Prediction of cardiovascular risk by measuring carotid intima media thickness from an ultrasound image for type II diabetic mellitus subjects using machine learning and transfer learning techniques

Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in carotid intima media thickness (CIMT) is also a significant reason for CVD. It is expected to increase the death rate due to CVD up to 24.2 mill...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 77; no. 9; pp. 10289 - 10306
Main Authors Lakshmi Prabha, P., Jayanthy, A. K., Prem Kumar, C., Ramraj, Balaji
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in carotid intima media thickness (CIMT) is also a significant reason for CVD. It is expected to increase the death rate due to CVD up to 24.2 million by 2030. In previous studies, CIMT alone has been considered to identify the risk of CVD. In the proposed research, along with CIMT, the Framingham risk score (FRS) parameter was also calculated for both diabetic and normal subjects, which gives an accurate prediction of cardiovascular disease. CIMT was measured in 55 normal subjects and 55 diabetic subjects using a highly efficient ultrasound scanning device. Framingham risk score (FRS) was calculated for the 110 subjects based on the obtained demographic variables and biochemical parameters. The receiver operating characteristics (ROC) curve was plotted for CIMT with FRS which showed a sensitivity of 73% for CIMT. ROC curve plotted for FRS with fasting blood sugar and postprandial blood sugar showed a sensitivity of 80% and 81%, respectively. The performance was calculated based on different classification techniques. Results showed that support vector machine and multilayer perceptron classifier was classified with greater accuracy of 83.3% for 110 subjects. Further to improvise the analysis, the image data of the 110 subjects are augmented to 1809 image data and transfer learning techniques were applied using VGG16 and greater accuracy of 99% was achieved.
AbstractList Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in carotid intima media thickness (CIMT) is also a significant reason for CVD. It is expected to increase the death rate due to CVD up to 24.2 million by 2030. In previous studies, CIMT alone has been considered to identify the risk of CVD. In the proposed research, along with CIMT, the Framingham risk score (FRS) parameter was also calculated for both diabetic and normal subjects, which gives an accurate prediction of cardiovascular disease. CIMT was measured in 55 normal subjects and 55 diabetic subjects using a highly efficient ultrasound scanning device. Framingham risk score (FRS) was calculated for the 110 subjects based on the obtained demographic variables and biochemical parameters. The receiver operating characteristics (ROC) curve was plotted for CIMT with FRS which showed a sensitivity of 73% for CIMT. ROC curve plotted for FRS with fasting blood sugar and postprandial blood sugar showed a sensitivity of 80% and 81%, respectively. The performance was calculated based on different classification techniques. Results showed that support vector machine and multilayer perceptron classifier was classified with greater accuracy of 83.3% for 110 subjects. Further to improvise the analysis, the image data of the 110 subjects are augmented to 1809 image data and transfer learning techniques were applied using VGG16 and greater accuracy of 99% was achieved.
Author Jayanthy, A. K.
Ramraj, Balaji
Lakshmi Prabha, P.
Prem Kumar, C.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0003-0154-1899
  surname: Lakshmi Prabha
  fullname: Lakshmi Prabha, P.
  email: lakshmibmi123@gmail.com
  organization: Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology
– sequence: 2
  givenname: A. K.
  surname: Jayanthy
  fullname: Jayanthy, A. K.
  organization: Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology
– sequence: 3
  givenname: C.
  surname: Prem Kumar
  fullname: Prem Kumar, C.
  organization: Department of Radiology, SRM Medical College Hospital and Research Centre, Kattankulathur Campus
– sequence: 4
  givenname: Balaji
  surname: Ramraj
  fullname: Ramraj, Balaji
  organization: Department of Community Medicine, SRM Medical College Hospital and Research Centre, Kattankulathur Campus
BookMark eNp9kc1q3DAUhUVJoZO0L9CVoGu3-rNlL0tom4FAusjeaOSrjCa2NNWVGuYB-16RO4VAF1kJrs53j3TOJbkIMQAhHzn7zBnTX5BzIXTDBG-Y7HTXPL0hG95q2TDVqwuyYYNgTd8q8Y5cIh4YY0pquSF_fiaYvM0-BhodtSZNPv42aMtsEk0eH-nuRBcwWJIPD6sgZj9RH7JfTL2YvKF57-1jAETqUlyoCbTMORmMJVTlYh6AuphoPh2Bbre0IjvI3lZ6nn0uSLHsDmAz0oKryWLs3gegM5gU1oGpe-rCgA7SyzSD3Qf_qwC-J2-dmRE-_DuvyP33b_fXN83t3Y_t9dfbxko-5EazqQWuGSjhpnYNrtvxSavBsYGrybRGDp1rlWSdEEapVoHowcBku67XVl6RT-e1xxRX2zweYkmhOo6i7fggh1aqqurPKpsiYgI3Wp_NmnD9gp9HzsbVejx3NtbOxr-djU8VFf-hx1TzS6fXIXmG8LhWBOnlVa9Qz83nsYo
CitedBy_id crossref_primary_10_3233_JIFS_232851
crossref_primary_10_1007_s11042_023_17243_3
crossref_primary_10_54392_irjmt24313
crossref_primary_10_1080_0954898X_2024_2306988
crossref_primary_10_4015_S1016237222500314
crossref_primary_10_1007_s11227_021_04181_w
crossref_primary_10_1038_s41598_023_33124_z
crossref_primary_10_1007_s11227_024_05951_y
crossref_primary_10_1016_j_jksus_2023_102573
crossref_primary_10_26724_2079_8334_2023_2_84_45_49
Cites_doi 10.1186/s40885-017-0063-3
10.1016/j.jacc.2012.03.060
10.1093/oxfordjournals.aje.a010233
10.14238/pi48.3.2008.147-51
10.1155/2011/549137
10.1016/j.echo.2007.11.011
10.1186/1475-2840-9-37
10.1093/oxfordjournals.aje.a009302
10.1161/JAHA.116.005313
10.1161/01.CIR.86.6.1909
10.1056/NEJM199901073400103
10.1007/s11063-020-10391-9
10.1161/JAHA.113.000087
10.2337/diabetes.54.1.1
10.1016/j.jcmg.2013.11.014
10.18535/jmscr/v6i8.135
10.1161/01.CIR.96.5.1432
10.1016/j.echo.2006.04.020
10.1161/JAHA.112.001420
10.5455/aim.2016.24.364-369
10.1111/j.1365-2796.2011.02505.x
10.1371/journal.pone.0003435
10.1007/s11883-012-0306-4
10.1161/01.STR.0000196964.24024.ea
10.1186/1471-2261-14-181
10.1056/NEJMoa071359
10.1016/S0195-668X(03)00114-3
10.1016/S1885-5857(10)70014-1
10.1016/j.numecd.2008.02.002
10.1093/eurheartj/ehq189
10.1001/archinte.168.12.1333
10.1038/nutd.2015.2
10.1007/s10916-019-1406-2
10.1016/j.echo.2011.02.011
10.1016/S0140-6736(12)60441-3
10.4103/2230-8210.126522
10.1093/eurheartj/ehr192
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11227-021-03676-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 10306
ExternalDocumentID 10_1007_s11227_021_03676_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-70d5e170e42fd510076b1d749f0914da5a396f5430622a4454e28eaedc6687c3
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Mon Jul 14 10:40:41 EDT 2025
Thu Apr 24 22:52:27 EDT 2025
Tue Jul 01 03:04:31 EDT 2025
Fri Feb 21 02:48:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Carotid intima media thickness
Framingham risk score
Transfer learning technique
Machine learning
Pearson correlation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-70d5e170e42fd510076b1d749f0914da5a396f5430622a4454e28eaedc6687c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0154-1899
PQID 2561939534
PQPubID 2043774
PageCount 18
ParticipantIDs proquest_journals_2561939534
crossref_citationtrail_10_1007_s11227_021_03676_w
crossref_primary_10_1007_s11227_021_03676_w
springer_journals_10_1007_s11227_021_03676_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bongale, George (CR30) 2018; 06
Øygarden (CR5) 2017
Polak, Johnson, Harrington, Wong, O'Leary, Burke, Yanez (CR9) 2012; 1
Lorenz, Schaefer, Steinmetz, Sitzer (CR2) 2010; 31
Jarauta, Mateo-Gallego, Bea, Burillo, Calmarza, Civeira (CR28) 2010; 63
Polak, Szklo, Kronmal, Burke, Shea, Zavodni, O'Leary (CR38) 2013; 2
Yang, Sun, Li, Ai, Sun, Tian (CR14) 2014; 14
Xie, Wu, Wang, Zhao, Liang, Wang, Yang, Sun, Shi, Huo (CR37) 2011; 24
Folsom, Kronmal, Detrano, O'Leary, Bild, Bluemke, Budoff, Liu, Shea, Szklo, Tracy (CR21) 2008; 168
Lorenz, von Kegler, Steinmetz, Markus, Sitzer (CR25) 2006; 37
Kasliwal, Bansal, Desai, Sharma (CR29) 2014; 18
Naqvi, Lee (CR24) 2014; 7
Conroy, Pyörälä, Fitzgerald, Sans, Menotti, De Backer, De Bacquer, Ducimetiere, Jousilahti, Keil, Njølstad (CR34) 2003; 24
Darabian, Hormuz, Latif, Pahlevan, Budoff (CR4) 2013; 15
Bots, Hoes, Koudstaal, Hofman, Grobbee (CR36) 1997; 96
Sukardi, Madiyono, Sastroasmoro, Batubara (CR10) 2008; 48
Einarson, Hunchuck, Hemels (CR6) 2010; 9
Chambless, Folsom, Clegg, Sharrett, Shahar, Nieto, Rosamond, Evans (CR23) 2000; 151
Arulananth, Balaji, Baskar (CR27) 2020
Jerant, Bertakis, Franks (CR32) 2015; 5
Nambi, Chambless, He, Folsom, Mosley, Boerwinkle, Ballantyne (CR16) 2012; 33
Łoboz-Rudnicka, Jaroch, Bociąga, Rzyczkowska, Uchmanowicz, Polański, Dudek, Szuba, Łoboz-Grudzień (CR20) 2016; 11
Savaş, Topaloğlu, Kazcı, Koşar (CR39) 2019; 43
Langarizadeh, Moghbeli (CR26) 2016; 24
O'Leary, Polak, Kronmal, Manolio, Burke, Wolfson (CR33) 1999; 340
Mackey, Greenland, Goff, Lloyd-Jones, Sibley, Mora (CR35) 2012; 60
Enomoto, Adachi, Hirai, Fukami, Satoh, Otsuka, Kumagae, Nanjo, Yoshikawa, Esaki, Kumagai (CR18) 2011; 2011
(CR31) 2012; 272
Ceriello (CR7) 2005; 54
Chambless, Heiss, Folsom, Rosamond, Szklo, Sharrett, Clegg (CR11) 1997; 146
Baskar, Ramkumar, Rathore, Kabra (CR40) 2020; 29
Kastelein, van Leuven, Burgess, Evans, Kuivenhoven, Barter, Duggan (CR15) 2007; 356
Lorenz, Polak, Kavousi, Mathiesen, Völzke, Tuomainen, Sander, Plichart, Catapano, Robertson, Kiechl (CR17) 2012; 379
Stein, Korcarz, Todd Hurst, Lonn, Kendall, Mohler, Najjar, Rembold, Post (CR19) 2008; 21
Roman, Naqvi, Gardin, Gerhard-Herman, Jaff, Mohler (CR1) 2006; 19
Magnussen (CR12) 2017; 23
Nambi, Chambless, He, Folsom, Mosley, Boerwinkle, Ballantyne (CR3) 2012; 33
Roman, Saba, Pini, Spitzer, Pickering, Rosen, Alderman, Devereux (CR13) 1992; 86
Brohall, Schmidt, Behre, Hulthe, Wikstrand, Fagerberg (CR8) 2009; 19
Chien, Su, Jeng, Hsu, Chang, Chen, Lee, Hu (CR22) 2008; 3
H Øygarden (3676_CR5) 2017
M Łoboz-Rudnicka (3676_CR20) 2016; 11
MW Lorenz (3676_CR17) 2012; 379
M Baskar (3676_CR40) 2020; 29
MW Lorenz (3676_CR25) 2006; 37
S Savaş (3676_CR39) 2019; 43
V Nambi (3676_CR16) 2012; 33
DH O'Leary (3676_CR33) 1999; 340
S Darabian (3676_CR4) 2013; 15
G Brohall (3676_CR8) 2009; 19
KL Chien (3676_CR22) 2008; 3
S Bongale (3676_CR30) 2018; 06
LE Chambless (3676_CR23) 2000; 151
A Ceriello (3676_CR7) 2005; 54
W Xie (3676_CR37) 2011; 24
V Nambi (3676_CR3) 2012; 33
C Yang (3676_CR14) 2014; 14
RH Mackey (3676_CR35) 2012; 60
A Jerant (3676_CR32) 2015; 5
LE Chambless (3676_CR11) 1997; 146
M Langarizadeh (3676_CR26) 2016; 24
TZ Naqvi (3676_CR24) 2014; 7
E Jarauta (3676_CR28) 2010; 63
MJ Roman (3676_CR13) 1992; 86
JF Polak (3676_CR9) 2012; 1
R Sukardi (3676_CR10) 2008; 48
TR Einarson (3676_CR6) 2010; 9
ML Bots (3676_CR36) 1997; 96
Peters SAE, Lind L, Palmer MK, Grobbee DE, Crouse III JR, O'Leary DH, Evans GW, Raichlen J, Bots ML, den Ruijter HM, METEOR Study Group (3676_CR31) 2012; 272
RR Kasliwal (3676_CR29) 2014; 18
RM Conroy (3676_CR34) 2003; 24
TS Arulananth (3676_CR27) 2020
JF Polak (3676_CR38) 2013; 2
AR Folsom (3676_CR21) 2008; 168
CG Magnussen (3676_CR12) 2017; 23
M Enomoto (3676_CR18) 2011; 2011
MJ Roman (3676_CR1) 2006; 19
JJ Kastelein (3676_CR15) 2007; 356
MW Lorenz (3676_CR2) 2010; 31
JH Stein (3676_CR19) 2008; 21
References_xml – volume: 23
  start-page: 1
  issue: 1
  year: 2017
  end-page: 4
  ident: CR12
  article-title: Carotid artery intima-media thickness and hypertensive heart disease: a short review
  publication-title: Clin Hypertens
  doi: 10.1186/s40885-017-0063-3
– volume: 60
  start-page: 508
  issue: 6
  year: 2012
  end-page: 516
  ident: CR35
  article-title: High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis)
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2012.03.060
– volume: 151
  start-page: 478
  issue: 5
  year: 2000
  end-page: 487
  ident: CR23
  article-title: Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a010233
– volume: 48
  start-page: 147
  issue: 3
  year: 2008
  end-page: 151
  ident: CR10
  article-title: Relationship between lipid profiles with carotid intima–media thickness in children with type I diabetes mellitus
  publication-title: Paediatr Indones
  doi: 10.14238/pi48.3.2008.147-51
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 6
  ident: CR18
  article-title: LDL-C/HDL-C ratio predicts carotid intima-media thickness progression better than HDL-C or LDL-C alone
  publication-title: J Lipids
  doi: 10.1155/2011/549137
– volume: 21
  start-page: 93
  issue: 2
  year: 2008
  end-page: 111
  ident: CR19
  article-title: Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2007.11.011
– volume: 9
  start-page: 37
  issue: 1
  year: 2010
  ident: CR6
  article-title: Relationship between blood glucose and carotid intima-media thickness: a meta-analysis
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/1475-2840-9-37
– volume: 146
  start-page: 483
  issue: 6
  year: 1997
  end-page: 494
  ident: CR11
  article-title: Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a009302
– year: 2017
  ident: CR5
  article-title: Carotid intima-media thickness and prediction of cardiovascular disease
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.116.005313
– volume: 86
  start-page: 1909
  issue: 6
  year: 1992
  end-page: 1918
  ident: CR13
  article-title: Parallel cardiac and vascular adaptation in hypertension
  publication-title: Circulation
  doi: 10.1161/01.CIR.86.6.1909
– volume: 340
  start-page: 14
  issue: 1
  year: 1999
  end-page: 22
  ident: CR33
  article-title: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199901073400103
– year: 2020
  ident: CR27
  article-title: PCA based dimensional data reduction and segmentation for DICOM images
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10391-9
– volume: 2
  start-page: e000087
  issue: 2
  year: 2013
  ident: CR38
  article-title: The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.113.000087
– volume: 11
  start-page: 721
  year: 2016
  ident: CR20
  article-title: Impact of cardiovascular risk factors on carotid intima–media thickness: sex differences
  publication-title: Clin Interv Aging
– volume: 54
  start-page: 1
  issue: 1
  year: 2005
  end-page: 7
  ident: CR7
  article-title: Postprandial hyperglycemia and diabetes complications: is it time to treat?
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.1.1
– volume: 7
  start-page: 1025
  issue: 10
  year: 2014
  end-page: 1038
  ident: CR24
  article-title: Carotid intima-media thickness and plaque in cardiovascular risk assessment
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2013.11.014
– volume: 06
  start-page: 809
  issue: 08
  year: 2018
  end-page: 812
  ident: CR30
  article-title: Importance of carotid intima media thickness in ischemic stroke in a tertiary care hospital
  publication-title: J Med Sci Clinical Res
  doi: 10.18535/jmscr/v6i8.135
– volume: 96
  start-page: 1432
  issue: 5
  year: 1997
  end-page: 1437
  ident: CR36
  article-title: Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.5.1432
– volume: 19
  start-page: 943
  issue: 8
  year: 2006
  end-page: 954
  ident: CR1
  article-title: Clinical application of non-invasive vascular ultrasound in cardiovascular risk stratification: a report from the American Society of Echocardiography and the society of vascular medicine and biology
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2006.04.020
– volume: 1
  start-page: e001420
  issue: 4
  year: 2012
  ident: CR9
  article-title: Changes in carotid intima-media thickness during the cardiac cycle: the multi-ethnic study of atherosclerosis
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.112.001420
– volume: 24
  start-page: 364
  issue: 5
  year: 2016
  ident: CR26
  article-title: Applying naive bayesian networks to disease prediction: a systematic review
  publication-title: Acta Inform Medica
  doi: 10.5455/aim.2016.24.364-369
– volume: 272
  start-page: 257
  issue: 3
  year: 2012
  end-page: 266
  ident: CR31
  article-title: Increased age, high body mass index, and low HDL-C levels are related to an echolucent carotid intima-media: the METEOR study
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2011.02505.x
– volume: 3
  start-page: e3435
  issue: 10
  year: 2008
  ident: CR22
  article-title: Carotid artery intima-media thickness, carotid plaque, and coronary heart disease and stroke in Chinese
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003435
– volume: 15
  start-page: 306
  issue: 3
  year: 2013
  ident: CR4
  article-title: The role of carotid intimal thickness testing and risk prediction in the development of coronary atherosclerosis
  publication-title: Curr Atheroscler Rep
  doi: 10.1007/s11883-012-0306-4
– volume: 37
  start-page: 87
  issue: 1
  year: 2006
  end-page: 92
  ident: CR25
  article-title: Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS)
  publication-title: Stroke
  doi: 10.1161/01.STR.0000196964.24024.ea
– volume: 14
  start-page: 181
  issue: 1
  year: 2014
  ident: CR14
  article-title: The correlation between serum lipid profile with carotid intima-media thickness and plaque
  publication-title: BMC Cardiovasc Disord
  doi: 10.1186/1471-2261-14-181
– volume: 356
  start-page: 1620
  issue: 16
  year: 2007
  end-page: 1630
  ident: CR15
  article-title: Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa071359
– volume: 24
  start-page: 987
  issue: 11
  year: 2003
  end-page: 1003
  ident: CR34
  article-title: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project
  publication-title: Eur Heart J
  doi: 10.1016/S0195-668X(03)00114-3
– volume: 63
  start-page: 97
  issue: 1
  year: 2010
  end-page: 102
  ident: CR28
  article-title: Carotid intima-media thickness in subjects with no cardiovascular risk factors
  publication-title: Revista Española de Cardiología (English Edition)
  doi: 10.1016/S1885-5857(10)70014-1
– volume: 19
  start-page: 327
  issue: 5
  year: 2009
  end-page: 333
  ident: CR8
  article-title: Association between impaired glucose tolerance and carotid atherosclerosis: a study in 64-year-old women and a meta-analysis
  publication-title: Nutr Metab Cardiovasc Dis
  doi: 10.1016/j.numecd.2008.02.002
– volume: 31
  start-page: 2041
  issue: 16
  year: 2010
  end-page: 2048
  ident: CR2
  article-title: Is carotid intima-media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the carotid atherosclerosis progression study (CAPS)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehq189
– volume: 168
  start-page: 1333
  issue: 12
  year: 2008
  end-page: 1339
  ident: CR21
  article-title: Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA)
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.168.12.1333
– volume: 5
  start-page: e152
  issue: 4
  year: 2015
  end-page: e152
  ident: CR32
  article-title: Body mass index and health status in diabetic and non-diabetic individuals
  publication-title: Nutr Diabetes
  doi: 10.1038/nutd.2015.2
– volume: 29
  start-page: 1844
  issue: 4
  year: 2020
  end-page: 1854
  ident: CR40
  article-title: A deep learning based approach for automatic detection of bike riders with no helmet and number plate recognition
  publication-title: Int J Adv Sci Technol
– volume: 43
  start-page: 273
  issue: 8
  year: 2019
  ident: CR39
  article-title: Classification of carotid artery intima media thickness ultrasound images with deep learning
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1406-2
– volume: 24
  start-page: 729
  issue: 7
  year: 2011
  end-page: 737
  ident: CR37
  article-title: A longitudinal study of carotid plaque and risk of ischemic cardiovascular disease in the Chinese population
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2011.02.011
– volume: 379
  start-page: 2053
  issue: 9831
  year: 2012
  end-page: 2062
  ident: CR17
  article-title: Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60441-3
– volume: 18
  start-page: 13
  issue: 1
  year: 2014
  ident: CR29
  article-title: Carotid intima-media thickness: current evidence, practices, and Indian experience
  publication-title: Indian J Endocrinol Metab
  doi: 10.4103/2230-8210.126522
– volume: 33
  start-page: 183
  issue: 2
  year: 2012
  end-page: 190
  ident: CR16
  article-title: Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr192
– volume: 33
  start-page: 183
  issue: 2
  year: 2012
  end-page: 190
  ident: CR3
  article-title: Common carotid artery intima–media thickness is as good as carotid intima–media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr192
– volume: 33
  start-page: 183
  issue: 2
  year: 2012
  ident: 3676_CR16
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr192
– volume: 21
  start-page: 93
  issue: 2
  year: 2008
  ident: 3676_CR19
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2007.11.011
– volume: 19
  start-page: 327
  issue: 5
  year: 2009
  ident: 3676_CR8
  publication-title: Nutr Metab Cardiovasc Dis
  doi: 10.1016/j.numecd.2008.02.002
– volume: 24
  start-page: 364
  issue: 5
  year: 2016
  ident: 3676_CR26
  publication-title: Acta Inform Medica
  doi: 10.5455/aim.2016.24.364-369
– volume: 33
  start-page: 183
  issue: 2
  year: 2012
  ident: 3676_CR3
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr192
– volume: 2011
  start-page: 1
  year: 2011
  ident: 3676_CR18
  publication-title: J Lipids
  doi: 10.1155/2011/549137
– volume: 54
  start-page: 1
  issue: 1
  year: 2005
  ident: 3676_CR7
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.1.1
– volume: 5
  start-page: e152
  issue: 4
  year: 2015
  ident: 3676_CR32
  publication-title: Nutr Diabetes
  doi: 10.1038/nutd.2015.2
– volume: 86
  start-page: 1909
  issue: 6
  year: 1992
  ident: 3676_CR13
  publication-title: Circulation
  doi: 10.1161/01.CIR.86.6.1909
– volume: 2
  start-page: e000087
  issue: 2
  year: 2013
  ident: 3676_CR38
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.113.000087
– volume: 48
  start-page: 147
  issue: 3
  year: 2008
  ident: 3676_CR10
  publication-title: Paediatr Indones
  doi: 10.14238/pi48.3.2008.147-51
– volume: 19
  start-page: 943
  issue: 8
  year: 2006
  ident: 3676_CR1
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2006.04.020
– volume: 168
  start-page: 1333
  issue: 12
  year: 2008
  ident: 3676_CR21
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.168.12.1333
– volume: 24
  start-page: 987
  issue: 11
  year: 2003
  ident: 3676_CR34
  publication-title: Eur Heart J
  doi: 10.1016/S0195-668X(03)00114-3
– volume: 24
  start-page: 729
  issue: 7
  year: 2011
  ident: 3676_CR37
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2011.02.011
– volume: 37
  start-page: 87
  issue: 1
  year: 2006
  ident: 3676_CR25
  publication-title: Stroke
  doi: 10.1161/01.STR.0000196964.24024.ea
– volume: 3
  start-page: e3435
  issue: 10
  year: 2008
  ident: 3676_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003435
– volume: 272
  start-page: 257
  issue: 3
  year: 2012
  ident: 3676_CR31
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2011.02505.x
– volume: 356
  start-page: 1620
  issue: 16
  year: 2007
  ident: 3676_CR15
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa071359
– volume: 14
  start-page: 181
  issue: 1
  year: 2014
  ident: 3676_CR14
  publication-title: BMC Cardiovasc Disord
  doi: 10.1186/1471-2261-14-181
– volume: 7
  start-page: 1025
  issue: 10
  year: 2014
  ident: 3676_CR24
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2013.11.014
– volume: 11
  start-page: 721
  year: 2016
  ident: 3676_CR20
  publication-title: Clin Interv Aging
– volume: 29
  start-page: 1844
  issue: 4
  year: 2020
  ident: 3676_CR40
  publication-title: Int J Adv Sci Technol
– volume: 63
  start-page: 97
  issue: 1
  year: 2010
  ident: 3676_CR28
  publication-title: Revista Española de Cardiología (English Edition)
  doi: 10.1016/S1885-5857(10)70014-1
– volume: 9
  start-page: 37
  issue: 1
  year: 2010
  ident: 3676_CR6
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/1475-2840-9-37
– volume: 340
  start-page: 14
  issue: 1
  year: 1999
  ident: 3676_CR33
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199901073400103
– year: 2017
  ident: 3676_CR5
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.116.005313
– volume: 146
  start-page: 483
  issue: 6
  year: 1997
  ident: 3676_CR11
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a009302
– volume: 06
  start-page: 809
  issue: 08
  year: 2018
  ident: 3676_CR30
  publication-title: J Med Sci Clinical Res
  doi: 10.18535/jmscr/v6i8.135
– volume: 31
  start-page: 2041
  issue: 16
  year: 2010
  ident: 3676_CR2
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehq189
– year: 2020
  ident: 3676_CR27
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10391-9
– volume: 96
  start-page: 1432
  issue: 5
  year: 1997
  ident: 3676_CR36
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.5.1432
– volume: 43
  start-page: 273
  issue: 8
  year: 2019
  ident: 3676_CR39
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1406-2
– volume: 60
  start-page: 508
  issue: 6
  year: 2012
  ident: 3676_CR35
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2012.03.060
– volume: 379
  start-page: 2053
  issue: 9831
  year: 2012
  ident: 3676_CR17
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60441-3
– volume: 18
  start-page: 13
  issue: 1
  year: 2014
  ident: 3676_CR29
  publication-title: Indian J Endocrinol Metab
  doi: 10.4103/2230-8210.126522
– volume: 1
  start-page: e001420
  issue: 4
  year: 2012
  ident: 3676_CR9
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.112.001420
– volume: 151
  start-page: 478
  issue: 5
  year: 2000
  ident: 3676_CR23
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a010233
– volume: 23
  start-page: 1
  issue: 1
  year: 2017
  ident: 3676_CR12
  publication-title: Clin Hypertens
  doi: 10.1186/s40885-017-0063-3
– volume: 15
  start-page: 306
  issue: 3
  year: 2013
  ident: 3676_CR4
  publication-title: Curr Atheroscler Rep
  doi: 10.1007/s11883-012-0306-4
SSID ssj0004373
Score 2.3062942
Snippet Cardiovascular disease (CVD) is a fatal disease that causes increased death in developing and developed nations. Among the various reasons, the increase in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10289
SubjectTerms Blood
Cardiovascular disease
Compilers
Computer Science
Demographic variables
Diabetes
Heart diseases
Interpreters
Machine learning
Mathematical analysis
Mobile and Intelligent Sensing on High Performance Computing
Multilayer perceptrons
Parameters
Processor Architectures
Programming Languages
Risk
Sensitivity
Support vector machines
Thickness
Ultrasonic imaging
Title Prediction of cardiovascular risk by measuring carotid intima media thickness from an ultrasound image for type II diabetic mellitus subjects using machine learning and transfer learning techniques
URI https://link.springer.com/article/10.1007/s11227-021-03676-w
https://www.proquest.com/docview/2561939534
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4XHqhBVp1gaI5cINIiWPHyXGhLC-BOIAEpyixndWK3SzaZIX6A_lfzHiTjahoJU6RkrETeWbiz_Nk7EAk1sY6Qv1OBPeETLiXGBV4uHUWrsBYLig5-fomOr8Xlw_yoUkKq9po99Yl6f7UXbJbwLnyKKTApzJj3ssqW5d0dkcpvuf9LhsyXPiVEzwYxVLwJlXm4zneb0cdxvzLLep2m8E3ttHAROgv-LrJVmy5xb62LRig0cht9no7I08LrS5MC9DvokuB4sYh_wMTZwjEFxHBtB4ZGJX1aJKByxsBCnl_ol8eULIJZCXMx_Usq6jjEiDZ0AJCWyBrLVxcwMJcO9I4eowgfl5BNc_JnFMBRdEPYeICNC00HSmGOKOB2iFk_Pbl3WX52Oo7uxuc3p2ce01nBk-jytae8o20gfKt4IWRtLRRHhglkgLhhzCZzMIkKqTA8wjnmRBSWB7bzBodRbHS4Q-2Vk5L-5OBXwgtjEJe4PDI5Ig3Y19rpfw84Jkf9ljQ8ifVTdVyap4xTrt6y8TTFHmaOp6mLz12uBzzvKjZ8V_qvZbtaaO_VYpAEJFtIkPRY0etKHSP_z3bzufId9kX7qSRgtb22Fo9m9tfiHLqfJ-t949_Hw_oevZ4dbrvhPwNeBf6Jw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBb6OLSXbX2h2frgobfWgC1Lln0shhVJX-ghBXozbEkOgibOEDso9gP3v0YqdowW7YBebUk2RFH6RH4kGTsTibWxjlC_E8E9IRPuJUYFHh6dhUswlgsKTr67j_qP4vpJPjVBYVXLdm9dkm6n7oLdAs6VR5QCn9KMeS_rbBPBQExErkd-2UVDhku_coIXo1gK3oTKvD_G6-Oow5hv3KLutLn6xr40MBEul3LdYWu23GVf2xIM0GjkHvv7MCdPC80uzArQr9ilQLxxyP_A1BkC8UPUYFaPDYzLejzNwMWNAFHen2nLAwo2gayExaSeZxVVXAJsNrKA0BbIWguDASzNtWONvScI4hcVVIuczDkVEIt-BFNH0LTQVKQY4YgGaoeQ8d9XT1fpY6t9Nrz6NfzZ95rKDJ5Gla095RtpA-VbwQsjaWqjPDBKJAXCD2EymYVJVEiB9xHOMyGksDy2mTU6imKlwwO2Uc5Ke8jAL4QWRqEssHtkcsSbsa-1Un4e8MwPeyxo5ZPqJms5Fc-YpF2-ZZJpijJNnUzTlx47X_X5vczZ8d_WR63Y00Z_qxSBICLbRIaixy7apdC9_ni0759rfsq2-sO72_R2cH_zg21ztzKJwHbENur5wh4j4qnzE7fA_wG96_oU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlW9FPpSl1fn0BtEJI4dJ0cErFjaIg4gcYsS21mt2M2iTVaIH8j_YsZJNgWVSlwT24k8Y_vzzHwzjP0UibWxjnB9J4J7QibcS4wKPDw6C5dgLBdETv5zHp1eibNref0Xi99Fu3cuyYbTQFmayvrg1hQHPfEt4Fx5FF7gU8ox7-4te4fbcUB6fcUPe2Zk2PiYE7wkxVLwljbz7zGeHk093nzmInUnz3CDfWwhIxw2Mv7E3tjyM1vvyjFAuzq_sIeLBXldaKZhXoB-EmkKFEMO-T3MnFEQP0QN5vXEwKSsJ7MMHIcEKPz9hrY_IOIJZCUsp_Uiq6j6EmCzsQWEuUCWWxiNoDHdTjT2niKgX1ZQLXMy7VRAEfVjmLlgTQttdYoxjmigdmgZ_331dJVKtvrKLocnl0enXlulwdM437WnfCNtoHwreGEkTW2UB0aJpEAoIkwmszCJCinwbsJ5JoQUlsc2s0ZHUax0-I2tlfPSfmfgF0ILo1AW2D0yOWLP2NdaKT8PeOaHAxZ08kl1m8GcCmlM0z73Msk0RZmmTqbp3YDtrfrcNvk7_tt6uxN72q7lKkVQiCg3kaEYsP1OFfrXL4-2-brmP9j7i-Nh-nt0_muLfeBOMSmWbZut1Yul3UHwU-e7Tr8fAdAH_lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+cardiovascular+risk+by+measuring+carotid+intima+media+thickness+from+an+ultrasound+image+for+type+II+diabetic+mellitus+subjects+using+machine+learning+and+transfer+learning+techniques&rft.jtitle=The+Journal+of+supercomputing&rft.au=Lakshmi%2C+Prabha+P&rft.au=Jayanthy%2C+A+K&rft.au=Prem+Kumar+C&rft.au=Ramraj+Balaji&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=9&rft.spage=10289&rft.epage=10306&rft_id=info:doi/10.1007%2Fs11227-021-03676-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon