Seismic design and nonlinear response comparison of a hybrid timber building configured with BRB- and SMA-braced LVL frames

To achieve adequate performance during earthquakes, mass timber buildings are often combined with structural systems including other materials, resulting in seismic-resistant hybrid timber (SRHT) buildings. The state-of-the-art on the subject indicates that some of these hybrid systems have only aim...

Full description

Saved in:
Bibliographic Details
Published inBulletin of earthquake engineering Vol. 22; no. 2; pp. 461 - 486
Main Authors Rubio, Ricardo, Quintana Gallo, Patricio, Carradine, David M.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To achieve adequate performance during earthquakes, mass timber buildings are often combined with structural systems including other materials, resulting in seismic-resistant hybrid timber (SRHT) buildings. The state-of-the-art on the subject indicates that some of these hybrid systems have only aimed at increased stiffness and energy dissipation capability compared to timber-only structures, whilst others have also targeted a higher performance with minimal post-earthquake downtime for re-occupation. To compare both cases, this work presents the seismic design and nonlinear response evaluation of a SRHT building, 12-storeys tall, whose main seismic-resistant system included Laminated Veneer Lumber (LVL) frames braced with either Buckling Restrained Braces (BRB) or Shape Memory Alloy (SMA) devices-equipped steel braces. The design process showed that despite dividing the site response spectrum by a not so large reduction factor due to the existence of timber, practical and reasonable sizes of the structural members were able to satisfy the demand requirements. The results of the nonlinear dynamic analysis (NLDA) of the structures showed that both of them would respond within the accepted limits prescribed by international codes. The inclusion of the SMA devices upgraded the response of the hybrid building in terms of residual displacements and strains, but at the expense of having larger floor accelerations due to a reduced energy dissipation capability compared to the BRBs. It was concluded that both of the investigated systems are preliminary suitable for construction, and there is not a strict need for utilizing increased reduction factors. However, further research involving proper experimental testing is needed.
AbstractList To achieve adequate performance during earthquakes, mass timber buildings are often combined with structural systems including other materials, resulting in seismic-resistant hybrid timber (SRHT) buildings. The state-of-the-art on the subject indicates that some of these hybrid systems have only aimed at increased stiffness and energy dissipation capability compared to timber-only structures, whilst others have also targeted a higher performance with minimal post-earthquake downtime for re-occupation. To compare both cases, this work presents the seismic design and nonlinear response evaluation of a SRHT building, 12-storeys tall, whose main seismic-resistant system included Laminated Veneer Lumber (LVL) frames braced with either Buckling Restrained Braces (BRB) or Shape Memory Alloy (SMA) devices-equipped steel braces. The design process showed that despite dividing the site response spectrum by a not so large reduction factor due to the existence of timber, practical and reasonable sizes of the structural members were able to satisfy the demand requirements. The results of the nonlinear dynamic analysis (NLDA) of the structures showed that both of them would respond within the accepted limits prescribed by international codes. The inclusion of the SMA devices upgraded the response of the hybrid building in terms of residual displacements and strains, but at the expense of having larger floor accelerations due to a reduced energy dissipation capability compared to the BRBs. It was concluded that both of the investigated systems are preliminary suitable for construction, and there is not a strict need for utilizing increased reduction factors. However, further research involving proper experimental testing is needed.
To achieve adequate performance during earthquakes, mass timber buildings are often combined with structural systems including other materials, resulting in seismic-resistant hybrid timber (SRHT) buildings. The state-of-the-art on the subject indicates that some of these hybrid systems have only aimed at increased stiffness and energy dissipation capability compared to timber-only structures, whilst others have also targeted a higher performance with minimal post-earthquake downtime for re-occupation. To compare both cases, this work presents the seismic design and nonlinear response evaluation of a SRHT building, 12-storeys tall, whose main seismic-resistant system included Laminated Veneer Lumber (LVL) frames braced with either Buckling Restrained Braces (BRB) or Shape Memory Alloy (SMA) devices-equipped steel braces. The design process showed that despite dividing the site response spectrum by a not so large reduction factor due to the existence of timber, practical and reasonable sizes of the structural members were able to satisfy the demand requirements. The results of the nonlinear dynamic analysis (NLDA) of the structures showed that both of them would respond within the accepted limits prescribed by international codes. The inclusion of the SMA devices upgraded the response of the hybrid building in terms of residual displacements and strains, but at the expense of having larger floor accelerations due to a reduced energy dissipation capability compared to the BRBs. It was concluded that both of the investigated systems are preliminary suitable for construction, and there is not a strict need for utilizing increased reduction factors. However, further research involving proper experimental testing is needed.
Author Quintana Gallo, Patricio
Carradine, David M.
Rubio, Ricardo
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Rubio
  fullname: Rubio, Ricardo
  organization: TEAM Engineering and Research Limitada
– sequence: 2
  givenname: Patricio
  orcidid: 0000-0002-4651-3616
  surname: Quintana Gallo
  fullname: Quintana Gallo, Patricio
  email: patricio.gallo@fsv.cvut.cz
  organization: Department of Steel and Timber Structures, Czech Technical University in Prague
– sequence: 3
  givenname: David M.
  surname: Carradine
  fullname: Carradine, David M.
  organization: BRANZ Limited
BookMark eNp9kMtKAzEUhoNUsF5ewFXAdTQn005mlrZ4g4rgDXchmZypkU5SkylSfHljKwguhMAJnP_7E759MvDBIyHHwE-Bc3mWgI-hYlwUjIOsgPEdMoSxLBiMxuVgc-dMlvCyR_ZTeuNcjGXNh-TzAV3qXEMtJjf3VHtLc_fCedSRRkzL4BPSJnRLHV0KnoaWavq6NtFZ2rvOYKRm5RbW-XmO-dbNVxEt_XD9K53cT9im8uH2nJmom7yYPc9oG3WH6ZDstnqR8OhnHpCny4vH6TWb3V3dTM9nrCmg7llpDcoaZVtI4LUZ5SMFoDGVwKautNBS2lJzhKoCbNsSAe1Ig7aF4ZWwxQE52fYuY3hfYerVW1hFn59UohZF9iVKyKlqm2piSCliqxrX694F30ftFgq4-lattqpVVq02qhXPqPiDLqPrdFz_DxVbKOWwn2P8_dU_1BcLHZQX
CitedBy_id crossref_primary_10_3390_app15010276
Cites_doi 10.2749/101686608784218635
10.1016/j.engstruct.2017.11.047
10.1002/eqe.2309
10.15554/pcij.11011999.42.67
10.1080/13632469.2014.987406
10.1002/eqe.3025
10.1080/13632460801925632
10.1002/eqe.501
10.1016/j.engstruct.2019.109495
10.15554/pcij.03011997.20.23
10.1002/stco.201110012
10.1201/9780203486245.ch16
10.4067/S0718-28132019000200087
10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
10.3390/buildings11010009
10.1061/(ASCE)0733-9445(2004)130:6(880)
10.1061/(ASCE)ST.1943-541X.0002382
10.1007/s00107-020-01556-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7TG
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s10518-023-01781-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1456
EndPage 486
ExternalDocumentID 10_1007_s10518_023_01781_0
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6J9
6NX
7XC
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
L8X
LAK
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z85
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7TG
7TN
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c319t-6dbe79e7f37109b49b4721ebb82ec98a2a77d6a0e1881eff6e1ed4a1ad3b082d3
IEDL.DBID BENPR
ISSN 1570-761X
IngestDate Sat Aug 23 14:30:55 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Tue Jul 01 01:42:16 EDT 2025
Fri Feb 21 02:40:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Laminated veneer lumber (LVL)
Cross laminated timber (CLT)
Buckling restrained braces (BRB)
Hybrid timber buildings
Shape memory alloys (SMA)
Seismic-resistant
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6dbe79e7f37109b49b4721ebb82ec98a2a77d6a0e1881eff6e1ed4a1ad3b082d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4651-3616
PQID 2923178261
PQPubID 55380
PageCount 26
ParticipantIDs proquest_journals_2923178261
crossref_citationtrail_10_1007_s10518_023_01781_0
crossref_primary_10_1007_s10518_023_01781_0
springer_journals_10_1007_s10518_023_01781_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle Official Publication of the European Association for Earthquake Engineering
PublicationTitle Bulletin of earthquake engineering
PublicationTitleAbbrev Bull Earthquake Eng
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References BuchananADeamBFragiacomoMPampaninSPalermoAMulti-storey prestressed timber buildings in New ZealandStruct Eng Int200818216617310.2749/101686608784218635
Green M, Karsh E (2012) Tall wood: the case for tall wood buildings. Creative Commons, British Columbia, Canada
Quintana Gallo P, Bonelli P, Pampanin S, Carr AJ (2020) Seismic design of RC walls in Chile: damage observations and identified deficiencies after the 2010 Maule earthquake. Report 2020–01, University of Canterbury, Christchurch, New Zealand (ISSN 1172-9511)
Gagnon S, Pirvu C (2011) CLT: handbook cross laminated timber. FPInnovations, Vancouver, Canada
PriestleyMJNSritharanSConleyJRPampaninSPreliminary results and conclusions from the PRESSS five-story precast concrete test buildingPCI J1999446426710.15554/pcij.11011999.42.67
StantonJStoneWCCheokGSA hybrid reinforced precast frame for seismic regionsPCI J199722203210.15554/pcij.03011997.20.23
Futurebuild (2018) LVL specific engineering design guide. Auckland, New Zealand
CowanHThe M8.8 Chile earthquake, 27 February 2010Bull N Z Soc Earthq Eng20114431231662840001
Quintana GalloPCarradineDBazaezRState of the art and practice of seismic-resistant hybrid timber structuresEur J Wood Prod20217952810.1007/s00107-020-01556-3
Quintana Gallo P, Carradine DM (2021) Philosophical reflexions following the Lyttleton 2011 New Zealand earthquake: ten years after. In: Proceedings of 2021 New Zealand society for earthquake engineering conference, Christchurch, New Zealand
Tremblay R, Poncet L, Bolduc P, Neville R, De Vall R (2004) Testing and design of buckling restrained braces for Canadian application. In: Proceedings of the 13th WCEE, Vancouver, Canada
Instituto Nacional de Normalización (INN) (2012) NCh433Of.96mod2012: Seismic design of buildings. Santiago, Chile (in Spanish)
DolceMCardoneDPonzoFCValenteCShaking table tests on reinforced concrete frames without and with passive control systemsEarthq Eng Struct Dyn2005341687171710.1002/eqe.501
UangCMNakashimaMTsaiKCResearch and application of buckling-restrained braced framesSteel Struct20044301313
NewcombeMPPampaninSBuchananAHPalermoASection analysis and cyclic behaviour of post-tensioned jointed ductile connections for multi-story timber buildingsJ Earthq Eng20081218311010.1080/13632460801925632
Sarti F, Palermo A, Pampanin S (2012) Simplified design procedures for post-tensioned seismic resistant timber walls. In Proceedings of 15th WCEE, Lisbon, Portugal
Gilbert C, Gohlich R, Erochko J (2015) Nonlinear dynamic analysis of innovative high R-factor hybrid timber-steel buildings. In: 11th Canadian association for earthquake engineering, Victoria, Canada
GohlichRErochkoJWoodsJEExperimental testing and numerical modelling of a heavy timber moment-resisting frame with ductile steel linksEarthq Eng Struct Dyn20184761460147710.1002/eqe.3025
Watanabe A, Hitomi Y, Yaeki E, Wada A, Fujimoto M (1988) Properties of brace encased in buckling-restraining concrete and steel tube. Proc. 9th WCEE, Tokyo-Kyoto, Japan
AISC Committee 341 (2016) Seismic provisions for structural steel buildings, Chicago, USA
CarrAJRuaumoko—inelastic analysis computer program, volume three: appendices2015ChristchurchCarr Research Limited
American Wood Council (2018) National design specification (NDS) for wood construction. Washington DC, USA
Newcombe MP, Pampanin S, Buchanan AH (2010). Global response of a two storey Press-Lam timber building. In Proceedings of 2010 New Zealand society for earthquake engineering conference, Auckland, New Zealand
Della CorteCMD'AnielloMLandolfoKCReview of steel buckling-restrained bracesSteel Constr201111910.1002/stco.201110012
TimmersMTsay JacobsAConcrete apartment tower in Los Angeles reimagined in mass timberEng Struct201816771672410.1016/j.engstruct.2017.11.047
DolceAJCardoneAJMarnettoAJMucciarelliAJNigroAJExperimental static and dynamic response of a real R/C frame upgraded with SMA recentering and dissipative braces2004Vancouver, Canada13th WCEE
Palermo A, Pampanin S, Calvi GM (2004) The use of “controlled rocking” in the seismic design of bridges. In Proceedings of the 13th world conference on earthquake engineering, Vancouver, Canada
PeiSvan de LindtJWBarbosaARBermanJWMcDonnellEDolanJDBlomgrenHEZimmermanRBHuangDWichmanSExperimental seismic response of a resilient 2-story mass-timber building with post-tensioned rocking wallsJ Struct Eng2019145110401912010.1061/(ASCE)ST.1943-541X.0002382
RoncariCMGobbiMLossKCNonlinear static seismic response of a building equipped with hybrid cross-laminated timber floor diaphragms and concentric x-braced steel framesBuildings202111910.3390/buildings11010009
BlackCJMakrisNAikenIDComponent testing, seismic evaluation and characterization of buckling-restrained bracesJ Struct Eng2004130688089410.1061/(ASCE)0733-9445(2004)130:6(880)
GilbertCErochkoJDevelopment and testing of hybrid timber-steel braced framesEng Struct201919810.1016/j.engstruct.2019.109495
Standards New Zealand (SNZ) (2004) NZS1170.5:2004, Structural design actions: part 5, earthquake actions. Wellington, New Zealand
Rubio R (2020) Análisis y diseño de un edificio híbrido de madera procesada (CLT, LVL) combinada con riostras con amortiguamiento suplementario. Trabajo de Título, Universidad de Valparaíso, Valparaíso, Chile (in Spanish)
DolceMCardoneDMarnettoRImplementation and testing of passive control devices based on shape memory alloysEarthq Eng Struct Dyn20002994596810.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-
Sakamoto I, Kawai N, Okada H, Isoda H, Yusa S (2004) Final report of a research and development project on timber-based hybrid building structures. In: 8th WCTE, Lahti, Finland
Blaß HJ, Fellmoser P (2004) Design of solid wood panels with cross layers: influence of shear deformation. In: Proceedings of the 8th world conference on timber engineering, Helsinki, Finland
HeinCDeveloping hybrid timber construction for sustainable tall buildingsCTBUH J201434045
IqbalAPampaninSPalermoABuchananAHPerformance and design of LVL walls coupled with UFP dissipatersJ Earthq Eng201519338340910.1080/13632469.2014.987406
CeccottiASandhassCOkabeMYasumuraCKawaiNSOFIE project—3D shaking table test on a seven-storey full-scale cross-laminated timber buildingEarthq Eng Struct Dyn2013422003202110.1002/eqe.2309
Rubio R, Quintana Gallo P, Carradine DM (2021) Seismic analysis and design of a 12-storey hybrid timber structure combining LVL frames, CLT rocking walls and BRB and SMA steel braces. In Proceedings of WCTE 2021, Santiago, Chile
CortésMFQuintana GalloPCarradineDMSeismic analysis and design of an LTF building complying with the New Zealand and Chilean seismic standards using novel expressions for the equivalent linear-elastic properties of the panelsN Z Timber Des Soc J20223022735
Sarti F (2015) Seismic design of low-damage post-tensioned timber wall systems. PhD thesis, University of Canterbury, Christchurch, New Zealand
CarrAJRuaumoko—inelastic analysis computer program, volume two: user’s manual for the 2D version, Ruaumoko2D2016ChristchurchCarr Research Limited
Clark P, Aiken I, Kasai K, Ko E, Kimura I (1999) Design procedures for buildings incorporating hysteretic damping devices. In: Proceedings of 68th annual convention SEAOC, Santa Barbara, CA
Uang CM, Nakashima M (2004) Steel buckling-restrained braced frames. In: Earthquake engineering from engineering seismology to performance-based engineering, CRC Press
National Research Council of Canada (NRC) (2020) National building code of Canada (NBCC), Ottawa, Canada
Quintana GalloPSeismic shear demands in columns of RC frames accounting for dynamic amplification effectsObras Proy201926879910.4067/S0718-28132019000200087
S Pampanin S, Kam WY, Akguzel U, Tasligedik AS, Quintana Gallo P (2012) Seismic performance of reinforced concrete buildings in the Christchurch CBD on 22 February 2011 earthquake. Part I: overview. Technical Report University of Canterbury, Christchurch, New Zealand
1781_CR21
P Quintana Gallo (1781_CR31) 2019; 26
1781_CR43
1781_CR22
1781_CR44
1781_CR20
1781_CR40
C Hein (1781_CR51) 2014; 3
AJ Carr (1781_CR6) 2015
A Iqbal (1781_CR55) 2015; 19
AJ Dolce (1781_CR53) 2004
CM Uang (1781_CR45) 2004; 4
CJ Black (1781_CR3) 2004; 130
C Gilbert (1781_CR17) 2019; 198
M Timmers (1781_CR42) 2018; 167
A Buchanan (1781_CR5) 2008; 18
P Quintana Gallo (1781_CR34) 2021; 79
1781_CR28
1781_CR26
1781_CR24
1781_CR32
1781_CR33
CM Roncari (1781_CR50) 2021; 11
1781_CR52
H Cowan (1781_CR11) 2011; 44
J Stanton (1781_CR41) 1997; 2
M Dolce (1781_CR13) 2005; 34
MP Newcombe (1781_CR23) 2008; 12
AJ Carr (1781_CR7) 2016
M Dolce (1781_CR12) 2000; 29
A Ceccotti (1781_CR8) 2013; 42
MF Cortés (1781_CR10) 2022; 30
S Pei (1781_CR29) 2019; 145
R Gohlich (1781_CR19) 2018; 47
1781_CR9
MJN Priestley (1781_CR30) 1999; 44
CM Della Corte (1781_CR54) 2011; 11
1781_CR18
1781_CR16
1781_CR38
1781_CR4
1781_CR39
1781_CR1
1781_CR36
1781_CR2
1781_CR15
1781_CR37
1781_CR35
References_xml – reference: Standards New Zealand (SNZ) (2004) NZS1170.5:2004, Structural design actions: part 5, earthquake actions. Wellington, New Zealand
– reference: Watanabe A, Hitomi Y, Yaeki E, Wada A, Fujimoto M (1988) Properties of brace encased in buckling-restraining concrete and steel tube. Proc. 9th WCEE, Tokyo-Kyoto, Japan
– reference: CarrAJRuaumoko—inelastic analysis computer program, volume three: appendices2015ChristchurchCarr Research Limited
– reference: American Wood Council (2018) National design specification (NDS) for wood construction. Washington DC, USA
– reference: CarrAJRuaumoko—inelastic analysis computer program, volume two: user’s manual for the 2D version, Ruaumoko2D2016ChristchurchCarr Research Limited
– reference: Sarti F, Palermo A, Pampanin S (2012) Simplified design procedures for post-tensioned seismic resistant timber walls. In Proceedings of 15th WCEE, Lisbon, Portugal
– reference: S Pampanin S, Kam WY, Akguzel U, Tasligedik AS, Quintana Gallo P (2012) Seismic performance of reinforced concrete buildings in the Christchurch CBD on 22 February 2011 earthquake. Part I: overview. Technical Report University of Canterbury, Christchurch, New Zealand
– reference: PriestleyMJNSritharanSConleyJRPampaninSPreliminary results and conclusions from the PRESSS five-story precast concrete test buildingPCI J1999446426710.15554/pcij.11011999.42.67
– reference: GohlichRErochkoJWoodsJEExperimental testing and numerical modelling of a heavy timber moment-resisting frame with ductile steel linksEarthq Eng Struct Dyn20184761460147710.1002/eqe.3025
– reference: PeiSvan de LindtJWBarbosaARBermanJWMcDonnellEDolanJDBlomgrenHEZimmermanRBHuangDWichmanSExperimental seismic response of a resilient 2-story mass-timber building with post-tensioned rocking wallsJ Struct Eng2019145110401912010.1061/(ASCE)ST.1943-541X.0002382
– reference: CowanHThe M8.8 Chile earthquake, 27 February 2010Bull N Z Soc Earthq Eng20114431231662840001
– reference: DolceAJCardoneAJMarnettoAJMucciarelliAJNigroAJExperimental static and dynamic response of a real R/C frame upgraded with SMA recentering and dissipative braces2004Vancouver, Canada13th WCEE
– reference: Della CorteCMD'AnielloMLandolfoKCReview of steel buckling-restrained bracesSteel Constr201111910.1002/stco.201110012
– reference: DolceMCardoneDPonzoFCValenteCShaking table tests on reinforced concrete frames without and with passive control systemsEarthq Eng Struct Dyn2005341687171710.1002/eqe.501
– reference: Palermo A, Pampanin S, Calvi GM (2004) The use of “controlled rocking” in the seismic design of bridges. In Proceedings of the 13th world conference on earthquake engineering, Vancouver, Canada
– reference: Gagnon S, Pirvu C (2011) CLT: handbook cross laminated timber. FPInnovations, Vancouver, Canada
– reference: HeinCDeveloping hybrid timber construction for sustainable tall buildingsCTBUH J201434045
– reference: Newcombe MP, Pampanin S, Buchanan AH (2010). Global response of a two storey Press-Lam timber building. In Proceedings of 2010 New Zealand society for earthquake engineering conference, Auckland, New Zealand
– reference: TimmersMTsay JacobsAConcrete apartment tower in Los Angeles reimagined in mass timberEng Struct201816771672410.1016/j.engstruct.2017.11.047
– reference: Futurebuild (2018) LVL specific engineering design guide. Auckland, New Zealand
– reference: Quintana GalloPCarradineDBazaezRState of the art and practice of seismic-resistant hybrid timber structuresEur J Wood Prod20217952810.1007/s00107-020-01556-3
– reference: Green M, Karsh E (2012) Tall wood: the case for tall wood buildings. Creative Commons, British Columbia, Canada
– reference: Quintana GalloPSeismic shear demands in columns of RC frames accounting for dynamic amplification effectsObras Proy201926879910.4067/S0718-28132019000200087
– reference: StantonJStoneWCCheokGSA hybrid reinforced precast frame for seismic regionsPCI J199722203210.15554/pcij.03011997.20.23
– reference: AISC Committee 341 (2016) Seismic provisions for structural steel buildings, Chicago, USA
– reference: Gilbert C, Gohlich R, Erochko J (2015) Nonlinear dynamic analysis of innovative high R-factor hybrid timber-steel buildings. In: 11th Canadian association for earthquake engineering, Victoria, Canada
– reference: BlackCJMakrisNAikenIDComponent testing, seismic evaluation and characterization of buckling-restrained bracesJ Struct Eng2004130688089410.1061/(ASCE)0733-9445(2004)130:6(880)
– reference: DolceMCardoneDMarnettoRImplementation and testing of passive control devices based on shape memory alloysEarthq Eng Struct Dyn20002994596810.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
– reference: Quintana Gallo P, Carradine DM (2021) Philosophical reflexions following the Lyttleton 2011 New Zealand earthquake: ten years after. In: Proceedings of 2021 New Zealand society for earthquake engineering conference, Christchurch, New Zealand
– reference: CortésMFQuintana GalloPCarradineDMSeismic analysis and design of an LTF building complying with the New Zealand and Chilean seismic standards using novel expressions for the equivalent linear-elastic properties of the panelsN Z Timber Des Soc J20223022735
– reference: Rubio R, Quintana Gallo P, Carradine DM (2021) Seismic analysis and design of a 12-storey hybrid timber structure combining LVL frames, CLT rocking walls and BRB and SMA steel braces. In Proceedings of WCTE 2021, Santiago, Chile
– reference: RoncariCMGobbiMLossKCNonlinear static seismic response of a building equipped with hybrid cross-laminated timber floor diaphragms and concentric x-braced steel framesBuildings202111910.3390/buildings11010009
– reference: Blaß HJ, Fellmoser P (2004) Design of solid wood panels with cross layers: influence of shear deformation. In: Proceedings of the 8th world conference on timber engineering, Helsinki, Finland
– reference: Tremblay R, Poncet L, Bolduc P, Neville R, De Vall R (2004) Testing and design of buckling restrained braces for Canadian application. In: Proceedings of the 13th WCEE, Vancouver, Canada
– reference: Sakamoto I, Kawai N, Okada H, Isoda H, Yusa S (2004) Final report of a research and development project on timber-based hybrid building structures. In: 8th WCTE, Lahti, Finland
– reference: UangCMNakashimaMTsaiKCResearch and application of buckling-restrained braced framesSteel Struct20044301313
– reference: IqbalAPampaninSPalermoABuchananAHPerformance and design of LVL walls coupled with UFP dissipatersJ Earthq Eng201519338340910.1080/13632469.2014.987406
– reference: Rubio R (2020) Análisis y diseño de un edificio híbrido de madera procesada (CLT, LVL) combinada con riostras con amortiguamiento suplementario. Trabajo de Título, Universidad de Valparaíso, Valparaíso, Chile (in Spanish)
– reference: BuchananADeamBFragiacomoMPampaninSPalermoAMulti-storey prestressed timber buildings in New ZealandStruct Eng Int200818216617310.2749/101686608784218635
– reference: GilbertCErochkoJDevelopment and testing of hybrid timber-steel braced framesEng Struct201919810.1016/j.engstruct.2019.109495
– reference: NewcombeMPPampaninSBuchananAHPalermoASection analysis and cyclic behaviour of post-tensioned jointed ductile connections for multi-story timber buildingsJ Earthq Eng20081218311010.1080/13632460801925632
– reference: Clark P, Aiken I, Kasai K, Ko E, Kimura I (1999) Design procedures for buildings incorporating hysteretic damping devices. In: Proceedings of 68th annual convention SEAOC, Santa Barbara, CA
– reference: Sarti F (2015) Seismic design of low-damage post-tensioned timber wall systems. PhD thesis, University of Canterbury, Christchurch, New Zealand
– reference: Instituto Nacional de Normalización (INN) (2012) NCh433Of.96mod2012: Seismic design of buildings. Santiago, Chile (in Spanish)
– reference: CeccottiASandhassCOkabeMYasumuraCKawaiNSOFIE project—3D shaking table test on a seven-storey full-scale cross-laminated timber buildingEarthq Eng Struct Dyn2013422003202110.1002/eqe.2309
– reference: Quintana Gallo P, Bonelli P, Pampanin S, Carr AJ (2020) Seismic design of RC walls in Chile: damage observations and identified deficiencies after the 2010 Maule earthquake. Report 2020–01, University of Canterbury, Christchurch, New Zealand (ISSN 1172-9511)
– reference: Uang CM, Nakashima M (2004) Steel buckling-restrained braced frames. In: Earthquake engineering from engineering seismology to performance-based engineering, CRC Press
– reference: National Research Council of Canada (NRC) (2020) National building code of Canada (NBCC), Ottawa, Canada
– volume: 18
  start-page: 166
  issue: 2
  year: 2008
  ident: 1781_CR5
  publication-title: Struct Eng Int
  doi: 10.2749/101686608784218635
– volume-title: Experimental static and dynamic response of a real R/C frame upgraded with SMA recentering and dissipative braces
  year: 2004
  ident: 1781_CR53
– ident: 1781_CR4
– volume: 167
  start-page: 716
  year: 2018
  ident: 1781_CR42
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.11.047
– ident: 1781_CR2
– volume-title: Ruaumoko—inelastic analysis computer program, volume three: appendices
  year: 2015
  ident: 1781_CR6
– volume: 42
  start-page: 2003
  year: 2013
  ident: 1781_CR8
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.2309
– ident: 1781_CR40
– volume: 44
  start-page: 42
  issue: 6
  year: 1999
  ident: 1781_CR30
  publication-title: PCI J
  doi: 10.15554/pcij.11011999.42.67
– ident: 1781_CR21
– ident: 1781_CR33
– volume: 19
  start-page: 383
  issue: 3
  year: 2015
  ident: 1781_CR55
  publication-title: J Earthq Eng
  doi: 10.1080/13632469.2014.987406
– ident: 1781_CR35
– volume: 4
  start-page: 301
  year: 2004
  ident: 1781_CR45
  publication-title: Steel Struct
– volume: 47
  start-page: 1460
  issue: 6
  year: 2018
  ident: 1781_CR19
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.3025
– volume: 12
  start-page: 83
  issue: 1
  year: 2008
  ident: 1781_CR23
  publication-title: J Earthq Eng
  doi: 10.1080/13632460801925632
– ident: 1781_CR39
– volume: 34
  start-page: 1687
  year: 2005
  ident: 1781_CR13
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.501
– ident: 1781_CR37
– volume: 30
  start-page: 27
  issue: 2
  year: 2022
  ident: 1781_CR10
  publication-title: N Z Timber Des Soc J
– ident: 1781_CR52
– volume: 198
  year: 2019
  ident: 1781_CR17
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109495
– ident: 1781_CR16
– volume: 2
  start-page: 20
  issue: 2
  year: 1997
  ident: 1781_CR41
  publication-title: PCI J
  doi: 10.15554/pcij.03011997.20.23
– volume: 11
  start-page: 9
  year: 2011
  ident: 1781_CR54
  publication-title: Steel Constr
  doi: 10.1002/stco.201110012
– ident: 1781_CR18
– ident: 1781_CR43
– ident: 1781_CR44
  doi: 10.1201/9780203486245.ch16
– ident: 1781_CR1
– volume: 44
  start-page: 123
  issue: 3
  year: 2011
  ident: 1781_CR11
  publication-title: Bull N Z Soc Earthq Eng
– volume: 26
  start-page: 87
  year: 2019
  ident: 1781_CR31
  publication-title: Obras Proy
  doi: 10.4067/S0718-28132019000200087
– volume: 29
  start-page: 945
  year: 2000
  ident: 1781_CR12
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
– ident: 1781_CR26
– volume: 11
  start-page: 9
  year: 2021
  ident: 1781_CR50
  publication-title: Buildings
  doi: 10.3390/buildings11010009
– ident: 1781_CR28
– volume: 130
  start-page: 880
  issue: 6
  year: 2004
  ident: 1781_CR3
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2004)130:6(880)
– ident: 1781_CR24
– ident: 1781_CR22
– ident: 1781_CR9
– ident: 1781_CR20
– volume-title: Ruaumoko—inelastic analysis computer program, volume two: user’s manual for the 2D version, Ruaumoko2D
  year: 2016
  ident: 1781_CR7
– ident: 1781_CR32
– ident: 1781_CR38
– ident: 1781_CR15
– ident: 1781_CR36
– volume: 3
  start-page: 40
  year: 2014
  ident: 1781_CR51
  publication-title: CTBUH J
– volume: 145
  start-page: 04019120
  issue: 11
  year: 2019
  ident: 1781_CR29
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002382
– volume: 79
  start-page: 5
  year: 2021
  ident: 1781_CR34
  publication-title: Eur J Wood Prod
  doi: 10.1007/s00107-020-01556-3
SSID ssj0025790
Score 2.3386178
Snippet To achieve adequate performance during earthquakes, mass timber buildings are often combined with structural systems including other materials, resulting in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 461
SubjectTerms Bracing
Buildings
Civil Engineering
Construction
Design
Dynamic analysis
Dynamical systems
Earth and Environmental Science
Earth Sciences
Earthquake construction
Earthquake resistance
Earthquakes
Energy dissipation
Energy exchange
Environmental Engineering/Biotechnology
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hybrid systems
Hydrogeology
Lumber
Nonlinear dynamics
Nonlinear response
Original Article
Reduction
Reinforcement (structures)
Seismic activity
Seismic design
Seismic response
Shape memory alloys
Structural Geology
Structural members
Tall buildings
Timber
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA4uFz2IK9aNHLxpoMksyRyrKEWqB2ultyHLixa0SlsP4p_3ZZa2igrC3PISmHnJvO97eQshx7EWiZMyYpG2CYsRcTAjrWPcGA-BQMQQXAPXN2m7F1_1k36VFDauo93rK8niTz2X7JZwxdDGsNBSHknwIllOAnfHXdwTrSnNSmThWeGJbDIk6f0qVebnNb6aoxnG_HYtWliby3WyVsFE2ir1ukEWYLhJVueKB26Rjy4Mxs8DS10RhEH10NFhWfhCj-iojH0FaqeNBumLp5o-voccLToZhE4g1FRdsVFs6AcPbyNwNLhm6dntGSuW7F63GDJqiwOd-w71IZhrvE16lxd3521WtVJgFs_YhKXOgMxA-ijEXpoYH6R-YIwSYDOlhZbSpboJXCkO3qfAwcWaaxcZBAku2iFL-AqwS2imnc48aKUA4sw6BUpkSSQz4YTxwjcIr79obqs646HdxVM-q5ActJCjFvJCC3mzQU6mc17LKht_Sh_UisqrEzfORUCqCHdS3iCntfJmw7-vtvc_8X2ygnsuLr0wB2RpMnqDQ8QlE3NUbMNPI43ZOA
  priority: 102
  providerName: Springer Nature
Title Seismic design and nonlinear response comparison of a hybrid timber building configured with BRB- and SMA-braced LVL frames
URI https://link.springer.com/article/10.1007/s10518-023-01781-0
https://www.proquest.com/docview/2923178261
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7R5gKHiqdIKZEP3MAi9j7sPaGkSlpBW6GWoHBa-TGGSG1akvSA-PMd7zoJIFFpT7teS7tje75vPJ4P4E1uZOGVynhmXMFzQhzcKue5sDZgJBA5xtDA6Vl5PMk_TotpCrgtU1rlek1sFmp_7WKM_L2MSITcWSk-3PzkUTUq7q4mCY0d6NASrIl8dYajs8_nG8pVqCbKIgrV50TYp-nYTDo8VwjNyWfxKFFPpPpv17TFm_9skTaeZ_wY9hJkZIPWxk_gAc6fwqM_Cgk-g98XOFtezRzzTUIGM3PP5m0RDLNgizYPFpnbiA6y68AM-_Erntdiq1lUBWE2KWRTs3mYfb9doGcxTMuG50PedHlxOuDErh09OPl6wkJM7Fo-h8l49OXwmCdZBe5ovq146S2qClXIYh6mzekiGojWaomu0kYapXxp-ii0FhhCiQJ9boTxmSXA4LMXsEufgC-BVcabKqDRGjGvnNeoZVVkqpJe2iBDF8T6j9Yu1RyP0heX9bZacrRCTVaoGyvU_S683bxz01bcuLf1wdpQdZp9y3o7Vrrwbm287eP_97Z_f2-v4KEkTNNGYA5gd7W4xdeESVa2Bzt6fNSDzuDo26dRLw1DujuRgzudYOEk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAcEOUhAqX4QE9gEXsf9h4QaikhbZMeaItyW_wYQyRIS5IKVfwnfiPjfSSlEr1V2pvtkdYz9jw8Mx_Ay9TIzCuV8MS4jKdkcXCrnOfC2oDRgUgxhgaGh3n_JN0fZaMV-NPWwsS0yvZOrC5qf-pijPyNjJYIqbNcvDv7ySNqVHxdbSE0arE4wItf5LLN3u7tEn-3pOx9OH7f5w2qAHckbnOee4uqQBWSmIZoU_rIC0JrtURXaCONUj43XRRaCwwhR4E-NcL4xJK-9AnRvQVraZIU8UTp3seFg5epKqYjMtXlKhejpkinKdXLhOakIcl5V5pc-H8V4dK6vfIgW-m53n241xiobLuWqHVYwckDuHupbeFD-H2E49mPsWO-Sv9gZuLZpG65YaZsWmfdInMLiEN2Gphh3y5idRibjyMGCbMNHjdNm4Tx1_MpehaDwmzn0w6vSB4Ntzn58o4GBp8HLMQ0stkjOLmR7X4Mq_QL-ARYYbwpAhqtEdPCeY1aFlmiCumlDTJ0QLQ7Wrqmw3kE2vheLnszRy6UxIWy4kLZ7cCrxZqzur_HtbM3WkaVzVmflUvJ7MDrlnnL4f9Te3o9tRdwu388HJSDvcODZ3BHkjVVx342YHU-PcfnZA3N7WYlggy-3LTM_wXjjBqi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFoIAPcAKrsfdh7wGhhjZqaRpVLUW5bf0YQyRIS5IKVfwzfh3jfSSARG-V9mZ7JHtmPQ_PzAfwMjUy80olPDEu4ylZHNwq57mwNmB0IFKMoYGDUb57kn4YZ-M1-NXWwsS0yvZOrC5qf-ZijHxTRkuE1FkuNkOTFnG4PXh3_p1HBKn40trCadQiso-XP8h9m7_d2yZev5JysPPx_S5vEAa4I9Fb8NxbVAWqkMSURJvSRx4RWqslukIbaZTyuemh0FpgCDkK9KkRxieWdKdPiO4NWFe0qV4H1vs7o8OjpbuXqSrCIzLV4yoX46Zkpyncy4TmpC_JlVeaHPq_1eLK1v3nebbSeoO7cKcxV9lWLV_3YA2n9-H2H00MH8DPY5zMv00c81UyCDNTz6Z1Aw4zY7M6BxeZWwIesrPADPtyGWvF2GISEUmYbdC5ado0TD5fzNCzGCJm_aM-r0geH2xx8uwdDQw_DVmISWXzh3ByLQf-CDq0BXwMrDDeFAGN1ohp4bxGLYssUYX00gYZuiDaEy1d0-88wm58LVedmiMXSuJCWXGh7HXh9XLNed3t48rZGy2jyubPn5crOe3Cm5Z5q-H_U3tyNbUXcJPkvRzujfafwi1JplUdCNqAzmJ2gc_INFrY540MMji9brH_DcNcIDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+design+and+nonlinear+response+comparison+of+a+hybrid+timber+building+configured+with+BRB-+and+SMA-braced+LVL+frames&rft.jtitle=Bulletin+of+earthquake+engineering&rft.au=Rubio%2C+Ricardo&rft.au=Quintana+Gallo%2C+Patricio&rft.au=Carradine%2C+David+M.&rft.date=2024-01-01&rft.issn=1570-761X&rft.eissn=1573-1456&rft.volume=22&rft.issue=2&rft.spage=461&rft.epage=486&rft_id=info:doi/10.1007%2Fs10518-023-01781-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10518_023_01781_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-761X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-761X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-761X&client=summon