Quantifying the combined effect of pH and salinity on the performance of water absorbing polymers used for drought management
Water absorbing polymers (WAPs) are widely used in the agricultural field of arid and semiarid regions as soil amendments to increase the water retention capacity and minimize irrigation frequency. The agricultural soils in these regions generally have varying levels of pH and salinity, which would...
Saved in:
Published in | Journal of polymer research Vol. 28; no. 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water absorbing polymers (WAPs) are widely used in the agricultural field of arid and semiarid regions as soil amendments to increase the water retention capacity and minimize irrigation frequency. The agricultural soils in these regions generally have varying levels of pH and salinity, which would influence and inhibit the performance of WAP. The effect of pH and salinity on performance of WAP and its application rate has not been addressed adequately. This study quantifies the effect of different salt ions and pH on the performance of two different WAPs, including commercially available WAP (crosslinked potassium polyacrylate) and laboratory-grade WAP (crosslinked fly ash-polyacrylate superabsorbent composite). Experiments were performed to measure the water absorbing capacity (WAC) of the used WAPs in different solutions or swelling mediums with varying salt concentrations and pH. The combined effect of seven different commonly occurring inorganic salts with varying concentrations (0.01 M, 0.05 M, 0.1 M, 0.15 M, 0.2 M, and 0.3 M) and three different pH levels (5, 7, and 9) on the WAC of the WAPs was evaluated. It was found that the WAC was highly sensitive to the ionic strength and the type of cations/ anions present in the solution. The experimental results were used to develop a unique relationship between WAC and the electrical conductivity (EC) of the solvent, which needs to be incorporated for the basic characterization of WAP. This study demonstrates the usefulness of the proposed relationship for deciding appropriate WAP application rates in different agricultural soils based on their EC values. |
---|---|
AbstractList | Water absorbing polymers (WAPs) are widely used in the agricultural field of arid and semiarid regions as soil amendments to increase the water retention capacity and minimize irrigation frequency. The agricultural soils in these regions generally have varying levels of pH and salinity, which would influence and inhibit the performance of WAP. The effect of pH and salinity on performance of WAP and its application rate has not been addressed adequately. This study quantifies the effect of different salt ions and pH on the performance of two different WAPs, including commercially available WAP (crosslinked potassium polyacrylate) and laboratory-grade WAP (crosslinked fly ash-polyacrylate superabsorbent composite). Experiments were performed to measure the water absorbing capacity (WAC) of the used WAPs in different solutions or swelling mediums with varying salt concentrations and pH. The combined effect of seven different commonly occurring inorganic salts with varying concentrations (0.01 M, 0.05 M, 0.1 M, 0.15 M, 0.2 M, and 0.3 M) and three different pH levels (5, 7, and 9) on the WAC of the WAPs was evaluated. It was found that the WAC was highly sensitive to the ionic strength and the type of cations/ anions present in the solution. The experimental results were used to develop a unique relationship between WAC and the electrical conductivity (EC) of the solvent, which needs to be incorporated for the basic characterization of WAP. This study demonstrates the usefulness of the proposed relationship for deciding appropriate WAP application rates in different agricultural soils based on their EC values. Water absorbing polymers (WAPs) are widely used in the agricultural field of arid and semiarid regions as soil amendments to increase the water retention capacity and minimize irrigation frequency. The agricultural soils in these regions generally have varying levels of pH and salinity, which would influence and inhibit the performance of WAP. The effect of pH and salinity on performance of WAP and its application rate has not been addressed adequately. This study quantifies the effect of different salt ions and pH on the performance of two different WAPs, including commercially available WAP (crosslinked potassium polyacrylate) and laboratory-grade WAP (crosslinked fly ash-polyacrylate superabsorbent composite). Experiments were performed to measure the water absorbing capacity (WAC) of the used WAPs in different solutions or swelling mediums with varying salt concentrations and pH. The combined effect of seven different commonly occurring inorganic salts with varying concentrations (0.01 M, 0.05 M, 0.1 M, 0.15 M, 0.2 M, and 0.3 M) and three different pH levels (5, 7, and 9) on the WAC of the WAPs was evaluated. It was found that the WAC was highly sensitive to the ionic strength and the type of cations/ anions present in the solution. The experimental results were used to develop a unique relationship between WAC and the electrical conductivity (EC) of the solvent, which needs to be incorporated for the basic characterization of WAP. This study demonstrates the usefulness of the proposed relationship for deciding appropriate WAP application rates in different agricultural soils based on their EC values. |
ArticleNumber | 428 |
Author | Manna, Uttam Sekharan, Sreedeep Saha, Abhisekh Rattan, Bharat |
Author_xml | – sequence: 1 givenname: Abhisekh orcidid: 0000-0002-4771-572X surname: Saha fullname: Saha, Abhisekh email: abhisekh@iitg.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Guwahati – sequence: 2 givenname: Bharat surname: Rattan fullname: Rattan, Bharat organization: Department of Civil Engineering, Indian Institute of Technology Guwahati – sequence: 3 givenname: Sreedeep surname: Sekharan fullname: Sekharan, Sreedeep organization: Department of Civil Engineering, Indian Institute of Technology Guwahati – sequence: 4 givenname: Uttam surname: Manna fullname: Manna, Uttam organization: Department of Chemistry and Centre for Nanotechnology, Indian Institute of Technology Guwahati |
BookMark | eNp9kE1r3DAQhkXZQLLb_IGcBDm71YfHto5habuBQCm0ZyHbo43CWnIlmbKH_Pdos4VCD3sQo8PzvDO8a7LywSMhd5x94oy1nxNnqoGKCV5eq6CCD-SGQyuqTklYlT8TolJtw67JOqUXxgDaprshrz8W47OzR-f3ND8jHcLUO48jRWtxyDRYOu-o8SNN5uC8y0ca_Ds5Y7QhTsYPeKL-mIyRmj6F2J_C5nA4ThgTXVJJKyQdY1j2z5kWxexxQp8_kitrDglv_84N-fX1y8_trnr6_u1x-_BUDZKrXDWW8a6TRta1UK2sRd2xpu976MF0QgLW0oJiktc9CM5brhBwRFDNyKExQm7I_Tl3juH3ginrl7BEX1ZqAV0tZc0aWajuTA0xpBTR6sFlk13wORp30JzpU9n6XLYuZev3sjUUVfynztFNJh4vS_IspQL7PcZ_V12w3gAkOpRC |
CitedBy_id | crossref_primary_10_1017_plc_2024_2 crossref_primary_10_1061__ASCE_GT_1943_5606_0002764 crossref_primary_10_1520_ACEM20230041 crossref_primary_10_1080_15324982_2024_2441726 crossref_primary_10_1016_j_still_2022_105449 crossref_primary_10_1007_s40098_024_00867_z crossref_primary_10_1061__ASCE_MT_1943_5533_0004422 crossref_primary_10_1016_j_ijbiomac_2023_128909 crossref_primary_10_1007_s10924_025_03501_y |
Cites_doi | 10.1016/j.carbpol.2010.10.061 10.1021/ie502248n 10.1016/j.scienta.2009.12.031 10.1016/j.jcis.2015.05.026 10.2136/sssaj2007.0426 10.1016/j.iswcr.2019.05.001 10.1007/s10965-019-1917-z 10.1007/s10965-019-1952-9 10.1038/s41598-020-75674-6 10.1016/j.geoderma.2020.114310 10.1016/j.polymer.2005.04.015 10.1002/pat.657 10.1002/clen.20090024521 10.1016/j.biortech.2005.12.026 10.1016/S1002-0160(17)60426-0 10.1007/BF01552365 10.1002/clen.201000017 10.1080/00103624.2015.1089267 10.1061/(ASCE)MT.1943-5533.0000449 10.1016/j.eurpolymj.2007.02.023 10.1007/s10965-019-1951-x 10.1007/s12649-021-01489-9 10.1016/j.jare.2013.07.006 10.1007/s10965-020-02097-2 10.1002/app.39219 10.1111/j.1475-2743.2010.00271.x 10.3390/ma11112198 10.1016/j.biosystemseng.2010.05.019 10.1002/clen.200900048 10.1016/j.eurpolymj.2005.01.028 10.1016/j.eurpolymj.2004.01.039 10.1016/j.still.2020.104736 10.1002/pc.21046 10.1021/jf5021279 10.1016/j.jhydrol.2009.04.020 10.1002/app.33519 10.21273/HORTSCI.26.8.1063 10.1007/978-981-15-0886-8_15 10.1016/j.geoderma.2012.03.002 |
ContentType | Journal Article |
Copyright | The Polymer Society, Taipei 2021 The Polymer Society, Taipei 2021. |
Copyright_xml | – notice: The Polymer Society, Taipei 2021 – notice: The Polymer Society, Taipei 2021. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1007/s10965-021-02795-5 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-8935 |
ExternalDocumentID | 10_1007_s10965_021_02795_5 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KC. KDC KOV KOW LAK LLZTM M4Y MA- ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z8Z ZMTXR ~8M ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c319t-6f01883a3442973424806bbb5b5a8235e43f590314b5211719e5ede596d156a23 |
IEDL.DBID | U2A |
ISSN | 1022-9760 |
IngestDate | Fri Jul 25 12:16:50 EDT 2025 Tue Jul 01 03:59:22 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Fri Feb 21 02:47:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Water absorbing capacity Superabsorbent polymer Electrical conductivity Soil salinity Application rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-6f01883a3442973424806bbb5b5a8235e43f590314b5211719e5ede596d156a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4771-572X |
PQID | 2584334063 |
PQPubID | 326246 |
ParticipantIDs | proquest_journals_2584334063 crossref_citationtrail_10_1007_s10965_021_02795_5 crossref_primary_10_1007_s10965_021_02795_5 springer_journals_10_1007_s10965_021_02795_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of polymer research |
PublicationTitleAbbrev | J Polym Res |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Saha, Sekharan, Manna, Sahoo (CR12) 2020; 10 Saberi, Alipour, Sadeghi (CR7) 2019; 26 Saha, Gupt, Sekharan (CR14) 2021 Andry, Yamamoto, Irie, Moritani, Inoue, Fujiyama (CR17) 2009; 373 Saha, Rattan, Sekharan, Manna (CR18) 2020; 368 Wan, Huang, Zhao, Xiong, Luo, Tan, Cai (CR37) 2013; 130 Fajans (CR39) 1923; 11 Al Jabri, Abdel Rahman, Ibrahim (CR27) 2015; 46 Ramli, Lian, Nor, Azman (CR13) 2019; 26 Zheng, Li, Zhang, Wang (CR30) 2007; 43 CR33 Zhao, Su, Fang, Tan (CR31) 2005; 46 CR32 Sand, Vyas (CR9) 2020; 27 Zhang, Li, Wang (CR40) 2005; 16 Fan, Zhang, Shangguan (CR10) 2018; 11 Li, Wang (CR26) 2005; 41 Feng, Bai, Ding, Wang, Suo (CR11) 2014; 53 Bhardwaj, McLaughlin, Shainberg, Levy (CR21) 2009; 73 Mahdavinia, Pourjavadi, Hosseinzadeh, Zohuriaan (CR29) 2004; 40 Bai, Zhang, Liu, Wu, Song (CR19) 2010; 26 Shi, Li, Shao, Deng, Wang, Li, Sun, Zhang, Zhu, Zhang, Zheng, Zhou, Hüttermann, Chen (CR23) 2010; 124 Abdallah (CR28) 2019; 7 Hermans (CR38) 1953 CR6 Siriwatwechakul, Siramanont, Vichit-Vadakan (CR25) 2012; 24 Agaba, Orikiriza, Esegu, Obua, Kabasa, Hüttermann (CR16) 2010; 38 Bao, Ma, Li (CR41) 2011; 84 CR24 Sepaskhah, Shahabizad (CR20) 2010; 106 CR43 Li, Zhang, Wang (CR35) 2007; 98 CR42 Ahmed (CR5) 2015; 6 Saha, Sekharan, Manna (CR3) 2020; 204 Mohawesh, Durner (CR22) 2019; 29 Ma, Wen (CR1) 2020; 27 Hüttermann, Orikiriza, Agaba (CR4) 2009; 37 Gomes, de Azevedo, Pereira, Muniz, Fajardo, Rodrigues (CR8) 2015; 454 Zhou, Zhao, Zhou (CR36) 2011; 121 Kabiri, Omidian, Zohuriaan-Mehr, Doroudiani (CR2) 2011; 32 Dorraji, Golchin, Ahmadi (CR15) 2010; 38 Zhang, Cheng, Zhao, Liu, Hu, Li (CR34) 2014; 62 2795_CR43 2795_CR24 W Bai (2795_CR19) 2010; 26 2795_CR6 AK Bhardwaj (2795_CR21) 2009; 73 2795_CR42 Y Zhao (2795_CR31) 2005; 46 A Li (2795_CR35) 2007; 98 JJ Hermans (2795_CR38) 1953 W Siriwatwechakul (2795_CR25) 2012; 24 SA Al Jabri (2795_CR27) 2015; 46 Y Zheng (2795_CR30) 2007; 43 Y Bao (2795_CR41) 2011; 84 H Agaba (2795_CR16) 2010; 38 X Ma (2795_CR1) 2020; 27 K Kabiri (2795_CR2) 2011; 32 EM Ahmed (2795_CR5) 2015; 6 A Li (2795_CR26) 2005; 41 M Zhang (2795_CR34) 2014; 62 SS Dorraji (2795_CR15) 2010; 38 Y Shi (2795_CR23) 2010; 124 AM Abdallah (2795_CR28) 2019; 7 GR Mahdavinia (2795_CR29) 2004; 40 M Zhou (2795_CR36) 2011; 121 A Saberi (2795_CR7) 2019; 26 2795_CR32 H Andry (2795_CR17) 2009; 373 2795_CR33 RA Ramli (2795_CR13) 2019; 26 A Saha (2795_CR18) 2020; 368 O Mohawesh (2795_CR22) 2019; 29 RF Gomes (2795_CR8) 2015; 454 A Saha (2795_CR3) 2020; 204 Y Fan (2795_CR10) 2018; 11 JP Zhang (2795_CR40) 2005; 16 A Saha (2795_CR12) 2020; 10 A Saha (2795_CR14) 2021 AR Sepaskhah (2795_CR20) 2010; 106 A Sand (2795_CR9) 2020; 27 T Wan (2795_CR37) 2013; 130 A Hüttermann (2795_CR4) 2009; 37 D Feng (2795_CR11) 2014; 53 K Fajans (2795_CR39) 1923; 11 |
References_xml | – volume: 84 start-page: 76 year: 2011 end-page: 82 ident: CR41 article-title: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2010.10.061 – volume: 53 start-page: 12760 year: 2014 end-page: 12769 ident: CR11 article-title: Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer publication-title: Ind Eng Chem Res doi: 10.1021/ie502248n – volume: 124 start-page: 268 year: 2010 end-page: 273 ident: CR23 article-title: Effects of Stockosorb and Luquasorb polymers on salt and drought tolerance of Populus popularis publication-title: Sci Hortic doi: 10.1016/j.scienta.2009.12.031 – volume: 454 start-page: 200 year: 2015 end-page: 209 ident: CR8 article-title: Fast dye removal from water by starch-based nanocomposites publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.05.026 – ident: CR43 – volume: 73 start-page: 910 year: 2009 ident: CR21 article-title: Hydraulic Characteristics of Depositional Seals as Affected by Exchangeable Cations, Clay Mineralogy, and Polyacrylamide publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2007.0426 – volume: 7 start-page: 275 year: 2019 end-page: 285 ident: CR28 article-title: The effect of hydrogel particle size on water retention properties and availability under water stress publication-title: Int Soil Water Conserv Res doi: 10.1016/j.iswcr.2019.05.001 – volume: 26 start-page: 271 year: 2019 ident: CR7 article-title: Superabsorbent magnetic Fe O -based starch-poly (acrylic acid) nanocomposite hydrogel for efficient removal of dyes and heavy metal ions from water publication-title: J Polym Res doi: 10.1007/s10965-019-1917-z – volume: 26 start-page: 266 year: 2019 ident: CR13 article-title: Synthesis, characterization, and morphology study of coco peat-grafted-poly (acrylic acid)/NPK slow release fertilizer hydrogel publication-title: J Polym Res doi: 10.1007/s10965-019-1952-9 – volume: 10 start-page: 1 year: 2020 end-page: 16 ident: CR12 article-title: Transformation of non-water sorbing fly ash to a water sorbing material for drought management publication-title: Sci Rep doi: 10.1038/s41598-020-75674-6 – volume: 368 year: 2020 ident: CR18 article-title: Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114310 – volume: 46 start-page: 5368 year: 2005 end-page: 5376 ident: CR31 article-title: Superabsorbent hydrogels from poly (aspartic acid) with salt-, temperature-and pH-responsiveness properties publication-title: Polymer doi: 10.1016/j.polymer.2005.04.015 – volume: 16 start-page: 813 year: 2005 end-page: 820 ident: CR40 article-title: Study on superabsorbent composite. V. Synthesis, swelling behaviors and application of poly (acrylic acid-co-acrylamide)/sodium humate/attapulgite superabsorbent composite publication-title: Polym Adv Technol doi: 10.1002/pat.657 – volume: 38 start-page: 328 year: 2010 end-page: 335 ident: CR16 article-title: Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions publication-title: Clean Soil Air Water doi: 10.1002/clen.20090024521 – ident: CR33 – volume: 98 start-page: 327 year: 2007 end-page: 332 ident: CR35 article-title: Utilization of starch and clay for the preparation of superabsorbent composite publication-title: Bioresour Technol doi: 10.1016/j.biortech.2005.12.026 – ident: CR6 – volume: 29 start-page: 598 year: 2019 end-page: 607 ident: CR22 article-title: Effect of bentonite, hydrogel and biochar amendments on soil hydraulic properties from saturation to oven dryness publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60426-0 – volume: 11 start-page: 165 year: 1923 end-page: 172 ident: CR39 article-title: Struktur und Deformation der Elektronenhüllen in ihrer Bedeutung für die chemischen und optischen Eigenschaften anorganischer Verbindungen publication-title: Naturwissenschaften doi: 10.1007/BF01552365 – ident: CR42 – volume: 38 start-page: 584 year: 2010 end-page: 591 ident: CR15 article-title: The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils publication-title: Clean Soil Air Water doi: 10.1002/clen.201000017 – volume: 46 start-page: 2661 year: 2015 end-page: 2674 ident: CR27 article-title: Agricultural Polymers Revisited: Salinity Interactions and Soil-Water Conservation publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2015.1089267 – volume: 24 start-page: 976 year: 2012 end-page: 980 ident: CR25 article-title: Behavior of superabsorbent polymers in calcium-and sodium-rich solutions publication-title: J Mater Civil Eng doi: 10.1061/(ASCE)MT.1943-5533.0000449 – volume: 43 start-page: 1691 year: 2007 end-page: 1698 ident: CR30 article-title: Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly (sodium acrylate)/vermiculite superabsorbent composites publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2007.02.023 – volume: 27 start-page: 43 year: 2020 ident: CR9 article-title: Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization publication-title: J Polym Res doi: 10.1007/s10965-019-1951-x – year: 2021 ident: CR14 article-title: Recycling Natural Fibre to Superabsorbent Hydrogel Composite for Conservation of Irrigation Water in Semi-arid Regions publication-title: Waste Biomass Valor doi: 10.1007/s12649-021-01489-9 – volume: 6 start-page: 105 year: 2015 end-page: 121 ident: CR5 article-title: Hydrogel: Preparation, characterization, and applications: A review publication-title: J Adv Res doi: 10.1016/j.jare.2013.07.006 – volume: 27 start-page: 136 year: 2020 ident: CR1 article-title: Development history and synthesis of super-absorbent polymers: a review publication-title: J Polym Res doi: 10.1007/s10965-020-02097-2 – volume: 130 start-page: 698 year: 2013 end-page: 703 ident: CR37 article-title: Synthesis and swelling properties of corn stalk-composite superabsorbent publication-title: J Appl Polym Sci doi: 10.1002/app.39219 – volume: 26 start-page: 253 year: 2010 end-page: 260 ident: CR19 article-title: Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles publication-title: Soil Use Manag doi: 10.1111/j.1475-2743.2010.00271.x – volume: 11 start-page: 2198 year: 2018 ident: CR10 article-title: Synthesis of a Novel and Salt Sensitive Superabsorbent Hydrogel Using Soybean Dregs by UV-Irradiation publication-title: Materials doi: 10.3390/ma11112198 – volume: 106 start-page: 513 year: 2010 end-page: 520 ident: CR20 article-title: Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2010.05.019 – ident: CR32 – volume: 37 start-page: 517 year: 2009 end-page: 526 ident: CR4 article-title: Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands publication-title: Clean Soil Air Water doi: 10.1002/clen.200900048 – volume: 41 start-page: 1630 year: 2005 end-page: 1637 ident: CR26 article-title: Synthesis and properties of clay-based superabsorbent composite publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2005.01.028 – volume: 40 start-page: 1399 year: 2004 end-page: 1407 ident: CR29 article-title: Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2004.01.039 – start-page: 61 year: 1953 ident: CR38 publication-title: Flow Properties of Disperse System – volume: 204 year: 2020 ident: CR3 article-title: Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review publication-title: Soil Till Res doi: 10.1016/j.still.2020.104736 – volume: 32 start-page: 277 year: 2011 end-page: 289 ident: CR2 article-title: Superabsorbent hydrogel composites and nanocomposites: A review publication-title: Polym Compos doi: 10.1002/pc.21046 – ident: CR24 – volume: 62 start-page: 8867 year: 2014 end-page: 8874 ident: CR34 article-title: Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel publication-title: J Agric Food Chem doi: 10.1021/jf5021279 – volume: 373 start-page: 177 issue: 1–2 year: 2009 end-page: 183 ident: CR17 article-title: Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.04.020 – volume: 121 start-page: 2406 year: 2011 end-page: 2412 ident: CR36 article-title: Utilization of starch and montmorrilonite for the preparation of superabsorbent nanocomposite publication-title: J Appl Polym Sci doi: 10.1002/app.33519 – volume: 130 start-page: 698 year: 2013 ident: 2795_CR37 publication-title: J Appl Polym Sci doi: 10.1002/app.39219 – volume: 38 start-page: 328 year: 2010 ident: 2795_CR16 publication-title: Clean Soil Air Water doi: 10.1002/clen.20090024521 – ident: 2795_CR24 doi: 10.21273/HORTSCI.26.8.1063 – volume: 62 start-page: 8867 year: 2014 ident: 2795_CR34 publication-title: J Agric Food Chem doi: 10.1021/jf5021279 – ident: 2795_CR32 – volume: 204 year: 2020 ident: 2795_CR3 publication-title: Soil Till Res doi: 10.1016/j.still.2020.104736 – volume: 454 start-page: 200 year: 2015 ident: 2795_CR8 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.05.026 – year: 2021 ident: 2795_CR14 publication-title: Waste Biomass Valor doi: 10.1007/s12649-021-01489-9 – volume: 11 start-page: 2198 year: 2018 ident: 2795_CR10 publication-title: Materials doi: 10.3390/ma11112198 – volume: 24 start-page: 976 year: 2012 ident: 2795_CR25 publication-title: J Mater Civil Eng doi: 10.1061/(ASCE)MT.1943-5533.0000449 – volume: 84 start-page: 76 year: 2011 ident: 2795_CR41 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2010.10.061 – volume: 6 start-page: 105 year: 2015 ident: 2795_CR5 publication-title: J Adv Res doi: 10.1016/j.jare.2013.07.006 – volume: 73 start-page: 910 year: 2009 ident: 2795_CR21 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2007.0426 – volume: 53 start-page: 12760 year: 2014 ident: 2795_CR11 publication-title: Ind Eng Chem Res doi: 10.1021/ie502248n – volume: 38 start-page: 584 year: 2010 ident: 2795_CR15 publication-title: Clean Soil Air Water doi: 10.1002/clen.201000017 – ident: 2795_CR42 – volume: 11 start-page: 165 year: 1923 ident: 2795_CR39 publication-title: Naturwissenschaften doi: 10.1007/BF01552365 – volume: 373 start-page: 177 issue: 1–2 year: 2009 ident: 2795_CR17 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.04.020 – volume: 121 start-page: 2406 year: 2011 ident: 2795_CR36 publication-title: J Appl Polym Sci doi: 10.1002/app.33519 – start-page: 61 volume-title: Flow Properties of Disperse System year: 1953 ident: 2795_CR38 – volume: 37 start-page: 517 year: 2009 ident: 2795_CR4 publication-title: Clean Soil Air Water doi: 10.1002/clen.200900048 – volume: 7 start-page: 275 year: 2019 ident: 2795_CR28 publication-title: Int Soil Water Conserv Res doi: 10.1016/j.iswcr.2019.05.001 – volume: 16 start-page: 813 year: 2005 ident: 2795_CR40 publication-title: Polym Adv Technol doi: 10.1002/pat.657 – volume: 26 start-page: 271 year: 2019 ident: 2795_CR7 publication-title: J Polym Res doi: 10.1007/s10965-019-1917-z – volume: 46 start-page: 5368 year: 2005 ident: 2795_CR31 publication-title: Polymer doi: 10.1016/j.polymer.2005.04.015 – volume: 26 start-page: 253 year: 2010 ident: 2795_CR19 publication-title: Soil Use Manag doi: 10.1111/j.1475-2743.2010.00271.x – volume: 10 start-page: 1 year: 2020 ident: 2795_CR12 publication-title: Sci Rep doi: 10.1038/s41598-020-75674-6 – volume: 41 start-page: 1630 year: 2005 ident: 2795_CR26 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2005.01.028 – volume: 98 start-page: 327 year: 2007 ident: 2795_CR35 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2005.12.026 – volume: 106 start-page: 513 year: 2010 ident: 2795_CR20 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2010.05.019 – volume: 368 year: 2020 ident: 2795_CR18 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114310 – volume: 43 start-page: 1691 year: 2007 ident: 2795_CR30 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2007.02.023 – volume: 124 start-page: 268 year: 2010 ident: 2795_CR23 publication-title: Sci Hortic doi: 10.1016/j.scienta.2009.12.031 – ident: 2795_CR43 – volume: 46 start-page: 2661 year: 2015 ident: 2795_CR27 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2015.1089267 – volume: 26 start-page: 266 year: 2019 ident: 2795_CR13 publication-title: J Polym Res doi: 10.1007/s10965-019-1952-9 – volume: 29 start-page: 598 year: 2019 ident: 2795_CR22 publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60426-0 – volume: 32 start-page: 277 year: 2011 ident: 2795_CR2 publication-title: Polym Compos doi: 10.1002/pc.21046 – volume: 40 start-page: 1399 year: 2004 ident: 2795_CR29 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2004.01.039 – ident: 2795_CR6 doi: 10.1007/978-981-15-0886-8_15 – volume: 27 start-page: 43 year: 2020 ident: 2795_CR9 publication-title: J Polym Res doi: 10.1007/s10965-019-1951-x – ident: 2795_CR33 doi: 10.1016/j.geoderma.2012.03.002 – volume: 27 start-page: 136 year: 2020 ident: 2795_CR1 publication-title: J Polym Res doi: 10.1007/s10965-020-02097-2 |
SSID | ssj0055768 |
Score | 2.3750474 |
Snippet | Water absorbing polymers (WAPs) are widely used in the agricultural field of arid and semiarid regions as soil amendments to increase the water retention... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acrylic resins Arid regions Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Crosslinking Electrical resistivity Fly ash Industrial Chemistry/Chemical Engineering Inorganic salts Original Paper Polymer Sciences Polymers Salinity Semi arid areas Soils |
Title | Quantifying the combined effect of pH and salinity on the performance of water absorbing polymers used for drought management |
URI | https://link.springer.com/article/10.1007/s10965-021-02795-5 https://www.proquest.com/docview/2584334063 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgO8AF8RSDMeXADSo1TdK1x2lsTLwkBJPgVCU0PUE7rZ3QDvx37K5lgACJUw91LbVO4s-1Pxvg2BdJgLDWdQKrhCO9JHZoDqRDQ30SX_PEV8R3vr7xR2N58aAeKlJYXle71ynJ8qT-RHYLfWITc8o7hspRq9BUFLvjKh57vfr8VYSgyxwnhlnobN2KKvOzjq_uaIkxv6VFS28z3ISNCiay3sKuW7Bi021Y69fT2Xbg7Xamqc6HWEoMQRzDl8Ag18ZsUaHBsoRNRkynMcs1sR-LOcvSUnKy5AqQ1CuizSnTJs-mhpRNsuc5_cxmsxy1oSSLy1E-BXv5KJXZhfFwcN8fOdUoBecJ91jh-InLg0BoISUNq5KeDFzfGKOM0oEnlJUiUSG1sjfoz3mXh1bZ2KrQjzHA057Yg0aapXYfGDci5rarw9AomdggVNo1wnBEYojWdNwCXn_R6KnqM07jLp6jZYdkskKEVohKK0SqBScfz0wWXTb-lG7XhoqqHZdHHiIpIRCeiBac1sZb3v5d28H_xA9h3aP1U9IR29AopjN7hLikMB1YDYbnHWj2zq6v7uh6_ng56JSL8x3KV9t- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN1oPdSL8TNWq-7Bm5KwLLuFY9PYVG2bmLRJb2S3LKcKpNCYHvzvzlAoatTEM8MkMLvMW2bePEJuJY88gLW25RnBLdeJQgt1IC0U9YmkYpEUyHcejeVg6j7NxKwkhWVVt3tVkiy-1J_Ibr5ENjHDuqMvLLFL9gAMeNjINXW61fdXIIIuapxwzIJka5dUmZ99fE1HNcb8VhYtsk3_kByUMJF2N3E9IjsmPibNXqXOdkLeX1YK-3yQpUQBxFF4CDjkmpBuOjRoEtF0QFUc0kwh-zFf0yQuLNOaK4BWb4A2l1TpLFlqdJYmizX-zKarDLyBJQ0LKZ-cvm5bZU7JtP8w6Q2sUkrBmsMeyy0Z2czzuOKui2JVruN6ttRaCy2U53BhXB4JH0fZa8jnrMN8I0xohC9DOOAph5-RRpzE5pxQpnnITEf5vhZuZDxfKFtzzQCJAVpTYYuw6o0G83LOOMpdLIJ6QjJGIYAoBEUUAtEid9t70s2UjT-t21WggnLHZYEDSIpzgCe8Re6r4NWXf_d28T_zG9IcTEbDYPg4fr4k-w6upYKa2CaNfLkyV4BRcn1dLMkPbQDaYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66gnoRn7g-c_CmxaZpantc1GV9ouDC3kpiktPalm0X8eB_d6aPrYoKnjsdaCfNfOnMNx8hRwG3IcBa1wmN4I7vWe2gDqSDoj42kMwGAvnOd_fBYOhfj8ToE4u_7HZvSpIVpwGnNCXFaabt6SfiWxQgs5hhDTISjpgnC7AdM1zXQ6_X7MUC0XRZ74QjFyRet6bN_Ozja2pq8ea3EmmZefqrZKWGjLRXxXiNzJlknSydN0ptG-T9cSqx5wcZSxQAHYUHggOv0bTq1qCppdmAykTTXCITsnijaVJaZi1vAK1eAXlOqFR5OlHoLEvHb_hjm05z8AaWVJeyPgV9mbXNbJJh__LpfODUsgrOM7ygwgmsy8KQS-77KFzle37oBkopoYQMPS6Mz62IcKy9gtzOzlhkhNFGRIGGw570-BbpJGlitgllimtmzmQUKeFbE0ZCuoorBqgMkJvUXcKaNxo_1zPHUfpiHLfTkjEKMUQhLqMQiy45nt2TVRM3_rTeawIV119fHnuAqjgHqMK75KQJXnv5d287_zM_JIsPF_349ur-Zpcse7iUSpbiHukUk6nZB7hSqINyRX4AOmvenw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+combined+effect+of+pH+and+salinity+on+the+performance+of+water+absorbing+polymers+used+for+drought+management&rft.jtitle=Journal+of+polymer+research&rft.au=Saha%2C+Abhisekh&rft.au=Rattan%2C+Bharat&rft.au=Sekharan%2C+Sreedeep&rft.au=Manna%2C+Uttam&rft.date=2021-11-01&rft.issn=1022-9760&rft.eissn=1572-8935&rft.volume=28&rft.issue=11&rft_id=info:doi/10.1007%2Fs10965-021-02795-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10965_021_02795_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-9760&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-9760&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-9760&client=summon |