Deep learning-based multilabel classification for locational detection of false data injection attack in smart grids
With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent t...
Saved in:
Published in | Electrical engineering Vol. 104; no. 1; pp. 259 - 282 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent the traditional statistical bad data detection algorithm. Most of the research methodologies focus on the presence of FDIA in measurement set, whereas their exact locations remain unknown. To cater this issue, this paper proposes a deep learning architecture for detection of the exact locations of data intrusions in real-time. This deep learning model in association with traditional bad data detection algorithms is capable of detecting both structured as well as unstructured false data injection attacks. The deep learning architecture is not dependent on statistical assumptions of the measurements, it emphasizes on the inconsistency and co-occurrence dependency of potential attacks in measurement set, thus acting as a multilabel classifier. Such kind of architecture remains model free without any prior statistical assumptions. Extensive research work on IEEE test-bench shows that this scheme is capable of identifying the locations for intrusion under varying noise scenarios. Such kind of an approach shows potential results also in detection of presence of falsified data. |
---|---|
AbstractList | With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent the traditional statistical bad data detection algorithm. Most of the research methodologies focus on the presence of FDIA in measurement set, whereas their exact locations remain unknown. To cater this issue, this paper proposes a deep learning architecture for detection of the exact locations of data intrusions in real-time. This deep learning model in association with traditional bad data detection algorithms is capable of detecting both structured as well as unstructured false data injection attacks. The deep learning architecture is not dependent on statistical assumptions of the measurements, it emphasizes on the inconsistency and co-occurrence dependency of potential attacks in measurement set, thus acting as a multilabel classifier. Such kind of architecture remains model free without any prior statistical assumptions. Extensive research work on IEEE test-bench shows that this scheme is capable of identifying the locations for intrusion under varying noise scenarios. Such kind of an approach shows potential results also in detection of presence of falsified data. |
Author | Ghosh, Sandip Mukherjee, Debottam Chakraborty, Samrat |
Author_xml | – sequence: 1 givenname: Debottam orcidid: 0000-0002-9243-6295 surname: Mukherjee fullname: Mukherjee, Debottam email: debottammukherjee@gmail.com organization: Department of Electrical Engineering, Indian Institute of Technology (BHU) – sequence: 2 givenname: Samrat surname: Chakraborty fullname: Chakraborty, Samrat organization: Department of Electrical Engineering, National Institute of Technology Arunachal Pradesh – sequence: 3 givenname: Sandip surname: Ghosh fullname: Ghosh, Sandip organization: Department of Electrical Engineering, Indian Institute of Technology (BHU) |
BookMark | eNp9kEtLAzEUhYNUsFb_gKuA62ge08zMUuoTCm50He5k7pTUdKYm6cJ_b9opCC66ScjJ-S73nEsy6YceCbkR_E5wXt5HziWXjEvBuJBlxfQZmYpCZamoygmZ8rqoWFlLcUEuY1xzztW8LqYkPSJuqUcIvetXrIGILd3sfHIeGvTUeojRdc5CckNPuyFQP4wP8LTFhPbwMXS0Ax-RtpCAun591CElsF9ZoHEDIdFVcG28IucH8_XxnpHP56ePxStbvr-8LR6WzCpRJ6a7eQOosS1ErRFsCRI7LLhGWRfIlRKo6xwboBH5sIi6mqtOtwIRZFOpGbkd527D8L3DmMx62IW8eDRSK6F1qZTOrmp02TDEGLAz1qVDwhTAeSO42Xdsxo5N7tgcOjZ7VP5Dt8HlnD-nITVCMZv7FYa_rU5Qv4ZAk0g |
CitedBy_id | crossref_primary_10_1007_s00202_024_02277_z crossref_primary_10_1016_j_scs_2023_104475 crossref_primary_10_1016_j_egyr_2023_12_040 crossref_primary_10_1038_s41598_023_43972_4 crossref_primary_10_1016_j_egyr_2022_10_270 crossref_primary_10_1007_s00202_023_01978_1 crossref_primary_10_1007_s00202_024_02762_5 crossref_primary_10_3390_en16020820 crossref_primary_10_1007_s42452_024_06450_8 crossref_primary_10_1016_j_cosrev_2024_100617 crossref_primary_10_1155_2022_4911553 crossref_primary_10_1109_TSG_2024_3524455 crossref_primary_10_1016_j_compeleceng_2024_109572 crossref_primary_10_1186_s42162_024_00381_9 crossref_primary_10_3390_electronics12040797 crossref_primary_10_1007_s12530_024_09618_0 crossref_primary_10_1109_ACCESS_2024_3477714 crossref_primary_10_1145_3606264 crossref_primary_10_1109_JIOT_2023_3332660 crossref_primary_10_1109_TNNLS_2023_3257225 crossref_primary_10_3390_en15145312 crossref_primary_10_1109_TSG_2023_3256480 crossref_primary_10_3390_info15080439 crossref_primary_10_1109_TDSC_2024_3353302 crossref_primary_10_1016_j_ijcip_2024_100697 crossref_primary_10_1007_s10586_024_04501_8 crossref_primary_10_1007_s40866_024_00216_2 crossref_primary_10_1016_j_segan_2024_101524 crossref_primary_10_1016_j_segan_2024_101364 crossref_primary_10_1007_s00202_024_02327_6 crossref_primary_10_1038_s41598_024_82566_6 crossref_primary_10_1007_s42835_023_01494_z crossref_primary_10_1007_s40031_023_00960_6 crossref_primary_10_1109_TSG_2022_3204214 crossref_primary_10_1038_s41598_024_68030_5 |
Cites_doi | 10.1109/TSG.2011.2163807 10.1109/MWC.2019.1800407 10.1007/s11431-019-9544-7 10.1049/iet-cps.2017.0013 10.3390/electronics9040693 10.1145/1952982.1952995 10.1109/TSG.2015.2492827 10.1109/TCNS.2014.2357531 10.1049/iet-gtd.2017.0455 10.1109/ACCESS.2017.2728681 10.1109/TII.2017.2656905 10.1109/TSG.2016.2642787 10.1109/TSG.2017.2675960 10.1109/JSAC.2014.2332051 10.1109/TII.2019.2922215 10.1201/b18338 10.1109/JSYST.2014.2341597 10.3390/en12112209 10.1109/TSG.2017.2703842 10.1016/j.is.2014.12.001 10.1109/TSG.2013.2284438 10.1109/TSG.2015.2495133 10.1109/TII.2016.2614396 10.1002/etep.2779 10.1109/TII.2018.2825243 10.1109/TII.2017.2720726 10.1109/TSG.2011.2161892 10.1109/TII.2018.2875529 10.1109/TIFS.2016.2542061 10.1162/neco.1997.9.8.1735 10.1109/JIOT.2018.2830340 10.1109/TSG.2017.2664043 10.1002/sys.21239 10.1002/etep.1744 10.1109/TSIPN.2017.2749959 10.1109/TNNLS.2015.2404803 10.1109/CDC.2011.6160456 10.1109/CVPR.2016.90 10.1109/GLOCOM.2012.6503599 10.1109/CISS.2010.5464816 10.3115/v1/D14-1179 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00202-021-01278-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1432-0487 |
EndPage | 282 |
ExternalDocumentID | 10_1007_s00202_021_01278_6 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z88 Z8M Z8N Z8S Z8T Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-6f5bae6ed4196eac7a2efe406e294e0331e69202aab12aacee6853f6d1eea2b83 |
IEDL.DBID | U2A |
ISSN | 0948-7921 |
IngestDate | Fri Jul 25 11:09:53 EDT 2025 Tue Jul 01 00:23:29 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 21 02:47:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning False data injection attack Cybersecurity Power system security Smart grid State estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-6f5bae6ed4196eac7a2efe406e294e0331e69202aab12aacee6853f6d1eea2b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9243-6295 |
PQID | 2631667336 |
PQPubID | 2044221 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2631667336 crossref_citationtrail_10_1007_s00202_021_01278_6 crossref_primary_10_1007_s00202_021_01278_6 springer_journals_10_1007_s00202_021_01278_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Archiv für Elektrotechnik |
PublicationTitle | Electrical engineering |
PublicationTitleAbbrev | Electr Eng |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Ganjkhani, Fallah, Badakhshan, Shamshirband, Chau (CR26) 2019; 12 Do Coutto Filho, de Souza, Glover (CR9) 2019; 29 Gai, Choo, Qiu, Zhu (CR14) 2018; 5 Hochreiter, Schmidhuber (CR42) 1997; 9 Deng, Xiao, Lu, Liang, Vasilakos (CR5) 2016; 13 CR39 Horowitz, Pierce (CR3) 2013; 16 Singh, Khanna, Bose, Panigrahi, Joshi (CR31) 2017; 14 Kosut, Jia, Thomas, Tong (CR27) 2011; 2 Li, Xiao, Lu, Deng, Bao (CR28) 2019; 16 Zhao, Zhang, La Scala, Dong, Chen, Wang (CR34) 2015; 8 Liu, Ning, Reiter (CR11) 2011; 14 Anwar, Mahmood, Ray, Mahmud, Tari (CR22) 2020; 9 Goodfellow, Bengio, Courville (CR41) 2016 Guan, Ge (CR20) 2017; 4 Xu, Wang, Guan, Wu, Wu, Du (CR33) 2017; 5 Ashok, Govindarasu, Ajjarapu (CR21) 2016; 9 Liu, Li, Liu, Li (CR7) 2016; 11 Yang, An, Min, Yu, Yang, Zhao (CR13) 2017; 12 James, Hou, Li (CR16) 2018; 14 Khanna, Panigrahi, Joshi (CR24) 2017; 12 Li, Ding, Huang, Zhao, Yang, Chen (CR32) 2018; 15 Xie, Mo, Sinopoli (CR6) 2011; 2 Foroutan, Salmasi (CR15) 2017; 2 Esmalifalak, Liu, Nguyen, Zheng, Han (CR25) 2014; 11 Anwar, Mahmood, Tari (CR38) 2015; 53 Liang, Zhao, Luo, Weller, Dong (CR4) 2016; 8 Gai, Qiu, Ming, Zhao, Qiu (CR8) 2017; 8 CR23 Benedito, Alberto, Bretas, London (CR10) 2014; 24 Manandhar, Cao, Hu, Liu (CR19) 2014; 1 CR44 CR43 Bi, Zhang (CR12) 2014; 32 CR40 Thomas, McDonald (CR2) 2017 Beg, Johnson, Davoudi (CR35) 2017; 13 Liu, Esmalifalak, Ding, Emesih, Han (CR18) 2014; 5 Gai, Xu, Lu, Qiu, Zhu (CR1) 2019; 26 Zhang, Shen, He, Han, Li, Wang, Guan (CR37) 2019; 62 Adhikari, Morris, Pan (CR36) 2016; 9 Ozay, Esnaola, Vural, Kulkarni, Poor (CR29) 2015; 27 Moslemi, Mesbahi, Velni (CR17) 2017; 9 He, Mendis, Wei (CR30) 2017; 8 MB Do Coutto Filho (1278_CR9) 2019; 29 K Manandhar (1278_CR19) 2014; 1 Y Guan (1278_CR20) 2017; 4 Q Yang (1278_CR13) 2017; 12 1278_CR39 B Li (1278_CR28) 2019; 16 R Moslemi (1278_CR17) 2017; 9 B Li (1278_CR32) 2018; 15 I Goodfellow (1278_CR41) 2016 J Zhao (1278_CR34) 2015; 8 S Hochreiter (1278_CR42) 1997; 9 G Liang (1278_CR4) 2016; 8 R Deng (1278_CR5) 2016; 13 X Liu (1278_CR7) 2016; 11 M Esmalifalak (1278_CR25) 2014; 11 L Liu (1278_CR18) 2014; 5 A Ashok (1278_CR21) 2016; 9 A Anwar (1278_CR22) 2020; 9 M Ozay (1278_CR29) 2015; 27 RA Benedito (1278_CR10) 2014; 24 K Gai (1278_CR14) 2018; 5 Y He (1278_CR30) 2017; 8 OA Beg (1278_CR35) 2017; 13 MS Thomas (1278_CR2) 2017 K Gai (1278_CR8) 2017; 8 J James (1278_CR16) 2018; 14 A Adhikari (1278_CR36) 2016; 9 K Gai (1278_CR1) 2019; 26 R Xu (1278_CR33) 2017; 5 K Khanna (1278_CR24) 2017; 12 M Ganjkhani (1278_CR26) 2019; 12 SK Singh (1278_CR31) 2017; 14 O Kosut (1278_CR27) 2011; 2 Y Liu (1278_CR11) 2011; 14 1278_CR44 1278_CR23 SA Foroutan (1278_CR15) 2017; 2 L Xie (1278_CR6) 2011; 2 A Anwar (1278_CR38) 2015; 53 1278_CR40 S Bi (1278_CR12) 2014; 32 M Zhang (1278_CR37) 2019; 62 BM Horowitz (1278_CR3) 2013; 16 1278_CR43 |
References_xml | – volume: 2 start-page: 645 issue: 4 year: 2011 end-page: 658 ident: CR27 article-title: Malicious data attacks on the smart grid publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2011.2163807 – volume: 26 start-page: 69 issue: 3 year: 2019 end-page: 75 ident: CR1 article-title: Fusion of cognitive wireless networks and edge computing publication-title: IEEE Wireless Commun doi: 10.1109/MWC.2019.1800407 – volume: 62 start-page: 2077 issue: 12 year: 2019 end-page: 2087 ident: CR37 article-title: False data injection attacks against smart gird state estimation: construction, detection and defense publication-title: Sci China Technol Sci doi: 10.1007/s11431-019-9544-7 – ident: CR43 – volume: 2 start-page: 161 issue: 4 year: 2017 end-page: 171 ident: CR15 article-title: Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method publication-title: IET Cyber Phys Syst Theory Appl doi: 10.1049/iet-cps.2017.0013 – year: 2016 ident: CR41 publication-title: Deep learning – volume: 9 start-page: 693 issue: 4 year: 2020 ident: CR22 article-title: Machine learning to ensure data integrity in power system topological network database publication-title: Electronics doi: 10.3390/electronics9040693 – volume: 12 start-page: 1735 issue: 7 year: 2017 end-page: 1750 ident: CR13 article-title: On optimal PMU placement-based defense against data integrity attacks in smart grid publication-title: IEEE Trans Inform Foren Sec – ident: CR39 – volume: 14 start-page: 1 issue: 1 year: 2011 end-page: 33 ident: CR11 article-title: False data injection attacks against state estimation in electric power grids publication-title: ACM Trans Inform Syst Sec (TISSEC) doi: 10.1145/1952982.1952995 – volume: 8 start-page: 1580 issue: 4 year: 2015 end-page: 1590 ident: CR34 article-title: Short-term state forecasting-aided method for detection of smart grid general false data injection attacks publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2492827 – volume: 1 start-page: 370 issue: 4 year: 2014 end-page: 379 ident: CR19 article-title: Detection of faults and attacks including false data injection attack in smart grid using Kalman filter publication-title: IEEE Trans Control Netw Syst doi: 10.1109/TCNS.2014.2357531 – volume: 12 start-page: 1052 issue: 5 year: 2017 end-page: 1066 ident: CR24 article-title: AI-based approach to identify compromised meters in data integrity attacks on smart grid publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2017.0455 – volume: 5 start-page: 13787 year: 2017 end-page: 13798 ident: CR33 article-title: Achieving efficient detection against false data injection attacks in smart grid publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728681 – volume: 13 start-page: 2693 issue: 5 year: 2017 end-page: 2703 ident: CR35 article-title: Detection of false-data injection attacks in cyber-physical dc microgrids publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2017.2656905 – ident: CR40 – ident: CR23 – volume: 9 start-page: 3928 issue: 5 year: 2016 end-page: 3941 ident: CR36 article-title: Applying non-nested generalized exemplars classification for cyber-power event and intrusion detection publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2642787 – volume: 9 start-page: 4930 issue: 5 year: 2017 end-page: 4941 ident: CR17 article-title: A fast, decentralized covariance selection-based approach to detect cyber attacks in smart grids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2675960 – volume: 32 start-page: 1471 issue: 7 year: 2014 end-page: 1485 ident: CR12 article-title: Using covert topological information for defense against malicious attacks on DC state estimation publication-title: IEEE J Select Areas Commun doi: 10.1109/JSAC.2014.2332051 – ident: CR44 – volume: 16 start-page: 854 issue: 2 year: 2019 end-page: 864 ident: CR28 article-title: On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2922215 – year: 2017 ident: CR2 publication-title: Power system SCADA and smart grids doi: 10.1201/b18338 – volume: 11 start-page: 1644 issue: 3 year: 2014 end-page: 1652 ident: CR25 article-title: Detecting stealthy false data injection using machine learning in smart grid publication-title: IEEE Syst J doi: 10.1109/JSYST.2014.2341597 – volume: 12 start-page: 2209 issue: 11 year: 2019 ident: CR26 article-title: A novel detection algorithm to identify false data injection attacks on power system state estimation publication-title: Energies doi: 10.3390/en12112209 – volume: 8 start-page: 2505 issue: 5 year: 2017 end-page: 2516 ident: CR30 article-title: Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2703842 – volume: 53 start-page: 201 year: 2015 end-page: 212 ident: CR38 article-title: Identification of vulnerable node clusters against false data injection attack in an AMI based smart grid publication-title: Inform Syst doi: 10.1016/j.is.2014.12.001 – volume: 5 start-page: 612 issue: 2 year: 2014 end-page: 621 ident: CR18 article-title: Detecting false data injection attacks on power grid by sparse optimization publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2013.2284438 – volume: 8 start-page: 1630 issue: 4 year: 2016 end-page: 1638 ident: CR4 article-title: A review of false data injection attacks against modern power systems publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2495133 – volume: 13 start-page: 411 issue: 2 year: 2016 end-page: 423 ident: CR5 article-title: False data injection on state estimation in power systems: attacks, impacts, and defense—a survey publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2016.2614396 – volume: 29 start-page: e2779 issue: 4 year: 2019 ident: CR9 article-title: Roots, achievements, and prospects of power system state estimation: a review on handling corrupted measurements publication-title: Int Trans Elect Energy Syst doi: 10.1002/etep.2779 – volume: 14 start-page: 3271 issue: 7 year: 2018 end-page: 3280 ident: CR16 article-title: Online false data injection attack detection with wavelet transform and deep neural networks publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2825243 – volume: 14 start-page: 89 issue: 1 year: 2017 end-page: 97 ident: CR31 article-title: Joint-transformation-based detection of false data injection attacks in smart grid publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2017.2720726 – volume: 2 start-page: 659 issue: 4 year: 2011 end-page: 666 ident: CR6 article-title: Integrity data attacks in power market operations publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2011.2161892 – volume: 15 start-page: 2892 issue: 5 year: 2018 end-page: 2904 ident: CR32 article-title: Detecting false data injection attacks against power system state estimation with fast go-decomposition approach publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2875529 – volume: 11 start-page: 1592 issue: 7 year: 2016 end-page: 1602 ident: CR7 article-title: Masking transmission line outages via false data injection attacks publication-title: IEEE Trans Inform Foren Sec doi: 10.1109/TIFS.2016.2542061 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR42 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 5 start-page: 3059 issue: 4 year: 2018 end-page: 3067 ident: CR14 article-title: Privacy-preserving content-oriented wireless communication in internet-of-things publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2830340 – volume: 8 start-page: 2431 issue: 5 year: 2017 end-page: 2439 ident: CR8 article-title: Spoofing-jamming attack strategy using optimal power distributions in wireless smart grid networks publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2664043 – volume: 16 start-page: 401 issue: 4 year: 2013 end-page: 412 ident: CR3 article-title: The integration of diversely redundant designs, dynamic system models, and state estimation technology to the cyber security of physical systems publication-title: Syst Eng doi: 10.1002/sys.21239 – volume: 24 start-page: 91 issue: 1 year: 2014 end-page: 107 ident: CR10 article-title: Power system state estimation: undetectable bad data publication-title: Int Trans Elect Energy Syst doi: 10.1002/etep.1744 – volume: 4 start-page: 48 issue: 1 year: 2017 end-page: 59 ident: CR20 article-title: Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks publication-title: IEEE Trans Signal Inform Process Over Netw doi: 10.1109/TSIPN.2017.2749959 – volume: 9 start-page: 1636 issue: 3 year: 2016 end-page: 1646 ident: CR21 article-title: Online detection of stealthy false data injection attacks in power system state estimation publication-title: IEEE Trans Smart Grid – volume: 27 start-page: 1773 issue: 8 year: 2015 end-page: 1786 ident: CR29 article-title: Machine learning methods for attack detection in the smart grid publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2404803 – volume: 29 start-page: e2779 issue: 4 year: 2019 ident: 1278_CR9 publication-title: Int Trans Elect Energy Syst doi: 10.1002/etep.2779 – volume: 2 start-page: 659 issue: 4 year: 2011 ident: 1278_CR6 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2011.2161892 – volume: 9 start-page: 1636 issue: 3 year: 2016 ident: 1278_CR21 publication-title: IEEE Trans Smart Grid – volume: 4 start-page: 48 issue: 1 year: 2017 ident: 1278_CR20 publication-title: IEEE Trans Signal Inform Process Over Netw doi: 10.1109/TSIPN.2017.2749959 – volume: 12 start-page: 2209 issue: 11 year: 2019 ident: 1278_CR26 publication-title: Energies doi: 10.3390/en12112209 – volume: 15 start-page: 2892 issue: 5 year: 2018 ident: 1278_CR32 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2875529 – volume: 9 start-page: 4930 issue: 5 year: 2017 ident: 1278_CR17 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2675960 – volume: 13 start-page: 411 issue: 2 year: 2016 ident: 1278_CR5 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2016.2614396 – volume: 5 start-page: 3059 issue: 4 year: 2018 ident: 1278_CR14 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2830340 – volume-title: Power system SCADA and smart grids year: 2017 ident: 1278_CR2 doi: 10.1201/b18338 – volume: 2 start-page: 645 issue: 4 year: 2011 ident: 1278_CR27 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2011.2163807 – volume: 26 start-page: 69 issue: 3 year: 2019 ident: 1278_CR1 publication-title: IEEE Wireless Commun doi: 10.1109/MWC.2019.1800407 – ident: 1278_CR39 doi: 10.1109/CDC.2011.6160456 – ident: 1278_CR44 doi: 10.1109/CVPR.2016.90 – volume: 8 start-page: 2431 issue: 5 year: 2017 ident: 1278_CR8 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2664043 – volume: 8 start-page: 1630 issue: 4 year: 2016 ident: 1278_CR4 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2495133 – volume-title: Deep learning year: 2016 ident: 1278_CR41 – volume: 14 start-page: 89 issue: 1 year: 2017 ident: 1278_CR31 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2017.2720726 – volume: 11 start-page: 1644 issue: 3 year: 2014 ident: 1278_CR25 publication-title: IEEE Syst J doi: 10.1109/JSYST.2014.2341597 – volume: 8 start-page: 2505 issue: 5 year: 2017 ident: 1278_CR30 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2703842 – volume: 16 start-page: 401 issue: 4 year: 2013 ident: 1278_CR3 publication-title: Syst Eng doi: 10.1002/sys.21239 – volume: 53 start-page: 201 year: 2015 ident: 1278_CR38 publication-title: Inform Syst doi: 10.1016/j.is.2014.12.001 – ident: 1278_CR40 doi: 10.1109/GLOCOM.2012.6503599 – volume: 32 start-page: 1471 issue: 7 year: 2014 ident: 1278_CR12 publication-title: IEEE J Select Areas Commun doi: 10.1109/JSAC.2014.2332051 – ident: 1278_CR23 doi: 10.1109/CISS.2010.5464816 – volume: 11 start-page: 1592 issue: 7 year: 2016 ident: 1278_CR7 publication-title: IEEE Trans Inform Foren Sec doi: 10.1109/TIFS.2016.2542061 – volume: 2 start-page: 161 issue: 4 year: 2017 ident: 1278_CR15 publication-title: IET Cyber Phys Syst Theory Appl doi: 10.1049/iet-cps.2017.0013 – volume: 16 start-page: 854 issue: 2 year: 2019 ident: 1278_CR28 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2922215 – volume: 14 start-page: 1 issue: 1 year: 2011 ident: 1278_CR11 publication-title: ACM Trans Inform Syst Sec (TISSEC) doi: 10.1145/1952982.1952995 – volume: 12 start-page: 1052 issue: 5 year: 2017 ident: 1278_CR24 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2017.0455 – volume: 27 start-page: 1773 issue: 8 year: 2015 ident: 1278_CR29 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2404803 – volume: 13 start-page: 2693 issue: 5 year: 2017 ident: 1278_CR35 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2017.2656905 – volume: 14 start-page: 3271 issue: 7 year: 2018 ident: 1278_CR16 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2825243 – volume: 24 start-page: 91 issue: 1 year: 2014 ident: 1278_CR10 publication-title: Int Trans Elect Energy Syst doi: 10.1002/etep.1744 – volume: 1 start-page: 370 issue: 4 year: 2014 ident: 1278_CR19 publication-title: IEEE Trans Control Netw Syst doi: 10.1109/TCNS.2014.2357531 – volume: 62 start-page: 2077 issue: 12 year: 2019 ident: 1278_CR37 publication-title: Sci China Technol Sci doi: 10.1007/s11431-019-9544-7 – volume: 8 start-page: 1580 issue: 4 year: 2015 ident: 1278_CR34 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2492827 – ident: 1278_CR43 doi: 10.3115/v1/D14-1179 – volume: 5 start-page: 13787 year: 2017 ident: 1278_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728681 – volume: 5 start-page: 612 issue: 2 year: 2014 ident: 1278_CR18 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2013.2284438 – volume: 9 start-page: 3928 issue: 5 year: 2016 ident: 1278_CR36 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2642787 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 1278_CR42 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 12 start-page: 1735 issue: 7 year: 2017 ident: 1278_CR13 publication-title: IEEE Trans Inform Foren Sec – volume: 9 start-page: 693 issue: 4 year: 2020 ident: 1278_CR22 publication-title: Electronics doi: 10.3390/electronics9040693 |
SSID | ssj0003594 |
Score | 2.4387288 |
Snippet | With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 259 |
SubjectTerms | Algorithms Deep learning Economics and Management Electrical Engineering Electrical Machines and Networks Energy Policy Engineering Machine learning Monitoring Original Paper Power Electronics Real time Smart grid Smart grid technology State estimation Unstructured data |
Title | Deep learning-based multilabel classification for locational detection of false data injection attack in smart grids |
URI | https://link.springer.com/article/10.1007/s00202-021-01278-6 https://www.proquest.com/docview/2631667336 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqI8Kg9sYKm2GycZC7RUIJioVKbITs5VeaSIhP_P2U1SQIDEkkh-ZLiz_Z1z390RcsKNNNZEmtnQJdXuRh0WZyZjsVFWhM5A8Nn2b-_UcNS9HgfjKiisqNnutUvSn9RNsJuzbARzlALnLo2YWiarATY5ItdI9JrzVwa-_CHeWyIWxoJXoTI_f-MrHC1szG9uUY82g02yUZmJtDfX6xZZgnybrH9KHrhDykuAV1pVfZgwB0cZ9fxAVCw809TZxY4I5GVP0TilDrjm__5oBqUnYeV0ZqnFNQjUkUXpNH-s2nVZ6vQJG2jxguuLTt6mWbFLRoP-_cWQVTUUWIqbq2TKBkaDgqyLWw0P2VALsIAoDiLuQkdKDipGmWhtOD4QMhUCuFUZB9DCRHKPrOSzHPYJ5VZCICDmFu9sSoc6UzrFmaHzbEqAFuG1KJO0SjDu6lw8J01qZC_-BMWfePEnqkVOmzmv8_Qaf44-qjWUVFutSISS3NUuldh9Vmtt0f371w7-N_yQrAkX-uAZ20dkpXx7h2M0SErTJqu988vzgXtfPdz02349fgCTi9qe |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFECBOMWNC6jAErZ3naSgQBxazoqV6IKdjFdcAbFBiP_hQxl7k-UQIFHQpHBsK5p59jzHcwCsCauss7HhLvJJtRvxFk9ym_PEaicjTxBCtv3TM91qN44umhcD8FrHwgRv9_pKMuzU_WA3z2wk9y4F_ro05rpypTzGl2c6qHW3D_dIq-tSHuyf77Z4VUuAZwSykmvXtAY15g2CHG02kZHokKwZyqSBW0oJ1AnNb4wV9CDTocmQOZ0LRCNtrGjeQRgm8hH7tdOWO_39XjVDuUU6J8U8SqSoQnO-_-bP5u-d0365hg3W7WACxitaynZ6OJqEASymYOxDssJpKPcQH1hVZaLDvfnLWfBHJCDhLcs8D_eOR0HXjMgw84ay96-R5VgGp6-C3TvmCPPIvHMquyquq3ZTlia7oQbWvSM8s87jVd6dgfa_yHkWhor7AueACaewKTERjs6I2kQm1yajkZG_SVWI8yBqUaZZldDc19W4TfupmIP4UxJ_GsSf6nnY6I956KXz-LX3Uq2htFra3VRqJXytVEWvN2utvb_-ebaFv3VfhZHW-elJenJ4drwIo9KHXQRv8SUYKh-fcJnIUGlXAhYZXP43-N8AtM8WlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyQNCHytuHcmotsJ11kgMHxLKCUlAPXYlbasdjRIGwYoMQ_4qfyNibLA9BJQ5ccnBsKxp_9owz38wAfBNWWW8zw30akmon2QbPnXU8t9rLNBgIMdv-waHe7Sc_jzpHE3DbxsJEtnvrkhzFNIQsTVW9PnB-fRz4FqwcyQO9ILhOM64bWuU-3lzTpW24udelFV6TsrfzZ3uXN3UFeEmAq7n2HWtQo0sIfnTwpEaiR9JsKPMEN5QSqHOa3xgr6EFqRJNS89oJRCNtpmjedzCVhOhj2kF9uTU--1Unll6kO1PG01yKJkzn-W9-rArv7dsnLtmo6XqzMNOYqGxrhKk5mMDqI0w_SFz4Ceou4oA1FSeOeVCFjkVuIoEKz1gZbPJAQorrzsgwZkFpjv47Mod1JIBV7MIzT_hHFoiq7KT617SbujblKTWw4Tlhmx1fnrjhZ-i_iZy_wGR1UeFXYMIr7EjMhaf7ojapcdqUNDINXlWFOA-iFWVRNsnNQ42Ns2KcljmKvyDxF1H8hZ6H7-Mxg1Fqj__2XmpXqGi2-bCQWolQN1XR6x_tqt2_fnm2hdd1X4X3v7u94tfe4f4ifJAhAiMSx5dgsr68wmWyi2q7EqHI4O9bY_8O2t4axw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+multilabel+classification+for+locational+detection+of+false+data+injection+attack+in+smart+grids&rft.jtitle=Electrical+engineering&rft.au=Mukherjee+Debottam&rft.au=Chakraborty+Samrat&rft.au=Ghosh+Sandip&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0948-7921&rft.eissn=1432-0487&rft.volume=104&rft.issue=1&rft.spage=259&rft.epage=282&rft_id=info:doi/10.1007%2Fs00202-021-01278-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-7921&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-7921&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-7921&client=summon |