Analysis of computational techniques for diabetes diagnosis using the combination of iris-based features and physiological parameters

Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based f...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 31; no. 12; pp. 8441 - 8453
Main Authors Samant, Piyush, Agarwal, Ravinder
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-019-04551-9

Cover

Loading…
Abstract Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based features and physiological parameters. A set of 334 subjects are investigated which are divided into diabetic and non-diabetic groups. Moreover, the diabetic group is classified into three different subgroups according to the duration of the diabetic state. Statistical features, gray-level co-occurrence matrix, and gray-level run length matrix-based features are extracted from the specific areas of iris. Nine classifiers of different application areas are selected, and subsequently, six parameters (accuracy, precision, sensitivity, specificity, F -score, and area under the curve) of each classifier are analyzed. The analysis provided promising results with more than 95% of accuracy. The proposed technique can be used as a noninvasive and non-contact diabetes diagnosis tool which can help to find out the duration of diabetes in patients and the prevalence of diabetes.
AbstractList Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based features and physiological parameters. A set of 334 subjects are investigated which are divided into diabetic and non-diabetic groups. Moreover, the diabetic group is classified into three different subgroups according to the duration of the diabetic state. Statistical features, gray-level co-occurrence matrix, and gray-level run length matrix-based features are extracted from the specific areas of iris. Nine classifiers of different application areas are selected, and subsequently, six parameters (accuracy, precision, sensitivity, specificity, F -score, and area under the curve) of each classifier are analyzed. The analysis provided promising results with more than 95% of accuracy. The proposed technique can be used as a noninvasive and non-contact diabetes diagnosis tool which can help to find out the duration of diabetes in patients and the prevalence of diabetes.
Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis of machine learning-based classification techniques to diagnose type 2 diabetes using the combination of iris-based features and physiological parameters. A set of 334 subjects are investigated which are divided into diabetic and non-diabetic groups. Moreover, the diabetic group is classified into three different subgroups according to the duration of the diabetic state. Statistical features, gray-level co-occurrence matrix, and gray-level run length matrix-based features are extracted from the specific areas of iris. Nine classifiers of different application areas are selected, and subsequently, six parameters (accuracy, precision, sensitivity, specificity, F-score, and area under the curve) of each classifier are analyzed. The analysis provided promising results with more than 95% of accuracy. The proposed technique can be used as a noninvasive and non-contact diabetes diagnosis tool which can help to find out the duration of diabetes in patients and the prevalence of diabetes.
Author Agarwal, Ravinder
Samant, Piyush
Author_xml – sequence: 1
  givenname: Piyush
  orcidid: 0000-0001-9181-9932
  surname: Samant
  fullname: Samant, Piyush
  email: piyush.samant@thapar.edu
  organization: Thapar Institute of Engineering and Technology
– sequence: 2
  givenname: Ravinder
  surname: Agarwal
  fullname: Agarwal, Ravinder
  organization: Thapar Institute of Engineering and Technology
BookMark eNp9kM1OAyEUhYmpibX6Aq4mcT16GWYoLI3xL2niRteEYaClaWEEZtEH8L1lOiYmLrriwr3fOdxziWbOO43QDYY7DLC8jwBNhUvAvIS6aXDJz9Ac14SUBBo2Q3PgdW7Tmlygyxi3AFBT1szR94OTu0O0sfCmUH7fD0km6_NjkbTaOPs16FgYH4rOylanfMnF2vkRGaJ16yJt9Ei21h3JUcgGG8tWRt0VRss0hIxJ1xX9Jlv5nV9blQ16GeQ-S4Z4hc6N3EV9_Xsu0Ofz08fja7l6f3l7fFiVimCeyiV0HEsjCadUaWAtkZx2YJZKmxqWjZGggGrCZMNYRxjlHaMEV8wYRtu6JQt0O-n2wY-LJbH1Q8jLRlERjFnDoMJ5qpqmVPAxBm1EH-xehoPAIMa4xRS3yHGLY9yCZ4j9g5SdokxB2t1plExozD5urcPfr05QP5Evmbc
CitedBy_id crossref_primary_10_1016_j_knosys_2021_106969
crossref_primary_10_1016_j_jksuci_2020_06_013
crossref_primary_10_1007_s11042_022_14305_w
crossref_primary_10_1007_s11042_023_18092_w
crossref_primary_10_1142_S0218001422520176
crossref_primary_10_1002_ima_22689
crossref_primary_10_3389_fpubh_2022_860396
crossref_primary_10_3390_diagnostics13061081
Cites_doi 10.1007/s10916-017-0823-3
10.1590/S0103-21002008000300015
10.1016/j.cmpb.2018.01.004
10.1109/5.628669
10.1002/cyto.a.23151
10.4103/0377-2063.123765
10.1007/s00521-017-2969-9
10.1007/978-981-10-5717-5_5
10.1007/s00521-016-2604-1
10.1016/B978-0-12-374457-9.00025-1
10.1016/j.ins.2005.01.010
10.1590/s0080-623420150000400013
10.1109/TSMCB.2007.903540
10.1109/TITB.2012.2222655
10.4236/jsip.2013.43B031
10.1007/s13410-015-0374-4
10.1016/j.kjms.2012.08.016
10.1016/j.knosys.2015.10.024
10.1016/S0965-2299(96)80025-2
10.1007/s10462-017-9565-3
10.1016/j.cviu.2007.08.005
10.1016/S0031-3203(02)00030-4
10.1016/S1672-0229(08)60011-X
10.1364/BOE.6.004529
10.1007/s00431-011-1454-1
10.1016/j.cviu.2008.08.001
10.1080/03091902.2017.1412521
10.1007/s13410-015-0296-1
10.1142/S0192415X05003090
10.1080/10255842.2012.670855
10.1016/j.bspc.2013.04.006
10.7763/IJMLC.2015.V5.511
10.1109/ICCKE.2015.7365820
10.17950/ijer/v4s10/1010
10.1109/IECBES.2010.5742211
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Neural Computing and Applications is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Neural Computing and Applications is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04551-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 8453
ExternalDocumentID 10_1007_s00521_019_04551_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-70d91afa3966ce08b3a96d0f7cef4075fa0c06e38a588d3869d863128ff86b4b3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Mon Jul 14 09:28:03 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Tue Jul 01 01:46:53 EDT 2025
Fri Feb 21 02:35:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Iris
Physiological parameters
Iridology
Diabetes diagnosis
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-70d91afa3966ce08b3a96d0f7cef4075fa0c06e38a588d3869d863128ff86b4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9181-9932
PQID 2311858021
PQPubID 2043988
PageCount 13
ParticipantIDs proquest_journals_2311858021
crossref_primary_10_1007_s00521_019_04551_9
crossref_citationtrail_10_1007_s00521_019_04551_9
springer_journals_10_1007_s00521_019_04551_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Buchanan, Sutherland, Strettle (CR14) 1996; 4
Bansal, Agarwal, Sharma (CR22) 2015; 35
Dwivedi (CR30) 2017
Samant, Agarwal (CR36) 2018; 42
Goyal, Agarwal (CR5) 2017; 28
Um, An, Yang (CR18) 2005; 33
Ramlee, Aziz, Ranjit, Esro (CR19) 2011; 3
Kaur, Juneja (CR38) 2014; 2014
Kanawong, Obafemi-Ajayi, Liu, Zhang, Dong, Duan (CR3) 2017; 1005
CR16
Ma, Zhang, Li (CR17) 2013; 17
Sudha (CR31) 2017; 41
Xiong, Qu, Cambier, Mu (CR7) 2011; 170
Hollingsworth, Bowyer, Flynn (CR10) 2009; 113
Heydari, Teimouri, Heshmati (CR28) 2015; 36
Salles, Júlia, De (CR24) 2008; 21
Pergad, More (CR27) 2015; 4
Dwivedi (CR33) 2016
Salles, Silva (CR25) 2015; 49
Samant, Agarwal (CR43) 2018; 157
Meng, Huang, Rao (CR34) 2013; 29
Leung, Kapur, Guilliam (CR6) 2015; 6
Wildes (CR39) 1997; 85
Levin, Nilsson, Hoeve, Wu (CR12) 2011
Pang, Zhang, Wang (CR4) 2005; 175
Sharan (CR9) 1992
Hussein, Hassan, Granat (CR11) 2013; 8
CR29
Laddi, Kumar, Sharma (CR8) 2014; 59
Daugman (CR40) 2007; 37
Alvarez-betancourt, Garcia-silvente (CR35) 2016; 92
Bengtsson, Danielsen, Treanor (CR1) 2017; 91
CR21
Bowyer, Hollingsworth, Flynn (CR13) 2008; 110
CR20
Daugman (CR37) 2004; 14
Zhou, Wang (CR41) 2007; 5
Banzi, Xue (CR23) 2015; 5
Oliveira, Tavares (CR2) 2014; 17
Bhatia, Atole, Kamble, Telang (CR26) 2015; 4
Daugman (CR15) 2003; 36
Tama, Rhee (CR32) 2017
Karamizadeh, Abdullah, Manaf (CR42) 2013; 04
SE Hussein (4551_CR11) 2013; 8
AK Dwivedi (4551_CR33) 2016
TJ Buchanan (4551_CR14) 1996; 4
XH Meng (4551_CR34) 2013; 29
M Sudha (4551_CR31) 2017; 41
E Bengtsson (4551_CR1) 2017; 91
RP Wildes (4551_CR39) 1997; 85
K Goyal (4551_CR5) 2017; 28
4551_CR16
P Samant (4551_CR43) 2018; 157
TS Leung (4551_CR6) 2015; 6
A Bansal (4551_CR22) 2015; 35
M Heydari (4551_CR28) 2015; 36
AK Dwivedi (4551_CR30) 2017
BA Tama (4551_CR32) 2017
S Karamizadeh (4551_CR42) 2013; 04
LF Salles (4551_CR24) 2008; 21
FPM Oliveira (4551_CR2) 2014; 17
JF Banzi (4551_CR23) 2015; 5
N Zhou (4551_CR41) 2007; 5
J-Y Um (4551_CR18) 2005; 33
Y Alvarez-betancourt (4551_CR35) 2016; 92
N Kaur (4551_CR38) 2014; 2014
RA Ramlee (4551_CR19) 2011; 3
LF Salles (4551_CR25) 2015; 49
T Xiong (4551_CR7) 2011; 170
ND Pergad (4551_CR27) 2015; 4
LA Levin (4551_CR12) 2011
F Sharan (4551_CR9) 1992
4551_CR20
J Daugman (4551_CR15) 2003; 36
K Hollingsworth (4551_CR10) 2009; 113
R Kanawong (4551_CR3) 2017; 1005
J Daugman (4551_CR37) 2004; 14
A Laddi (4551_CR8) 2014; 59
L Ma (4551_CR17) 2013; 17
4551_CR21
PSK Bhatia (4551_CR26) 2015; 4
B Pang (4551_CR4) 2005; 175
KW Bowyer (4551_CR13) 2008; 110
P Samant (4551_CR36) 2018; 42
J Daugman (4551_CR40) 2007; 37
4551_CR29
References_xml – volume: 41
  start-page: 178
  year: 2017
  ident: CR31
  article-title: Evolutionary and neural computing based decision support system for disease diagnosis from clinical data sets in medical practice
  publication-title: J Med Syst
  doi: 10.1007/s10916-017-0823-3
– volume: 21
  start-page: 474
  year: 2008
  end-page: 480
  ident: CR24
  article-title: The prevalence of iridologic signs in individuals with Diabetes Mellitus *
  publication-title: Acta Paul Enferm
  doi: 10.1590/S0103-21002008000300015
– volume: 157
  start-page: 121
  year: 2018
  end-page: 128
  ident: CR43
  article-title: Machine learning techniques for medical diagnosis of diabetes using iris images
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2018.01.004
– volume: 85
  start-page: 1348
  year: 1997
  end-page: 1363
  ident: CR39
  article-title: Iris recognition: an emerging biometric technology
  publication-title: Proc IEEE
  doi: 10.1109/5.628669
– volume: 91
  start-page: 551
  year: 2017
  end-page: 554
  ident: CR1
  article-title: Computer-aided diagnostics in digital pathology
  publication-title: J Int Soc Adv Cytom
  doi: 10.1002/cyto.a.23151
– volume: 59
  start-page: 591
  year: 2014
  end-page: 595
  ident: CR8
  article-title: Non-invasive Jaundice detection using machine vision
  publication-title: IETE J Res
  doi: 10.4103/0377-2063.123765
– year: 2017
  ident: CR30
  article-title: Analysis of computational intelligence techniques for diabetes mellitus prediction
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2969-9
– volume: 4
  start-page: 776
  year: 2015
  end-page: 779
  ident: CR26
  article-title: Methodology for detecting diabetic presence from iris image analysis
  publication-title: Int J Adv Res Comput Eng Technol
– volume: 1005
  start-page: 99
  year: 2017
  end-page: 121
  ident: CR3
  article-title: Tongue image analysis and its mobile app development for health diagnosis
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-981-10-5717-5_5
– ident: CR16
– year: 2016
  ident: CR33
  article-title: Performance evaluation of different machine learning techniques for prediction of heart disease
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2604-1
– volume: 14
  start-page: 715
  year: 2004
  end-page: 739
  ident: CR37
  article-title: How iris recognition works
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1016/B978-0-12-374457-9.00025-1
– volume: 175
  start-page: 160
  year: 2005
  end-page: 176
  ident: CR4
  article-title: Tongue image analysis for appendicitis diagnosis
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2005.01.010
– volume: 49
  start-page: 626
  year: 2015
  end-page: 631
  ident: CR25
  article-title: The sign of the Cross of Andreas in the iris and Diabetes Mellitus: a longitudinal study
  publication-title: Rev Esc Enferm USP
  doi: 10.1590/s0080-623420150000400013
– volume: 37
  start-page: 1167
  year: 2007
  end-page: 1175
  ident: CR40
  article-title: New methods in iris recognition
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2007.903540
– volume: 3
  start-page: 29
  year: 2011
  end-page: 39
  ident: CR19
  article-title: Automated detecting arcus senilis, symptom for cholesterol presence using iris recognition algorithm
  publication-title: J Telecommun Electron Comput Eng
– ident: CR29
– volume: 17
  start-page: 223
  year: 2013
  end-page: 231
  ident: CR17
  article-title: Iris-based medical analysis by geometric deformation features
  publication-title: IEEE J Biomed Heal Informatics
  doi: 10.1109/TITB.2012.2222655
– year: 2011
  ident: CR12
  publication-title: ADLER’S physiology of the eye
– volume: 04
  start-page: 173
  year: 2013
  end-page: 175
  ident: CR42
  article-title: An overview of principal component analysis
  publication-title: J Signal Inf Process
  doi: 10.4236/jsip.2013.43B031
– volume: 36
  start-page: 167
  year: 2015
  end-page: 173
  ident: CR28
  article-title: Comparison of various classification algorithms in the diagnosis of type 2 diabetes in Iran
  publication-title: Int J Diabetes Dev Ctries
  doi: 10.1007/s13410-015-0374-4
– volume: 29
  start-page: 93
  year: 2013
  end-page: 99
  ident: CR34
  article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
  publication-title: Kaohsiung J Med Sci
  doi: 10.1016/j.kjms.2012.08.016
– volume: 92
  start-page: 169
  year: 2016
  end-page: 182
  ident: CR35
  article-title: A keypoints-based feature extraction method for iris recognition under variable image quality conditions
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.10.024
– volume: 4
  start-page: 98
  year: 1996
  end-page: 102
  ident: CR14
  article-title: An investigation of the relationship between anatomical features in the iris and systemic disease, with reference to iridology
  publication-title: Complement Ther Med
  doi: 10.1016/S0965-2299(96)80025-2
– year: 2017
  ident: CR32
  article-title: Tree-based classifier ensembles for early detection method of diabetes: an exploratory study
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9565-3
– volume: 110
  start-page: 281
  year: 2008
  end-page: 307
  ident: CR13
  article-title: Image understanding for iris biometrics: a survey
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2007.08.005
– ident: CR21
– volume: 36
  start-page: 279
  year: 2003
  end-page: 291
  ident: CR15
  article-title: The importance of being random: statistical principles of iris recognition
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(02)00030-4
– volume: 5
  start-page: 242
  year: 2007
  end-page: 249
  ident: CR41
  article-title: A Modified T-test feature selection method and its application on the hapmap genotype data
  publication-title: Genomics Proteomics Bioinform
  doi: 10.1016/S1672-0229(08)60011-X
– volume: 28
  start-page: 5187
  year: 2017
  end-page: 5195
  ident: CR5
  article-title: Pulse based sensor design for wrist pulse signal analysis and health diagnosis
  publication-title: Biomed Res
– volume: 6
  start-page: 132
  year: 2015
  end-page: 140
  ident: CR6
  article-title: Screening neonatal jaundice based on the sclera color of the eye using digital photography
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.6.004529
– volume: 170
  start-page: 1247
  year: 2011
  end-page: 1255
  ident: CR7
  article-title: The side effects of phototherapy for neonatal jaundice: what do we know? What should we do?
  publication-title: Eur J Pediatr
  doi: 10.1007/s00431-011-1454-1
– volume: 113
  start-page: 150
  year: 2009
  end-page: 157
  ident: CR10
  article-title: Pupil dilation degrades iris biometric performance
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2008.08.001
– volume: 42
  start-page: 35
  year: 2018
  end-page: 42
  ident: CR36
  article-title: Comparative analysis of classification based algorithms for diabetes diagnosis using iris images
  publication-title: J Med Eng Technol
  doi: 10.1080/03091902.2017.1412521
– year: 1992
  ident: CR9
  publication-title: Iridology: A complete guide to diagnosing through the iris and to related forms of treatment
– volume: 35
  start-page: 432
  year: 2015
  end-page: 438
  ident: CR22
  article-title: Determining diabetes using iris recognition system
  publication-title: Int J Diabetes Dev Ctries
  doi: 10.1007/s13410-015-0296-1
– volume: 33
  start-page: 501
  year: 2005
  end-page: 505
  ident: CR18
  article-title: Novel approach of molecular genetic understanding of iridology: relationship between iris constitution and angiotensin converting enzyme gene polymorphism
  publication-title: Am J Chin Med
  doi: 10.1142/S0192415X05003090
– volume: 17
  start-page: 73
  year: 2014
  end-page: 93
  ident: CR2
  article-title: Medical image registration: a review
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2012.670855
– volume: 8
  start-page: 534
  year: 2013
  end-page: 541
  ident: CR11
  article-title: Assessment of the potential iridology for diagnosing kidney disease using wavelet analysis and neural networks
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.04.006
– volume: 2014
  start-page: 6
  year: 2014
  end-page: 8
  ident: CR38
  article-title: A review on Iris recognition
  publication-title: Recent Adv Eng Comput Sci RAECS
– ident: CR20
– volume: 5
  start-page: 225
  year: 2015
  end-page: 229
  ident: CR23
  article-title: An automated tool for non-contact, real time early detection of diabetes by computer vision
  publication-title: Int J Mach Learn Comput
  doi: 10.7763/IJMLC.2015.V5.511
– volume: 4
  start-page: 562
  year: 2015
  end-page: 565
  ident: CR27
  article-title: Detection of diabetic presence from iris by using support vector machine
  publication-title: Int J Eng Sci Res
– volume: 59
  start-page: 591
  year: 2014
  ident: 4551_CR8
  publication-title: IETE J Res
  doi: 10.4103/0377-2063.123765
– volume: 17
  start-page: 223
  year: 2013
  ident: 4551_CR17
  publication-title: IEEE J Biomed Heal Informatics
  doi: 10.1109/TITB.2012.2222655
– ident: 4551_CR29
  doi: 10.1109/ICCKE.2015.7365820
– volume-title: ADLER’S physiology of the eye
  year: 2011
  ident: 4551_CR12
– year: 2017
  ident: 4551_CR30
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2969-9
– volume: 37
  start-page: 1167
  year: 2007
  ident: 4551_CR40
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2007.903540
– volume: 17
  start-page: 73
  year: 2014
  ident: 4551_CR2
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2012.670855
– volume: 157
  start-page: 121
  year: 2018
  ident: 4551_CR43
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2018.01.004
– volume: 91
  start-page: 551
  year: 2017
  ident: 4551_CR1
  publication-title: J Int Soc Adv Cytom
  doi: 10.1002/cyto.a.23151
– volume: 1005
  start-page: 99
  year: 2017
  ident: 4551_CR3
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-981-10-5717-5_5
– volume: 85
  start-page: 1348
  year: 1997
  ident: 4551_CR39
  publication-title: Proc IEEE
  doi: 10.1109/5.628669
– volume: 113
  start-page: 150
  year: 2009
  ident: 4551_CR10
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2008.08.001
– ident: 4551_CR20
– volume: 5
  start-page: 225
  year: 2015
  ident: 4551_CR23
  publication-title: Int J Mach Learn Comput
  doi: 10.7763/IJMLC.2015.V5.511
– volume: 3
  start-page: 29
  year: 2011
  ident: 4551_CR19
  publication-title: J Telecommun Electron Comput Eng
– volume: 41
  start-page: 178
  year: 2017
  ident: 4551_CR31
  publication-title: J Med Syst
  doi: 10.1007/s10916-017-0823-3
– volume: 5
  start-page: 242
  year: 2007
  ident: 4551_CR41
  publication-title: Genomics Proteomics Bioinform
  doi: 10.1016/S1672-0229(08)60011-X
– volume: 36
  start-page: 279
  year: 2003
  ident: 4551_CR15
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(02)00030-4
– volume: 36
  start-page: 167
  year: 2015
  ident: 4551_CR28
  publication-title: Int J Diabetes Dev Ctries
  doi: 10.1007/s13410-015-0374-4
– volume: 92
  start-page: 169
  year: 2016
  ident: 4551_CR35
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.10.024
– volume: 04
  start-page: 173
  year: 2013
  ident: 4551_CR42
  publication-title: J Signal Inf Process
  doi: 10.4236/jsip.2013.43B031
– volume: 49
  start-page: 626
  year: 2015
  ident: 4551_CR25
  publication-title: Rev Esc Enferm USP
  doi: 10.1590/s0080-623420150000400013
– volume: 6
  start-page: 132
  year: 2015
  ident: 4551_CR6
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.6.004529
– volume: 170
  start-page: 1247
  year: 2011
  ident: 4551_CR7
  publication-title: Eur J Pediatr
  doi: 10.1007/s00431-011-1454-1
– year: 2016
  ident: 4551_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2604-1
– volume: 175
  start-page: 160
  year: 2005
  ident: 4551_CR4
  publication-title: Inf Sci (NY)
  doi: 10.1016/j.ins.2005.01.010
– volume: 14
  start-page: 715
  year: 2004
  ident: 4551_CR37
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1016/B978-0-12-374457-9.00025-1
– year: 2017
  ident: 4551_CR32
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9565-3
– volume: 4
  start-page: 562
  year: 2015
  ident: 4551_CR27
  publication-title: Int J Eng Sci Res
  doi: 10.17950/ijer/v4s10/1010
– volume: 29
  start-page: 93
  year: 2013
  ident: 4551_CR34
  publication-title: Kaohsiung J Med Sci
  doi: 10.1016/j.kjms.2012.08.016
– volume: 42
  start-page: 35
  year: 2018
  ident: 4551_CR36
  publication-title: J Med Eng Technol
  doi: 10.1080/03091902.2017.1412521
– volume: 4
  start-page: 776
  year: 2015
  ident: 4551_CR26
  publication-title: Int J Adv Res Comput Eng Technol
– ident: 4551_CR21
– ident: 4551_CR16
  doi: 10.1109/IECBES.2010.5742211
– volume-title: Iridology: A complete guide to diagnosing through the iris and to related forms of treatment
  year: 1992
  ident: 4551_CR9
– volume: 8
  start-page: 534
  year: 2013
  ident: 4551_CR11
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.04.006
– volume: 110
  start-page: 281
  year: 2008
  ident: 4551_CR13
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2007.08.005
– volume: 28
  start-page: 5187
  year: 2017
  ident: 4551_CR5
  publication-title: Biomed Res
– volume: 21
  start-page: 474
  year: 2008
  ident: 4551_CR24
  publication-title: Acta Paul Enferm
  doi: 10.1590/S0103-21002008000300015
– volume: 4
  start-page: 98
  year: 1996
  ident: 4551_CR14
  publication-title: Complement Ther Med
  doi: 10.1016/S0965-2299(96)80025-2
– volume: 35
  start-page: 432
  year: 2015
  ident: 4551_CR22
  publication-title: Int J Diabetes Dev Ctries
  doi: 10.1007/s13410-015-0296-1
– volume: 33
  start-page: 501
  year: 2005
  ident: 4551_CR18
  publication-title: Am J Chin Med
  doi: 10.1142/S0192415X05003090
– volume: 2014
  start-page: 6
  year: 2014
  ident: 4551_CR38
  publication-title: Recent Adv Eng Comput Sci RAECS
SSID ssj0004685
Score 2.2506182
Snippet Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8441
SubjectTerms Artificial Intelligence
Classifiers
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Diabetes
Diagnosis
Digital imaging
Feature extraction
Image processing
Image Processing and Computer Vision
Machine learning
Machine vision
Original Article
Parameter sensitivity
Physiology
Probability and Statistics in Computer Science
Subgroups
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXLjwjRgMlAM3qNQ1bZoeJ8Q0ceDEpN2qNE0QEnSIjp-w_42dJR0gQOJWKXEOdRw_O84zwKVN8lhntogwVrZRWgnqBljgF5qSSBIiuXNVvvdiMk3vZtnMPwprQ7V7uJJ0J3X32I0ymBT6UjI_o-bwm7CVUeyOu3iajD69hnSNODFuoZqelPunMj-v8dUdrTHmt2tR523Ge7DjYSIbrfS6DxumOYDd0IKBeYs8hGUgFWFzy7Qb9tk91rGztgyBKQtJVvqg4joUoZr3R4YIkCQxQnaStNATWn5E_q1m1jjmz5appmYuDRJOS0as4S9UTdMewXR8-3AziXxnhUijyS2iPK6LobKKY7CjTSwrrgpRxzbXxmKEl1kV61gYLlUmZc2lKGopOLoya6Wo0oofQ6-ZN-YEGLq3Qg2FrjQCE8SSCLfSSnOhc2VqK0wfhuEHl9rTjlP3i-eyI0x2SilRKaVTSln04aqTeV2Rbvw5exD0VnoDbEuErYhEJCKYPlwHXa6Hf1_t9H_Tz2A7oe3kClwG0Fu8vZtzhCmL6sLtyg8Vpd-S
  priority: 102
  providerName: Springer Nature
Title Analysis of computational techniques for diabetes diagnosis using the combination of iris-based features and physiological parameters
URI https://link.springer.com/article/10.1007/s00521-019-04551-9
https://www.proquest.com/docview/2311858021
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYduHCGzEYUw7coKLrI01PaKA9BNKEEJPGqWrTBCFBN-j4Cfxv7CzdAIndoqbOIY7tz45jA5xpL3JlqGMHfWXtBBmnboAxjlCUuOdRkTuT5Tviw3FwOwknNuBW2rTKSicaRZ1PJcXILxGHoGkRaJKuZu8OdY2i21XbQqMGDVTBAp2vxnVvdP_w42WkacqJPgzl9wS-fTZjHs9RRJRcabocCKnZ_G_TtMKbf65IjeXp78CWhYysu-DxLmyoYg-2q3YMzErnPnxVBUbYVDNppm2kjy0rtZYMQSqrAq40oEQ7JKH892eGaJAo0Vs2lLTQC2oBh2xdzrQyVUBLlhY5MyGRSnMyqiD-Rpk15QGM-73Hm6Fjuyw4EsVv7kRuHndSnfro-EjlisxPY567OpJKo7cX6tSVLle-SEMhcl_wOBfcx93WWvAsyPxDqBfTQh0BQ1MXpx0uM4kgBXElQq8gkz6XUapyzVUTOtUGJ9KWIKdOGK_JsniyYUqCTEkMU5K4CedLmtmiAMfav1sV3xIrjGWyOjpNuKh4uZr-f7Xj9audwKZHx8ckt7SgPv_4VKcIUeZZG2qiP2hDozt4uuu17anEr2Ov-w38budg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGHODCGzGeOcAJKrqmTdsDQggY43naJG6lTROEBB3QIcQP4O_wG7GzZgMkduNWKY0PsWN_dvwA2NJe6MpAxw76ytrxM0HTAGP8wqskPI-a3Jks32vR6vjnN8FNDT5tLQylVVqdaBR13pUUI99DHIKmJUKTdPD07NDUKHpdtSM0-mJxod7f0GUr98-Okb_bntc8aR-1nGqqgCNR3HpO6OZxI9UpR6AvlRtlPI1F7upQKo3eTaBTV7pC8SgNoijnkYjzSHBU41pHIvMzjnTHYMLnSIAq05un3-owzQhQ9Jgom8jnVZGOKdWj-Cs57vQUEdBo-5-GcIhufz3IGjvXnIXpCqCyw75EzUFNFfMwY4c_sEoXLMCHbWfCuppJs1zFFdmgL2zJEBIzG96lD0rrwy2UbX_HEHvSTvTNzU4idI86xyHLmjOtTM_RkqVFzkwAxuppRv3KHymPp1yEzr-c_hKMF91CLQNDwxqnDSEziZAIUSwCPT-TXMgwVbkWqg4Ne8CJrBqe09yNh2TQqtkwJUGmJIYpSVyHncGep367j5F_r1m-JdXVL5OhoNZh1_JyuPw3tZXR1DZhstW-ukwuz64vVmHKI1EyaTVrMN57eVXrCI562YaRSAa3_30FvgD56h-I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_Cmi9t9ZLPHopb6oHiw0FvIZhMRdFvc9Sf4v51JN9sqKngL5HHIJJlvJjPfEHJqgsRXsUk9sJWNF2UMqwGm0IKrxIIASe5slO-QDUbR7TgeL2Tx22h39yU5y2lAlqaiupjm5qJJfENvJprB6NiPsVD8MlmB57iL53oU9BYyI21RTrBhML4nCuu0mZ_X-Kqa5njz2xep1Tz9TbJeQ0bam8l4iyzpYptsuHIMtL6dO-TDEYzQiaHKdteePtowtZYUQCp1DldsYKAdTMH49ycKaBBngrVsZ-JCz_AKeKjrcmq0ZQEtqSxyal0i7uWkyCD-ipE15S4Z9a8fLwdeXWXBU7BflZf4edqVRoZg-Cjt8yyUKct9kyhtwNqLjfSVz3TIZcx5HnKW5pyFoNaM4SyLsnCPtIpJofcJBVWXyi5TmQKQArgSoFeUqZCpROrcMN0mXbfBQtUU5FgJ40U05MlWKAKEIqxQRNomZ82c6YyA48_RHSc3UV_GUgCEBVTCAc20ybmT5bz799UO_jf8hKw-XPXF_c3w7pCsBXiybNxLh7Sqt3d9BOilyo7tAf0E1rfmwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+computational+techniques+for+diabetes+diagnosis+using+the+combination+of+iris-based+features+and+physiological+parameters&rft.jtitle=Neural+computing+%26+applications&rft.au=Samant%2C+Piyush&rft.au=Agarwal%2C+Ravinder&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=12&rft.spage=8441&rft.epage=8453&rft_id=info:doi/10.1007%2Fs00521-019-04551-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon