Prediction of cardiovascular risk by measuring carotid intima media thickness from an ultrasound image for type II diabetic mellitus subjects using machine learning and transfer learning techniques
Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in carotid intima media thickness (CIMT) is also a significant reason for CVD. It is expected to increase the death rate due to CVD up to 24.2 mill...
Saved in:
Published in | The Journal of supercomputing Vol. 77; no. 9; pp. 10289 - 10306 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in carotid intima media thickness (CIMT) is also a significant reason for CVD. It is expected to increase the death rate due to CVD up to 24.2 million by 2030. In previous studies, CIMT alone has been considered to identify the risk of CVD. In the proposed research, along with CIMT, the Framingham risk score (FRS) parameter was also calculated for both diabetic and normal subjects, which gives an accurate prediction of cardiovascular disease. CIMT was measured in 55 normal subjects and 55 diabetic subjects using a highly efficient ultrasound scanning device. Framingham risk score (FRS) was calculated for the 110 subjects based on the obtained demographic variables and biochemical parameters. The receiver operating characteristics (ROC) curve was plotted for CIMT with FRS which showed a sensitivity of 73% for CIMT. ROC curve plotted for FRS with fasting blood sugar and postprandial blood sugar showed a sensitivity of 80% and 81%, respectively. The performance was calculated based on different classification techniques. Results showed that support vector machine and multilayer perceptron classifier was classified with greater accuracy of 83.3% for 110 subjects. Further to improvise the analysis, the image data of the 110 subjects are augmented to 1809 image data and transfer learning techniques were applied using VGG16 and greater accuracy of 99% was achieved. |
---|---|
AbstractList | Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in carotid intima media thickness (CIMT) is also a significant reason for CVD. It is expected to increase the death rate due to CVD up to 24.2 million by 2030. In previous studies, CIMT alone has been considered to identify the risk of CVD. In the proposed research, along with CIMT, the Framingham risk score (FRS) parameter was also calculated for both diabetic and normal subjects, which gives an accurate prediction of cardiovascular disease. CIMT was measured in 55 normal subjects and 55 diabetic subjects using a highly efficient ultrasound scanning device. Framingham risk score (FRS) was calculated for the 110 subjects based on the obtained demographic variables and biochemical parameters. The receiver operating characteristics (ROC) curve was plotted for CIMT with FRS which showed a sensitivity of 73% for CIMT. ROC curve plotted for FRS with fasting blood sugar and postprandial blood sugar showed a sensitivity of 80% and 81%, respectively. The performance was calculated based on different classification techniques. Results showed that support vector machine and multilayer perceptron classifier was classified with greater accuracy of 83.3% for 110 subjects. Further to improvise the analysis, the image data of the 110 subjects are augmented to 1809 image data and transfer learning techniques were applied using VGG16 and greater accuracy of 99% was achieved. |
Author | Jayanthy, A. K. Ramraj, Balaji Lakshmi Prabha, P. Prem Kumar, C. |
Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0003-0154-1899 surname: Lakshmi Prabha fullname: Lakshmi Prabha, P. email: lakshmibmi123@gmail.com organization: Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology – sequence: 2 givenname: A. K. surname: Jayanthy fullname: Jayanthy, A. K. organization: Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology – sequence: 3 givenname: C. surname: Prem Kumar fullname: Prem Kumar, C. organization: Department of Radiology, SRM Medical College Hospital and Research Centre, Kattankulathur Campus – sequence: 4 givenname: Balaji surname: Ramraj fullname: Ramraj, Balaji organization: Department of Community Medicine, SRM Medical College Hospital and Research Centre, Kattankulathur Campus |
BookMark | eNp9kc1q3DAUhUVJoZO0L9CVoGu3-rNlL0tom4FAusjeaOSrjCa2NNWVGuYB-16RO4VAF1kJrs53j3TOJbkIMQAhHzn7zBnTX5BzIXTDBG-Y7HTXPL0hG95q2TDVqwuyYYNgTd8q8Y5cIh4YY0pquSF_fiaYvM0-BhodtSZNPv42aMtsEk0eH-nuRBcwWJIPD6sgZj9RH7JfTL2YvKF57-1jAETqUlyoCbTMORmMJVTlYh6AuphoPh2Bbre0IjvI3lZ6nn0uSLHsDmAz0oKryWLs3gegM5gU1oGpe-rCgA7SyzSD3Qf_qwC-J2-dmRE-_DuvyP33b_fXN83t3Y_t9dfbxko-5EazqQWuGSjhpnYNrtvxSavBsYGrybRGDp1rlWSdEEapVoHowcBku67XVl6RT-e1xxRX2zweYkmhOo6i7fggh1aqqurPKpsiYgI3Wp_NmnD9gp9HzsbVejx3NtbOxr-djU8VFf-hx1TzS6fXIXmG8LhWBOnlVa9Qz83nsYo |
CitedBy_id | crossref_primary_10_3233_JIFS_232851 crossref_primary_10_1007_s11042_023_17243_3 crossref_primary_10_54392_irjmt24313 crossref_primary_10_1080_0954898X_2024_2306988 crossref_primary_10_4015_S1016237222500314 crossref_primary_10_1007_s11227_021_04181_w crossref_primary_10_1038_s41598_023_33124_z crossref_primary_10_1007_s11227_024_05951_y crossref_primary_10_1016_j_jksus_2023_102573 crossref_primary_10_26724_2079_8334_2023_2_84_45_49 |
Cites_doi | 10.1186/s40885-017-0063-3 10.1016/j.jacc.2012.03.060 10.1093/oxfordjournals.aje.a010233 10.14238/pi48.3.2008.147-51 10.1155/2011/549137 10.1016/j.echo.2007.11.011 10.1186/1475-2840-9-37 10.1093/oxfordjournals.aje.a009302 10.1161/JAHA.116.005313 10.1161/01.CIR.86.6.1909 10.1056/NEJM199901073400103 10.1007/s11063-020-10391-9 10.1161/JAHA.113.000087 10.2337/diabetes.54.1.1 10.1016/j.jcmg.2013.11.014 10.18535/jmscr/v6i8.135 10.1161/01.CIR.96.5.1432 10.1016/j.echo.2006.04.020 10.1161/JAHA.112.001420 10.5455/aim.2016.24.364-369 10.1111/j.1365-2796.2011.02505.x 10.1371/journal.pone.0003435 10.1007/s11883-012-0306-4 10.1161/01.STR.0000196964.24024.ea 10.1186/1471-2261-14-181 10.1056/NEJMoa071359 10.1016/S0195-668X(03)00114-3 10.1016/S1885-5857(10)70014-1 10.1016/j.numecd.2008.02.002 10.1093/eurheartj/ehq189 10.1001/archinte.168.12.1333 10.1038/nutd.2015.2 10.1007/s10916-019-1406-2 10.1016/j.echo.2011.02.011 10.1016/S0140-6736(12)60441-3 10.4103/2230-8210.126522 10.1093/eurheartj/ehr192 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11227-021-03676-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
EndPage | 10306 |
ExternalDocumentID | 10_1007_s11227_021_03676_w |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-70d5e170e42fd510076b1d749f0914da5a396f5430622a4454e28eaedc6687c3 |
IEDL.DBID | U2A |
ISSN | 0920-8542 |
IngestDate | Mon Jul 14 10:40:41 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Tue Jul 01 03:04:31 EDT 2025 Fri Feb 21 02:48:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Carotid intima media thickness Framingham risk score Transfer learning technique Machine learning Pearson correlation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-70d5e170e42fd510076b1d749f0914da5a396f5430622a4454e28eaedc6687c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0154-1899 |
PQID | 2561939534 |
PQPubID | 2043774 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2561939534 crossref_citationtrail_10_1007_s11227_021_03676_w crossref_primary_10_1007_s11227_021_03676_w springer_journals_10_1007_s11227_021_03676_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
PublicationTitle | The Journal of supercomputing |
PublicationTitleAbbrev | J Supercomput |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Bongale, George (CR30) 2018; 06 Øygarden (CR5) 2017 Polak, Johnson, Harrington, Wong, O'Leary, Burke, Yanez (CR9) 2012; 1 Lorenz, Schaefer, Steinmetz, Sitzer (CR2) 2010; 31 Jarauta, Mateo-Gallego, Bea, Burillo, Calmarza, Civeira (CR28) 2010; 63 Polak, Szklo, Kronmal, Burke, Shea, Zavodni, O'Leary (CR38) 2013; 2 Yang, Sun, Li, Ai, Sun, Tian (CR14) 2014; 14 Xie, Wu, Wang, Zhao, Liang, Wang, Yang, Sun, Shi, Huo (CR37) 2011; 24 Folsom, Kronmal, Detrano, O'Leary, Bild, Bluemke, Budoff, Liu, Shea, Szklo, Tracy (CR21) 2008; 168 Lorenz, von Kegler, Steinmetz, Markus, Sitzer (CR25) 2006; 37 Kasliwal, Bansal, Desai, Sharma (CR29) 2014; 18 Naqvi, Lee (CR24) 2014; 7 Conroy, Pyörälä, Fitzgerald, Sans, Menotti, De Backer, De Bacquer, Ducimetiere, Jousilahti, Keil, Njølstad (CR34) 2003; 24 Darabian, Hormuz, Latif, Pahlevan, Budoff (CR4) 2013; 15 Bots, Hoes, Koudstaal, Hofman, Grobbee (CR36) 1997; 96 Sukardi, Madiyono, Sastroasmoro, Batubara (CR10) 2008; 48 Einarson, Hunchuck, Hemels (CR6) 2010; 9 Chambless, Folsom, Clegg, Sharrett, Shahar, Nieto, Rosamond, Evans (CR23) 2000; 151 Arulananth, Balaji, Baskar (CR27) 2020 Jerant, Bertakis, Franks (CR32) 2015; 5 Nambi, Chambless, He, Folsom, Mosley, Boerwinkle, Ballantyne (CR16) 2012; 33 Łoboz-Rudnicka, Jaroch, Bociąga, Rzyczkowska, Uchmanowicz, Polański, Dudek, Szuba, Łoboz-Grudzień (CR20) 2016; 11 Savaş, Topaloğlu, Kazcı, Koşar (CR39) 2019; 43 Langarizadeh, Moghbeli (CR26) 2016; 24 O'Leary, Polak, Kronmal, Manolio, Burke, Wolfson (CR33) 1999; 340 Mackey, Greenland, Goff, Lloyd-Jones, Sibley, Mora (CR35) 2012; 60 Enomoto, Adachi, Hirai, Fukami, Satoh, Otsuka, Kumagae, Nanjo, Yoshikawa, Esaki, Kumagai (CR18) 2011; 2011 (CR31) 2012; 272 Ceriello (CR7) 2005; 54 Chambless, Heiss, Folsom, Rosamond, Szklo, Sharrett, Clegg (CR11) 1997; 146 Baskar, Ramkumar, Rathore, Kabra (CR40) 2020; 29 Kastelein, van Leuven, Burgess, Evans, Kuivenhoven, Barter, Duggan (CR15) 2007; 356 Lorenz, Polak, Kavousi, Mathiesen, Völzke, Tuomainen, Sander, Plichart, Catapano, Robertson, Kiechl (CR17) 2012; 379 Stein, Korcarz, Todd Hurst, Lonn, Kendall, Mohler, Najjar, Rembold, Post (CR19) 2008; 21 Roman, Naqvi, Gardin, Gerhard-Herman, Jaff, Mohler (CR1) 2006; 19 Magnussen (CR12) 2017; 23 Nambi, Chambless, He, Folsom, Mosley, Boerwinkle, Ballantyne (CR3) 2012; 33 Roman, Saba, Pini, Spitzer, Pickering, Rosen, Alderman, Devereux (CR13) 1992; 86 Brohall, Schmidt, Behre, Hulthe, Wikstrand, Fagerberg (CR8) 2009; 19 Chien, Su, Jeng, Hsu, Chang, Chen, Lee, Hu (CR22) 2008; 3 H Øygarden (3676_CR5) 2017 M Łoboz-Rudnicka (3676_CR20) 2016; 11 MW Lorenz (3676_CR17) 2012; 379 M Baskar (3676_CR40) 2020; 29 MW Lorenz (3676_CR25) 2006; 37 S Savaş (3676_CR39) 2019; 43 V Nambi (3676_CR16) 2012; 33 DH O'Leary (3676_CR33) 1999; 340 S Darabian (3676_CR4) 2013; 15 G Brohall (3676_CR8) 2009; 19 KL Chien (3676_CR22) 2008; 3 S Bongale (3676_CR30) 2018; 06 LE Chambless (3676_CR23) 2000; 151 A Ceriello (3676_CR7) 2005; 54 W Xie (3676_CR37) 2011; 24 V Nambi (3676_CR3) 2012; 33 C Yang (3676_CR14) 2014; 14 RH Mackey (3676_CR35) 2012; 60 A Jerant (3676_CR32) 2015; 5 LE Chambless (3676_CR11) 1997; 146 M Langarizadeh (3676_CR26) 2016; 24 TZ Naqvi (3676_CR24) 2014; 7 E Jarauta (3676_CR28) 2010; 63 MJ Roman (3676_CR13) 1992; 86 JF Polak (3676_CR9) 2012; 1 R Sukardi (3676_CR10) 2008; 48 TR Einarson (3676_CR6) 2010; 9 ML Bots (3676_CR36) 1997; 96 Peters SAE, Lind L, Palmer MK, Grobbee DE, Crouse III JR, O'Leary DH, Evans GW, Raichlen J, Bots ML, den Ruijter HM, METEOR Study Group (3676_CR31) 2012; 272 RR Kasliwal (3676_CR29) 2014; 18 RM Conroy (3676_CR34) 2003; 24 TS Arulananth (3676_CR27) 2020 JF Polak (3676_CR38) 2013; 2 AR Folsom (3676_CR21) 2008; 168 CG Magnussen (3676_CR12) 2017; 23 M Enomoto (3676_CR18) 2011; 2011 MJ Roman (3676_CR1) 2006; 19 JJ Kastelein (3676_CR15) 2007; 356 MW Lorenz (3676_CR2) 2010; 31 JH Stein (3676_CR19) 2008; 21 |
References_xml | – volume: 23 start-page: 1 issue: 1 year: 2017 end-page: 4 ident: CR12 article-title: Carotid artery intima-media thickness and hypertensive heart disease: a short review publication-title: Clin Hypertens doi: 10.1186/s40885-017-0063-3 – volume: 60 start-page: 508 issue: 6 year: 2012 end-page: 516 ident: CR35 article-title: High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis) publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2012.03.060 – volume: 151 start-page: 478 issue: 5 year: 2000 end-page: 487 ident: CR23 article-title: Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a010233 – volume: 48 start-page: 147 issue: 3 year: 2008 end-page: 151 ident: CR10 article-title: Relationship between lipid profiles with carotid intima–media thickness in children with type I diabetes mellitus publication-title: Paediatr Indones doi: 10.14238/pi48.3.2008.147-51 – volume: 2011 start-page: 1 year: 2011 end-page: 6 ident: CR18 article-title: LDL-C/HDL-C ratio predicts carotid intima-media thickness progression better than HDL-C or LDL-C alone publication-title: J Lipids doi: 10.1155/2011/549137 – volume: 21 start-page: 93 issue: 2 year: 2008 end-page: 111 ident: CR19 article-title: Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2007.11.011 – volume: 9 start-page: 37 issue: 1 year: 2010 ident: CR6 article-title: Relationship between blood glucose and carotid intima-media thickness: a meta-analysis publication-title: Cardiovasc Diabetol doi: 10.1186/1475-2840-9-37 – volume: 146 start-page: 483 issue: 6 year: 1997 end-page: 494 ident: CR11 article-title: Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a009302 – year: 2017 ident: CR5 article-title: Carotid intima-media thickness and prediction of cardiovascular disease publication-title: J Am Heart Assoc doi: 10.1161/JAHA.116.005313 – volume: 86 start-page: 1909 issue: 6 year: 1992 end-page: 1918 ident: CR13 article-title: Parallel cardiac and vascular adaptation in hypertension publication-title: Circulation doi: 10.1161/01.CIR.86.6.1909 – volume: 340 start-page: 14 issue: 1 year: 1999 end-page: 22 ident: CR33 article-title: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults publication-title: N Engl J Med doi: 10.1056/NEJM199901073400103 – year: 2020 ident: CR27 article-title: PCA based dimensional data reduction and segmentation for DICOM images publication-title: Neural Process Lett doi: 10.1007/s11063-020-10391-9 – volume: 2 start-page: e000087 issue: 2 year: 2013 ident: CR38 article-title: The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis publication-title: J Am Heart Assoc doi: 10.1161/JAHA.113.000087 – volume: 11 start-page: 721 year: 2016 ident: CR20 article-title: Impact of cardiovascular risk factors on carotid intima–media thickness: sex differences publication-title: Clin Interv Aging – volume: 54 start-page: 1 issue: 1 year: 2005 end-page: 7 ident: CR7 article-title: Postprandial hyperglycemia and diabetes complications: is it time to treat? publication-title: Diabetes doi: 10.2337/diabetes.54.1.1 – volume: 7 start-page: 1025 issue: 10 year: 2014 end-page: 1038 ident: CR24 article-title: Carotid intima-media thickness and plaque in cardiovascular risk assessment publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2013.11.014 – volume: 06 start-page: 809 issue: 08 year: 2018 end-page: 812 ident: CR30 article-title: Importance of carotid intima media thickness in ischemic stroke in a tertiary care hospital publication-title: J Med Sci Clinical Res doi: 10.18535/jmscr/v6i8.135 – volume: 96 start-page: 1432 issue: 5 year: 1997 end-page: 1437 ident: CR36 article-title: Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study publication-title: Circulation doi: 10.1161/01.CIR.96.5.1432 – volume: 19 start-page: 943 issue: 8 year: 2006 end-page: 954 ident: CR1 article-title: Clinical application of non-invasive vascular ultrasound in cardiovascular risk stratification: a report from the American Society of Echocardiography and the society of vascular medicine and biology publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2006.04.020 – volume: 1 start-page: e001420 issue: 4 year: 2012 ident: CR9 article-title: Changes in carotid intima-media thickness during the cardiac cycle: the multi-ethnic study of atherosclerosis publication-title: J Am Heart Assoc doi: 10.1161/JAHA.112.001420 – volume: 24 start-page: 364 issue: 5 year: 2016 ident: CR26 article-title: Applying naive bayesian networks to disease prediction: a systematic review publication-title: Acta Inform Medica doi: 10.5455/aim.2016.24.364-369 – volume: 272 start-page: 257 issue: 3 year: 2012 end-page: 266 ident: CR31 article-title: Increased age, high body mass index, and low HDL-C levels are related to an echolucent carotid intima-media: the METEOR study publication-title: J Intern Med doi: 10.1111/j.1365-2796.2011.02505.x – volume: 3 start-page: e3435 issue: 10 year: 2008 ident: CR22 article-title: Carotid artery intima-media thickness, carotid plaque, and coronary heart disease and stroke in Chinese publication-title: PLoS ONE doi: 10.1371/journal.pone.0003435 – volume: 15 start-page: 306 issue: 3 year: 2013 ident: CR4 article-title: The role of carotid intimal thickness testing and risk prediction in the development of coronary atherosclerosis publication-title: Curr Atheroscler Rep doi: 10.1007/s11883-012-0306-4 – volume: 37 start-page: 87 issue: 1 year: 2006 end-page: 92 ident: CR25 article-title: Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS) publication-title: Stroke doi: 10.1161/01.STR.0000196964.24024.ea – volume: 14 start-page: 181 issue: 1 year: 2014 ident: CR14 article-title: The correlation between serum lipid profile with carotid intima-media thickness and plaque publication-title: BMC Cardiovasc Disord doi: 10.1186/1471-2261-14-181 – volume: 356 start-page: 1620 issue: 16 year: 2007 end-page: 1630 ident: CR15 article-title: Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia publication-title: N Engl J Med doi: 10.1056/NEJMoa071359 – volume: 24 start-page: 987 issue: 11 year: 2003 end-page: 1003 ident: CR34 article-title: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project publication-title: Eur Heart J doi: 10.1016/S0195-668X(03)00114-3 – volume: 63 start-page: 97 issue: 1 year: 2010 end-page: 102 ident: CR28 article-title: Carotid intima-media thickness in subjects with no cardiovascular risk factors publication-title: Revista Española de Cardiología (English Edition) doi: 10.1016/S1885-5857(10)70014-1 – volume: 19 start-page: 327 issue: 5 year: 2009 end-page: 333 ident: CR8 article-title: Association between impaired glucose tolerance and carotid atherosclerosis: a study in 64-year-old women and a meta-analysis publication-title: Nutr Metab Cardiovasc Dis doi: 10.1016/j.numecd.2008.02.002 – volume: 31 start-page: 2041 issue: 16 year: 2010 end-page: 2048 ident: CR2 article-title: Is carotid intima-media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the carotid atherosclerosis progression study (CAPS) publication-title: Eur Heart J doi: 10.1093/eurheartj/ehq189 – volume: 168 start-page: 1333 issue: 12 year: 2008 end-page: 1339 ident: CR21 article-title: Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA) publication-title: Arch Intern Med doi: 10.1001/archinte.168.12.1333 – volume: 5 start-page: e152 issue: 4 year: 2015 end-page: e152 ident: CR32 article-title: Body mass index and health status in diabetic and non-diabetic individuals publication-title: Nutr Diabetes doi: 10.1038/nutd.2015.2 – volume: 29 start-page: 1844 issue: 4 year: 2020 end-page: 1854 ident: CR40 article-title: A deep learning based approach for automatic detection of bike riders with no helmet and number plate recognition publication-title: Int J Adv Sci Technol – volume: 43 start-page: 273 issue: 8 year: 2019 ident: CR39 article-title: Classification of carotid artery intima media thickness ultrasound images with deep learning publication-title: J Med Syst doi: 10.1007/s10916-019-1406-2 – volume: 24 start-page: 729 issue: 7 year: 2011 end-page: 737 ident: CR37 article-title: A longitudinal study of carotid plaque and risk of ischemic cardiovascular disease in the Chinese population publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2011.02.011 – volume: 379 start-page: 2053 issue: 9831 year: 2012 end-page: 2062 ident: CR17 article-title: Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data publication-title: Lancet doi: 10.1016/S0140-6736(12)60441-3 – volume: 18 start-page: 13 issue: 1 year: 2014 ident: CR29 article-title: Carotid intima-media thickness: current evidence, practices, and Indian experience publication-title: Indian J Endocrinol Metab doi: 10.4103/2230-8210.126522 – volume: 33 start-page: 183 issue: 2 year: 2012 end-page: 190 ident: CR16 article-title: Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr192 – volume: 33 start-page: 183 issue: 2 year: 2012 end-page: 190 ident: CR3 article-title: Common carotid artery intima–media thickness is as good as carotid intima–media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr192 – volume: 33 start-page: 183 issue: 2 year: 2012 ident: 3676_CR16 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr192 – volume: 21 start-page: 93 issue: 2 year: 2008 ident: 3676_CR19 publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2007.11.011 – volume: 19 start-page: 327 issue: 5 year: 2009 ident: 3676_CR8 publication-title: Nutr Metab Cardiovasc Dis doi: 10.1016/j.numecd.2008.02.002 – volume: 24 start-page: 364 issue: 5 year: 2016 ident: 3676_CR26 publication-title: Acta Inform Medica doi: 10.5455/aim.2016.24.364-369 – volume: 33 start-page: 183 issue: 2 year: 2012 ident: 3676_CR3 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr192 – volume: 2011 start-page: 1 year: 2011 ident: 3676_CR18 publication-title: J Lipids doi: 10.1155/2011/549137 – volume: 54 start-page: 1 issue: 1 year: 2005 ident: 3676_CR7 publication-title: Diabetes doi: 10.2337/diabetes.54.1.1 – volume: 5 start-page: e152 issue: 4 year: 2015 ident: 3676_CR32 publication-title: Nutr Diabetes doi: 10.1038/nutd.2015.2 – volume: 86 start-page: 1909 issue: 6 year: 1992 ident: 3676_CR13 publication-title: Circulation doi: 10.1161/01.CIR.86.6.1909 – volume: 2 start-page: e000087 issue: 2 year: 2013 ident: 3676_CR38 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.113.000087 – volume: 48 start-page: 147 issue: 3 year: 2008 ident: 3676_CR10 publication-title: Paediatr Indones doi: 10.14238/pi48.3.2008.147-51 – volume: 19 start-page: 943 issue: 8 year: 2006 ident: 3676_CR1 publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2006.04.020 – volume: 168 start-page: 1333 issue: 12 year: 2008 ident: 3676_CR21 publication-title: Arch Intern Med doi: 10.1001/archinte.168.12.1333 – volume: 24 start-page: 987 issue: 11 year: 2003 ident: 3676_CR34 publication-title: Eur Heart J doi: 10.1016/S0195-668X(03)00114-3 – volume: 24 start-page: 729 issue: 7 year: 2011 ident: 3676_CR37 publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2011.02.011 – volume: 37 start-page: 87 issue: 1 year: 2006 ident: 3676_CR25 publication-title: Stroke doi: 10.1161/01.STR.0000196964.24024.ea – volume: 3 start-page: e3435 issue: 10 year: 2008 ident: 3676_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0003435 – volume: 272 start-page: 257 issue: 3 year: 2012 ident: 3676_CR31 publication-title: J Intern Med doi: 10.1111/j.1365-2796.2011.02505.x – volume: 356 start-page: 1620 issue: 16 year: 2007 ident: 3676_CR15 publication-title: N Engl J Med doi: 10.1056/NEJMoa071359 – volume: 14 start-page: 181 issue: 1 year: 2014 ident: 3676_CR14 publication-title: BMC Cardiovasc Disord doi: 10.1186/1471-2261-14-181 – volume: 7 start-page: 1025 issue: 10 year: 2014 ident: 3676_CR24 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2013.11.014 – volume: 11 start-page: 721 year: 2016 ident: 3676_CR20 publication-title: Clin Interv Aging – volume: 29 start-page: 1844 issue: 4 year: 2020 ident: 3676_CR40 publication-title: Int J Adv Sci Technol – volume: 63 start-page: 97 issue: 1 year: 2010 ident: 3676_CR28 publication-title: Revista Española de Cardiología (English Edition) doi: 10.1016/S1885-5857(10)70014-1 – volume: 9 start-page: 37 issue: 1 year: 2010 ident: 3676_CR6 publication-title: Cardiovasc Diabetol doi: 10.1186/1475-2840-9-37 – volume: 340 start-page: 14 issue: 1 year: 1999 ident: 3676_CR33 publication-title: N Engl J Med doi: 10.1056/NEJM199901073400103 – year: 2017 ident: 3676_CR5 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.116.005313 – volume: 146 start-page: 483 issue: 6 year: 1997 ident: 3676_CR11 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a009302 – volume: 06 start-page: 809 issue: 08 year: 2018 ident: 3676_CR30 publication-title: J Med Sci Clinical Res doi: 10.18535/jmscr/v6i8.135 – volume: 31 start-page: 2041 issue: 16 year: 2010 ident: 3676_CR2 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehq189 – year: 2020 ident: 3676_CR27 publication-title: Neural Process Lett doi: 10.1007/s11063-020-10391-9 – volume: 96 start-page: 1432 issue: 5 year: 1997 ident: 3676_CR36 publication-title: Circulation doi: 10.1161/01.CIR.96.5.1432 – volume: 43 start-page: 273 issue: 8 year: 2019 ident: 3676_CR39 publication-title: J Med Syst doi: 10.1007/s10916-019-1406-2 – volume: 60 start-page: 508 issue: 6 year: 2012 ident: 3676_CR35 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2012.03.060 – volume: 379 start-page: 2053 issue: 9831 year: 2012 ident: 3676_CR17 publication-title: Lancet doi: 10.1016/S0140-6736(12)60441-3 – volume: 18 start-page: 13 issue: 1 year: 2014 ident: 3676_CR29 publication-title: Indian J Endocrinol Metab doi: 10.4103/2230-8210.126522 – volume: 1 start-page: e001420 issue: 4 year: 2012 ident: 3676_CR9 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.112.001420 – volume: 151 start-page: 478 issue: 5 year: 2000 ident: 3676_CR23 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a010233 – volume: 23 start-page: 1 issue: 1 year: 2017 ident: 3676_CR12 publication-title: Clin Hypertens doi: 10.1186/s40885-017-0063-3 – volume: 15 start-page: 306 issue: 3 year: 2013 ident: 3676_CR4 publication-title: Curr Atheroscler Rep doi: 10.1007/s11883-012-0306-4 |
SSID | ssj0004373 |
Score | 2.3062942 |
Snippet | Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10289 |
SubjectTerms | Blood Cardiovascular disease Compilers Computer Science Demographic variables Diabetes Heart diseases Interpreters Machine learning Mathematical analysis Mobile and Intelligent Sensing on High Performance Computing Multilayer perceptrons Parameters Processor Architectures Programming Languages Risk Sensitivity Support vector machines Thickness Ultrasonic imaging |
Title | Prediction of cardiovascular risk by measuring carotid intima media thickness from an ultrasound image for type II diabetic mellitus subjects using machine learning and transfer learning techniques |
URI | https://link.springer.com/article/10.1007/s11227-021-03676-w https://www.proquest.com/docview/2561939534 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4XHqhBVp1gaI5cINIiWPHyXGhLC-BOIAEpyixndWK3SzaZIX6A_lfzHiTjahoJU6RkrETeWbiz_Nk7EAk1sY6Qv1OBPeETLiXGBV4uHUWrsBYLig5-fomOr8Xlw_yoUkKq9po99Yl6f7UXbJbwLnyKKTApzJj3ssqW5d0dkcpvuf9LhsyXPiVEzwYxVLwJlXm4zneb0cdxvzLLep2m8E3ttHAROgv-LrJVmy5xb62LRig0cht9no7I08LrS5MC9DvokuB4sYh_wMTZwjEFxHBtB4ZGJX1aJKByxsBCnl_ol8eULIJZCXMx_Usq6jjEiDZ0AJCWyBrLVxcwMJcO9I4eowgfl5BNc_JnFMBRdEPYeICNC00HSmGOKOB2iFk_Pbl3WX52Oo7uxuc3p2ce01nBk-jytae8o20gfKt4IWRtLRRHhglkgLhhzCZzMIkKqTA8wjnmRBSWB7bzBodRbHS4Q-2Vk5L-5OBXwgtjEJe4PDI5Ig3Y19rpfw84Jkf9ljQ8ifVTdVyap4xTrt6y8TTFHmaOp6mLz12uBzzvKjZ8V_qvZbtaaO_VYpAEJFtIkPRY0etKHSP_z3bzufId9kX7qSRgtb22Fo9m9tfiHLqfJ-t949_Hw_oevZ4dbrvhPwNeBf6Jw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBb6OLSXbX2h2frgobfWgC1Lln0shhVJX-ghBXozbEkOgibOEDso9gP3v0YqdowW7YBebUk2RFH6RH4kGTsTibWxjlC_E8E9IRPuJUYFHh6dhUswlgsKTr67j_qP4vpJPjVBYVXLdm9dkm6n7oLdAs6VR5QCn9KMeS_rbBPBQExErkd-2UVDhku_coIXo1gK3oTKvD_G6-Oow5hv3KLutLn6xr40MBEul3LdYWu23GVf2xIM0GjkHvv7MCdPC80uzArQr9ilQLxxyP_A1BkC8UPUYFaPDYzLejzNwMWNAFHen2nLAwo2gayExaSeZxVVXAJsNrKA0BbIWguDASzNtWONvScI4hcVVIuczDkVEIt-BFNH0LTQVKQY4YgGaoeQ8d9XT1fpY6t9Nrz6NfzZ95rKDJ5Gla095RtpA-VbwQsjaWqjPDBKJAXCD2EymYVJVEiB9xHOMyGksDy2mTU6imKlwwO2Uc5Ke8jAL4QWRqEssHtkcsSbsa-1Un4e8MwPeyxo5ZPqJms5Fc-YpF2-ZZJpijJNnUzTlx47X_X5vczZ8d_WR63Y00Z_qxSBICLbRIaixy7apdC9_ni0759rfsq2-sO72_R2cH_zg21ztzKJwHbENur5wh4j4qnzE7fA_wG96_oU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlW9FPpSl1fn0BtEJI4dJ0cErFjaIg4gcYsS21mt2M2iTVaIH8j_YsZJNgWVSlwT24k8Y_vzzHwzjP0UibWxjnB9J4J7QibcS4wKPDw6C5dgLBdETv5zHp1eibNref0Xi99Fu3cuyYbTQFmayvrg1hQHPfEt4Fx5FF7gU8ox7-4te4fbcUB6fcUPe2Zk2PiYE7wkxVLwljbz7zGeHk093nzmInUnz3CDfWwhIxw2Mv7E3tjyM1vvyjFAuzq_sIeLBXldaKZhXoB-EmkKFEMO-T3MnFEQP0QN5vXEwKSsJ7MMHIcEKPz9hrY_IOIJZCUsp_Uiq6j6EmCzsQWEuUCWWxiNoDHdTjT2niKgX1ZQLXMy7VRAEfVjmLlgTQttdYoxjmigdmgZ_331dJVKtvrKLocnl0enXlulwdM437WnfCNtoHwreGEkTW2UB0aJpEAoIkwmszCJCinwbsJ5JoQUlsc2s0ZHUax0-I2tlfPSfmfgF0ILo1AW2D0yOWLP2NdaKT8PeOaHAxZ08kl1m8GcCmlM0z73Msk0RZmmTqbp3YDtrfrcNvk7_tt6uxN72q7lKkVQiCg3kaEYsP1OFfrXL4-2-brmP9j7i-Nh-nt0_muLfeBOMSmWbZut1Yul3UHwU-e7Tr8fAdAH_lA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+cardiovascular+risk+by+measuring+carotid+intima+media+thickness+from+an+ultrasound+image+for+type+II+diabetic+mellitus+subjects+using+machine+learning+and+transfer+learning+techniques&rft.jtitle=The+Journal+of+supercomputing&rft.au=Lakshmi%2C+Prabha+P&rft.au=Jayanthy%2C+A+K&rft.au=Prem+Kumar+C&rft.au=Ramraj+Balaji&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=9&rft.spage=10289&rft.epage=10306&rft_id=info:doi/10.1007%2Fs11227-021-03676-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |