Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes
Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evoluti...
Saved in:
Published in | Solar physics Vol. 295; no. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0038-0938 1573-093X |
DOI | 10.1007/s11207-020-01687-z |
Cover
Loading…
Abstract | Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretical study of the conditions under which MFRs with different twist profiles are kink stable and thereby shed some light on the aforementioned aspects. The magnetic field is modeled according to the circular–cylindrical analytical flux rope model in Nieves-Chinchilla et al. (
Astrophys. J.
823
, 27,
2016
) as well as the Lundquist and Gold–Hoyle models, and the kink stability is analyzed with a numerical method that has been developed based on Linton, Longcope, and Fisher (
Astrophys. J.
469
, 954,
1996
). The results are discussed in relation to MFR rotations, magnetic forces, the reversed chirality scenario, and the expansion throughout the heliosphere, among others, providing a theoretical background to improve the current understanding of the internal magnetic configuration of coronal mass ejections (CMEs). The data obtained by new missions like Parker Solar Probe or Solar Orbiter will give the opportunity to explore these results and ideas by observing MFRs closer than ever to the Sun. |
---|---|
AbstractList | Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretical study of the conditions under which MFRs with different twist profiles are kink stable and thereby shed some light on the aforementioned aspects. The magnetic field is modeled according to the circular–cylindrical analytical flux rope model in Nieves-Chinchilla et al. (
Astrophys. J.
823
, 27,
2016
) as well as the Lundquist and Gold–Hoyle models, and the kink stability is analyzed with a numerical method that has been developed based on Linton, Longcope, and Fisher (
Astrophys. J.
469
, 954,
1996
). The results are discussed in relation to MFR rotations, magnetic forces, the reversed chirality scenario, and the expansion throughout the heliosphere, among others, providing a theoretical background to improve the current understanding of the internal magnetic configuration of coronal mass ejections (CMEs). The data obtained by new missions like Parker Solar Probe or Solar Orbiter will give the opportunity to explore these results and ideas by observing MFRs closer than ever to the Sun. Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretical study of the conditions under which MFRs with different twist profiles are kink stable and thereby shed some light on the aforementioned aspects. The magnetic field is modeled according to the circular–cylindrical analytical flux rope model in Nieves-Chinchilla et al. (Astrophys. J.823, 27, 2016) as well as the Lundquist and Gold–Hoyle models, and the kink stability is analyzed with a numerical method that has been developed based on Linton, Longcope, and Fisher (Astrophys. J.469, 954, 1996). The results are discussed in relation to MFR rotations, magnetic forces, the reversed chirality scenario, and the expansion throughout the heliosphere, among others, providing a theoretical background to improve the current understanding of the internal magnetic configuration of coronal mass ejections (CMEs). The data obtained by new missions like Parker Solar Probe or Solar Orbiter will give the opportunity to explore these results and ideas by observing MFRs closer than ever to the Sun. |
ArticleNumber | 118 |
Author | Florido-Llinas, M. Nieves-Chinchilla, T. Linton, M. G. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0001-5834-9836 surname: Florido-Llinas fullname: Florido-Llinas, M. email: marta.florido@hotmail.com organization: Interdisciplinary Higher Education Center (CFIS), Polytechnic University of Catalonia – sequence: 2 givenname: T. orcidid: 0000-0003-0565-4890 surname: Nieves-Chinchilla fullname: Nieves-Chinchilla, T. organization: Heliophysics Science Division, NASA Goddard Space Flight Center – sequence: 3 givenname: M. G. orcidid: 0000-0002-4459-7510 surname: Linton fullname: Linton, M. G. organization: Naval Research Laboratory |
BookMark | eNp9kE1LAzEQhoNUsFb_gKeA59XJxt0kR_GroiJ-gbeQTSc1dd2tSYquv96tFQQPPc3AvM8w82yTQdM2SMgegwMGIA4jYzmIDHLIgJVSZF8bZMgKwTNQ_HlAhgBcLnu5RbZjnAEssWJI7o4bU3fRR9o6ml6QjrH21tT0yjev9CGZytc-dcvpqXcOAzap7ujjh48JJ_TGTBtM3tLzevFJ79s5xh2y6Uwdcfe3jsjT-dnjyTi7vr24PDm-zixnKmXlRHLBrUUU4BjDKldSlao6cuCUE6WyyERhcWIEyOqoktIUTsmJNaYsXKn4iOyv9s5D-77AmPSsXYT-m6jzAlShSs6gT8lVyoY2xoBOW59M8m2TgvG1ZqCXJvRKoO4F6h-B-qtH83_oPPg3E7r1EF9BsQ83Uwx_V62hvgHXQIYr |
CitedBy_id | crossref_primary_10_1007_s11214_025_01138_w crossref_primary_10_1051_0004_6361_202142966 crossref_primary_10_3389_fspas_2023_1114838 crossref_primary_10_1007_s11207_021_01919_w crossref_primary_10_1029_2020JA028911 crossref_primary_10_1029_2020JA028966 crossref_primary_10_3847_1538_4357_ad3206 crossref_primary_10_1093_mnras_stab801 crossref_primary_10_3847_1538_4357_ac590b crossref_primary_10_3389_fspas_2022_1064175 crossref_primary_10_1051_0004_6361_202245062 |
Cites_doi | 10.1086/421238 10.1007/s11207-019-1477-8 10.1029/2001JA900100 10.1086/424564 10.1038/nature16188 10.1029/JA086iA08p06673 10.1007/s11207-012-0176-5 10.1007/s11207-013-0224-9 10.3847/1538-4357/aad68c 10.1029/GM058p0001 10.1051/0004-6361/201937404 10.1029/2000JA900170 10.1029/GM058p0043 10.1007/BF00151441 10.1088/0004-637X/805/2/168 10.1086/169232 10.3847/0004-637X/823/1/27 10.1051/0004-6361/201629282 10.1029/JA093iA07p07217 10.1029/97GL01878 10.1007/s11207-020-01672-6 10.3847/1538-4357/aac951 10.1023/A:1005141432432 10.1063/1.2914744 10.1007/s11207-016-0941-y 10.1086/177842 10.1007/s11207-019-1564-x 10.1002/2017JA024971 10.1007/s11207-018-1273-x 10.1071/PH540005 10.1007/s11430-016-9052-1 10.1080/03091928108243687 10.1063/1.3647567 10.1029/JA087iA03p01419 10.1029/JA095iA08p11957 10.1051/0004-6361/201936664 10.1086/462412 10.1086/521521 10.1029/GM058p0343 10.1007/978-94-009-2561-8 10.1103/PhysRev.128.2016 10.1007/BF00206193 10.1002/2016JA023075 10.5194/angeo-28-1539-2010 10.1086/177387 10.1002/2015JA021133 10.1051/0004-6361:20064806 10.3847/0004-637X/829/1/24 10.1088/0004-637X/705/1/426 10.1007/978-94-009-9100-2_32 10.1051/0004-6361/201219311 10.1088/0004-637X/790/2/125 10.5194/angeo-24-215-2006 10.1086/345501 10.1088/0004-637X/793/1/53 10.1029/2004GL020958 10.1086/167766 10.1051/0004-6361:200811131 10.1088/2041-8205/733/2/L23 10.1063/1.1724359 10.1029/2003GL017692 10.1029/2001GL013875 10.1002/asna.200710795 10.1073/pnas.44.6.489 10.1086/306563 10.1103/PhysRevE.67.036405 10.1063/1.58724 10.1109/TPS.2018.2811400 10.1093/mnras/120.2.89 10.1086/320559 10.1029/2010JA015328 10.1098/rspa.1958.0023 10.3390/sym11070928 10.1086/306299 10.1029/1999JA900002 10.1088/0004-637X/722/2/1539 10.1103/PhysRev.83.307 10.1086/307678 10.1086/379763 10.1029/2011JA017243 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11207-020-01687-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1573-093X |
ExternalDocumentID | 10_1007_s11207_020_01687_z |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAK LK5 LLZTM M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 OVD P19 P62 P9T PF0 PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNP RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7Y Z7Z Z8M Z8S Z8T ZMTXR ~02 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7XB 8FD 8FK ABRTQ H8D KL. L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-6d8373ccee70f11eb298969b4f0f9f769ce175ceda708b4b88a5f98dcaa65f693 |
IEDL.DBID | U2A |
ISSN | 0038-0938 |
IngestDate | Fri Jul 25 22:55:45 EDT 2025 Tue Jul 01 04:31:12 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Fri Feb 21 02:36:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Coronal mass ejections Flux ropes Twist distribution Kink instability Magnetic fields |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-6d8373ccee70f11eb298969b4f0f9f769ce175ceda708b4b88a5f98dcaa65f693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5834-9836 0000-0003-0565-4890 0000-0002-4459-7510 |
PQID | 2509596310 |
PQPubID | 105618 |
ParticipantIDs | proquest_journals_2509596310 crossref_citationtrail_10_1007_s11207_020_01687_z crossref_primary_10_1007_s11207_020_01687_z springer_journals_10_1007_s11207_020_01687_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200900 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | A Journal for Solar and Solar-Stellar Research and the Study of Solar-Terrestrial Physics |
PublicationTitle | Solar physics |
PublicationTitleAbbrev | Sol Phys |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Lynch, Antiochos, MacNeice, Zurbuchen, Fisk (CR55) 2004; 617 Romashets, Vandas (CR71) 2003; 30 Vourlidas, Colaninno, Nieves-Chinchilla, Stenborg (CR84) 2011; 733 Berdichevsky, Lepping, Farrugia (CR9) 2003; 67 Cremades, Iglesias, Merenda (CR17) 2020; 635 Brent (CR11) 2013 Aulanier, Janvier, Schmieder (CR4) 2012; 543 Kazachenko, Canfield, Longcope, Qiu (CR37) 2010; 722 Hu (CR32) 2017; 60 Yurchyshyn, Abramenko, Tripathi (CR88) 2009; 705 Balmaceda, Vourlidas, Stenborg, St. Cyr (CR5) 2020; 295 Chiappinelli (CR15) 2019; 11 Goldstein (CR25) 1983; 228 Vemareddy, Cheng, Ravindra (CR81) 2016; 829 Bennett, Roberts, Narain (CR7) 1999; 185 Kahler, Krucker, Szabo (CR35) 2011; 116 Moore, Labonte (CR57) 1980 Schuessler (CR72) 1979; 71 Oz, Myers, Yamada, Ji, Kulsrud, Xie (CR67) 2011; 18 Hu, Qiu, Dasgupta, Khare, Webb (CR34) 2014; 793 Voslamber, Callebaut (CR83) 1962; 128 Nieves-Chinchilla, Colaninno, Vourlidas, Szabo, Lepping, Boardsen, Anderson, Korth (CR62) 2012; 117 Fan, Gibson (CR22) 2004; 609 Longcope, Fisher, Arendt (CR53) 1996; 464 Hidalgo, Nieves-Chinchilla, Cid (CR28) 2002; 29 Larson, Lin, McTiernan, McFadden, Ergun, McCarthy, Rème, Sanderson, Kaiser, Lepping, Mazur (CR43) 1997; 24 Amari, Luciani, Aly, Mikic, Linker (CR1) 2003; 585 Rinne (CR70) 2009 Bernstein, Frieman, Kruskal, Kulsrud, Chandrasekhar (CR10) 1958; 244 Linton, Longcope, Fisher (CR49) 1996; 469 Burlaga (CR12) 1988; 93 Einaudi (CR21) 1990 Hau, Sonnerup (CR27) 1999; 104 Longcope, Beveridge (CR52) 2007; 669 Mikic, Schnack, van Hoven (CR56) 1990; 361 Burlaga, Sittler, Mariani, Schwenn (CR13) 1981; 86 Kay, Opher, Evans (CR36) 2015; 805 Linton, Dahlburg, Fisher, Longcope (CR50) 1998; 507 Dasso, Mandrini, Démoulin, Luoni (CR18) 2006; 455 Gosling (CR26) 1990 Hu, Qiu, Krucker (CR33) 2015; 120 Myers, Yamada, Ji, Yoo, Fox, Jara-Almonte, Savcheva, Deluca (CR60) 2015; 528 Hidalgo, Cid, Vinas, Sequeiros (CR29) 2002; 107 Lanabere, Dasso, Démoulin, Janvier, Rodriguez, Masías-Meza (CR42) 2020; 635 Farrugia, Janoo, Torbert, Quinn, Ogilvie, Lepping, Fitzenreiter, Steinberg, Lazarus, Lin, Larson, Dasso, Gratton, Lin, Berdichevsky (CR23) 1999; 471 Knizhnik, Linton, DeVore (CR38) 2018; 864 van Ballegooijen, Martens (CR80) 1989; 343 Wang, Shen, Liu, Liu, Guo, Li, Xu, Hu, Zhang (CR86) 2018; 123 Hood, Priest (CR31) 1981; 17 Lepping, Wu (CR45) 2010; 28 Antiochos, DeVore, Klimchuk (CR2) 1999; 510 Török, Kliem (CR79) 2007; 328 Priest (CR68) 1990 Kutchko, Briggs, Armstrong (CR41) 1982; 87 Nieves-Chinchilla, Linton, Hidalgo, Vourlidas, Savani, Szabo, Farrugia, Yu (CR63) 2016; 823 Hood, Priest (CR30) 1979; 64 Berdichevsky (CR8) 2013; 284 Vemareddy, Démoulin (CR82) 2017; 597 Lepping, Jones, Burlaga (CR44) 1990; 95 Démoulin, Dasso, Janvier, Lanabere (CR19) 2019; 294 Titov, Démoulin (CR77) 1999; 351 Subramanian, Arunbabu, Vourlidas, Mauriya (CR76) 2014; 790 Nieves-Chinchilla, Linton, Hidalgo, Vourlidas (CR64) 2018; 861 Lepping, Berdichevsky, Wu, Szabo, Narock, Mariani, Lazarus, Quivers (CR46) 2006; 24 Török, Kliem (CR78) 2005; 630 Moore, Sterling, Hudson, Lemen (CR58) 2001; 552 Archontis, Török (CR3) 2008; 492 Schwarzschild (CR73) 1981; 34 Kruskal, Johnson, Gottlieb, Goldman (CR40) 1958; 1 Nieves-Chinchilla, Jian, Balmaceda, Vourlidas, dos Santos, Szabo (CR65) 2019; 294 Sterling, Moore (CR75) 2004; 602 Nieves-Chinchilla (CR61) 2018; 46 Cho, Park, Marubashi, Gopalswamy, Akiyama, Yashiro, Kim, Lim (CR16) 2013; 284 Lifschitz (CR48) 1989 Shafranov (CR74) 1958; 6 Wang, Zhuang, Hu, Liu, Shen, Chi (CR85) 2016; 121 Cabello, Cremades, Balmaceda, Dohmen (CR14) 2016; 291 Kopp, Pneuman (CR39) 1976; 50 Linton, Fisher, Dahlburg, Fan (CR51) 1999; 522 Lundquist (CR54) 1951; 83 CR66 Richardson, Cane (CR69) 2004; 31 Bateman (CR6) 1978 Mulligan, Russell (CR59) 2001; 106 Woltjer (CR87) 1958; 44 Dungey, Loughhead (CR20) 1954; 7 Gold, Hoyle (CR24) 1960; 120 Lepping, Wu, Berdichevsky, Szabo (CR47) 2018; 293 P. Démoulin (1687_CR19) 2019; 294 V.D. Shafranov (1687_CR74) 1958; 6 I.B. Bernstein (1687_CR10) 1958; 244 D.B. Berdichevsky (1687_CR9) 2003; 67 L. Burlaga (1687_CR13) 1981; 86 L.F. Burlaga (1687_CR12) 1988; 93 S.K. Antiochos (1687_CR2) 1999; 510 M. Schuessler (1687_CR72) 1979; 71 M.G. Linton (1687_CR51) 1999; 522 D. Voslamber (1687_CR83) 1962; 128 Z. Mikic (1687_CR56) 1990; 361 H. Cremades (1687_CR17) 2020; 635 Q. Hu (1687_CR34) 2014; 793 P. Vemareddy (1687_CR82) 2017; 597 M.A. Hidalgo (1687_CR28) 2002; 29 R.P. Lepping (1687_CR47) 2018; 293 T. Nieves-Chinchilla (1687_CR65) 2019; 294 I.G. Richardson (1687_CR69) 2004; 31 H. Rinne (1687_CR70) 2009 V. Lanabere (1687_CR42) 2020; 635 K. Bennett (1687_CR7) 1999; 185 M.G. Linton (1687_CR50) 1998; 507 M.G. Linton (1687_CR49) 1996; 469 P. Vemareddy (1687_CR81) 2016; 829 T. Gold (1687_CR24) 1960; 120 L. Woltjer (1687_CR87) 1958; 44 Y. Wang (1687_CR85) 2016; 121 L.N. Hau (1687_CR27) 1999; 104 V.S. Titov (1687_CR77) 1999; 351 T. Nieves-Chinchilla (1687_CR63) 2016; 823 E.P. Romashets (1687_CR71) 2003; 30 R.L. Moore (1687_CR58) 2001; 552 M.D. Kruskal (1687_CR40) 1958; 1 A. Vourlidas (1687_CR84) 2011; 733 V. Archontis (1687_CR3) 2008; 492 A.E. Lifschitz (1687_CR48) 1989 R.A. Kopp (1687_CR39) 1976; 50 V. Yurchyshyn (1687_CR88) 2009; 705 R. Chiappinelli (1687_CR15) 2019; 11 G. Einaudi (1687_CR21) 1990 D.W. Longcope (1687_CR52) 2007; 669 S.W. Kahler (1687_CR35) 2011; 116 E. Oz (1687_CR67) 2011; 18 P. Subramanian (1687_CR76) 2014; 790 B.M. Schwarzschild (1687_CR73) 1981; 34 D.E. Larson (1687_CR43) 1997; 24 Y. Fan (1687_CR22) 2004; 609 C. Kay (1687_CR36) 2015; 805 R.P. Lepping (1687_CR45) 2010; 28 G. Bateman (1687_CR6) 1978 E.R. Priest (1687_CR68) 1990 D.B. Berdichevsky (1687_CR8) 2013; 284 J. Dungey (1687_CR20) 1954; 7 K.J. Knizhnik (1687_CR38) 2018; 864 1687_CR66 S. Dasso (1687_CR18) 2006; 455 S. Lundquist (1687_CR54) 1951; 83 R.P. Lepping (1687_CR44) 1990; 95 Q. Hu (1687_CR33) 2015; 120 D.W. Longcope (1687_CR53) 1996; 464 T. Amari (1687_CR1) 2003; 585 G. Aulanier (1687_CR4) 2012; 543 I. Cabello (1687_CR14) 2016; 291 K.-S. Cho (1687_CR16) 2013; 284 T. Török (1687_CR78) 2005; 630 M.D. Kazachenko (1687_CR37) 2010; 722 T. Mulligan (1687_CR59) 2001; 106 Y. Wang (1687_CR86) 2018; 123 C.E. Myers (1687_CR60) 2015; 528 M.A. Hidalgo (1687_CR29) 2002; 107 T. Nieves-Chinchilla (1687_CR61) 2018; 46 T. Nieves-Chinchilla (1687_CR64) 2018; 861 R.P. Lepping (1687_CR46) 2006; 24 C.J. Farrugia (1687_CR23) 1999; 471 H. Goldstein (1687_CR25) 1983; 228 A.W. Hood (1687_CR31) 1981; 17 L.A. Balmaceda (1687_CR5) 2020; 295 A.C. Sterling (1687_CR75) 2004; 602 T. Nieves-Chinchilla (1687_CR62) 2012; 117 F.J. Kutchko (1687_CR41) 1982; 87 B.J. Lynch (1687_CR55) 2004; 617 A.W. Hood (1687_CR30) 1979; 64 T. Török (1687_CR79) 2007; 328 J.T. Gosling (1687_CR26) 1990 R.L. Moore (1687_CR57) 1980 A.A. van Ballegooijen (1687_CR80) 1989; 343 R.P. Brent (1687_CR11) 2013 Q. Hu (1687_CR32) 2017; 60 |
References_xml | – volume: 609 start-page: 1123 issue: 2 year: 2004 ident: CR22 article-title: Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes publication-title: Astrophys. J. doi: 10.1086/421238 – volume: 294 start-page: 89 issue: 7 year: 2019 ident: CR65 article-title: Unraveling the internal magnetic field structure of the Earth-directed interplanetary coronal mass ejections during 1995–2015 publication-title: Solar Phys. doi: 10.1007/s11207-019-1477-8 – volume: 107 start-page: 1002 issue: A1 year: 2002 ident: CR29 article-title: A non-force-free approach to the topology of magnetic clouds in the solar wind publication-title: J. Geophys. Res. doi: 10.1029/2001JA900100 – volume: 617 start-page: 589 issue: 1 year: 2004 ident: CR55 article-title: Observable properties of the breakout model for coronal mass ejections publication-title: Astrophys. J. doi: 10.1086/424564 – volume: 528 start-page: 526 issue: 7583 year: 2015 ident: CR60 article-title: A dynamic magnetic tension force as the cause of failed solar eruptions publication-title: Nature doi: 10.1038/nature16188 – volume: 86 start-page: 6673 issue: A8 year: 1981 ident: CR13 article-title: Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations publication-title: J. Geophys. Res. doi: 10.1029/JA086iA08p06673 – volume: 284 start-page: 245 issue: 1 year: 2013 ident: CR8 article-title: On fields and mass constraints for the uniform propagation of magnetic-flux ropes undergoing isotropic expansion publication-title: Solar Phys. doi: 10.1007/s11207-012-0176-5 – volume: 284 start-page: 105 issue: 1 year: 2013 ident: CR16 article-title: Comparison of helicity signs in interplanetary CMEs and their solar source regions publication-title: Solar Phys. doi: 10.1007/s11207-013-0224-9 – year: 2013 ident: CR11 publication-title: Algorithms for Minimization Without Derivatives – volume: 864 start-page: 89 issue: 1 year: 2018 ident: CR38 article-title: The role of twist in kinked flux rope emergence and delta-spot formation publication-title: Astrophys. J. doi: 10.3847/1538-4357/aad68c – year: 1990 ident: CR68 article-title: The equilibrium of magnetic flux ropes (tutorial lecture) publication-title: Physics of Magnetic Flux Ropes doi: 10.1029/GM058p0001 – volume: 635 year: 2020 ident: CR42 article-title: Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201937404 – volume: 106 start-page: 10581 issue: A6 year: 2001 ident: CR59 article-title: Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: cylindrically symmetric versus nonsymmetric topologies publication-title: J. Geophys. Res. doi: 10.1029/2000JA900170 – year: 1990 ident: CR21 article-title: Ideal instabilities in a magnetic flux tube publication-title: Physics of Magnetic Flux Ropes. doi: 10.1029/GM058p0043 – volume: 64 start-page: 303 issue: 2 year: 1979 ident: CR30 article-title: Kink instability of solar coronal loops as the cause of solar flares publication-title: Solar Phys. doi: 10.1007/BF00151441 – volume: 805 start-page: 168 issue: 2 year: 2015 ident: CR36 article-title: Global trends of CME deflections based on CME and solar parameters publication-title: Astrophys. J. doi: 10.1088/0004-637X/805/2/168 – volume: 361 start-page: 690 year: 1990 ident: CR56 article-title: Dynamical evolution of twisted magnetic flux tubes. I. Equilibrium and linear stability publication-title: Astrophys. J. doi: 10.1086/169232 – volume: 823 start-page: 27 issue: 1 year: 2016 ident: CR63 article-title: A circular-cylindrical flux-rope analytical model for magnetic clouds publication-title: Astrophys. J. doi: 10.3847/0004-637X/823/1/27 – volume: 351 start-page: 707 year: 1999 ident: CR77 article-title: Basic topology of twisted magnetic configurations in solar flares publication-title: Astron. Astrophys. – volume: 597 year: 2017 ident: CR82 article-title: Successive injection of opposite magnetic helicity in Solar active region NOAA 11928 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201629282 – volume: 6 start-page: 545 year: 1958 ident: CR74 article-title: On magnetohydrodynamical equilibrium configurations publication-title: J. Exp. Theor. Phys. – volume: 93 start-page: 7217 issue: A7 year: 1988 ident: CR12 article-title: Magnetic clouds and force-free fields with constant alpha publication-title: J. Geophys. Res. doi: 10.1029/JA093iA07p07217 – volume: 24 start-page: 1911 issue: 15 year: 1997 ident: CR43 article-title: Tracing the topology of the October 18–20, 1995, magnetic cloud with – keV electrons publication-title: Geophys. Res. Lett. doi: 10.1029/97GL01878 – volume: 295 year: 2020 ident: CR5 article-title: On the expansion speed of coronal mass ejections. Implications for self-similar evolution publication-title: Solar Phys. doi: 10.1007/s11207-020-01672-6 – volume: 861 start-page: 139 issue: 2 year: 2018 ident: CR64 article-title: Elliptic-cylindrical analytical flux rope model for magnetic clouds publication-title: Astrophys. J. doi: 10.3847/1538-4357/aac951 – volume: 185 start-page: 41 issue: 1 year: 1999 ident: CR7 article-title: Waves in twisted magnetic flux tubes publication-title: Solar Phys. doi: 10.1023/A:1005141432432 – volume: 34 start-page: 20 issue: 9 year: 1981 ident: CR73 article-title: Reversed-field pinch stable 8 msec publication-title: Phys. Today doi: 10.1063/1.2914744 – volume: 291 start-page: 1799 issue: 6 year: 2016 ident: CR14 article-title: First simultaneous views of the axial and lateral perspectives of a coronal mass ejection publication-title: Solar Phys. doi: 10.1007/s11207-016-0941-y – volume: 469 start-page: 954 year: 1996 ident: CR49 article-title: The helical kink instability of isolated, twisted magnetic flux tubes publication-title: Astrophys. J. doi: 10.1086/177842 – volume: 294 start-page: 172 issue: 12 year: 2019 ident: CR19 article-title: Re-analysis of Lepping’s fitting method for magnetic clouds: Lundquist fit reloaded publication-title: Solar Phys. doi: 10.1007/s11207-019-1564-x – volume: 123 start-page: 3238 issue: 5 year: 2018 ident: CR86 article-title: Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud: twist distribution in an interplanetary MC publication-title: J. Geophys. Res. doi: 10.1002/2017JA024971 – volume: 293 start-page: 65 issue: 4 year: 2018 ident: CR47 article-title: Wind magnetic clouds for the period 2013–2015: model fitting, types, associated shock waves, and comparisons to other periods publication-title: Solar Phys. doi: 10.1007/s11207-018-1273-x – volume: 7 start-page: 5 issue: 1 year: 1954 ident: CR20 article-title: Twisted magnetic fields in conducting fluids publication-title: Aust. J. Phys. doi: 10.1071/PH540005 – volume: 60 start-page: 1466 year: 2017 ident: CR32 article-title: The Grad–Shafranov reconstruction in twenty years: 1996–2016 publication-title: Adv. Sci. China. Earth Sci. doi: 10.1007/s11430-016-9052-1 – volume: 17 start-page: 297 issue: 1 year: 1981 ident: CR31 article-title: Critical conditions for magnetic instabilities in force-free coronal loops publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091928108243687 – volume: 18 year: 2011 ident: CR67 article-title: Experimental verification of the Kruskal-Shafranov stability limit in line-tied partial-toroidal plasmas publication-title: Phys. Plasmas doi: 10.1063/1.3647567 – volume: 87 start-page: 1419 issue: A3 year: 1982 ident: CR41 article-title: The bidirectional particle event of October 12, 1977, possibly associated with a magnetic loop publication-title: J. Geophys. Res. doi: 10.1029/JA087iA03p01419 – volume: 95 start-page: 11957 issue: A8 year: 1990 ident: CR44 article-title: Magnetic field structure of interplanetary magnetic clouds at 1 AU publication-title: J. Geophys. Res. doi: 10.1029/JA095iA08p11957 – volume: 635 year: 2020 ident: CR17 article-title: Asymmetric expansion of coronal mass ejections in the low corona publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201936664 – volume: 630 issue: 1 year: 2005 ident: CR78 article-title: Confined and ejective eruptions of kink-unstable flux ropes publication-title: Astrophys. J. Lett. doi: 10.1086/462412 – volume: 669 start-page: 621 issue: 1 year: 2007 ident: CR52 article-title: A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare publication-title: Astrophys. J. doi: 10.1086/521521 – year: 1990 ident: CR26 article-title: Coronal mass ejections and magnetic flux ropes in interplanetary space publication-title: Physics of Magnetic Flux Ropes. doi: 10.1029/GM058p0343 – year: 1989 ident: CR48 publication-title: Magnetohydrodynamics and Spectral Theory doi: 10.1007/978-94-009-2561-8 – volume: 128 start-page: 2016 year: 1962 ident: CR83 article-title: Stability of force-free magnetic fields publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.2016 – volume: 50 start-page: 85 issue: 1 year: 1976 ident: CR39 article-title: Magnetic reconnection in the corona and the loop prominence phenomenon publication-title: Solar Phys. doi: 10.1007/BF00206193 – ident: CR66 – volume: 121 start-page: 9316 issue: 10 year: 2016 ident: CR85 article-title: On the twists of interplanetary magnetic flux ropes observed at 1 AU publication-title: J. Geophys. Res. doi: 10.1002/2016JA023075 – year: 2009 ident: CR70 publication-title: The Weibull Distribution: A Handbook – volume: 28 start-page: 1539 issue: 8 year: 2010 ident: CR45 article-title: Selection effects in identifying magnetic clouds and the importance of the closest approach parameter publication-title: Ann. Geophys. doi: 10.5194/angeo-28-1539-2010 – volume: 464 start-page: 999 year: 1996 ident: CR53 article-title: The evolution and fragmentation of rising magnetic flux tubes publication-title: Astrophys. J. doi: 10.1086/177387 – volume: 120 start-page: 5266 issue: 7 year: 2015 ident: CR33 article-title: Magnetic field line lengths inside interplanetary magnetic flux ropes publication-title: J. Geophys. Res. doi: 10.1002/2015JA021133 – volume: 455 start-page: 349 issue: 1 year: 2006 ident: CR18 article-title: A new model-independent method to compute magnetic helicity in magnetic clouds publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20064806 – volume: 829 start-page: 24 issue: 1 year: 2016 ident: CR81 article-title: Sunspot rotation as a driver of major solar eruptions in the NOAA active region 12158 publication-title: Astrophys. J. doi: 10.3847/0004-637X/829/1/24 – volume: 705 start-page: 426 issue: 1 year: 2009 ident: CR88 article-title: Rotation of white-light coronal mass ejection structures as inferred from LASCO coronagraph publication-title: Astrophys. J. doi: 10.1088/0004-637X/705/1/426 – start-page: 207 year: 1980 ident: CR57 article-title: The filament eruption in the 3B flare of July 29, 1973—onset and magnetic field configuration publication-title: Solar and Interplanetary Dynamics doi: 10.1007/978-94-009-9100-2_32 – volume: 543 year: 2012 ident: CR4 article-title: The standard flare model in three dimensions—I. Strong-to-weak shear transition in post-flare loops publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201219311 – volume: 790 start-page: 125 issue: 2 year: 2014 ident: CR76 article-title: Self-similar expansion of solar coronal mass ejections: implications for Lorentz self-force driving publication-title: Astrophys. J. doi: 10.1088/0004-637X/790/2/125 – volume: 228 start-page: 731 year: 1983 ident: CR25 article-title: On the field configuration in magnetic clouds publication-title: NASA Conf. Publ. – volume: 24 start-page: 215 issue: 1 year: 2006 ident: CR46 article-title: A summary of WIND magnetic clouds for years 1995–2003: model-fitted parameters, associated errors and classifications publication-title: Ann. Geophys. doi: 10.5194/angeo-24-215-2006 – volume: 585 start-page: 1073 issue: 2 year: 2003 ident: CR1 article-title: Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution publication-title: Astrophys. J. doi: 10.1086/345501 – volume: 793 start-page: 53 issue: 1 year: 2014 ident: CR34 article-title: Structures of interplanetary magnetic flux ropes and comparison with their solar sources publication-title: Astrophys. J. doi: 10.1088/0004-637X/793/1/53 – volume: 31 issue: 18 year: 2004 ident: CR69 article-title: The fraction of interplanetary coronal mass ejections that are magnetic clouds: evidence for a solar cycle variation publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020958 – volume: 343 start-page: 971 year: 1989 ident: CR80 article-title: Formation and eruption of solar prominences publication-title: Astrophys. J. doi: 10.1086/167766 – volume: 492 issue: 2 year: 2008 ident: CR3 article-title: Eruption of magnetic flux ropes during flux emergence publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:200811131 – volume: 733 issue: 2 year: 2011 ident: CR84 article-title: The first observation of a rapidly rotating coronal mass ejection in the middle corona publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/733/2/L23 – volume: 1 start-page: 421 year: 1958 ident: CR40 article-title: Hydromagnetic instability in a stellarator publication-title: Phys. Fluids doi: 10.1063/1.1724359 – volume: 30 issue: 20 year: 2003 ident: CR71 article-title: Force-free field inside a toroidal magnetic cloud publication-title: Geophys. Res. Lett. doi: 10.1029/2003GL017692 – volume: 29 start-page: 1637 issue: 13 year: 2002 ident: CR28 article-title: Elliptical cross-section model for the magnetic topology of magnetic clouds publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL013875 – volume: 328 start-page: 743 issue: 8 year: 2007 ident: CR79 article-title: Numerical simulations of fast and slow coronal mass ejections publication-title: Astron. Nachr. doi: 10.1002/asna.200710795 – volume: 44 start-page: 489 year: 1958 ident: CR87 article-title: A theorem on force-free magnetic fields publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.44.6.489 – volume: 510 start-page: 485 issue: 1 year: 1999 ident: CR2 article-title: A model for solar coronal mass ejections publication-title: Astrophys. J. doi: 10.1086/306563 – volume: 67 year: 2003 ident: CR9 article-title: Geometric considerations of the evolution of magnetic flux ropes publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.036405 – volume: 471 start-page: 745 issue: 1 year: 1999 ident: CR23 article-title: A uniform-twist magnetic flux rope in the solar wind publication-title: AIP Conf. Proc. doi: 10.1063/1.58724 – volume: 46 start-page: 2370 issue: 7 year: 2018 ident: CR61 article-title: Modeling heliospheric flux ropes: A comparative study of physical quantities publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2018.2811400 – volume: 120 start-page: 89 issue: 2 year: 1960 ident: CR24 article-title: On the origin of solar flares publication-title: Mon. Not. Roy. Astron. Soc. doi: 10.1093/mnras/120.2.89 – year: 1978 ident: CR6 publication-title: MHD Instabilities – volume: 552 start-page: 833 issue: 2 year: 2001 ident: CR58 article-title: Onset of the magnetic explosion in solar flares and coronal mass ejections publication-title: Astrophys. J. doi: 10.1086/320559 – volume: 116 issue: A1 year: 2011 ident: CR35 article-title: Solar energetic electron probes of magnetic cloud field line lengths publication-title: J. Geophys. Res. doi: 10.1029/2010JA015328 – volume: 244 start-page: 17 issue: 1236 year: 1958 ident: CR10 article-title: An energy principle for hydromagnetic stability problems publication-title: Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. doi: 10.1098/rspa.1958.0023 – volume: 11 start-page: 928 issue: 7 year: 2019 ident: CR15 article-title: Nonlinear Rayleigh quotients and nonlinear spectral theory publication-title: Symmetry doi: 10.3390/sym11070928 – volume: 507 start-page: 404 issue: 1 year: 1998 ident: CR50 article-title: Nonlinear evolution of kink-unstable magnetic flux tubes and solar -spot active regions publication-title: Astrophys. J. doi: 10.1086/306299 – volume: 104 start-page: 6899 issue: A4 year: 1999 ident: CR27 article-title: Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data publication-title: J. Geophys. Res. doi: 10.1029/1999JA900002 – volume: 722 start-page: 1539 issue: 2 year: 2010 ident: CR37 article-title: Sunspot rotation, flare energetics, and flux rope helicity: the Halloween Flare on 2003 October 28 publication-title: Astrophys. J. doi: 10.1088/0004-637X/722/2/1539 – volume: 83 start-page: 307 issue: 2 year: 1951 ident: CR54 article-title: On the stability of magneto-hydrostatic fields publication-title: Phys. Rev. doi: 10.1103/PhysRev.83.307 – volume: 71 start-page: 79 issue: 1–2 year: 1979 ident: CR72 article-title: Magnetic buoyancy revisited: analytical and numerical results for rising flux tubes publication-title: Astron. Astrophys. – volume: 522 start-page: 1190 issue: 2 year: 1999 ident: CR51 article-title: Relationship of the multimode kink instability to -spot formation publication-title: Astrophys. J. doi: 10.1086/307678 – volume: 602 start-page: 1024 issue: 2 year: 2004 ident: CR75 article-title: Evidence for gradual external reconnection before explosive eruption of a solar filament publication-title: Astrophys. J. doi: 10.1086/379763 – volume: 117 issue: A6 year: 2012 ident: CR62 article-title: Remote and in situ observations of an unusual Earth-directed coronal mass ejection from multiple viewpoints publication-title: J. Geophys. Res. doi: 10.1029/2011JA017243 – volume-title: The Weibull Distribution: A Handbook year: 2009 ident: 1687_CR70 – volume: 123 start-page: 3238 issue: 5 year: 2018 ident: 1687_CR86 publication-title: J. Geophys. Res. doi: 10.1002/2017JA024971 – volume: 510 start-page: 485 issue: 1 year: 1999 ident: 1687_CR2 publication-title: Astrophys. J. doi: 10.1086/306563 – volume: 343 start-page: 971 year: 1989 ident: 1687_CR80 publication-title: Astrophys. J. doi: 10.1086/167766 – volume: 829 start-page: 24 issue: 1 year: 2016 ident: 1687_CR81 publication-title: Astrophys. J. doi: 10.3847/0004-637X/829/1/24 – ident: 1687_CR66 – volume: 291 start-page: 1799 issue: 6 year: 2016 ident: 1687_CR14 publication-title: Solar Phys. doi: 10.1007/s11207-016-0941-y – volume: 669 start-page: 621 issue: 1 year: 2007 ident: 1687_CR52 publication-title: Astrophys. J. doi: 10.1086/521521 – volume: 823 start-page: 27 issue: 1 year: 2016 ident: 1687_CR63 publication-title: Astrophys. J. doi: 10.3847/0004-637X/823/1/27 – start-page: 207 volume-title: Solar and Interplanetary Dynamics year: 1980 ident: 1687_CR57 doi: 10.1007/978-94-009-9100-2_32 – volume: 244 start-page: 17 issue: 1236 year: 1958 ident: 1687_CR10 publication-title: Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. doi: 10.1098/rspa.1958.0023 – volume: 351 start-page: 707 year: 1999 ident: 1687_CR77 publication-title: Astron. Astrophys. – volume: 120 start-page: 5266 issue: 7 year: 2015 ident: 1687_CR33 publication-title: J. Geophys. Res. doi: 10.1002/2015JA021133 – volume: 50 start-page: 85 issue: 1 year: 1976 ident: 1687_CR39 publication-title: Solar Phys. doi: 10.1007/BF00206193 – volume: 464 start-page: 999 year: 1996 ident: 1687_CR53 publication-title: Astrophys. J. doi: 10.1086/177387 – volume: 722 start-page: 1539 issue: 2 year: 2010 ident: 1687_CR37 publication-title: Astrophys. J. doi: 10.1088/0004-637X/722/2/1539 – volume: 24 start-page: 1911 issue: 15 year: 1997 ident: 1687_CR43 publication-title: Geophys. Res. Lett. doi: 10.1029/97GL01878 – volume: 528 start-page: 526 issue: 7583 year: 2015 ident: 1687_CR60 publication-title: Nature doi: 10.1038/nature16188 – volume: 86 start-page: 6673 issue: A8 year: 1981 ident: 1687_CR13 publication-title: J. Geophys. Res. doi: 10.1029/JA086iA08p06673 – volume: 635 year: 2020 ident: 1687_CR17 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201936664 – volume: 552 start-page: 833 issue: 2 year: 2001 ident: 1687_CR58 publication-title: Astrophys. J. doi: 10.1086/320559 – volume: 31 issue: 18 year: 2004 ident: 1687_CR69 publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020958 – volume: 864 start-page: 89 issue: 1 year: 2018 ident: 1687_CR38 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aad68c – volume: 471 start-page: 745 issue: 1 year: 1999 ident: 1687_CR23 publication-title: AIP Conf. Proc. doi: 10.1063/1.58724 – volume: 492 issue: 2 year: 2008 ident: 1687_CR3 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:200811131 – volume: 120 start-page: 89 issue: 2 year: 1960 ident: 1687_CR24 publication-title: Mon. Not. Roy. Astron. Soc. doi: 10.1093/mnras/120.2.89 – volume: 17 start-page: 297 issue: 1 year: 1981 ident: 1687_CR31 publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091928108243687 – volume: 93 start-page: 7217 issue: A7 year: 1988 ident: 1687_CR12 publication-title: J. Geophys. Res. doi: 10.1029/JA093iA07p07217 – volume: 106 start-page: 10581 issue: A6 year: 2001 ident: 1687_CR59 publication-title: J. Geophys. Res. doi: 10.1029/2000JA900170 – volume: 67 year: 2003 ident: 1687_CR9 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.036405 – volume: 522 start-page: 1190 issue: 2 year: 1999 ident: 1687_CR51 publication-title: Astrophys. J. doi: 10.1086/307678 – volume: 284 start-page: 245 issue: 1 year: 2013 ident: 1687_CR8 publication-title: Solar Phys. doi: 10.1007/s11207-012-0176-5 – volume: 469 start-page: 954 year: 1996 ident: 1687_CR49 publication-title: Astrophys. J. doi: 10.1086/177842 – volume: 34 start-page: 20 issue: 9 year: 1981 ident: 1687_CR73 publication-title: Phys. Today doi: 10.1063/1.2914744 – volume: 585 start-page: 1073 issue: 2 year: 2003 ident: 1687_CR1 publication-title: Astrophys. J. doi: 10.1086/345501 – volume: 185 start-page: 41 issue: 1 year: 1999 ident: 1687_CR7 publication-title: Solar Phys. doi: 10.1023/A:1005141432432 – volume: 71 start-page: 79 issue: 1–2 year: 1979 ident: 1687_CR72 publication-title: Astron. Astrophys. – volume: 861 start-page: 139 issue: 2 year: 2018 ident: 1687_CR64 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aac951 – volume: 64 start-page: 303 issue: 2 year: 1979 ident: 1687_CR30 publication-title: Solar Phys. doi: 10.1007/BF00151441 – volume-title: Magnetohydrodynamics and Spectral Theory year: 1989 ident: 1687_CR48 doi: 10.1007/978-94-009-2561-8 – volume: 609 start-page: 1123 issue: 2 year: 2004 ident: 1687_CR22 publication-title: Astrophys. J. doi: 10.1086/421238 – volume: 95 start-page: 11957 issue: A8 year: 1990 ident: 1687_CR44 publication-title: J. Geophys. Res. doi: 10.1029/JA095iA08p11957 – volume: 455 start-page: 349 issue: 1 year: 2006 ident: 1687_CR18 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20064806 – volume: 602 start-page: 1024 issue: 2 year: 2004 ident: 1687_CR75 publication-title: Astrophys. J. doi: 10.1086/379763 – volume: 28 start-page: 1539 issue: 8 year: 2010 ident: 1687_CR45 publication-title: Ann. Geophys. doi: 10.5194/angeo-28-1539-2010 – volume: 11 start-page: 928 issue: 7 year: 2019 ident: 1687_CR15 publication-title: Symmetry doi: 10.3390/sym11070928 – volume: 87 start-page: 1419 issue: A3 year: 1982 ident: 1687_CR41 publication-title: J. Geophys. Res. doi: 10.1029/JA087iA03p01419 – volume: 705 start-page: 426 issue: 1 year: 2009 ident: 1687_CR88 publication-title: Astrophys. J. doi: 10.1088/0004-637X/705/1/426 – volume: 328 start-page: 743 issue: 8 year: 2007 ident: 1687_CR79 publication-title: Astron. Nachr. doi: 10.1002/asna.200710795 – volume-title: MHD Instabilities year: 1978 ident: 1687_CR6 – volume-title: Physics of Magnetic Flux Ropes. year: 1990 ident: 1687_CR21 doi: 10.1029/GM058p0043 – volume: 83 start-page: 307 issue: 2 year: 1951 ident: 1687_CR54 publication-title: Phys. Rev. doi: 10.1103/PhysRev.83.307 – volume: 228 start-page: 731 year: 1983 ident: 1687_CR25 publication-title: NASA Conf. Publ. – volume: 7 start-page: 5 issue: 1 year: 1954 ident: 1687_CR20 publication-title: Aust. J. Phys. doi: 10.1071/PH540005 – volume: 805 start-page: 168 issue: 2 year: 2015 ident: 1687_CR36 publication-title: Astrophys. J. doi: 10.1088/0004-637X/805/2/168 – volume: 46 start-page: 2370 issue: 7 year: 2018 ident: 1687_CR61 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2018.2811400 – volume: 293 start-page: 65 issue: 4 year: 2018 ident: 1687_CR47 publication-title: Solar Phys. doi: 10.1007/s11207-018-1273-x – volume: 18 year: 2011 ident: 1687_CR67 publication-title: Phys. Plasmas doi: 10.1063/1.3647567 – volume: 60 start-page: 1466 year: 2017 ident: 1687_CR32 publication-title: Adv. Sci. China. Earth Sci. doi: 10.1007/s11430-016-9052-1 – volume: 104 start-page: 6899 issue: A4 year: 1999 ident: 1687_CR27 publication-title: J. Geophys. Res. doi: 10.1029/1999JA900002 – volume: 117 issue: A6 year: 2012 ident: 1687_CR62 publication-title: J. Geophys. Res. doi: 10.1029/2011JA017243 – volume: 30 issue: 20 year: 2003 ident: 1687_CR71 publication-title: Geophys. Res. Lett. doi: 10.1029/2003GL017692 – volume: 1 start-page: 421 year: 1958 ident: 1687_CR40 publication-title: Phys. Fluids doi: 10.1063/1.1724359 – volume: 733 issue: 2 year: 2011 ident: 1687_CR84 publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/733/2/L23 – volume: 121 start-page: 9316 issue: 10 year: 2016 ident: 1687_CR85 publication-title: J. Geophys. Res. doi: 10.1002/2016JA023075 – volume: 44 start-page: 489 year: 1958 ident: 1687_CR87 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.44.6.489 – volume: 617 start-page: 589 issue: 1 year: 2004 ident: 1687_CR55 publication-title: Astrophys. J. doi: 10.1086/424564 – volume: 294 start-page: 89 issue: 7 year: 2019 ident: 1687_CR65 publication-title: Solar Phys. doi: 10.1007/s11207-019-1477-8 – volume: 6 start-page: 545 year: 1958 ident: 1687_CR74 publication-title: J. Exp. Theor. Phys. – volume: 630 issue: 1 year: 2005 ident: 1687_CR78 publication-title: Astrophys. J. Lett. doi: 10.1086/462412 – volume: 543 year: 2012 ident: 1687_CR4 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201219311 – volume: 597 year: 2017 ident: 1687_CR82 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201629282 – volume: 284 start-page: 105 issue: 1 year: 2013 ident: 1687_CR16 publication-title: Solar Phys. doi: 10.1007/s11207-013-0224-9 – volume: 294 start-page: 172 issue: 12 year: 2019 ident: 1687_CR19 publication-title: Solar Phys. doi: 10.1007/s11207-019-1564-x – volume: 24 start-page: 215 issue: 1 year: 2006 ident: 1687_CR46 publication-title: Ann. Geophys. doi: 10.5194/angeo-24-215-2006 – volume: 116 issue: A1 year: 2011 ident: 1687_CR35 publication-title: J. Geophys. Res. doi: 10.1029/2010JA015328 – volume: 507 start-page: 404 issue: 1 year: 1998 ident: 1687_CR50 publication-title: Astrophys. J. doi: 10.1086/306299 – volume: 790 start-page: 125 issue: 2 year: 2014 ident: 1687_CR76 publication-title: Astrophys. J. doi: 10.1088/0004-637X/790/2/125 – volume: 793 start-page: 53 issue: 1 year: 2014 ident: 1687_CR34 publication-title: Astrophys. J. doi: 10.1088/0004-637X/793/1/53 – volume: 635 year: 2020 ident: 1687_CR42 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201937404 – volume-title: Physics of Magnetic Flux Ropes year: 1990 ident: 1687_CR68 doi: 10.1029/GM058p0001 – volume: 295 year: 2020 ident: 1687_CR5 publication-title: Solar Phys. doi: 10.1007/s11207-020-01672-6 – volume: 107 start-page: 1002 issue: A1 year: 2002 ident: 1687_CR29 publication-title: J. Geophys. Res. doi: 10.1029/2001JA900100 – volume: 361 start-page: 690 year: 1990 ident: 1687_CR56 publication-title: Astrophys. J. doi: 10.1086/169232 – volume: 29 start-page: 1637 issue: 13 year: 2002 ident: 1687_CR28 publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL013875 – volume: 128 start-page: 2016 year: 1962 ident: 1687_CR83 publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.2016 – volume-title: Physics of Magnetic Flux Ropes. year: 1990 ident: 1687_CR26 doi: 10.1029/GM058p0343 – volume-title: Algorithms for Minimization Without Derivatives year: 2013 ident: 1687_CR11 |
SSID | ssj0010075 |
Score | 2.3853686 |
Snippet | Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Astrophysics and Astroparticles Atmospheric Sciences Chirality Coronal mass ejection Editors’ Choice Fluctuations Geomagnetic activity Geomagnetism Helicity Heliosphere Laboratories Magnetic fields Magnetic flux Magnetic structure Magnetism Numerical methods Physics Physics and Astronomy Plasma Solar Orbiter (ESA) Solar orbits Solar physics Solar probes Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Stability analysis Towards Future Research on Space Weather Drivers |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1NS8MwNOhE8CJ-sumUHMSLFtuuyZqT-LEhijLHBruVNGm8zHbaDZ2_3vfadENBb4G0Obzv70fIiS8TYZSWDi4dcAKjmCMU9spo4aqWK33hY3Py4xO_Gwb3IzayAbfcllVWMrEQ1DpTGCO_AFUtGFCL515O3hzcGoXZVbtCY5WsgQgOwflau-489fqLPIJbjtrF_JcDvnto22bK5jnPxzCdj4VZHFjt66dqWtqbv1KkhebpbpFNazLSqxLH22QlSXdI_SrHIHb2OqentDiXMYp8h6z3ytMuea5GjtDMULD0KCgZRAp9AA-Ugp1ZVMbO8fbWLkqZjud08IG41_RRvqTY40i749kn7WeTJN8jw25ncHPn2B0KjgLmmjpcgwfaUqAK267xPPCjRSi4iAPjGmHaXKgEDAiVaNl2wziIw1AyI0KtpOTMcNHaJ7U0S5M6oZiS5IwxPw5wSBeTvJVwKbUyxgenSjeIV4EvUnbAOO65GEfL0cgI8ghAHhUgj74a5Gzxz6Qcr_Hv180KK5FltTxaEkaDnFeYWl7__drB_68dkg2_IA6sJ2uS2vR9lhyBATKNjy2VfQMScdan priority: 102 providerName: ProQuest |
Title | Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes |
URI | https://link.springer.com/article/10.1007/s11207-020-01687-z https://www.proquest.com/docview/2509596310 |
Volume | 295 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6sIngRn7Q-Sg7iRRd20026OVZtFbWitQU9Ldnsxkttxa1o_fXO7MOiqOApgWQDO5Nkvsm8APa4TpQ1sXao6IDjWyMcZShWJlauabiaK07Byd0reTbwz-_EXREUlpbe7qVJMrupZ8FuHqdnNU6OVBKPxnsFFgTp7riLB7z1aTtw8_S6ZPNyUF8PilCZn9f4Ko5mGPObWTSTNp0VWC5gImvlfF2FuWS0BtVWSg_X48cp22dZP3-XSNdg8TrvrcNNmWaEjS1DdMdQsBAj2AX-M0NsmXnDTmn0pCiOMhlOWf-V-B2zrn4YUVwj6wxf3lhv_JSkGzDotPvHZ05RN8ExeKAmjoxR62wYFH9N13oe6s4qUFJFvnWtsk2pTIKgwSSxbrpB5EdBoIVVQWy0lsJK1diE-dF4lFSBkRlSCiF45FNiLqFlI5Fax8ZajopUXAOvJF9oiqTiVNtiGM7SIRPJQyR5mJE8fK_Bwec3T3lKjT9n75RcCYvjlYaI25TAq8Nza3BYcmo2_PtqW_-bvg1LPNss5FO2A_OT55dkF0HIJKpDJeic1mGhddK9vKX29P6ije1R--q6V8925AcC49hY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hKtReUEtbEQrtHtpeWqv22rvxHhBChRAagtoqSNzc9T64pHHAQRB-FL-RGT-IqFRu3FZaew-z3-y8ZwA-cu2UN1YHNHQgSLwRgTJUK2NVaOJQc8WpOHl4LPsnyY9TcboEt20tDKVVtm9i9VDbwpCP_BuKaiUQLVG4Mz0PaGoURVfbERo1LAZufoUmW7l9uIf3-4nz3v7oez9opgoEBuE2C6RFmyw2KBy6oY8itCxVqqTKEx965btSGYci1Tiru2GaJ3maauFVao3WUnhJzZfwyX-WxLEijkp7B_dRi7Bu7EvRtiBUcdoU6dSlehEnpyCnNDCJjH3zUBAutNt_ArKVnOu9hNVGQWW7NaJewZKbrMH6bkku8-LvnH1m1br2iJRrsPKzXr2GX22DE1Z4hnolQ5FGEGADtHcZarVVHu6cdveasSyz8ZyNrghplg312YQqKllvfHnNfhdTV76Bkyeh7VtYnhQTtw6MAqBSCMHzhFqCCS1jJ7W2xnuOJpztQNSSLzNNO3OaqjHOFo2YieQZkjyrSJ7ddODL_T_TupnHo19vtreSNYxdZgsYduBre1OL7f-ftvH4aR_geX80PMqODo8H7-AFr4BCmWybsDy7uHRbqPrM8vcV3hj8eWqA3wFqchOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3djxIxEJ8oRuOLUdTAidqHiy-6Ybdsy_aRHEdOOQgaSHjbdNvtveBCjiUKf_3N7AfoRU18a9Juk52ZdmY6M78BOOc6Vc5Y7VHTAS90RnjKUK2MVb7p-ZorTsXJk6m8WoRflmL5SxV_ke1ehyTLmgZCacry7sa67qnwLeD0xMYpqUriMTk8hEd4HQck1ws-OMYR_BJql-JfHvruUVU28-c9fldNJ3vzXoi00Dyj5_CsMhnZoOTxC3iQZk1oDbb0iL3-vmcfWDEu3yi2TXg8K0cv4WsNOcLWjqGlx1DJEFPYGP-foZ1ZZMbuaXZYNUrJV3s2_0G8t2yibzKqcWSj1e4n-7bepNtXsBhdzi-uvKqHgmeQGrknLXqgPYOqsO-7IEA_WkVKqiR0vlOuL5VJ0YAwqdV9P0rCJIq0cCqyRmspnFS919DI1lnaAkYhSSmE4ElIIF1Cy14qtbbGOY5OlW1DUJMvNhXAOPW5WMUnaGQieYwkjwuSx4c2fDx-synhNf65ulNzJa6O2jZGG04JvEYCvw2fak6dpv--29n_LX8PT2bDUXz9eTp-A095ITeUataBRn67S9-ibZIn7wrxuwOa1tnf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Helical+Kink+Stability+of+Differently+Twisted+Magnetic+Flux+Ropes&rft.jtitle=Solar+physics&rft.au=Florido-Llinas%2C+M.&rft.au=Nieves-Chinchilla%2C+T.&rft.au=Linton%2C+M.+G.&rft.date=2020-09-01&rft.issn=0038-0938&rft.eissn=1573-093X&rft.volume=295&rft.issue=9&rft_id=info:doi/10.1007%2Fs11207-020-01687-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11207_020_01687_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0938&client=summon |