR23) 2015; 5 N Zhou (4551_CR41) 2007; 5 J-Y Um (4551_CR18) 2005; 33 Y Alvarez-betancourt (4551_CR35) 2016; 92 N Kaur (4551_CR38) 2014; 2014 RA Ramlee (4551_CR19) 2011; 3 LF Salles (4551_CR25) 2015; 49 T Xiong (4551_CR7) 2011; 170 ND Pergad (4551_CR27) 2015; 4 LA Levin (4551_CR12) 2011 F Sharan (4551_CR9) 1992 4551_CR20 J Daugman (4551_CR15) 2003; 36 K Hollingsworth (4551_CR10) 2009; 113 R Kanawong (4551_CR3) 2017; 1005 J Daugman (4551_CR37) 2004; 14 A Laddi (4551_CR8) 2014; 59 L Ma (4551_CR17) 2013; 17 4551_CR21 PSK Bhatia (4551_CR26) 2015; 4 B Pang (4551_CR4) 2005; 175 KW Bowyer (4551_CR13) 2008; 110 P Samant (4551_CR36) 2018; 42 J Daugman (4551_CR40) 2007; 37 4551_CR29 |
References_xml | – volume: 41 start-page: 178 year: 2017 ident: CR31 article-title: Evolutionary and neural computing based decision support system for disease diagnosis from clinical data sets in medical practice publication-title: J Med Syst doi: 10.1007/s10916-017-0823-3 – volume: 21 start-page: 474 year: 2008 end-page: 480 ident: CR24 article-title: The prevalence of iridologic signs in individuals with Diabetes Mellitus * publication-title: Acta Paul Enferm doi: 10.1590/S0103-21002008000300015 – volume: 157 start-page: 121 year: 2018 end-page: 128 ident: CR43 article-title: Machine learning techniques for medical diagnosis of diabetes using iris images publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2018.01.004 – volume: 85 start-page: 1348 year: 1997 end-page: 1363 ident: CR39 article-title: Iris recognition: an emerging biometric technology publication-title: Proc IEEE doi: 10.1109/5.628669 – volume: 91 start-page: 551 year: 2017 end-page: 554 ident: CR1 article-title: Computer-aided diagnostics in digital pathology publication-title: J Int Soc Adv Cytom doi: 10.1002/cyto.a.23151 – volume: 59 start-page: 591 year: 2014 end-page: 595 ident: CR8 article-title: Non-invasive Jaundice detection using machine vision publication-title: IETE J Res doi: 10.4103/0377-2063.123765 – year: 2017 ident: CR30 article-title: Analysis of computational intelligence techniques for diabetes mellitus prediction publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2969-9 – volume: 4 start-page: 776 year: 2015 end-page: 779 ident: CR26 article-title: Methodology for detecting diabetic presence from iris image analysis publication-title: Int J Adv Res Comput Eng Technol – volume: 1005 start-page: 99 year: 2017 end-page: 121 ident: CR3 article-title: Tongue image analysis and its mobile app development for health diagnosis publication-title: Adv Exp Med Biol doi: 10.1007/978-981-10-5717-5_5 – ident: CR16 – year: 2016 ident: CR33 article-title: Performance evaluation of different machine learning techniques for prediction of heart disease publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2604-1 – volume: 14 start-page: 715 year: 2004 end-page: 739 ident: CR37 article-title: How iris recognition works publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1016/B978-0-12-374457-9.00025-1 – volume: 175 start-page: 160 year: 2005 end-page: 176 ident: CR4 article-title: Tongue image analysis for appendicitis diagnosis publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2005.01.010 – volume: 49 start-page: 626 year: 2015 end-page: 631 ident: CR25 article-title: The sign of the Cross of Andreas in the iris and Diabetes Mellitus: a longitudinal study publication-title: Rev Esc Enferm USP doi: 10.1590/s0080-623420150000400013 – volume: 37 start-page: 1167 year: 2007 end-page: 1175 ident: CR40 article-title: New methods in iris recognition publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2007.903540 – volume: 3 start-page: 29 year: 2011 end-page: 39 ident: CR19 article-title: Automated detecting arcus senilis, symptom for cholesterol presence using iris recognition algorithm publication-title: J Telecommun Electron Comput Eng – ident: CR29 – volume: 17 start-page: 223 year: 2013 end-page: 231 ident: CR17 article-title: Iris-based medical analysis by geometric deformation features publication-title: IEEE J Biomed Heal Informatics doi: 10.1109/TITB.2012.2222655 – year: 2011 ident: CR12 publication-title: ADLER’S physiology of the eye – volume: 04 start-page: 173 year: 2013 end-page: 175 ident: CR42 article-title: An overview of principal component analysis publication-title: J Signal Inf Process doi: 10.4236/jsip.2013.43B031 – volume: 36 start-page: 167 year: 2015 end-page: 173 ident: CR28 article-title: Comparison of various classification algorithms in the diagnosis of type 2 diabetes in Iran publication-title: Int J Diabetes Dev Ctries doi: 10.1007/s13410-015-0374-4 – volume: 29 start-page: 93 year: 2013 end-page: 99 ident: CR34 article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors publication-title: Kaohsiung J Med Sci doi: 10.1016/j.kjms.2012.08.016 – volume: 92 start-page: 169 year: 2016 end-page: 182 ident: CR35 article-title: A keypoints-based feature extraction method for iris recognition under variable image quality conditions publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.10.024 – volume: 4 start-page: 98 year: 1996 end-page: 102 ident: CR14 article-title: An investigation of the relationship between anatomical features in the iris and systemic disease, with reference to iridology publication-title: Complement Ther Med doi: 10.1016/S0965-2299(96)80025-2 – year: 2017 ident: CR32 article-title: Tree-based classifier ensembles for early detection method of diabetes: an exploratory study publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9565-3 – volume: 110 start-page: 281 year: 2008 end-page: 307 ident: CR13 article-title: Image understanding for iris biometrics: a survey publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.08.005 – ident: CR21 – volume: 36 start-page: 279 year: 2003 end-page: 291 ident: CR15 article-title: The importance of being random: statistical principles of iris recognition publication-title: Pattern Recognit doi: 10.1016/S0031-3203(02)00030-4 – volume: 5 start-page: 242 year: 2007 end-page: 249 ident: CR41 article-title: A Modified T-test feature selection method and its application on the hapmap genotype data publication-title: Genomics Proteomics Bioinform doi: 10.1016/S1672-0229(08)60011-X – volume: 28 start-page: 5187 year: 2017 end-page: 5195 ident: CR5 article-title: Pulse based sensor design for wrist pulse signal analysis and health diagnosis publication-title: Biomed Res – volume: 6 start-page: 132 year: 2015 end-page: 140 ident: CR6 article-title: Screening neonatal jaundice based on the sclera color of the eye using digital photography publication-title: Biomed Opt Express doi: 10.1364/BOE.6.004529 – volume: 170 start-page: 1247 year: 2011 end-page: 1255 ident: CR7 article-title: The side effects of phototherapy for neonatal jaundice: what do we know? What should we do? publication-title: Eur J Pediatr doi: 10.1007/s00431-011-1454-1 – volume: 113 start-page: 150 year: 2009 end-page: 157 ident: CR10 article-title: Pupil dilation degrades iris biometric performance publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2008.08.001 – volume: 42 start-page: 35 year: 2018 end-page: 42 ident: CR36 article-title: Comparative analysis of classification based algorithms for diabetes diagnosis using iris images publication-title: J Med Eng Technol doi: 10.1080/03091902.2017.1412521 – year: 1992 ident: CR9 publication-title: Iridology: A complete guide to diagnosing through the iris and to related forms of treatment – volume: 35 start-page: 432 year: 2015 end-page: 438 ident: CR22 article-title: Determining diabetes using iris recognition system publication-title: Int J Diabetes Dev Ctries doi: 10.1007/s13410-015-0296-1 – volume: 33 start-page: 501 year: 2005 end-page: 505 ident: CR18 article-title: Novel approach of molecular genetic understanding of iridology: relationship between iris constitution and angiotensin converting enzyme gene polymorphism publication-title: Am J Chin Med doi: 10.1142/S0192415X05003090 – volume: 17 start-page: 73 year: 2014 end-page: 93 ident: CR2 article-title: Medical image registration: a review publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2012.670855 – volume: 8 start-page: 534 year: 2013 end-page: 541 ident: CR11 article-title: Assessment of the potential iridology for diagnosing kidney disease using wavelet analysis and neural networks publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.04.006 – volume: 2014 start-page: 6 year: 2014 end-page: 8 ident: CR38 article-title: A review on Iris recognition publication-title: Recent Adv Eng Comput Sci RAECS – ident: CR20 – volume: 5 start-page: 225 year: 2015 end-page: 229 ident: CR23 article-title: An automated tool for non-contact, real time early detection of diabetes by computer vision publication-title: Int J Mach Learn Comput doi: 10.7763/IJMLC.2015.V5.511 – volume: 4 start-page: 562 year: 2015 end-page: 565 ident: CR27 article-title: Detection of diabetic presence from iris by using support vector machine publication-title: Int J Eng Sci Res – volume: 59 start-page: 591 year: 2014 ident: 4551_CR8 publication-title: IETE J Res doi: 10.4103/0377-2063.123765 – volume: 17 start-page: 223 year: 2013 ident: 4551_CR17 publication-title: IEEE J Biomed Heal Informatics doi: 10.1109/TITB.2012.2222655 – ident: 4551_CR29 doi: 10.1109/ICCKE.2015.7365820 – volume-title: ADLER’S physiology of the eye year: 2011 ident: 4551_CR12 – year: 2017 ident: 4551_CR30 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2969-9 – volume: 37 start-page: 1167 year: 2007 ident: 4551_CR40 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2007.903540 – volume: 17 start-page: 73 year: 2014 ident: 4551_CR2 publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2012.670855 – volume: 157 start-page: 121 year: 2018 ident: 4551_CR43 publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2018.01.004 – volume: 91 start-page: 551 year: 2017 ident: 4551_CR1 publication-title: J Int Soc Adv Cytom doi: 10.1002/cyto.a.23151 – volume: 1005 start-page: 99 year: 2017 ident: 4551_CR3 publication-title: Adv Exp Med Biol doi: 10.1007/978-981-10-5717-5_5 – volume: 85 start-page: 1348 year: 1997 ident: 4551_CR39 publication-title: Proc IEEE doi: 10.1109/5.628669 – volume: 113 start-page: 150 year: 2009 ident: 4551_CR10 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2008.08.001 – ident: 4551_CR20 – volume: 5 start-page: 225 year: 2015 ident: 4551_CR23 publication-title: Int J Mach Learn Comput doi: 10.7763/IJMLC.2015.V5.511 – volume: 3 start-page: 29 year: 2011 ident: 4551_CR19 publication-title: J Telecommun Electron Comput Eng – volume: 41 start-page: 178 year: 2017 ident: 4551_CR31 publication-title: J Med Syst doi: 10.1007/s10916-017-0823-3 – volume: 5 start-page: 242 year: 2007 ident: 4551_CR41 publication-title: Genomics Proteomics Bioinform doi: 10.1016/S1672-0229(08)60011-X – volume: 36 start-page: 279 year: 2003 ident: 4551_CR15 publication-title: Pattern Recognit doi: 10.1016/S0031-3203(02)00030-4 – volume: 36 start-page: 167 year: 2015 ident: 4551_CR28 publication-title: Int J Diabetes Dev Ctries doi: 10.1007/s13410-015-0374-4 – volume: 92 start-page: 169 year: 2016 ident: 4551_CR35 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.10.024 – volume: 04 start-page: 173 year: 2013 ident: 4551_CR42 publication-title: J Signal Inf Process doi: 10.4236/jsip.2013.43B031 – volume: 49 start-page: 626 year: 2015 ident: 4551_CR25 publication-title: Rev Esc Enferm USP doi: 10.1590/s0080-623420150000400013 – volume: 6 start-page: 132 year: 2015 ident: 4551_CR6 publication-title: Biomed Opt Express doi: 10.1364/BOE.6.004529 – volume: 170 start-page: 1247 year: 2011 ident: 4551_CR7 publication-title: Eur J Pediatr doi: 10.1007/s00431-011-1454-1 – year: 2016 ident: 4551_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2604-1 – volume: 175 start-page: 160 year: 2005 ident: 4551_CR4 publication-title: Inf Sci (NY) doi: 10.1016/j.ins.2005.01.010 – volume: 14 start-page: 715 year: 2004 ident: 4551_CR37 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1016/B978-0-12-374457-9.00025-1 – year: 2017 ident: 4551_CR32 publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9565-3 – volume: 4 start-page: 562 year: 2015 ident: 4551_CR27 publication-title: Int J Eng Sci Res doi: 10.17950/ijer/v4s10/1010 – volume: 29 start-page: 93 year: 2013 ident: 4551_CR34 publication-title: Kaohsiung J Med Sci doi: 10.1016/j.kjms.2012.08.016 – volume: 42 start-page: 35 year: 2018 ident: 4551_CR36 publication-title: J Med Eng Technol doi: 10.1080/03091902.2017.1412521 – volume: 4 start-page: 776 year: 2015 ident: 4551_CR26 publication-title: Int J Adv Res Comput Eng Technol – ident: 4551_CR21 – ident: 4551_CR16 doi: 10.1109/IECBES.2010.5742211 – volume-title: Iridology: A complete guide to diagnosing through the iris and to related forms of treatment year: 1992 ident: 4551_CR9 – volume: 8 start-page: 534 year: 2013 ident: 4551_CR11 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.04.006 – volume: 110 start-page: 281 year: 2008 ident: 4551_CR13 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.08.005 – volume: 28 start-page: 5187 year: 2017 ident: 4551_CR5 publication-title: Biomed Res – volume: 21 start-page: 474 year: 2008 ident: 4551_CR24 publication-title: Acta Paul Enferm doi: 10.1590/S0103-21002008000300015 – volume: 4 start-page: 98 year: 1996 ident: 4551_CR14 publication-title: Complement Ther Med doi: 10.1016/S0965-2299(96)80025-2 – volume: 35 start-page: 432 year: 2015 ident: 4551_CR22 publication-title: Int J Diabetes Dev Ctries doi: 10.1007/s13410-015-0296-1 – volume: 33 start-page: 501 year: 2005 ident: 4551_CR18 publication-title: Am J Chin Med doi: 10.1142/S0192415X05003090 – volume: 2014 start-page: 6 year: 2014 ident: 4551_CR38 publication-title: Recent Adv Eng Comput Sci RAECS |
SSID | ssj0004685 |
Score | 2.2506182 |
Snippet | Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8441 |
SubjectTerms | Artificial Intelligence Classifiers Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Diabetes Diagnosis Digital imaging Feature extraction Image processing Image Processing and Computer Vision Machine learning Machine vision Original Article Parameter sensitivity Physiology Probability and Statistics in Computer Science Subgroups |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXLjwjRgMlAM3qNQ1bZoeJ8Q0ceDEpN2qNE0QEnSIjp-w_42dJR0gQOJWKXEOdRw_O84zwKVN8lhntogwVrZRWgnqBljgF5qSSBIiuXNVvvdiMk3vZtnMPwprQ7V7uJJ0J3X32I0ymBT6UjI_o-bwm7CVUeyOu3iajD69hnSNODFuoZqelPunMj-v8dUdrTHmt2tR523Ge7DjYSIbrfS6DxumOYDd0IKBeYs8hGUgFWFzy7Qb9tk91rGztgyBKQtJVvqg4joUoZr3R4YIkCQxQnaStNATWn5E_q1m1jjmz5appmYuDRJOS0as4S9UTdMewXR8-3AziXxnhUijyS2iPK6LobKKY7CjTSwrrgpRxzbXxmKEl1kV61gYLlUmZc2lKGopOLoya6Wo0oofQ6-ZN-YEGLq3Qg2FrjQCE8SSCLfSSnOhc2VqK0wfhuEHl9rTjlP3i-eyI0x2SilRKaVTSln04aqTeV2Rbvw5exD0VnoDbEuErYhEJCKYPlwHXa6Hf1_t9H_Tz2A7oe3kClwG0Fu8vZtzhCmL6sLtyg8Vpd-S priority: 102 providerName: Springer Nature |
Title | Analysis of computational techniques for diabetes diagnosis using the combination of iris-based features and physiological parameters |
URI | https://link.springer.com/article/10.1007/s00521-019-04551-9 https://www.proquest.com/docview/2311858021 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYduHCGzEYUw7coKLrI01PaKA9BNKEEJPGqWrTBCFBN-j4Cfxv7CzdAIndoqbOIY7tz45jA5xpL3JlqGMHfWXtBBmnboAxjlCUuOdRkTuT5Tviw3FwOwknNuBW2rTKSicaRZ1PJcXILxGHoGkRaJKuZu8OdY2i21XbQqMGDVTBAp2vxnVvdP_w42WkacqJPgzl9wS-fTZjHs9RRJRcabocCKnZ_G_TtMKbf65IjeXp78CWhYysu-DxLmyoYg-2q3YMzErnPnxVBUbYVDNppm2kjy0rtZYMQSqrAq40oEQ7JKH892eGaJAo0Vs2lLTQC2oBh2xdzrQyVUBLlhY5MyGRSnMyqiD-Rpk15QGM-73Hm6Fjuyw4EsVv7kRuHndSnfro-EjlisxPY567OpJKo7cX6tSVLle-SEMhcl_wOBfcx93WWvAsyPxDqBfTQh0BQ1MXpx0uM4kgBXElQq8gkz6XUapyzVUTOtUGJ9KWIKdOGK_JsniyYUqCTEkMU5K4CedLmtmiAMfav1sV3xIrjGWyOjpNuKh4uZr-f7Xj9audwKZHx8ckt7SgPv_4VKcIUeZZG2qiP2hDozt4uuu17anEr2Ov-w38budg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGHODCGzGeOcAJKrqmTdsDQggY43naJG6lTROEBB3QIcQP4O_wG7GzZgMkduNWKY0PsWN_dvwA2NJe6MpAxw76ytrxM0HTAGP8wqskPI-a3Jks32vR6vjnN8FNDT5tLQylVVqdaBR13pUUI99DHIKmJUKTdPD07NDUKHpdtSM0-mJxod7f0GUr98-Okb_bntc8aR-1nGqqgCNR3HpO6OZxI9UpR6AvlRtlPI1F7upQKo3eTaBTV7pC8SgNoijnkYjzSHBU41pHIvMzjnTHYMLnSIAq05un3-owzQhQ9Jgom8jnVZGOKdWj-Cs57vQUEdBo-5-GcIhufz3IGjvXnIXpCqCyw75EzUFNFfMwY4c_sEoXLMCHbWfCuppJs1zFFdmgL2zJEBIzG96lD0rrwy2UbX_HEHvSTvTNzU4idI86xyHLmjOtTM_RkqVFzkwAxuppRv3KHymPp1yEzr-c_hKMF91CLQNDwxqnDSEziZAIUSwCPT-TXMgwVbkWqg4Ne8CJrBqe09yNh2TQqtkwJUGmJIYpSVyHncGep367j5F_r1m-JdXVL5OhoNZh1_JyuPw3tZXR1DZhstW-ukwuz64vVmHKI1EyaTVrMN57eVXrCI562YaRSAa3_30FvgD56h-I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_Cmi9t9ZLPHopb6oHiw0FvIZhMRdFvc9Sf4v51JN9sqKngL5HHIJJlvJjPfEHJqgsRXsUk9sJWNF2UMqwGm0IKrxIIASe5slO-QDUbR7TgeL2Tx22h39yU5y2lAlqaiupjm5qJJfENvJprB6NiPsVD8MlmB57iL53oU9BYyI21RTrBhML4nCuu0mZ_X-Kqa5njz2xep1Tz9TbJeQ0bam8l4iyzpYptsuHIMtL6dO-TDEYzQiaHKdteePtowtZYUQCp1DldsYKAdTMH49ycKaBBngrVsZ-JCz_AKeKjrcmq0ZQEtqSxyal0i7uWkyCD-ipE15S4Z9a8fLwdeXWXBU7BflZf4edqVRoZg-Cjt8yyUKct9kyhtwNqLjfSVz3TIZcx5HnKW5pyFoNaM4SyLsnCPtIpJofcJBVWXyi5TmQKQArgSoFeUqZCpROrcMN0mXbfBQtUU5FgJ40U05MlWKAKEIqxQRNomZ82c6YyA48_RHSc3UV_GUgCEBVTCAc20ybmT5bz799UO_jf8hKw-XPXF_c3w7pCsBXiybNxLh7Sqt3d9BOilyo7tAf0E1rfmwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+computational+techniques+for+diabetes+diagnosis+using+the+combination+of+iris-based+features+and+physiological+parameters&rft.jtitle=Neural+computing+%26+applications&rft.au=Samant%2C+Piyush&rft.au=Agarwal%2C+Ravinder&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=12&rft.spage=8441&rft.epage=8453&rft_id=info:doi/10.1007%2Fs00521-019-04551-9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |