Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evoluti...

Full description

Saved in:
Bibliographic Details
Published inSolar physics Vol. 295; no. 9
Main Authors Florido-Llinas, M., Nieves-Chinchilla, T., Linton, M. G.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0038-0938
1573-093X
DOI10.1007/s11207-020-01687-z

Cover

Loading…
Abstract Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretical study of the conditions under which MFRs with different twist profiles are kink stable and thereby shed some light on the aforementioned aspects. The magnetic field is modeled according to the circular–cylindrical analytical flux rope model in Nieves-Chinchilla et al. ( Astrophys. J. 823 , 27, 2016 ) as well as the Lundquist and Gold–Hoyle models, and the kink stability is analyzed with a numerical method that has been developed based on Linton, Longcope, and Fisher ( Astrophys. J. 469 , 954, 1996 ). The results are discussed in relation to MFR rotations, magnetic forces, the reversed chirality scenario, and the expansion throughout the heliosphere, among others, providing a theoretical background to improve the current understanding of the internal magnetic configuration of coronal mass ejections (CMEs). The data obtained by new missions like Parker Solar Probe or Solar Orbiter will give the opportunity to explore these results and ideas by observing MFRs closer than ever to the Sun.
AbstractList Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretical study of the conditions under which MFRs with different twist profiles are kink stable and thereby shed some light on the aforementioned aspects. The magnetic field is modeled according to the circular–cylindrical analytical flux rope model in Nieves-Chinchilla et al. ( Astrophys. J. 823 , 27, 2016 ) as well as the Lundquist and Gold–Hoyle models, and the kink stability is analyzed with a numerical method that has been developed based on Linton, Longcope, and Fisher ( Astrophys. J. 469 , 954, 1996 ). The results are discussed in relation to MFR rotations, magnetic forces, the reversed chirality scenario, and the expansion throughout the heliosphere, among others, providing a theoretical background to improve the current understanding of the internal magnetic configuration of coronal mass ejections (CMEs). The data obtained by new missions like Parker Solar Probe or Solar Orbiter will give the opportunity to explore these results and ideas by observing MFRs closer than ever to the Sun.
Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretical study of the conditions under which MFRs with different twist profiles are kink stable and thereby shed some light on the aforementioned aspects. The magnetic field is modeled according to the circular–cylindrical analytical flux rope model in Nieves-Chinchilla et al. (Astrophys. J.823, 27, 2016) as well as the Lundquist and Gold–Hoyle models, and the kink stability is analyzed with a numerical method that has been developed based on Linton, Longcope, and Fisher (Astrophys. J.469, 954, 1996). The results are discussed in relation to MFR rotations, magnetic forces, the reversed chirality scenario, and the expansion throughout the heliosphere, among others, providing a theoretical background to improve the current understanding of the internal magnetic configuration of coronal mass ejections (CMEs). The data obtained by new missions like Parker Solar Probe or Solar Orbiter will give the opportunity to explore these results and ideas by observing MFRs closer than ever to the Sun.
ArticleNumber 118
Author Florido-Llinas, M.
Nieves-Chinchilla, T.
Linton, M. G.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0001-5834-9836
  surname: Florido-Llinas
  fullname: Florido-Llinas, M.
  email: marta.florido@hotmail.com
  organization: Interdisciplinary Higher Education Center (CFIS), Polytechnic University of Catalonia
– sequence: 2
  givenname: T.
  orcidid: 0000-0003-0565-4890
  surname: Nieves-Chinchilla
  fullname: Nieves-Chinchilla, T.
  organization: Heliophysics Science Division, NASA Goddard Space Flight Center
– sequence: 3
  givenname: M. G.
  orcidid: 0000-0002-4459-7510
  surname: Linton
  fullname: Linton, M. G.
  organization: Naval Research Laboratory
BookMark eNp9kE1LAzEQhoNUsFb_gKeA59XJxt0kR_GroiJ-gbeQTSc1dd2tSYquv96tFQQPPc3AvM8w82yTQdM2SMgegwMGIA4jYzmIDHLIgJVSZF8bZMgKwTNQ_HlAhgBcLnu5RbZjnAEssWJI7o4bU3fRR9o6ml6QjrH21tT0yjev9CGZytc-dcvpqXcOAzap7ujjh48JJ_TGTBtM3tLzevFJ79s5xh2y6Uwdcfe3jsjT-dnjyTi7vr24PDm-zixnKmXlRHLBrUUU4BjDKldSlao6cuCUE6WyyERhcWIEyOqoktIUTsmJNaYsXKn4iOyv9s5D-77AmPSsXYT-m6jzAlShSs6gT8lVyoY2xoBOW59M8m2TgvG1ZqCXJvRKoO4F6h-B-qtH83_oPPg3E7r1EF9BsQ83Uwx_V62hvgHXQIYr
CitedBy_id crossref_primary_10_1007_s11214_025_01138_w
crossref_primary_10_1051_0004_6361_202142966
crossref_primary_10_3389_fspas_2023_1114838
crossref_primary_10_1007_s11207_021_01919_w
crossref_primary_10_1029_2020JA028911
crossref_primary_10_1029_2020JA028966
crossref_primary_10_3847_1538_4357_ad3206
crossref_primary_10_1093_mnras_stab801
crossref_primary_10_3847_1538_4357_ac590b
crossref_primary_10_3389_fspas_2022_1064175
crossref_primary_10_1051_0004_6361_202245062
Cites_doi 10.1086/421238
10.1007/s11207-019-1477-8
10.1029/2001JA900100
10.1086/424564
10.1038/nature16188
10.1029/JA086iA08p06673
10.1007/s11207-012-0176-5
10.1007/s11207-013-0224-9
10.3847/1538-4357/aad68c
10.1029/GM058p0001
10.1051/0004-6361/201937404
10.1029/2000JA900170
10.1029/GM058p0043
10.1007/BF00151441
10.1088/0004-637X/805/2/168
10.1086/169232
10.3847/0004-637X/823/1/27
10.1051/0004-6361/201629282
10.1029/JA093iA07p07217
10.1029/97GL01878
10.1007/s11207-020-01672-6
10.3847/1538-4357/aac951
10.1023/A:1005141432432
10.1063/1.2914744
10.1007/s11207-016-0941-y
10.1086/177842
10.1007/s11207-019-1564-x
10.1002/2017JA024971
10.1007/s11207-018-1273-x
10.1071/PH540005
10.1007/s11430-016-9052-1
10.1080/03091928108243687
10.1063/1.3647567
10.1029/JA087iA03p01419
10.1029/JA095iA08p11957
10.1051/0004-6361/201936664
10.1086/462412
10.1086/521521
10.1029/GM058p0343
10.1007/978-94-009-2561-8
10.1103/PhysRev.128.2016
10.1007/BF00206193
10.1002/2016JA023075
10.5194/angeo-28-1539-2010
10.1086/177387
10.1002/2015JA021133
10.1051/0004-6361:20064806
10.3847/0004-637X/829/1/24
10.1088/0004-637X/705/1/426
10.1007/978-94-009-9100-2_32
10.1051/0004-6361/201219311
10.1088/0004-637X/790/2/125
10.5194/angeo-24-215-2006
10.1086/345501
10.1088/0004-637X/793/1/53
10.1029/2004GL020958
10.1086/167766
10.1051/0004-6361:200811131
10.1088/2041-8205/733/2/L23
10.1063/1.1724359
10.1029/2003GL017692
10.1029/2001GL013875
10.1002/asna.200710795
10.1073/pnas.44.6.489
10.1086/306563
10.1103/PhysRevE.67.036405
10.1063/1.58724
10.1109/TPS.2018.2811400
10.1093/mnras/120.2.89
10.1086/320559
10.1029/2010JA015328
10.1098/rspa.1958.0023
10.3390/sym11070928
10.1086/306299
10.1029/1999JA900002
10.1088/0004-637X/722/2/1539
10.1103/PhysRev.83.307
10.1086/307678
10.1086/379763
10.1029/2011JA017243
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11207-020-01687-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1573-093X
ExternalDocumentID 10_1007_s11207_020_01687_z
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAK
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
OVD
P19
P62
P9T
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNP
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7Y
Z7Z
Z8M
Z8S
Z8T
ZMTXR
~02
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
7XB
8FD
8FK
ABRTQ
H8D
KL.
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-6d8373ccee70f11eb298969b4f0f9f769ce175ceda708b4b88a5f98dcaa65f693
IEDL.DBID U2A
ISSN 0038-0938
IngestDate Fri Jul 25 22:55:45 EDT 2025
Tue Jul 01 04:31:12 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Fri Feb 21 02:36:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Coronal mass ejections
Flux ropes
Twist distribution
Kink instability
Magnetic fields
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6d8373ccee70f11eb298969b4f0f9f769ce175ceda708b4b88a5f98dcaa65f693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5834-9836
0000-0003-0565-4890
0000-0002-4459-7510
PQID 2509596310
PQPubID 105618
ParticipantIDs proquest_journals_2509596310
crossref_citationtrail_10_1007_s11207_020_01687_z
crossref_primary_10_1007_s11207_020_01687_z
springer_journals_10_1007_s11207_020_01687_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle A Journal for Solar and Solar-Stellar Research and the Study of Solar-Terrestrial Physics
PublicationTitle Solar physics
PublicationTitleAbbrev Sol Phys
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Lynch, Antiochos, MacNeice, Zurbuchen, Fisk (CR55) 2004; 617
Romashets, Vandas (CR71) 2003; 30
Vourlidas, Colaninno, Nieves-Chinchilla, Stenborg (CR84) 2011; 733
Berdichevsky, Lepping, Farrugia (CR9) 2003; 67
Cremades, Iglesias, Merenda (CR17) 2020; 635
Brent (CR11) 2013
Aulanier, Janvier, Schmieder (CR4) 2012; 543
Kazachenko, Canfield, Longcope, Qiu (CR37) 2010; 722
Hu (CR32) 2017; 60
Yurchyshyn, Abramenko, Tripathi (CR88) 2009; 705
Balmaceda, Vourlidas, Stenborg, St. Cyr (CR5) 2020; 295
Chiappinelli (CR15) 2019; 11
Goldstein (CR25) 1983; 228
Vemareddy, Cheng, Ravindra (CR81) 2016; 829
Bennett, Roberts, Narain (CR7) 1999; 185
Kahler, Krucker, Szabo (CR35) 2011; 116
Moore, Labonte (CR57) 1980
Schuessler (CR72) 1979; 71
Oz, Myers, Yamada, Ji, Kulsrud, Xie (CR67) 2011; 18
Hu, Qiu, Dasgupta, Khare, Webb (CR34) 2014; 793
Voslamber, Callebaut (CR83) 1962; 128
Nieves-Chinchilla, Colaninno, Vourlidas, Szabo, Lepping, Boardsen, Anderson, Korth (CR62) 2012; 117
Fan, Gibson (CR22) 2004; 609
Longcope, Fisher, Arendt (CR53) 1996; 464
Hidalgo, Nieves-Chinchilla, Cid (CR28) 2002; 29
Larson, Lin, McTiernan, McFadden, Ergun, McCarthy, Rème, Sanderson, Kaiser, Lepping, Mazur (CR43) 1997; 24
Amari, Luciani, Aly, Mikic, Linker (CR1) 2003; 585
Rinne (CR70) 2009
Bernstein, Frieman, Kruskal, Kulsrud, Chandrasekhar (CR10) 1958; 244
Linton, Longcope, Fisher (CR49) 1996; 469
Burlaga (CR12) 1988; 93
Einaudi (CR21) 1990
Hau, Sonnerup (CR27) 1999; 104
Longcope, Beveridge (CR52) 2007; 669
Mikic, Schnack, van Hoven (CR56) 1990; 361
Burlaga, Sittler, Mariani, Schwenn (CR13) 1981; 86
Kay, Opher, Evans (CR36) 2015; 805
Linton, Dahlburg, Fisher, Longcope (CR50) 1998; 507
Dasso, Mandrini, Démoulin, Luoni (CR18) 2006; 455
Gosling (CR26) 1990
Hu, Qiu, Krucker (CR33) 2015; 120
Myers, Yamada, Ji, Yoo, Fox, Jara-Almonte, Savcheva, Deluca (CR60) 2015; 528
Hidalgo, Cid, Vinas, Sequeiros (CR29) 2002; 107
Lanabere, Dasso, Démoulin, Janvier, Rodriguez, Masías-Meza (CR42) 2020; 635
Farrugia, Janoo, Torbert, Quinn, Ogilvie, Lepping, Fitzenreiter, Steinberg, Lazarus, Lin, Larson, Dasso, Gratton, Lin, Berdichevsky (CR23) 1999; 471
Knizhnik, Linton, DeVore (CR38) 2018; 864
van Ballegooijen, Martens (CR80) 1989; 343
Wang, Shen, Liu, Liu, Guo, Li, Xu, Hu, Zhang (CR86) 2018; 123
Hood, Priest (CR31) 1981; 17
Lepping, Wu (CR45) 2010; 28
Antiochos, DeVore, Klimchuk (CR2) 1999; 510
Török, Kliem (CR79) 2007; 328
Priest (CR68) 1990
Kutchko, Briggs, Armstrong (CR41) 1982; 87
Nieves-Chinchilla, Linton, Hidalgo, Vourlidas, Savani, Szabo, Farrugia, Yu (CR63) 2016; 823
Hood, Priest (CR30) 1979; 64
Berdichevsky (CR8) 2013; 284
Vemareddy, Démoulin (CR82) 2017; 597
Lepping, Jones, Burlaga (CR44) 1990; 95
Démoulin, Dasso, Janvier, Lanabere (CR19) 2019; 294
Titov, Démoulin (CR77) 1999; 351
Subramanian, Arunbabu, Vourlidas, Mauriya (CR76) 2014; 790
Nieves-Chinchilla, Linton, Hidalgo, Vourlidas (CR64) 2018; 861
Lepping, Berdichevsky, Wu, Szabo, Narock, Mariani, Lazarus, Quivers (CR46) 2006; 24
Török, Kliem (CR78) 2005; 630
Moore, Sterling, Hudson, Lemen (CR58) 2001; 552
Archontis, Török (CR3) 2008; 492
Schwarzschild (CR73) 1981; 34
Kruskal, Johnson, Gottlieb, Goldman (CR40) 1958; 1
Nieves-Chinchilla, Jian, Balmaceda, Vourlidas, dos Santos, Szabo (CR65) 2019; 294
Sterling, Moore (CR75) 2004; 602
Nieves-Chinchilla (CR61) 2018; 46
Cho, Park, Marubashi, Gopalswamy, Akiyama, Yashiro, Kim, Lim (CR16) 2013; 284
Lifschitz (CR48) 1989
Shafranov (CR74) 1958; 6
Wang, Zhuang, Hu, Liu, Shen, Chi (CR85) 2016; 121
Cabello, Cremades, Balmaceda, Dohmen (CR14) 2016; 291
Kopp, Pneuman (CR39) 1976; 50
Linton, Fisher, Dahlburg, Fan (CR51) 1999; 522
Lundquist (CR54) 1951; 83
CR66
Richardson, Cane (CR69) 2004; 31
Bateman (CR6) 1978
Mulligan, Russell (CR59) 2001; 106
Woltjer (CR87) 1958; 44
Dungey, Loughhead (CR20) 1954; 7
Gold, Hoyle (CR24) 1960; 120
Lepping, Wu, Berdichevsky, Szabo (CR47) 2018; 293
P. Démoulin (1687_CR19) 2019; 294
V.D. Shafranov (1687_CR74) 1958; 6
I.B. Bernstein (1687_CR10) 1958; 244
D.B. Berdichevsky (1687_CR9) 2003; 67
L. Burlaga (1687_CR13) 1981; 86
L.F. Burlaga (1687_CR12) 1988; 93
S.K. Antiochos (1687_CR2) 1999; 510
M. Schuessler (1687_CR72) 1979; 71
M.G. Linton (1687_CR51) 1999; 522
D. Voslamber (1687_CR83) 1962; 128
Z. Mikic (1687_CR56) 1990; 361
H. Cremades (1687_CR17) 2020; 635
Q. Hu (1687_CR34) 2014; 793
P. Vemareddy (1687_CR82) 2017; 597
M.A. Hidalgo (1687_CR28) 2002; 29
R.P. Lepping (1687_CR47) 2018; 293
T. Nieves-Chinchilla (1687_CR65) 2019; 294
I.G. Richardson (1687_CR69) 2004; 31
H. Rinne (1687_CR70) 2009
V. Lanabere (1687_CR42) 2020; 635
K. Bennett (1687_CR7) 1999; 185
M.G. Linton (1687_CR50) 1998; 507
M.G. Linton (1687_CR49) 1996; 469
P. Vemareddy (1687_CR81) 2016; 829
T. Gold (1687_CR24) 1960; 120
L. Woltjer (1687_CR87) 1958; 44
Y. Wang (1687_CR85) 2016; 121
L.N. Hau (1687_CR27) 1999; 104
V.S. Titov (1687_CR77) 1999; 351
T. Nieves-Chinchilla (1687_CR63) 2016; 823
E.P. Romashets (1687_CR71) 2003; 30
R.L. Moore (1687_CR58) 2001; 552
M.D. Kruskal (1687_CR40) 1958; 1
A. Vourlidas (1687_CR84) 2011; 733
V. Archontis (1687_CR3) 2008; 492
A.E. Lifschitz (1687_CR48) 1989
R.A. Kopp (1687_CR39) 1976; 50
V. Yurchyshyn (1687_CR88) 2009; 705
R. Chiappinelli (1687_CR15) 2019; 11
G. Einaudi (1687_CR21) 1990
D.W. Longcope (1687_CR52) 2007; 669
S.W. Kahler (1687_CR35) 2011; 116
E. Oz (1687_CR67) 2011; 18
P. Subramanian (1687_CR76) 2014; 790
B.M. Schwarzschild (1687_CR73) 1981; 34
D.E. Larson (1687_CR43) 1997; 24
Y. Fan (1687_CR22) 2004; 609
C. Kay (1687_CR36) 2015; 805
R.P. Lepping (1687_CR45) 2010; 28
G. Bateman (1687_CR6) 1978
E.R. Priest (1687_CR68) 1990
D.B. Berdichevsky (1687_CR8) 2013; 284
J. Dungey (1687_CR20) 1954; 7
K.J. Knizhnik (1687_CR38) 2018; 864
1687_CR66
S. Dasso (1687_CR18) 2006; 455
S. Lundquist (1687_CR54) 1951; 83
R.P. Lepping (1687_CR44) 1990; 95
Q. Hu (1687_CR33) 2015; 120
D.W. Longcope (1687_CR53) 1996; 464
T. Amari (1687_CR1) 2003; 585
G. Aulanier (1687_CR4) 2012; 543
I. Cabello (1687_CR14) 2016; 291
K.-S. Cho (1687_CR16) 2013; 284
T. Török (1687_CR78) 2005; 630
M.D. Kazachenko (1687_CR37) 2010; 722
T. Mulligan (1687_CR59) 2001; 106
Y. Wang (1687_CR86) 2018; 123
C.E. Myers (1687_CR60) 2015; 528
M.A. Hidalgo (1687_CR29) 2002; 107
T. Nieves-Chinchilla (1687_CR61) 2018; 46
T. Nieves-Chinchilla (1687_CR64) 2018; 861
R.P. Lepping (1687_CR46) 2006; 24
C.J. Farrugia (1687_CR23) 1999; 471
H. Goldstein (1687_CR25) 1983; 228
A.W. Hood (1687_CR31) 1981; 17
L.A. Balmaceda (1687_CR5) 2020; 295
A.C. Sterling (1687_CR75) 2004; 602
T. Nieves-Chinchilla (1687_CR62) 2012; 117
F.J. Kutchko (1687_CR41) 1982; 87
B.J. Lynch (1687_CR55) 2004; 617
A.W. Hood (1687_CR30) 1979; 64
T. Török (1687_CR79) 2007; 328
J.T. Gosling (1687_CR26) 1990
R.L. Moore (1687_CR57) 1980
A.A. van Ballegooijen (1687_CR80) 1989; 343
R.P. Brent (1687_CR11) 2013
Q. Hu (1687_CR32) 2017; 60
References_xml – volume: 609
  start-page: 1123
  issue: 2
  year: 2004
  ident: CR22
  article-title: Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes
  publication-title: Astrophys. J.
  doi: 10.1086/421238
– volume: 294
  start-page: 89
  issue: 7
  year: 2019
  ident: CR65
  article-title: Unraveling the internal magnetic field structure of the Earth-directed interplanetary coronal mass ejections during 1995–2015
  publication-title: Solar Phys.
  doi: 10.1007/s11207-019-1477-8
– volume: 107
  start-page: 1002
  issue: A1
  year: 2002
  ident: CR29
  article-title: A non-force-free approach to the topology of magnetic clouds in the solar wind
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JA900100
– volume: 617
  start-page: 589
  issue: 1
  year: 2004
  ident: CR55
  article-title: Observable properties of the breakout model for coronal mass ejections
  publication-title: Astrophys. J.
  doi: 10.1086/424564
– volume: 528
  start-page: 526
  issue: 7583
  year: 2015
  ident: CR60
  article-title: A dynamic magnetic tension force as the cause of failed solar eruptions
  publication-title: Nature
  doi: 10.1038/nature16188
– volume: 86
  start-page: 6673
  issue: A8
  year: 1981
  ident: CR13
  article-title: Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA086iA08p06673
– volume: 284
  start-page: 245
  issue: 1
  year: 2013
  ident: CR8
  article-title: On fields and mass constraints for the uniform propagation of magnetic-flux ropes undergoing isotropic expansion
  publication-title: Solar Phys.
  doi: 10.1007/s11207-012-0176-5
– volume: 284
  start-page: 105
  issue: 1
  year: 2013
  ident: CR16
  article-title: Comparison of helicity signs in interplanetary CMEs and their solar source regions
  publication-title: Solar Phys.
  doi: 10.1007/s11207-013-0224-9
– year: 2013
  ident: CR11
  publication-title: Algorithms for Minimization Without Derivatives
– volume: 864
  start-page: 89
  issue: 1
  year: 2018
  ident: CR38
  article-title: The role of twist in kinked flux rope emergence and delta-spot formation
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aad68c
– year: 1990
  ident: CR68
  article-title: The equilibrium of magnetic flux ropes (tutorial lecture)
  publication-title: Physics of Magnetic Flux Ropes
  doi: 10.1029/GM058p0001
– volume: 635
  year: 2020
  ident: CR42
  article-title: Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201937404
– volume: 106
  start-page: 10581
  issue: A6
  year: 2001
  ident: CR59
  article-title: Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: cylindrically symmetric versus nonsymmetric topologies
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA900170
– year: 1990
  ident: CR21
  article-title: Ideal instabilities in a magnetic flux tube
  publication-title: Physics of Magnetic Flux Ropes.
  doi: 10.1029/GM058p0043
– volume: 64
  start-page: 303
  issue: 2
  year: 1979
  ident: CR30
  article-title: Kink instability of solar coronal loops as the cause of solar flares
  publication-title: Solar Phys.
  doi: 10.1007/BF00151441
– volume: 805
  start-page: 168
  issue: 2
  year: 2015
  ident: CR36
  article-title: Global trends of CME deflections based on CME and solar parameters
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/805/2/168
– volume: 361
  start-page: 690
  year: 1990
  ident: CR56
  article-title: Dynamical evolution of twisted magnetic flux tubes. I. Equilibrium and linear stability
  publication-title: Astrophys. J.
  doi: 10.1086/169232
– volume: 823
  start-page: 27
  issue: 1
  year: 2016
  ident: CR63
  article-title: A circular-cylindrical flux-rope analytical model for magnetic clouds
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/823/1/27
– volume: 351
  start-page: 707
  year: 1999
  ident: CR77
  article-title: Basic topology of twisted magnetic configurations in solar flares
  publication-title: Astron. Astrophys.
– volume: 597
  year: 2017
  ident: CR82
  article-title: Successive injection of opposite magnetic helicity in Solar active region NOAA 11928
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201629282
– volume: 6
  start-page: 545
  year: 1958
  ident: CR74
  article-title: On magnetohydrodynamical equilibrium configurations
  publication-title: J. Exp. Theor. Phys.
– volume: 93
  start-page: 7217
  issue: A7
  year: 1988
  ident: CR12
  article-title: Magnetic clouds and force-free fields with constant alpha
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA093iA07p07217
– volume: 24
  start-page: 1911
  issue: 15
  year: 1997
  ident: CR43
  article-title: Tracing the topology of the October 18–20, 1995, magnetic cloud with – keV electrons
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/97GL01878
– volume: 295
  year: 2020
  ident: CR5
  article-title: On the expansion speed of coronal mass ejections. Implications for self-similar evolution
  publication-title: Solar Phys.
  doi: 10.1007/s11207-020-01672-6
– volume: 861
  start-page: 139
  issue: 2
  year: 2018
  ident: CR64
  article-title: Elliptic-cylindrical analytical flux rope model for magnetic clouds
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aac951
– volume: 185
  start-page: 41
  issue: 1
  year: 1999
  ident: CR7
  article-title: Waves in twisted magnetic flux tubes
  publication-title: Solar Phys.
  doi: 10.1023/A:1005141432432
– volume: 34
  start-page: 20
  issue: 9
  year: 1981
  ident: CR73
  article-title: Reversed-field pinch stable 8 msec
  publication-title: Phys. Today
  doi: 10.1063/1.2914744
– volume: 291
  start-page: 1799
  issue: 6
  year: 2016
  ident: CR14
  article-title: First simultaneous views of the axial and lateral perspectives of a coronal mass ejection
  publication-title: Solar Phys.
  doi: 10.1007/s11207-016-0941-y
– volume: 469
  start-page: 954
  year: 1996
  ident: CR49
  article-title: The helical kink instability of isolated, twisted magnetic flux tubes
  publication-title: Astrophys. J.
  doi: 10.1086/177842
– volume: 294
  start-page: 172
  issue: 12
  year: 2019
  ident: CR19
  article-title: Re-analysis of Lepping’s fitting method for magnetic clouds: Lundquist fit reloaded
  publication-title: Solar Phys.
  doi: 10.1007/s11207-019-1564-x
– volume: 123
  start-page: 3238
  issue: 5
  year: 2018
  ident: CR86
  article-title: Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud: twist distribution in an interplanetary MC
  publication-title: J. Geophys. Res.
  doi: 10.1002/2017JA024971
– volume: 293
  start-page: 65
  issue: 4
  year: 2018
  ident: CR47
  article-title: Wind magnetic clouds for the period 2013–2015: model fitting, types, associated shock waves, and comparisons to other periods
  publication-title: Solar Phys.
  doi: 10.1007/s11207-018-1273-x
– volume: 7
  start-page: 5
  issue: 1
  year: 1954
  ident: CR20
  article-title: Twisted magnetic fields in conducting fluids
  publication-title: Aust. J. Phys.
  doi: 10.1071/PH540005
– volume: 60
  start-page: 1466
  year: 2017
  ident: CR32
  article-title: The Grad–Shafranov reconstruction in twenty years: 1996–2016
  publication-title: Adv. Sci. China. Earth Sci.
  doi: 10.1007/s11430-016-9052-1
– volume: 17
  start-page: 297
  issue: 1
  year: 1981
  ident: CR31
  article-title: Critical conditions for magnetic instabilities in force-free coronal loops
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091928108243687
– volume: 18
  year: 2011
  ident: CR67
  article-title: Experimental verification of the Kruskal-Shafranov stability limit in line-tied partial-toroidal plasmas
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3647567
– volume: 87
  start-page: 1419
  issue: A3
  year: 1982
  ident: CR41
  article-title: The bidirectional particle event of October 12, 1977, possibly associated with a magnetic loop
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA087iA03p01419
– volume: 95
  start-page: 11957
  issue: A8
  year: 1990
  ident: CR44
  article-title: Magnetic field structure of interplanetary magnetic clouds at 1 AU
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA095iA08p11957
– volume: 635
  year: 2020
  ident: CR17
  article-title: Asymmetric expansion of coronal mass ejections in the low corona
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201936664
– volume: 630
  issue: 1
  year: 2005
  ident: CR78
  article-title: Confined and ejective eruptions of kink-unstable flux ropes
  publication-title: Astrophys. J. Lett.
  doi: 10.1086/462412
– volume: 669
  start-page: 621
  issue: 1
  year: 2007
  ident: CR52
  article-title: A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare
  publication-title: Astrophys. J.
  doi: 10.1086/521521
– year: 1990
  ident: CR26
  article-title: Coronal mass ejections and magnetic flux ropes in interplanetary space
  publication-title: Physics of Magnetic Flux Ropes.
  doi: 10.1029/GM058p0343
– year: 1989
  ident: CR48
  publication-title: Magnetohydrodynamics and Spectral Theory
  doi: 10.1007/978-94-009-2561-8
– volume: 128
  start-page: 2016
  year: 1962
  ident: CR83
  article-title: Stability of force-free magnetic fields
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.2016
– volume: 50
  start-page: 85
  issue: 1
  year: 1976
  ident: CR39
  article-title: Magnetic reconnection in the corona and the loop prominence phenomenon
  publication-title: Solar Phys.
  doi: 10.1007/BF00206193
– ident: CR66
– volume: 121
  start-page: 9316
  issue: 10
  year: 2016
  ident: CR85
  article-title: On the twists of interplanetary magnetic flux ropes observed at 1 AU
  publication-title: J. Geophys. Res.
  doi: 10.1002/2016JA023075
– year: 2009
  ident: CR70
  publication-title: The Weibull Distribution: A Handbook
– volume: 28
  start-page: 1539
  issue: 8
  year: 2010
  ident: CR45
  article-title: Selection effects in identifying magnetic clouds and the importance of the closest approach parameter
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-28-1539-2010
– volume: 464
  start-page: 999
  year: 1996
  ident: CR53
  article-title: The evolution and fragmentation of rising magnetic flux tubes
  publication-title: Astrophys. J.
  doi: 10.1086/177387
– volume: 120
  start-page: 5266
  issue: 7
  year: 2015
  ident: CR33
  article-title: Magnetic field line lengths inside interplanetary magnetic flux ropes
  publication-title: J. Geophys. Res.
  doi: 10.1002/2015JA021133
– volume: 455
  start-page: 349
  issue: 1
  year: 2006
  ident: CR18
  article-title: A new model-independent method to compute magnetic helicity in magnetic clouds
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20064806
– volume: 829
  start-page: 24
  issue: 1
  year: 2016
  ident: CR81
  article-title: Sunspot rotation as a driver of major solar eruptions in the NOAA active region 12158
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/829/1/24
– volume: 705
  start-page: 426
  issue: 1
  year: 2009
  ident: CR88
  article-title: Rotation of white-light coronal mass ejection structures as inferred from LASCO coronagraph
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/705/1/426
– start-page: 207
  year: 1980
  ident: CR57
  article-title: The filament eruption in the 3B flare of July 29, 1973—onset and magnetic field configuration
  publication-title: Solar and Interplanetary Dynamics
  doi: 10.1007/978-94-009-9100-2_32
– volume: 543
  year: 2012
  ident: CR4
  article-title: The standard flare model in three dimensions—I. Strong-to-weak shear transition in post-flare loops
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201219311
– volume: 790
  start-page: 125
  issue: 2
  year: 2014
  ident: CR76
  article-title: Self-similar expansion of solar coronal mass ejections: implications for Lorentz self-force driving
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/790/2/125
– volume: 228
  start-page: 731
  year: 1983
  ident: CR25
  article-title: On the field configuration in magnetic clouds
  publication-title: NASA Conf. Publ.
– volume: 24
  start-page: 215
  issue: 1
  year: 2006
  ident: CR46
  article-title: A summary of WIND magnetic clouds for years 1995–2003: model-fitted parameters, associated errors and classifications
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-24-215-2006
– volume: 585
  start-page: 1073
  issue: 2
  year: 2003
  ident: CR1
  article-title: Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution
  publication-title: Astrophys. J.
  doi: 10.1086/345501
– volume: 793
  start-page: 53
  issue: 1
  year: 2014
  ident: CR34
  article-title: Structures of interplanetary magnetic flux ropes and comparison with their solar sources
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/793/1/53
– volume: 31
  issue: 18
  year: 2004
  ident: CR69
  article-title: The fraction of interplanetary coronal mass ejections that are magnetic clouds: evidence for a solar cycle variation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020958
– volume: 343
  start-page: 971
  year: 1989
  ident: CR80
  article-title: Formation and eruption of solar prominences
  publication-title: Astrophys. J.
  doi: 10.1086/167766
– volume: 492
  issue: 2
  year: 2008
  ident: CR3
  article-title: Eruption of magnetic flux ropes during flux emergence
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:200811131
– volume: 733
  issue: 2
  year: 2011
  ident: CR84
  article-title: The first observation of a rapidly rotating coronal mass ejection in the middle corona
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/733/2/L23
– volume: 1
  start-page: 421
  year: 1958
  ident: CR40
  article-title: Hydromagnetic instability in a stellarator
  publication-title: Phys. Fluids
  doi: 10.1063/1.1724359
– volume: 30
  issue: 20
  year: 2003
  ident: CR71
  article-title: Force-free field inside a toroidal magnetic cloud
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2003GL017692
– volume: 29
  start-page: 1637
  issue: 13
  year: 2002
  ident: CR28
  article-title: Elliptical cross-section model for the magnetic topology of magnetic clouds
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013875
– volume: 328
  start-page: 743
  issue: 8
  year: 2007
  ident: CR79
  article-title: Numerical simulations of fast and slow coronal mass ejections
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.200710795
– volume: 44
  start-page: 489
  year: 1958
  ident: CR87
  article-title: A theorem on force-free magnetic fields
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.44.6.489
– volume: 510
  start-page: 485
  issue: 1
  year: 1999
  ident: CR2
  article-title: A model for solar coronal mass ejections
  publication-title: Astrophys. J.
  doi: 10.1086/306563
– volume: 67
  year: 2003
  ident: CR9
  article-title: Geometric considerations of the evolution of magnetic flux ropes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.036405
– volume: 471
  start-page: 745
  issue: 1
  year: 1999
  ident: CR23
  article-title: A uniform-twist magnetic flux rope in the solar wind
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.58724
– volume: 46
  start-page: 2370
  issue: 7
  year: 2018
  ident: CR61
  article-title: Modeling heliospheric flux ropes: A comparative study of physical quantities
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2018.2811400
– volume: 120
  start-page: 89
  issue: 2
  year: 1960
  ident: CR24
  article-title: On the origin of solar flares
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/120.2.89
– year: 1978
  ident: CR6
  publication-title: MHD Instabilities
– volume: 552
  start-page: 833
  issue: 2
  year: 2001
  ident: CR58
  article-title: Onset of the magnetic explosion in solar flares and coronal mass ejections
  publication-title: Astrophys. J.
  doi: 10.1086/320559
– volume: 116
  issue: A1
  year: 2011
  ident: CR35
  article-title: Solar energetic electron probes of magnetic cloud field line lengths
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JA015328
– volume: 244
  start-page: 17
  issue: 1236
  year: 1958
  ident: CR10
  article-title: An energy principle for hydromagnetic stability problems
  publication-title: Proc. Roy. Soc. London Ser. A, Math. Phys. Sci.
  doi: 10.1098/rspa.1958.0023
– volume: 11
  start-page: 928
  issue: 7
  year: 2019
  ident: CR15
  article-title: Nonlinear Rayleigh quotients and nonlinear spectral theory
  publication-title: Symmetry
  doi: 10.3390/sym11070928
– volume: 507
  start-page: 404
  issue: 1
  year: 1998
  ident: CR50
  article-title: Nonlinear evolution of kink-unstable magnetic flux tubes and solar -spot active regions
  publication-title: Astrophys. J.
  doi: 10.1086/306299
– volume: 104
  start-page: 6899
  issue: A4
  year: 1999
  ident: CR27
  article-title: Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JA900002
– volume: 722
  start-page: 1539
  issue: 2
  year: 2010
  ident: CR37
  article-title: Sunspot rotation, flare energetics, and flux rope helicity: the Halloween Flare on 2003 October 28
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/722/2/1539
– volume: 83
  start-page: 307
  issue: 2
  year: 1951
  ident: CR54
  article-title: On the stability of magneto-hydrostatic fields
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.83.307
– volume: 71
  start-page: 79
  issue: 1–2
  year: 1979
  ident: CR72
  article-title: Magnetic buoyancy revisited: analytical and numerical results for rising flux tubes
  publication-title: Astron. Astrophys.
– volume: 522
  start-page: 1190
  issue: 2
  year: 1999
  ident: CR51
  article-title: Relationship of the multimode kink instability to -spot formation
  publication-title: Astrophys. J.
  doi: 10.1086/307678
– volume: 602
  start-page: 1024
  issue: 2
  year: 2004
  ident: CR75
  article-title: Evidence for gradual external reconnection before explosive eruption of a solar filament
  publication-title: Astrophys. J.
  doi: 10.1086/379763
– volume: 117
  issue: A6
  year: 2012
  ident: CR62
  article-title: Remote and in situ observations of an unusual Earth-directed coronal mass ejection from multiple viewpoints
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JA017243
– volume-title: The Weibull Distribution: A Handbook
  year: 2009
  ident: 1687_CR70
– volume: 123
  start-page: 3238
  issue: 5
  year: 2018
  ident: 1687_CR86
  publication-title: J. Geophys. Res.
  doi: 10.1002/2017JA024971
– volume: 510
  start-page: 485
  issue: 1
  year: 1999
  ident: 1687_CR2
  publication-title: Astrophys. J.
  doi: 10.1086/306563
– volume: 343
  start-page: 971
  year: 1989
  ident: 1687_CR80
  publication-title: Astrophys. J.
  doi: 10.1086/167766
– volume: 829
  start-page: 24
  issue: 1
  year: 2016
  ident: 1687_CR81
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/829/1/24
– ident: 1687_CR66
– volume: 291
  start-page: 1799
  issue: 6
  year: 2016
  ident: 1687_CR14
  publication-title: Solar Phys.
  doi: 10.1007/s11207-016-0941-y
– volume: 669
  start-page: 621
  issue: 1
  year: 2007
  ident: 1687_CR52
  publication-title: Astrophys. J.
  doi: 10.1086/521521
– volume: 823
  start-page: 27
  issue: 1
  year: 2016
  ident: 1687_CR63
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/823/1/27
– start-page: 207
  volume-title: Solar and Interplanetary Dynamics
  year: 1980
  ident: 1687_CR57
  doi: 10.1007/978-94-009-9100-2_32
– volume: 244
  start-page: 17
  issue: 1236
  year: 1958
  ident: 1687_CR10
  publication-title: Proc. Roy. Soc. London Ser. A, Math. Phys. Sci.
  doi: 10.1098/rspa.1958.0023
– volume: 351
  start-page: 707
  year: 1999
  ident: 1687_CR77
  publication-title: Astron. Astrophys.
– volume: 120
  start-page: 5266
  issue: 7
  year: 2015
  ident: 1687_CR33
  publication-title: J. Geophys. Res.
  doi: 10.1002/2015JA021133
– volume: 50
  start-page: 85
  issue: 1
  year: 1976
  ident: 1687_CR39
  publication-title: Solar Phys.
  doi: 10.1007/BF00206193
– volume: 464
  start-page: 999
  year: 1996
  ident: 1687_CR53
  publication-title: Astrophys. J.
  doi: 10.1086/177387
– volume: 722
  start-page: 1539
  issue: 2
  year: 2010
  ident: 1687_CR37
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/722/2/1539
– volume: 24
  start-page: 1911
  issue: 15
  year: 1997
  ident: 1687_CR43
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/97GL01878
– volume: 528
  start-page: 526
  issue: 7583
  year: 2015
  ident: 1687_CR60
  publication-title: Nature
  doi: 10.1038/nature16188
– volume: 86
  start-page: 6673
  issue: A8
  year: 1981
  ident: 1687_CR13
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA086iA08p06673
– volume: 635
  year: 2020
  ident: 1687_CR17
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201936664
– volume: 552
  start-page: 833
  issue: 2
  year: 2001
  ident: 1687_CR58
  publication-title: Astrophys. J.
  doi: 10.1086/320559
– volume: 31
  issue: 18
  year: 2004
  ident: 1687_CR69
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020958
– volume: 864
  start-page: 89
  issue: 1
  year: 2018
  ident: 1687_CR38
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aad68c
– volume: 471
  start-page: 745
  issue: 1
  year: 1999
  ident: 1687_CR23
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.58724
– volume: 492
  issue: 2
  year: 2008
  ident: 1687_CR3
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:200811131
– volume: 120
  start-page: 89
  issue: 2
  year: 1960
  ident: 1687_CR24
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/120.2.89
– volume: 17
  start-page: 297
  issue: 1
  year: 1981
  ident: 1687_CR31
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091928108243687
– volume: 93
  start-page: 7217
  issue: A7
  year: 1988
  ident: 1687_CR12
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA093iA07p07217
– volume: 106
  start-page: 10581
  issue: A6
  year: 2001
  ident: 1687_CR59
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA900170
– volume: 67
  year: 2003
  ident: 1687_CR9
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.036405
– volume: 522
  start-page: 1190
  issue: 2
  year: 1999
  ident: 1687_CR51
  publication-title: Astrophys. J.
  doi: 10.1086/307678
– volume: 284
  start-page: 245
  issue: 1
  year: 2013
  ident: 1687_CR8
  publication-title: Solar Phys.
  doi: 10.1007/s11207-012-0176-5
– volume: 469
  start-page: 954
  year: 1996
  ident: 1687_CR49
  publication-title: Astrophys. J.
  doi: 10.1086/177842
– volume: 34
  start-page: 20
  issue: 9
  year: 1981
  ident: 1687_CR73
  publication-title: Phys. Today
  doi: 10.1063/1.2914744
– volume: 585
  start-page: 1073
  issue: 2
  year: 2003
  ident: 1687_CR1
  publication-title: Astrophys. J.
  doi: 10.1086/345501
– volume: 185
  start-page: 41
  issue: 1
  year: 1999
  ident: 1687_CR7
  publication-title: Solar Phys.
  doi: 10.1023/A:1005141432432
– volume: 71
  start-page: 79
  issue: 1–2
  year: 1979
  ident: 1687_CR72
  publication-title: Astron. Astrophys.
– volume: 861
  start-page: 139
  issue: 2
  year: 2018
  ident: 1687_CR64
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aac951
– volume: 64
  start-page: 303
  issue: 2
  year: 1979
  ident: 1687_CR30
  publication-title: Solar Phys.
  doi: 10.1007/BF00151441
– volume-title: Magnetohydrodynamics and Spectral Theory
  year: 1989
  ident: 1687_CR48
  doi: 10.1007/978-94-009-2561-8
– volume: 609
  start-page: 1123
  issue: 2
  year: 2004
  ident: 1687_CR22
  publication-title: Astrophys. J.
  doi: 10.1086/421238
– volume: 95
  start-page: 11957
  issue: A8
  year: 1990
  ident: 1687_CR44
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA095iA08p11957
– volume: 455
  start-page: 349
  issue: 1
  year: 2006
  ident: 1687_CR18
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20064806
– volume: 602
  start-page: 1024
  issue: 2
  year: 2004
  ident: 1687_CR75
  publication-title: Astrophys. J.
  doi: 10.1086/379763
– volume: 28
  start-page: 1539
  issue: 8
  year: 2010
  ident: 1687_CR45
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-28-1539-2010
– volume: 11
  start-page: 928
  issue: 7
  year: 2019
  ident: 1687_CR15
  publication-title: Symmetry
  doi: 10.3390/sym11070928
– volume: 87
  start-page: 1419
  issue: A3
  year: 1982
  ident: 1687_CR41
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA087iA03p01419
– volume: 705
  start-page: 426
  issue: 1
  year: 2009
  ident: 1687_CR88
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/705/1/426
– volume: 328
  start-page: 743
  issue: 8
  year: 2007
  ident: 1687_CR79
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.200710795
– volume-title: MHD Instabilities
  year: 1978
  ident: 1687_CR6
– volume-title: Physics of Magnetic Flux Ropes.
  year: 1990
  ident: 1687_CR21
  doi: 10.1029/GM058p0043
– volume: 83
  start-page: 307
  issue: 2
  year: 1951
  ident: 1687_CR54
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.83.307
– volume: 228
  start-page: 731
  year: 1983
  ident: 1687_CR25
  publication-title: NASA Conf. Publ.
– volume: 7
  start-page: 5
  issue: 1
  year: 1954
  ident: 1687_CR20
  publication-title: Aust. J. Phys.
  doi: 10.1071/PH540005
– volume: 805
  start-page: 168
  issue: 2
  year: 2015
  ident: 1687_CR36
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/805/2/168
– volume: 46
  start-page: 2370
  issue: 7
  year: 2018
  ident: 1687_CR61
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2018.2811400
– volume: 293
  start-page: 65
  issue: 4
  year: 2018
  ident: 1687_CR47
  publication-title: Solar Phys.
  doi: 10.1007/s11207-018-1273-x
– volume: 18
  year: 2011
  ident: 1687_CR67
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3647567
– volume: 60
  start-page: 1466
  year: 2017
  ident: 1687_CR32
  publication-title: Adv. Sci. China. Earth Sci.
  doi: 10.1007/s11430-016-9052-1
– volume: 104
  start-page: 6899
  issue: A4
  year: 1999
  ident: 1687_CR27
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JA900002
– volume: 117
  issue: A6
  year: 2012
  ident: 1687_CR62
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JA017243
– volume: 30
  issue: 20
  year: 2003
  ident: 1687_CR71
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2003GL017692
– volume: 1
  start-page: 421
  year: 1958
  ident: 1687_CR40
  publication-title: Phys. Fluids
  doi: 10.1063/1.1724359
– volume: 733
  issue: 2
  year: 2011
  ident: 1687_CR84
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/733/2/L23
– volume: 121
  start-page: 9316
  issue: 10
  year: 2016
  ident: 1687_CR85
  publication-title: J. Geophys. Res.
  doi: 10.1002/2016JA023075
– volume: 44
  start-page: 489
  year: 1958
  ident: 1687_CR87
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.44.6.489
– volume: 617
  start-page: 589
  issue: 1
  year: 2004
  ident: 1687_CR55
  publication-title: Astrophys. J.
  doi: 10.1086/424564
– volume: 294
  start-page: 89
  issue: 7
  year: 2019
  ident: 1687_CR65
  publication-title: Solar Phys.
  doi: 10.1007/s11207-019-1477-8
– volume: 6
  start-page: 545
  year: 1958
  ident: 1687_CR74
  publication-title: J. Exp. Theor. Phys.
– volume: 630
  issue: 1
  year: 2005
  ident: 1687_CR78
  publication-title: Astrophys. J. Lett.
  doi: 10.1086/462412
– volume: 543
  year: 2012
  ident: 1687_CR4
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201219311
– volume: 597
  year: 2017
  ident: 1687_CR82
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201629282
– volume: 284
  start-page: 105
  issue: 1
  year: 2013
  ident: 1687_CR16
  publication-title: Solar Phys.
  doi: 10.1007/s11207-013-0224-9
– volume: 294
  start-page: 172
  issue: 12
  year: 2019
  ident: 1687_CR19
  publication-title: Solar Phys.
  doi: 10.1007/s11207-019-1564-x
– volume: 24
  start-page: 215
  issue: 1
  year: 2006
  ident: 1687_CR46
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-24-215-2006
– volume: 116
  issue: A1
  year: 2011
  ident: 1687_CR35
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JA015328
– volume: 507
  start-page: 404
  issue: 1
  year: 1998
  ident: 1687_CR50
  publication-title: Astrophys. J.
  doi: 10.1086/306299
– volume: 790
  start-page: 125
  issue: 2
  year: 2014
  ident: 1687_CR76
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/790/2/125
– volume: 793
  start-page: 53
  issue: 1
  year: 2014
  ident: 1687_CR34
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/793/1/53
– volume: 635
  year: 2020
  ident: 1687_CR42
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201937404
– volume-title: Physics of Magnetic Flux Ropes
  year: 1990
  ident: 1687_CR68
  doi: 10.1029/GM058p0001
– volume: 295
  year: 2020
  ident: 1687_CR5
  publication-title: Solar Phys.
  doi: 10.1007/s11207-020-01672-6
– volume: 107
  start-page: 1002
  issue: A1
  year: 2002
  ident: 1687_CR29
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JA900100
– volume: 361
  start-page: 690
  year: 1990
  ident: 1687_CR56
  publication-title: Astrophys. J.
  doi: 10.1086/169232
– volume: 29
  start-page: 1637
  issue: 13
  year: 2002
  ident: 1687_CR28
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013875
– volume: 128
  start-page: 2016
  year: 1962
  ident: 1687_CR83
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.2016
– volume-title: Physics of Magnetic Flux Ropes.
  year: 1990
  ident: 1687_CR26
  doi: 10.1029/GM058p0343
– volume-title: Algorithms for Minimization Without Derivatives
  year: 2013
  ident: 1687_CR11
SSID ssj0010075
Score 2.3853686
Snippet Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Astrophysics and Astroparticles
Atmospheric Sciences
Chirality
Coronal mass ejection
Editors’ Choice
Fluctuations
Geomagnetic activity
Geomagnetism
Helicity
Heliosphere
Laboratories
Magnetic fields
Magnetic flux
Magnetic structure
Magnetism
Numerical methods
Physics
Physics and Astronomy
Plasma
Solar Orbiter (ESA)
Solar orbits
Solar physics
Solar probes
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Stability analysis
Towards Future Research on Space Weather Drivers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1NS8MwNOhE8CJ-sumUHMSLFtuuyZqT-LEhijLHBruVNGm8zHbaDZ2_3vfadENBb4G0Obzv70fIiS8TYZSWDi4dcAKjmCMU9spo4aqWK33hY3Py4xO_Gwb3IzayAbfcllVWMrEQ1DpTGCO_AFUtGFCL515O3hzcGoXZVbtCY5WsgQgOwflau-489fqLPIJbjtrF_JcDvnto22bK5jnPxzCdj4VZHFjt66dqWtqbv1KkhebpbpFNazLSqxLH22QlSXdI_SrHIHb2OqentDiXMYp8h6z3ytMuea5GjtDMULD0KCgZRAp9AA-Ugp1ZVMbO8fbWLkqZjud08IG41_RRvqTY40i749kn7WeTJN8jw25ncHPn2B0KjgLmmjpcgwfaUqAK267xPPCjRSi4iAPjGmHaXKgEDAiVaNl2wziIw1AyI0KtpOTMcNHaJ7U0S5M6oZiS5IwxPw5wSBeTvJVwKbUyxgenSjeIV4EvUnbAOO65GEfL0cgI8ghAHhUgj74a5Gzxz6Qcr_Hv180KK5FltTxaEkaDnFeYWl7__drB_68dkg2_IA6sJ2uS2vR9lhyBATKNjy2VfQMScdan
  priority: 102
  providerName: ProQuest
Title Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes
URI https://link.springer.com/article/10.1007/s11207-020-01687-z
https://www.proquest.com/docview/2509596310
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6sIngRn7Q-Sg7iRRd20026OVZtFbWitQU9Ldnsxkttxa1o_fXO7MOiqOApgWQDO5Nkvsm8APa4TpQ1sXao6IDjWyMcZShWJlauabiaK07Byd0reTbwz-_EXREUlpbe7qVJMrupZ8FuHqdnNU6OVBKPxnsFFgTp7riLB7z1aTtw8_S6ZPNyUF8PilCZn9f4Ko5mGPObWTSTNp0VWC5gImvlfF2FuWS0BtVWSg_X48cp22dZP3-XSNdg8TrvrcNNmWaEjS1DdMdQsBAj2AX-M0NsmXnDTmn0pCiOMhlOWf-V-B2zrn4YUVwj6wxf3lhv_JSkGzDotPvHZ05RN8ExeKAmjoxR62wYFH9N13oe6s4qUFJFvnWtsk2pTIKgwSSxbrpB5EdBoIVVQWy0lsJK1diE-dF4lFSBkRlSCiF45FNiLqFlI5Fax8ZajopUXAOvJF9oiqTiVNtiGM7SIRPJQyR5mJE8fK_Bwec3T3lKjT9n75RcCYvjlYaI25TAq8Nza3BYcmo2_PtqW_-bvg1LPNss5FO2A_OT55dkF0HIJKpDJeic1mGhddK9vKX29P6ije1R--q6V8925AcC49hY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hKtReUEtbEQrtHtpeWqv22rvxHhBChRAagtoqSNzc9T64pHHAQRB-FL-RGT-IqFRu3FZaew-z3-y8ZwA-cu2UN1YHNHQgSLwRgTJUK2NVaOJQc8WpOHl4LPsnyY9TcboEt20tDKVVtm9i9VDbwpCP_BuKaiUQLVG4Mz0PaGoURVfbERo1LAZufoUmW7l9uIf3-4nz3v7oez9opgoEBuE2C6RFmyw2KBy6oY8itCxVqqTKEx965btSGYci1Tiru2GaJ3maauFVao3WUnhJzZfwyX-WxLEijkp7B_dRi7Bu7EvRtiBUcdoU6dSlehEnpyCnNDCJjH3zUBAutNt_ArKVnOu9hNVGQWW7NaJewZKbrMH6bkku8-LvnH1m1br2iJRrsPKzXr2GX22DE1Z4hnolQ5FGEGADtHcZarVVHu6cdveasSyz8ZyNrghplg312YQqKllvfHnNfhdTV76Bkyeh7VtYnhQTtw6MAqBSCMHzhFqCCS1jJ7W2xnuOJpztQNSSLzNNO3OaqjHOFo2YieQZkjyrSJ7ddODL_T_TupnHo19vtreSNYxdZgsYduBre1OL7f-ftvH4aR_geX80PMqODo8H7-AFr4BCmWybsDy7uHRbqPrM8vcV3hj8eWqA3wFqchOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3djxIxEJ8oRuOLUdTAidqHiy-6Ybdsy_aRHEdOOQgaSHjbdNvtveBCjiUKf_3N7AfoRU18a9Juk52ZdmY6M78BOOc6Vc5Y7VHTAS90RnjKUK2MVb7p-ZorTsXJk6m8WoRflmL5SxV_ke1ehyTLmgZCacry7sa67qnwLeD0xMYpqUriMTk8hEd4HQck1ws-OMYR_BJql-JfHvruUVU28-c9fldNJ3vzXoi00Dyj5_CsMhnZoOTxC3iQZk1oDbb0iL3-vmcfWDEu3yi2TXg8K0cv4WsNOcLWjqGlx1DJEFPYGP-foZ1ZZMbuaXZYNUrJV3s2_0G8t2yibzKqcWSj1e4n-7bepNtXsBhdzi-uvKqHgmeQGrknLXqgPYOqsO-7IEA_WkVKqiR0vlOuL5VJ0YAwqdV9P0rCJIq0cCqyRmspnFS919DI1lnaAkYhSSmE4ElIIF1Cy14qtbbGOY5OlW1DUJMvNhXAOPW5WMUnaGQieYwkjwuSx4c2fDx-synhNf65ulNzJa6O2jZGG04JvEYCvw2fak6dpv--29n_LX8PT2bDUXz9eTp-A095ITeUataBRn67S9-ibZIn7wrxuwOa1tnf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Helical+Kink+Stability+of+Differently+Twisted+Magnetic+Flux+Ropes&rft.jtitle=Solar+physics&rft.au=Florido-Llinas%2C+M.&rft.au=Nieves-Chinchilla%2C+T.&rft.au=Linton%2C+M.+G.&rft.date=2020-09-01&rft.issn=0038-0938&rft.eissn=1573-093X&rft.volume=295&rft.issue=9&rft_id=info:doi/10.1007%2Fs11207-020-01687-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11207_020_01687_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0938&client=summon