Deep learning-based multilabel classification for locational detection of false data injection attack in smart grids

With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent t...

Full description

Saved in:
Bibliographic Details
Published inElectrical engineering Vol. 104; no. 1; pp. 259 - 282
Main Authors Mukherjee, Debottam, Chakraborty, Samrat, Ghosh, Sandip
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent the traditional statistical bad data detection algorithm. Most of the research methodologies focus on the presence of FDIA in measurement set, whereas their exact locations remain unknown. To cater this issue, this paper proposes a deep learning architecture for detection of the exact locations of data intrusions in real-time. This deep learning model in association with traditional bad data detection algorithms is capable of detecting both structured as well as unstructured false data injection attacks. The deep learning architecture is not dependent on statistical assumptions of the measurements, it emphasizes on the inconsistency and co-occurrence dependency of potential attacks in measurement set, thus acting as a multilabel classifier. Such kind of architecture remains model free without any prior statistical assumptions. Extensive research work on IEEE test-bench shows that this scheme is capable of identifying the locations for intrusion under varying noise scenarios. Such kind of an approach shows potential results also in detection of presence of falsified data.
AbstractList With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent the traditional statistical bad data detection algorithm. Most of the research methodologies focus on the presence of FDIA in measurement set, whereas their exact locations remain unknown. To cater this issue, this paper proposes a deep learning architecture for detection of the exact locations of data intrusions in real-time. This deep learning model in association with traditional bad data detection algorithms is capable of detecting both structured as well as unstructured false data injection attacks. The deep learning architecture is not dependent on statistical assumptions of the measurements, it emphasizes on the inconsistency and co-occurrence dependency of potential attacks in measurement set, thus acting as a multilabel classifier. Such kind of architecture remains model free without any prior statistical assumptions. Extensive research work on IEEE test-bench shows that this scheme is capable of identifying the locations for intrusion under varying noise scenarios. Such kind of an approach shows potential results also in detection of presence of falsified data.
Author Ghosh, Sandip
Mukherjee, Debottam
Chakraborty, Samrat
Author_xml – sequence: 1
  givenname: Debottam
  orcidid: 0000-0002-9243-6295
  surname: Mukherjee
  fullname: Mukherjee, Debottam
  email: debottammukherjee@gmail.com
  organization: Department of Electrical Engineering, Indian Institute of Technology (BHU)
– sequence: 2
  givenname: Samrat
  surname: Chakraborty
  fullname: Chakraborty, Samrat
  organization: Department of Electrical Engineering, National Institute of Technology Arunachal Pradesh
– sequence: 3
  givenname: Sandip
  surname: Ghosh
  fullname: Ghosh, Sandip
  organization: Department of Electrical Engineering, Indian Institute of Technology (BHU)
BookMark eNp9kEtLAzEUhYNUsFb_gKuA62ge08zMUuoTCm50He5k7pTUdKYm6cJ_b9opCC66ScjJ-S73nEsy6YceCbkR_E5wXt5HziWXjEvBuJBlxfQZmYpCZamoygmZ8rqoWFlLcUEuY1xzztW8LqYkPSJuqUcIvetXrIGILd3sfHIeGvTUeojRdc5CckNPuyFQP4wP8LTFhPbwMXS0Ax-RtpCAun591CElsF9ZoHEDIdFVcG28IucH8_XxnpHP56ePxStbvr-8LR6WzCpRJ6a7eQOosS1ErRFsCRI7LLhGWRfIlRKo6xwboBH5sIi6mqtOtwIRZFOpGbkd527D8L3DmMx62IW8eDRSK6F1qZTOrmp02TDEGLAz1qVDwhTAeSO42Xdsxo5N7tgcOjZ7VP5Dt8HlnD-nITVCMZv7FYa_rU5Qv4ZAk0g
CitedBy_id crossref_primary_10_1007_s00202_024_02277_z
crossref_primary_10_1016_j_scs_2023_104475
crossref_primary_10_1016_j_egyr_2023_12_040
crossref_primary_10_1038_s41598_023_43972_4
crossref_primary_10_1016_j_egyr_2022_10_270
crossref_primary_10_1007_s00202_023_01978_1
crossref_primary_10_1007_s00202_024_02762_5
crossref_primary_10_3390_en16020820
crossref_primary_10_1007_s42452_024_06450_8
crossref_primary_10_1016_j_cosrev_2024_100617
crossref_primary_10_1155_2022_4911553
crossref_primary_10_1109_TSG_2024_3524455
crossref_primary_10_1016_j_compeleceng_2024_109572
crossref_primary_10_1186_s42162_024_00381_9
crossref_primary_10_3390_electronics12040797
crossref_primary_10_1007_s12530_024_09618_0
crossref_primary_10_1109_ACCESS_2024_3477714
crossref_primary_10_1145_3606264
crossref_primary_10_1109_JIOT_2023_3332660
crossref_primary_10_1109_TNNLS_2023_3257225
crossref_primary_10_3390_en15145312
crossref_primary_10_1109_TSG_2023_3256480
crossref_primary_10_3390_info15080439
crossref_primary_10_1109_TDSC_2024_3353302
crossref_primary_10_1016_j_ijcip_2024_100697
crossref_primary_10_1007_s10586_024_04501_8
crossref_primary_10_1007_s40866_024_00216_2
crossref_primary_10_1016_j_segan_2024_101524
crossref_primary_10_1016_j_segan_2024_101364
crossref_primary_10_1007_s00202_024_02327_6
crossref_primary_10_1038_s41598_024_82566_6
crossref_primary_10_1007_s42835_023_01494_z
crossref_primary_10_1007_s40031_023_00960_6
crossref_primary_10_1109_TSG_2022_3204214
crossref_primary_10_1038_s41598_024_68030_5
Cites_doi 10.1109/TSG.2011.2163807
10.1109/MWC.2019.1800407
10.1007/s11431-019-9544-7
10.1049/iet-cps.2017.0013
10.3390/electronics9040693
10.1145/1952982.1952995
10.1109/TSG.2015.2492827
10.1109/TCNS.2014.2357531
10.1049/iet-gtd.2017.0455
10.1109/ACCESS.2017.2728681
10.1109/TII.2017.2656905
10.1109/TSG.2016.2642787
10.1109/TSG.2017.2675960
10.1109/JSAC.2014.2332051
10.1109/TII.2019.2922215
10.1201/b18338
10.1109/JSYST.2014.2341597
10.3390/en12112209
10.1109/TSG.2017.2703842
10.1016/j.is.2014.12.001
10.1109/TSG.2013.2284438
10.1109/TSG.2015.2495133
10.1109/TII.2016.2614396
10.1002/etep.2779
10.1109/TII.2018.2825243
10.1109/TII.2017.2720726
10.1109/TSG.2011.2161892
10.1109/TII.2018.2875529
10.1109/TIFS.2016.2542061
10.1162/neco.1997.9.8.1735
10.1109/JIOT.2018.2830340
10.1109/TSG.2017.2664043
10.1002/sys.21239
10.1002/etep.1744
10.1109/TSIPN.2017.2749959
10.1109/TNNLS.2015.2404803
10.1109/CDC.2011.6160456
10.1109/CVPR.2016.90
10.1109/GLOCOM.2012.6503599
10.1109/CISS.2010.5464816
10.3115/v1/D14-1179
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00202-021-01278-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-0487
EndPage 282
ExternalDocumentID 10_1007_s00202_021_01278_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L8X
LAS
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z88
Z8M
Z8N
Z8S
Z8T
Z92
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-6f5bae6ed4196eac7a2efe406e294e0331e69202aab12aacee6853f6d1eea2b83
IEDL.DBID U2A
ISSN 0948-7921
IngestDate Fri Jul 25 11:09:53 EDT 2025
Tue Jul 01 00:23:29 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Fri Feb 21 02:47:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
False data injection attack
Cybersecurity
Power system security
Smart grid
State estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6f5bae6ed4196eac7a2efe406e294e0331e69202aab12aacee6853f6d1eea2b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9243-6295
PQID 2631667336
PQPubID 2044221
PageCount 24
ParticipantIDs proquest_journals_2631667336
crossref_citationtrail_10_1007_s00202_021_01278_6
crossref_primary_10_1007_s00202_021_01278_6
springer_journals_10_1007_s00202_021_01278_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Archiv für Elektrotechnik
PublicationTitle Electrical engineering
PublicationTitleAbbrev Electr Eng
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ganjkhani, Fallah, Badakhshan, Shamshirband, Chau (CR26) 2019; 12
Do Coutto Filho, de Souza, Glover (CR9) 2019; 29
Gai, Choo, Qiu, Zhu (CR14) 2018; 5
Hochreiter, Schmidhuber (CR42) 1997; 9
Deng, Xiao, Lu, Liang, Vasilakos (CR5) 2016; 13
CR39
Horowitz, Pierce (CR3) 2013; 16
Singh, Khanna, Bose, Panigrahi, Joshi (CR31) 2017; 14
Kosut, Jia, Thomas, Tong (CR27) 2011; 2
Li, Xiao, Lu, Deng, Bao (CR28) 2019; 16
Zhao, Zhang, La Scala, Dong, Chen, Wang (CR34) 2015; 8
Liu, Ning, Reiter (CR11) 2011; 14
Anwar, Mahmood, Ray, Mahmud, Tari (CR22) 2020; 9
Goodfellow, Bengio, Courville (CR41) 2016
Guan, Ge (CR20) 2017; 4
Xu, Wang, Guan, Wu, Wu, Du (CR33) 2017; 5
Ashok, Govindarasu, Ajjarapu (CR21) 2016; 9
Liu, Li, Liu, Li (CR7) 2016; 11
Yang, An, Min, Yu, Yang, Zhao (CR13) 2017; 12
James, Hou, Li (CR16) 2018; 14
Khanna, Panigrahi, Joshi (CR24) 2017; 12
Li, Ding, Huang, Zhao, Yang, Chen (CR32) 2018; 15
Xie, Mo, Sinopoli (CR6) 2011; 2
Foroutan, Salmasi (CR15) 2017; 2
Esmalifalak, Liu, Nguyen, Zheng, Han (CR25) 2014; 11
Anwar, Mahmood, Tari (CR38) 2015; 53
Liang, Zhao, Luo, Weller, Dong (CR4) 2016; 8
Gai, Qiu, Ming, Zhao, Qiu (CR8) 2017; 8
CR23
Benedito, Alberto, Bretas, London (CR10) 2014; 24
Manandhar, Cao, Hu, Liu (CR19) 2014; 1
CR44
CR43
Bi, Zhang (CR12) 2014; 32
CR40
Thomas, McDonald (CR2) 2017
Beg, Johnson, Davoudi (CR35) 2017; 13
Liu, Esmalifalak, Ding, Emesih, Han (CR18) 2014; 5
Gai, Xu, Lu, Qiu, Zhu (CR1) 2019; 26
Zhang, Shen, He, Han, Li, Wang, Guan (CR37) 2019; 62
Adhikari, Morris, Pan (CR36) 2016; 9
Ozay, Esnaola, Vural, Kulkarni, Poor (CR29) 2015; 27
Moslemi, Mesbahi, Velni (CR17) 2017; 9
He, Mendis, Wei (CR30) 2017; 8
MB Do Coutto Filho (1278_CR9) 2019; 29
K Manandhar (1278_CR19) 2014; 1
Y Guan (1278_CR20) 2017; 4
Q Yang (1278_CR13) 2017; 12
1278_CR39
B Li (1278_CR28) 2019; 16
R Moslemi (1278_CR17) 2017; 9
B Li (1278_CR32) 2018; 15
I Goodfellow (1278_CR41) 2016
J Zhao (1278_CR34) 2015; 8
S Hochreiter (1278_CR42) 1997; 9
G Liang (1278_CR4) 2016; 8
R Deng (1278_CR5) 2016; 13
X Liu (1278_CR7) 2016; 11
M Esmalifalak (1278_CR25) 2014; 11
L Liu (1278_CR18) 2014; 5
A Ashok (1278_CR21) 2016; 9
A Anwar (1278_CR22) 2020; 9
M Ozay (1278_CR29) 2015; 27
RA Benedito (1278_CR10) 2014; 24
K Gai (1278_CR14) 2018; 5
Y He (1278_CR30) 2017; 8
OA Beg (1278_CR35) 2017; 13
MS Thomas (1278_CR2) 2017
K Gai (1278_CR8) 2017; 8
J James (1278_CR16) 2018; 14
A Adhikari (1278_CR36) 2016; 9
K Gai (1278_CR1) 2019; 26
R Xu (1278_CR33) 2017; 5
K Khanna (1278_CR24) 2017; 12
M Ganjkhani (1278_CR26) 2019; 12
SK Singh (1278_CR31) 2017; 14
O Kosut (1278_CR27) 2011; 2
Y Liu (1278_CR11) 2011; 14
1278_CR44
1278_CR23
SA Foroutan (1278_CR15) 2017; 2
L Xie (1278_CR6) 2011; 2
A Anwar (1278_CR38) 2015; 53
1278_CR40
S Bi (1278_CR12) 2014; 32
M Zhang (1278_CR37) 2019; 62
BM Horowitz (1278_CR3) 2013; 16
1278_CR43
References_xml – volume: 2
  start-page: 645
  issue: 4
  year: 2011
  end-page: 658
  ident: CR27
  article-title: Malicious data attacks on the smart grid
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2011.2163807
– volume: 26
  start-page: 69
  issue: 3
  year: 2019
  end-page: 75
  ident: CR1
  article-title: Fusion of cognitive wireless networks and edge computing
  publication-title: IEEE Wireless Commun
  doi: 10.1109/MWC.2019.1800407
– volume: 62
  start-page: 2077
  issue: 12
  year: 2019
  end-page: 2087
  ident: CR37
  article-title: False data injection attacks against smart gird state estimation: construction, detection and defense
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-019-9544-7
– ident: CR43
– volume: 2
  start-page: 161
  issue: 4
  year: 2017
  end-page: 171
  ident: CR15
  article-title: Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method
  publication-title: IET Cyber Phys Syst Theory Appl
  doi: 10.1049/iet-cps.2017.0013
– year: 2016
  ident: CR41
  publication-title: Deep learning
– volume: 9
  start-page: 693
  issue: 4
  year: 2020
  ident: CR22
  article-title: Machine learning to ensure data integrity in power system topological network database
  publication-title: Electronics
  doi: 10.3390/electronics9040693
– volume: 12
  start-page: 1735
  issue: 7
  year: 2017
  end-page: 1750
  ident: CR13
  article-title: On optimal PMU placement-based defense against data integrity attacks in smart grid
  publication-title: IEEE Trans Inform Foren Sec
– ident: CR39
– volume: 14
  start-page: 1
  issue: 1
  year: 2011
  end-page: 33
  ident: CR11
  article-title: False data injection attacks against state estimation in electric power grids
  publication-title: ACM Trans Inform Syst Sec (TISSEC)
  doi: 10.1145/1952982.1952995
– volume: 8
  start-page: 1580
  issue: 4
  year: 2015
  end-page: 1590
  ident: CR34
  article-title: Short-term state forecasting-aided method for detection of smart grid general false data injection attacks
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2492827
– volume: 1
  start-page: 370
  issue: 4
  year: 2014
  end-page: 379
  ident: CR19
  article-title: Detection of faults and attacks including false data injection attack in smart grid using Kalman filter
  publication-title: IEEE Trans Control Netw Syst
  doi: 10.1109/TCNS.2014.2357531
– volume: 12
  start-page: 1052
  issue: 5
  year: 2017
  end-page: 1066
  ident: CR24
  article-title: AI-based approach to identify compromised meters in data integrity attacks on smart grid
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2017.0455
– volume: 5
  start-page: 13787
  year: 2017
  end-page: 13798
  ident: CR33
  article-title: Achieving efficient detection against false data injection attacks in smart grid
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728681
– volume: 13
  start-page: 2693
  issue: 5
  year: 2017
  end-page: 2703
  ident: CR35
  article-title: Detection of false-data injection attacks in cyber-physical dc microgrids
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2656905
– ident: CR40
– ident: CR23
– volume: 9
  start-page: 3928
  issue: 5
  year: 2016
  end-page: 3941
  ident: CR36
  article-title: Applying non-nested generalized exemplars classification for cyber-power event and intrusion detection
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2642787
– volume: 9
  start-page: 4930
  issue: 5
  year: 2017
  end-page: 4941
  ident: CR17
  article-title: A fast, decentralized covariance selection-based approach to detect cyber attacks in smart grids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2675960
– volume: 32
  start-page: 1471
  issue: 7
  year: 2014
  end-page: 1485
  ident: CR12
  article-title: Using covert topological information for defense against malicious attacks on DC state estimation
  publication-title: IEEE J Select Areas Commun
  doi: 10.1109/JSAC.2014.2332051
– ident: CR44
– volume: 16
  start-page: 854
  issue: 2
  year: 2019
  end-page: 864
  ident: CR28
  article-title: On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2922215
– year: 2017
  ident: CR2
  publication-title: Power system SCADA and smart grids
  doi: 10.1201/b18338
– volume: 11
  start-page: 1644
  issue: 3
  year: 2014
  end-page: 1652
  ident: CR25
  article-title: Detecting stealthy false data injection using machine learning in smart grid
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2014.2341597
– volume: 12
  start-page: 2209
  issue: 11
  year: 2019
  ident: CR26
  article-title: A novel detection algorithm to identify false data injection attacks on power system state estimation
  publication-title: Energies
  doi: 10.3390/en12112209
– volume: 8
  start-page: 2505
  issue: 5
  year: 2017
  end-page: 2516
  ident: CR30
  article-title: Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2703842
– volume: 53
  start-page: 201
  year: 2015
  end-page: 212
  ident: CR38
  article-title: Identification of vulnerable node clusters against false data injection attack in an AMI based smart grid
  publication-title: Inform Syst
  doi: 10.1016/j.is.2014.12.001
– volume: 5
  start-page: 612
  issue: 2
  year: 2014
  end-page: 621
  ident: CR18
  article-title: Detecting false data injection attacks on power grid by sparse optimization
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2284438
– volume: 8
  start-page: 1630
  issue: 4
  year: 2016
  end-page: 1638
  ident: CR4
  article-title: A review of false data injection attacks against modern power systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2495133
– volume: 13
  start-page: 411
  issue: 2
  year: 2016
  end-page: 423
  ident: CR5
  article-title: False data injection on state estimation in power systems: attacks, impacts, and defense—a survey
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2016.2614396
– volume: 29
  start-page: e2779
  issue: 4
  year: 2019
  ident: CR9
  article-title: Roots, achievements, and prospects of power system state estimation: a review on handling corrupted measurements
  publication-title: Int Trans Elect Energy Syst
  doi: 10.1002/etep.2779
– volume: 14
  start-page: 3271
  issue: 7
  year: 2018
  end-page: 3280
  ident: CR16
  article-title: Online false data injection attack detection with wavelet transform and deep neural networks
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2825243
– volume: 14
  start-page: 89
  issue: 1
  year: 2017
  end-page: 97
  ident: CR31
  article-title: Joint-transformation-based detection of false data injection attacks in smart grid
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2720726
– volume: 2
  start-page: 659
  issue: 4
  year: 2011
  end-page: 666
  ident: CR6
  article-title: Integrity data attacks in power market operations
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2011.2161892
– volume: 15
  start-page: 2892
  issue: 5
  year: 2018
  end-page: 2904
  ident: CR32
  article-title: Detecting false data injection attacks against power system state estimation with fast go-decomposition approach
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2875529
– volume: 11
  start-page: 1592
  issue: 7
  year: 2016
  end-page: 1602
  ident: CR7
  article-title: Masking transmission line outages via false data injection attacks
  publication-title: IEEE Trans Inform Foren Sec
  doi: 10.1109/TIFS.2016.2542061
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR42
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 5
  start-page: 3059
  issue: 4
  year: 2018
  end-page: 3067
  ident: CR14
  article-title: Privacy-preserving content-oriented wireless communication in internet-of-things
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2830340
– volume: 8
  start-page: 2431
  issue: 5
  year: 2017
  end-page: 2439
  ident: CR8
  article-title: Spoofing-jamming attack strategy using optimal power distributions in wireless smart grid networks
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2664043
– volume: 16
  start-page: 401
  issue: 4
  year: 2013
  end-page: 412
  ident: CR3
  article-title: The integration of diversely redundant designs, dynamic system models, and state estimation technology to the cyber security of physical systems
  publication-title: Syst Eng
  doi: 10.1002/sys.21239
– volume: 24
  start-page: 91
  issue: 1
  year: 2014
  end-page: 107
  ident: CR10
  article-title: Power system state estimation: undetectable bad data
  publication-title: Int Trans Elect Energy Syst
  doi: 10.1002/etep.1744
– volume: 4
  start-page: 48
  issue: 1
  year: 2017
  end-page: 59
  ident: CR20
  article-title: Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks
  publication-title: IEEE Trans Signal Inform Process Over Netw
  doi: 10.1109/TSIPN.2017.2749959
– volume: 9
  start-page: 1636
  issue: 3
  year: 2016
  end-page: 1646
  ident: CR21
  article-title: Online detection of stealthy false data injection attacks in power system state estimation
  publication-title: IEEE Trans Smart Grid
– volume: 27
  start-page: 1773
  issue: 8
  year: 2015
  end-page: 1786
  ident: CR29
  article-title: Machine learning methods for attack detection in the smart grid
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2404803
– volume: 29
  start-page: e2779
  issue: 4
  year: 2019
  ident: 1278_CR9
  publication-title: Int Trans Elect Energy Syst
  doi: 10.1002/etep.2779
– volume: 2
  start-page: 659
  issue: 4
  year: 2011
  ident: 1278_CR6
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2011.2161892
– volume: 9
  start-page: 1636
  issue: 3
  year: 2016
  ident: 1278_CR21
  publication-title: IEEE Trans Smart Grid
– volume: 4
  start-page: 48
  issue: 1
  year: 2017
  ident: 1278_CR20
  publication-title: IEEE Trans Signal Inform Process Over Netw
  doi: 10.1109/TSIPN.2017.2749959
– volume: 12
  start-page: 2209
  issue: 11
  year: 2019
  ident: 1278_CR26
  publication-title: Energies
  doi: 10.3390/en12112209
– volume: 15
  start-page: 2892
  issue: 5
  year: 2018
  ident: 1278_CR32
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2875529
– volume: 9
  start-page: 4930
  issue: 5
  year: 2017
  ident: 1278_CR17
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2675960
– volume: 13
  start-page: 411
  issue: 2
  year: 2016
  ident: 1278_CR5
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2016.2614396
– volume: 5
  start-page: 3059
  issue: 4
  year: 2018
  ident: 1278_CR14
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2830340
– volume-title: Power system SCADA and smart grids
  year: 2017
  ident: 1278_CR2
  doi: 10.1201/b18338
– volume: 2
  start-page: 645
  issue: 4
  year: 2011
  ident: 1278_CR27
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2011.2163807
– volume: 26
  start-page: 69
  issue: 3
  year: 2019
  ident: 1278_CR1
  publication-title: IEEE Wireless Commun
  doi: 10.1109/MWC.2019.1800407
– ident: 1278_CR39
  doi: 10.1109/CDC.2011.6160456
– ident: 1278_CR44
  doi: 10.1109/CVPR.2016.90
– volume: 8
  start-page: 2431
  issue: 5
  year: 2017
  ident: 1278_CR8
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2664043
– volume: 8
  start-page: 1630
  issue: 4
  year: 2016
  ident: 1278_CR4
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2495133
– volume-title: Deep learning
  year: 2016
  ident: 1278_CR41
– volume: 14
  start-page: 89
  issue: 1
  year: 2017
  ident: 1278_CR31
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2720726
– volume: 11
  start-page: 1644
  issue: 3
  year: 2014
  ident: 1278_CR25
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2014.2341597
– volume: 8
  start-page: 2505
  issue: 5
  year: 2017
  ident: 1278_CR30
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2703842
– volume: 16
  start-page: 401
  issue: 4
  year: 2013
  ident: 1278_CR3
  publication-title: Syst Eng
  doi: 10.1002/sys.21239
– volume: 53
  start-page: 201
  year: 2015
  ident: 1278_CR38
  publication-title: Inform Syst
  doi: 10.1016/j.is.2014.12.001
– ident: 1278_CR40
  doi: 10.1109/GLOCOM.2012.6503599
– volume: 32
  start-page: 1471
  issue: 7
  year: 2014
  ident: 1278_CR12
  publication-title: IEEE J Select Areas Commun
  doi: 10.1109/JSAC.2014.2332051
– ident: 1278_CR23
  doi: 10.1109/CISS.2010.5464816
– volume: 11
  start-page: 1592
  issue: 7
  year: 2016
  ident: 1278_CR7
  publication-title: IEEE Trans Inform Foren Sec
  doi: 10.1109/TIFS.2016.2542061
– volume: 2
  start-page: 161
  issue: 4
  year: 2017
  ident: 1278_CR15
  publication-title: IET Cyber Phys Syst Theory Appl
  doi: 10.1049/iet-cps.2017.0013
– volume: 16
  start-page: 854
  issue: 2
  year: 2019
  ident: 1278_CR28
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2922215
– volume: 14
  start-page: 1
  issue: 1
  year: 2011
  ident: 1278_CR11
  publication-title: ACM Trans Inform Syst Sec (TISSEC)
  doi: 10.1145/1952982.1952995
– volume: 12
  start-page: 1052
  issue: 5
  year: 2017
  ident: 1278_CR24
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2017.0455
– volume: 27
  start-page: 1773
  issue: 8
  year: 2015
  ident: 1278_CR29
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2404803
– volume: 13
  start-page: 2693
  issue: 5
  year: 2017
  ident: 1278_CR35
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2656905
– volume: 14
  start-page: 3271
  issue: 7
  year: 2018
  ident: 1278_CR16
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2825243
– volume: 24
  start-page: 91
  issue: 1
  year: 2014
  ident: 1278_CR10
  publication-title: Int Trans Elect Energy Syst
  doi: 10.1002/etep.1744
– volume: 1
  start-page: 370
  issue: 4
  year: 2014
  ident: 1278_CR19
  publication-title: IEEE Trans Control Netw Syst
  doi: 10.1109/TCNS.2014.2357531
– volume: 62
  start-page: 2077
  issue: 12
  year: 2019
  ident: 1278_CR37
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-019-9544-7
– volume: 8
  start-page: 1580
  issue: 4
  year: 2015
  ident: 1278_CR34
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2492827
– ident: 1278_CR43
  doi: 10.3115/v1/D14-1179
– volume: 5
  start-page: 13787
  year: 2017
  ident: 1278_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728681
– volume: 5
  start-page: 612
  issue: 2
  year: 2014
  ident: 1278_CR18
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2284438
– volume: 9
  start-page: 3928
  issue: 5
  year: 2016
  ident: 1278_CR36
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2642787
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 1278_CR42
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 12
  start-page: 1735
  issue: 7
  year: 2017
  ident: 1278_CR13
  publication-title: IEEE Trans Inform Foren Sec
– volume: 9
  start-page: 693
  issue: 4
  year: 2020
  ident: 1278_CR22
  publication-title: Electronics
  doi: 10.3390/electronics9040693
SSID ssj0003594
Score 2.4387288
Snippet With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 259
SubjectTerms Algorithms
Deep learning
Economics and Management
Electrical Engineering
Electrical Machines and Networks
Energy Policy
Engineering
Machine learning
Monitoring
Original Paper
Power Electronics
Real time
Smart grid
Smart grid technology
State estimation
Unstructured data
Title Deep learning-based multilabel classification for locational detection of false data injection attack in smart grids
URI https://link.springer.com/article/10.1007/s00202-021-01278-6
https://www.proquest.com/docview/2631667336
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqI8Kg9sYKm2GycZC7RUIJioVKbITs5VeaSIhP_P2U1SQIDEkkh-ZLiz_Z1z390RcsKNNNZEmtnQJdXuRh0WZyZjsVFWhM5A8Nn2b-_UcNS9HgfjKiisqNnutUvSn9RNsJuzbARzlALnLo2YWiarATY5ItdI9JrzVwa-_CHeWyIWxoJXoTI_f-MrHC1szG9uUY82g02yUZmJtDfX6xZZgnybrH9KHrhDykuAV1pVfZgwB0cZ9fxAVCw809TZxY4I5GVP0TilDrjm__5oBqUnYeV0ZqnFNQjUkUXpNH-s2nVZ6vQJG2jxguuLTt6mWbFLRoP-_cWQVTUUWIqbq2TKBkaDgqyLWw0P2VALsIAoDiLuQkdKDipGmWhtOD4QMhUCuFUZB9DCRHKPrOSzHPYJ5VZCICDmFu9sSoc6UzrFmaHzbEqAFuG1KJO0SjDu6lw8J01qZC_-BMWfePEnqkVOmzmv8_Qaf44-qjWUVFutSISS3NUuldh9Vmtt0f371w7-N_yQrAkX-uAZ20dkpXx7h2M0SErTJqu988vzgXtfPdz02349fgCTi9qe
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFECBOMWNC6jAErZ3naSgQBxazoqV6IKdjFdcAbFBiP_hQxl7k-UQIFHQpHBsK5p59jzHcwCsCauss7HhLvJJtRvxFk9ym_PEaicjTxBCtv3TM91qN44umhcD8FrHwgRv9_pKMuzU_WA3z2wk9y4F_ro05rpypTzGl2c6qHW3D_dIq-tSHuyf77Z4VUuAZwSykmvXtAY15g2CHG02kZHokKwZyqSBW0oJ1AnNb4wV9CDTocmQOZ0LRCNtrGjeQRgm8hH7tdOWO_39XjVDuUU6J8U8SqSoQnO-_-bP5u-d0365hg3W7WACxitaynZ6OJqEASymYOxDssJpKPcQH1hVZaLDvfnLWfBHJCDhLcs8D_eOR0HXjMgw84ay96-R5VgGp6-C3TvmCPPIvHMquyquq3ZTlia7oQbWvSM8s87jVd6dgfa_yHkWhor7AueACaewKTERjs6I2kQm1yajkZG_SVWI8yBqUaZZldDc19W4TfupmIP4UxJ_GsSf6nnY6I956KXz-LX3Uq2htFra3VRqJXytVEWvN2utvb_-ebaFv3VfhZHW-elJenJ4drwIo9KHXQRv8SUYKh-fcJnIUGlXAhYZXP43-N8AtM8WlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyQNCHytuHcmotsJ11kgMHxLKCUlAPXYlbasdjRIGwYoMQ_4qfyNibLA9BJQ5ccnBsKxp_9owz38wAfBNWWW8zw30akmon2QbPnXU8t9rLNBgIMdv-waHe7Sc_jzpHE3DbxsJEtnvrkhzFNIQsTVW9PnB-fRz4FqwcyQO9ILhOM64bWuU-3lzTpW24udelFV6TsrfzZ3uXN3UFeEmAq7n2HWtQo0sIfnTwpEaiR9JsKPMEN5QSqHOa3xgr6EFqRJNS89oJRCNtpmjedzCVhOhj2kF9uTU--1Unll6kO1PG01yKJkzn-W9-rArv7dsnLtmo6XqzMNOYqGxrhKk5mMDqI0w_SFz4Ceou4oA1FSeOeVCFjkVuIoEKz1gZbPJAQorrzsgwZkFpjv47Mod1JIBV7MIzT_hHFoiq7KT617SbujblKTWw4Tlhmx1fnrjhZ-i_iZy_wGR1UeFXYMIr7EjMhaf7ojapcdqUNDINXlWFOA-iFWVRNsnNQ42Ns2KcljmKvyDxF1H8hZ6H7-Mxg1Fqj__2XmpXqGi2-bCQWolQN1XR6x_tqt2_fnm2hdd1X4X3v7u94tfe4f4ifJAhAiMSx5dgsr68wmWyi2q7EqHI4O9bY_8O2t4axw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+multilabel+classification+for+locational+detection+of+false+data+injection+attack+in+smart+grids&rft.jtitle=Electrical+engineering&rft.au=Mukherjee+Debottam&rft.au=Chakraborty+Samrat&rft.au=Ghosh+Sandip&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0948-7921&rft.eissn=1432-0487&rft.volume=104&rft.issue=1&rft.spage=259&rft.epage=282&rft_id=info:doi/10.1007%2Fs00202-021-01278-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0948-7921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0948-7921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0948-7921&client=summon