Connecting latent relationships over heterogeneous attributed network for recommendation

Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing graph-structured information, is convenient for the recommendation. However, most exi...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 52; no. 14; pp. 16214 - 16232
Main Authors Duan, Ziheng, Wang, Yueyang, Ye, Weihao, Fan, Qilin, Li, Xiuhua
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing graph-structured information, is convenient for the recommendation. However, most existing GNN models mainly focus on the homogeneous graph. They cannot characterize heterogeneous and complex data in the recommendation system. Meanwhile, it is challenging to develop effective methods to mine the heterogeneity and latent correlations in the graph. In this paper, we adopt Heterogeneous Attributed Network (HAN), which involves different node types as well as rich node attributes, to model data in the recommendation system. Furthermore, we propose a novel graph neural network-based model to deal with HAN for Recommendation, called HANRec. In particular, we design a component connecting potential neighbors to explore the influence among neighbors and provide two different strategies with the attention mechanism to aggregate neighbors’ information. The experimental results on two real-world datasets prove that HANRec outperforms other state-of-the-art methods.
AbstractList Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing graph-structured information, is convenient for the recommendation. However, most existing GNN models mainly focus on the homogeneous graph. They cannot characterize heterogeneous and complex data in the recommendation system. Meanwhile, it is challenging to develop effective methods to mine the heterogeneity and latent correlations in the graph. In this paper, we adopt Heterogeneous Attributed Network (HAN), which involves different node types as well as rich node attributes, to model data in the recommendation system. Furthermore, we propose a novel graph neural network-based model to deal with HAN for Recommendation, called HANRec. In particular, we design a component connecting potential neighbors to explore the influence among neighbors and provide two different strategies with the attention mechanism to aggregate neighbors’ information. The experimental results on two real-world datasets prove that HANRec outperforms other state-of-the-art methods.
Author Wang, Yueyang
Ye, Weihao
Li, Xiuhua
Fan, Qilin
Duan, Ziheng
Author_xml – sequence: 1
  givenname: Ziheng
  surname: Duan
  fullname: Duan, Ziheng
  organization: School of Big Data and Software Engineering, Chongqing University, College of Control Science and Engineering, Zhejiang University
– sequence: 2
  givenname: Yueyang
  orcidid: 0000-0003-3210-0930
  surname: Wang
  fullname: Wang, Yueyang
  email: yueyangw@cqu.edu.cn
  organization: School of Big Data and Software Engineering, Chongqing University
– sequence: 3
  givenname: Weihao
  surname: Ye
  fullname: Ye, Weihao
  organization: School of Big Data and Software Engineering, Chongqing University
– sequence: 4
  givenname: Qilin
  surname: Fan
  fullname: Fan, Qilin
  organization: School of Big Data and Software Engineering, Chongqing University
– sequence: 5
  givenname: Xiuhua
  surname: Li
  fullname: Li, Xiuhua
  organization: School of Big Data and Software Engineering, Chongqing University
BookMark eNp9kD1PwzAQQC1UJNrCH2CKxGw4x06cjKjiS6rEAlI3K43PaUprF9sB8e8xDRIb093w3p30ZmRinUVCLhlcMwB5ExiIqqaQ5xQ4F0DlCZmyQnIqRS0nZAp1LmhZ1qszMgthC5AwYFOyWjhrsY297bJdE9HGzGNaemfDpj-EzH2gzzYY0bsOLbohZE2Mvl8PEXVmMX46_5YZ55PXuv0erT7a5-TUNLuAF79zTl7v714Wj3T5_PC0uF3SlrM60lIDMFZUWnCUvM152QhmCtMw5CBFpXVZIcs1GAMCCtRmzWsmylJg3Qip-ZxcjXcP3r0PGKLausHb9FLlkgvBZSUgUflItd6F4NGog-_3jf9SDNRPQTUWVKmgOhZUMkl8lEKCbYf-7_Q_1jf8HXce
CitedBy_id crossref_primary_10_1093_bioinformatics_btae339
crossref_primary_10_1007_s10489_022_04057_3
crossref_primary_10_1007_s10489_022_04215_7
crossref_primary_10_26599_TST_2021_9010081
crossref_primary_10_1016_j_ins_2024_121127
crossref_primary_10_1016_j_patrec_2021_12_008
crossref_primary_10_1093_bib_bbae096
Cites_doi 10.1016/j.neucom.2021.01.068
10.1145/3219819.3219869
10.1007/s11280-020-00824-9
10.1109/TKDE.2005.99
10.1109/TPAMI.2016.2605085
10.1145/3331184.3331214
10.1145/1458082.1458205
10.1109/MSP.2017.2693418
10.1145/2736277.2741093
10.1145/3097983.3098036
10.1145/3397271.3401063
10.5555/2627435.2670313
10.1007/s11280-013-0243-3
10.1145/3292500.3330686
10.1145/2872427.2882971
10.5555/2981562.2981720
10.1007/978-3-540-72079-9_9
10.1007/s10489-019-01594-2
10.5555/3295222.3295349
10.1145/3219819.3219885
10.1145/963770.963772
10.1145/3038912.3052569
10.1609/aaai.v33i01.330110061
10.1007/978-3-540-72079-9_10
10.1145/3269206.3271761
10.1145/3394486.3403118
10.1073/pnas.1220184110
10.1016/S1352-2310(97)00447-0
10.1145/2623330.2623732
10.1145/3383313.3412247
10.1145/3219819.3219950
10.1016/j.knosys.2011.07.021
10.1007/s10489-020-01921-y
10.1007/978-0-387-85820-3_1
10.1109/ICDM.2018.00113
10.1016/j.aiopen.2021.01.001
10.1145/3308558.3313488
10.1145/2783258.2783273
10.1145/3308558.3313417
10.1109/MC.2009.263
10.1145/1401890.1402008
10.5555/3044805.3045025
10.1007/s10489-020-01703-6
10.1109/TMM.2020.2978618
10.1016/j.inffus.2021.01.008
10.1145/3292500.3330964
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-03340-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest_ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 16232
ExternalDocumentID 10_1007_s10489_022_03340_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z87
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z91
Z92
ZMTXR
ZY4
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-6d001158d43e73c236a41f5fa1e30748dd68e12d0ff0405edfb3914664e9a47d3
IEDL.DBID U2A
ISSN 0924-669X
IngestDate Thu Oct 10 18:58:26 EDT 2024
Thu Sep 12 16:55:15 EDT 2024
Sat Dec 16 12:06:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Deep learning
Heterogeneous attributed network
Recommendatino system
Graph neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6d001158d43e73c236a41f5fa1e30748dd68e12d0ff0405edfb3914664e9a47d3
ORCID 0000-0003-3210-0930
PQID 2734437840
PQPubID 326365
PageCount 19
ParticipantIDs proquest_journals_2734437840
crossref_primary_10_1007_s10489_022_03340_7
springer_journals_10_1007_s10489_022_03340_7
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: going beyond euclidean dataIEEE Signal Proc Mag2017344184210.1109/MSP.2017.2693418https://doi.org/10.1109/MSP.2017.2693418
StallingsJVanceEYangJVannierMWLiangJPangLDaiLYeIWangGDetermining scientific impact using a collaboration indexProc Natl Acad Sci20131102496809685308227210.1073/pnas.12201841101292.62147https://doi.org/10.1073/pnas.1220184110
Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd international conference on learning representations, ICLR 2015. Conference Track Proceedings, San Diego
Wang Y, Duan Z, Liao B, Wu F, Zhuang Y (2019) Heterogeneous attributed network embedding with graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v33i01.330110061, vol 33, pp 10061–10062
Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. https://doi.org/10.1145/1401890.1402008, pp 990–998
Ma H, Yang H, Lyu MR, King I (2008) Sorec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM conference on information and knowledge management. https://doi.org/10.1145/1458082.1458205, pp 931–940
WuJChenLYuQHanPWuZTrust-aware media recommendation in heterogeneous social networksWorld Wide Web201518113915710.1007/s11280-013-0243-3https://doi.org/10.1007/s11280-013-0243-3
Cen Y, Zou X, Zhang J, Yang H, Zhou J, Tang J (2019) Representation learning for attributed multiplex heterogeneous network. In: proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. https://doi.org/10.1145/3292500.3330964, pp 1358–1368
JiSYangWGuoSChiuDicksonKWZhangCYuanXAsymmetric response aggregation heuristics for rating prediction and recommendationAppl Intell20205051416143610.1007/s10489-019-01594-2https://doi.org/10.1007/s10489-019-01594-2
ZhouJCuiGHuSZhangZYangCLiuZWangLLiCSunMGraph neural networks: A review of methods and applicationsAI Open20201578110.1016/j.aiopen.2021.01.001https://doi.org/10.1016/j.aiopen.2021.01.001
GardnerMWDorlingSRArtificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciencesAtmosph Environ19983214-152627263610.1016/S1352-2310(97)00447-0https://doi.org/10.1016/S1352-2310(97)00447-0
He R, McAuley J (2016) Fusing similarity models with markov chains for sparse sequential recommendation. In: 2016 IEEE 16th international conference on data mining (ICDM). https://doi.org/10.1145/3383313.3412247. IEEE, pp 191–200
Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. https://doi.org/10.1145/2623330.2623732, pp 701–710
Derr T, Ma Y, Tang J (2018) Signed graph convolutional networks. In: 2018 IEEE International Conference on Data Mining (ICDM). https://doi.org/10.1109/ICDM.2018.00113. IEEE, pp 929–934
AdomaviciusGTuzhilinAToward the next generation of recommender systems: A survey of the state-of-the-art and possible extensionsIEEE Trans Knowl Data Eng200517673474910.1109/TKDE.2005.99https://doi.org/10.1109/TKDE.2005.99
Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, Yin D (2019) Graph neural networks for social recommendation. In: The World Wide Web Conference. https://doi.org/10.1145/3308558.3313488, pp 417–426
XuHDuanZWangYFengJChenRZhangQXuZGraph partitioning and graph neural network based hierarchical graph matching for graph similarity computationNeurocomputing202143934836210.1016/j.neucom.2021.01.068https://doi.org/10.1016/j.neucom.2021.01.068
Zhao J, Zhou Z, Guan Z, Zhao W, Ning W, Qiu G, He X (2019) Intentgc: a scalable graph convolution framework fusing heterogeneous information for recommendation. In: proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. https://doi.org/10.1145/3292500.3330686, pp 2347–2357
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153https://doi.org/10.5555/2627435.2670313
HerlockerJLKonstanJATerveenLGRiedlJTEvaluating collaborative filtering recommender systemsACM Trans Inf Syst (TOIS)200422155310.1145/963770.963772https://doi.org/10.1145/963770.963772
Kipf TN, Welling M (2017) Semi-Supervised Classification with Graph Convolutional Networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR ’17
HolzingerAMalleBSarantiAPfeiferBTowards multi-modal causability with graph neural networks enabling information fusion for explainable aiInf Fusion202171283710.1016/j.inffus.2021.01.008
Wang H, Zhao M, Xie X, Li W, Guo M (2019) Knowledge graph convolutional networks for recommender systems. In: The world wide web conference. https://doi.org/10.1145/3308558.3313417, pp 3307–3313
WenPYuanWQinQSangSZhangZNeural attention model for recommendation based on factorization machinesAppl Intell20215141829184410.1007/s10489-020-01921-yhttps://doi.org/10.1007/s10489-020-01921-y
Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: Large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web. https://doi.org/10.1145/2736277.2741093, pp 1067–1077
Wang J, Huang P, Zhao H, Zhang Z, Zhao B, Lee DL (2018) Billion-scale commodity embedding for e-commerce recommendation in alibaba. In: proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 839–848
Mandal S, Maiti A (2020) Explicit feedback meet with implicit feedback in gpmf: a generalized probabilistic matrix factorization model for recommendation. Appl Intell:1–24. https://doi.org/10.1007/s10489-019-01594-2
Wu L, Sun P, Fu Y, Hong R, Wang X, Wang M (2019) A neural influence diffusion model for social recommendation. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval. https://doi.org/10.1145/3331184.3331214, pp 235–244
Tang J, Aggarwal C, Liu H (2016) Recommendations in signed social networks. In: Proceedings of the 25th International Conference on World Wide Web. https://doi.org/10.1145/2872427.2882971, pp 31–40
He X, Deng K, Wang X, Li Y, Zhang Y, Wang M (2020) Lightgcn: Simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. https://doi.org/10.1145/3397271.3401063, pp 639–648
ZhangXLuoHChenBGuoGMulti-view visual bayesian personalized ranking for restaurant recommendationAppl Intell20205092901291510.1007/s10489-020-01703-6https://doi.org/10.1007/s10489-020-01703-6
ZhongTZhangSZhouFZhangKTrajcevskiGWuJHybrid graph convolutional networks with multi-head attention for location recommendationWorld Wide Web20202363125315110.1007/s11280-020-00824-9https://doi.org/10.1007/s11280ndash020∖ndash{}00824∖ndash{}9
Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C (2020) Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. https://doi.org/10.1145/3394486.3403118, pp 753–763
Dong Y, Chawla NV, Swami A (2017) metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. https://doi.org/10.1145/3097983.3098036, pp 135–144
Pazzani MJ, Billsus D (2007) Content-based recommendation systems. In: The adaptive web. https://doi.org/10.1007/978-3-540-72079-9_10. Springer, pp 325–341
YangBLeiYLiuJLiWSocial collaborative filtering by trustIEEE Trans Pattern Anal Mach Intell20163981633164710.1109/TPAMI.2016.2605085https://doi.org/10.1109/TPAMI.2016.2605085
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems. https://doi.org/10.5555/3295222.3295349, pp 5998–6008
KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer2009428303710.1109/MC.2009.263https://doi.org/10.1109/MC.2009.263
Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. In: The adaptive web. https://doi.org/10.1007/978-3-540-72079-9_9. Springer, pp 291–324
MnihASalakhutdinovRRProbabilistic matrix factorizationAdv Neural Inf Process Syst20072012571264https://doi.org/10.5555/2981562.2981720
Wang H, Wang N, Yeung D-Y (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. https://doi.org/10.1145/2783258.2783273, pp 1235–1244
Ricci F, Rokach L, Shapira B (2011) Introduction to recommender systems handbook. In: Recommender systems handbook. https://doi.org/10.1007/978-0-387-85820-3_1. Springer, pp 1–35
Grbovic M, Cheng H (2018) Real-time personalization using embeddings for search ranking at airbnb. In: proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 311–320
ChenXLiuDXiongZZhaZ-JLearning and fusing multiple user interest representations for micro-video and movie recommendationsIEEE Trans Multimed20202348449610.1109/TMM.2020.2978618https://doi.org/10.1109/TMM.2020.2978618
Liu Q, Zeng Y, Mokhosi R, Zhang H (2018) Stamp: short-term attention/memory priority model for session-based recommendation. In: proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. https://doi.org/10.1145/3219819.3219950, pp 1831–1839
Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: International conference on machine learning. https://doi.org/10.5555/304480
3340_CR9
S Ji (3340_CR12) 2020; 50
3340_CR6
JL Herlocker (3340_CR20) 2004; 22
P Wen (3340_CR2) 2021; 51
3340_CR5
3340_CR3
3340_CR30
3340_CR35
J Stallings (3340_CR41) 2013; 110
3340_CR37
Y Koren (3340_CR21) 2009; 42
3340_CR32
3340_CR31
J Wu (3340_CR4) 2015; 18
3340_CR34
3340_CR33
X Chen (3340_CR10) 2020; 23
3340_CR39
B Yang (3340_CR18) 2016; 39
3340_CR40
N Srivastava (3340_CR38) 2014; 15
3340_CR46
X Zhang (3340_CR15) 2020; 50
3340_CR49
J Bobadilla (3340_CR47) 2012; 26
3340_CR48
3340_CR43
3340_CR42
3340_CR45
3340_CR44
J Zhou (3340_CR11) 2020; 1
H Xu (3340_CR27) 2021; 439
3340_CR14
3340_CR13
3340_CR16
G Adomavicius (3340_CR28) 2005; 17
MM Bronstein (3340_CR23) 2017; 34
3340_CR17
A Holzinger (3340_CR8) 2021; 71
3340_CR19
T Zhong (3340_CR7) 2020; 23
3340_CR25
3340_CR24
MW Gardner (3340_CR36) 1998; 32
3340_CR26
3340_CR1
A Mnih (3340_CR22) 2007; 20
3340_CR29
References_xml – volume: 439
  start-page: 348
  year: 2021
  ident: 3340_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.068
  contributor:
    fullname: H Xu
– ident: 3340_CR48
  doi: 10.1145/3219819.3219869
– volume: 23
  start-page: 3125
  issue: 6
  year: 2020
  ident: 3340_CR7
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00824-9
  contributor:
    fullname: T Zhong
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 3340_CR28
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.99
  contributor:
    fullname: G Adomavicius
– volume: 39
  start-page: 1633
  issue: 8
  year: 2016
  ident: 3340_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2605085
  contributor:
    fullname: B Yang
– ident: 3340_CR32
  doi: 10.1145/3331184.3331214
– ident: 3340_CR3
  doi: 10.1145/1458082.1458205
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 3340_CR23
  publication-title: IEEE Signal Proc Mag
  doi: 10.1109/MSP.2017.2693418
  contributor:
    fullname: MM Bronstein
– ident: 3340_CR44
  doi: 10.1145/2736277.2741093
– ident: 3340_CR42
  doi: 10.1145/3097983.3098036
– ident: 3340_CR45
  doi: 10.1145/3397271.3401063
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 3340_CR38
  publication-title: J Mach Learn Res
  doi: 10.5555/2627435.2670313
  contributor:
    fullname: N Srivastava
– volume: 18
  start-page: 139
  issue: 1
  year: 2015
  ident: 3340_CR4
  publication-title: World Wide Web
  doi: 10.1007/s11280-013-0243-3
  contributor:
    fullname: J Wu
– ident: 3340_CR34
  doi: 10.1145/3292500.3330686
– ident: 3340_CR17
  doi: 10.1145/2872427.2882971
– volume: 20
  start-page: 1257
  year: 2007
  ident: 3340_CR22
  publication-title: Adv Neural Inf Process Syst
  doi: 10.5555/2981562.2981720
  contributor:
    fullname: A Mnih
– ident: 3340_CR46
  doi: 10.1007/978-3-540-72079-9_9
– ident: 3340_CR14
  doi: 10.1007/s10489-019-01594-2
– ident: 3340_CR16
  doi: 10.5555/3295222.3295349
– ident: 3340_CR49
  doi: 10.1145/3219819.3219885
– volume: 22
  start-page: 5
  issue: 1
  year: 2004
  ident: 3340_CR20
  publication-title: ACM Trans Inf Syst (TOIS)
  doi: 10.1145/963770.963772
  contributor:
    fullname: JL Herlocker
– ident: 3340_CR39
  doi: 10.1145/3038912.3052569
– ident: 3340_CR6
  doi: 10.1609/aaai.v33i01.330110061
– ident: 3340_CR19
  doi: 10.1007/978-3-540-72079-9_10
– ident: 3340_CR30
  doi: 10.1145/3269206.3271761
– ident: 3340_CR13
  doi: 10.1145/3394486.3403118
– volume: 110
  start-page: 9680
  issue: 24
  year: 2013
  ident: 3340_CR41
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1220184110
  contributor:
    fullname: J Stallings
– volume: 32
  start-page: 2627
  issue: 14-15
  year: 1998
  ident: 3340_CR36
  publication-title: Atmosph Environ
  doi: 10.1016/S1352-2310(97)00447-0
  contributor:
    fullname: MW Gardner
– ident: 3340_CR24
  doi: 10.1145/2623330.2623732
– ident: 3340_CR29
  doi: 10.1145/3383313.3412247
– ident: 3340_CR31
  doi: 10.1145/3219819.3219950
– ident: 3340_CR37
– volume: 26
  start-page: 225
  year: 2012
  ident: 3340_CR47
  publication-title: Knowl-based Syst
  doi: 10.1016/j.knosys.2011.07.021
  contributor:
    fullname: J Bobadilla
– volume: 51
  start-page: 1829
  issue: 4
  year: 2021
  ident: 3340_CR2
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01921-y
  contributor:
    fullname: P Wen
– ident: 3340_CR1
  doi: 10.1007/978-0-387-85820-3_1
– ident: 3340_CR9
  doi: 10.1109/ICDM.2018.00113
– volume: 1
  start-page: 57
  year: 2020
  ident: 3340_CR11
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
  contributor:
    fullname: J Zhou
– ident: 3340_CR5
  doi: 10.1145/3308558.3313488
– ident: 3340_CR25
  doi: 10.1145/2783258.2783273
– ident: 3340_CR33
  doi: 10.1145/3308558.3313417
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 3340_CR21
  publication-title: Computer
  doi: 10.1109/MC.2009.263
  contributor:
    fullname: Y Koren
– ident: 3340_CR40
  doi: 10.1145/1401890.1402008
– ident: 3340_CR26
– ident: 3340_CR43
  doi: 10.5555/3044805.3045025
– volume: 50
  start-page: 1416
  issue: 5
  year: 2020
  ident: 3340_CR12
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01594-2
  contributor:
    fullname: S Ji
– volume: 50
  start-page: 2901
  issue: 9
  year: 2020
  ident: 3340_CR15
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01703-6
  contributor:
    fullname: X Zhang
– volume: 23
  start-page: 484
  year: 2020
  ident: 3340_CR10
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.2978618
  contributor:
    fullname: X Chen
– volume: 71
  start-page: 28
  year: 2021
  ident: 3340_CR8
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2021.01.008
  contributor:
    fullname: A Holzinger
– ident: 3340_CR35
  doi: 10.1145/3292500.3330964
SSID ssj0003301
Score 2.396569
Snippet Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN),...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 16214
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer Science
Heterogeneity
Machines
Manufacturing
Mechanical Engineering
Neural networks
Processes
Recommender systems
Structured data
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odvHib3E6JQdvGlyaNG1PorIxBIeIg95K2iRM0G5u9f_3pUstCnpuyeElL_m-5HvvA7hwBdZWRormeWGoMDaiCcJSyqyOOdeYUdrVDj9O5HgqHtIw9RduKy-rbPbEeqPW88LdkV-7NiyCR8hHbhYf1LlGuddVb6GxCd0AmULQge7dcPL0_L0XI1uvPfOQZVApk9SXzfjiOeHkQkjG8Denq_t5NLV489cTaX3yjHZh20NGcrue4z3YMOU-7DR2DMRn5wGktWilcDpm8oYQsqzIspG6zV4XK-LUmmTm9C9zXDYGOT9R1drxymhSrgXhBFEscTT5_d14w6VDmI6GL_dj6o0TaIEZVVGpa6QXa8FNxIuASyWYDa1iBlNaxFrL2LBAD6zFHA6NtjlPmGs0bxIlIs2PoFPOS3MMhMfKDvJwYJlSQrM4DmUR5TZnBY4VJrwHl03MssW6P0bWdkJ2Ec4wwlkd4SzqQb8Ja-ZzZZW1M9uDqybU7ee_Rzv5f7RT2Arc7NaFg33oVMtPc4YIosrP_TL5AhBCxIM
  priority: 102
  providerName: ProQuest
Title Connecting latent relationships over heterogeneous attributed network for recommendation
URI https://link.springer.com/article/10.1007/s10489-022-03340-7
https://www.proquest.com/docview/2734437840
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2iJTUztfYoqYViAohKoUpcmJbRaJp1Yb_z9lJCCAYmDwk8vDsZ7-T390BXOkEa-X53ErTTFpMKt8KUZZajhIBpQIZJXTu8MPMm87ZXezGTR63MbvXL5LmoP6S68a0uwdjJ5tSbYNrQQfFA9M-rvlg-Hn8YoBu2uRhYGF5XhhXmTK_z_H9Nmok5o9XUXPZRAewV6lEMiyX9RB2ZH4E-3UHBlIR8hhi41PJtHWZvKFqzAuyqd1ti9f1lmiDJlloy8sKd4rEMJ_womxyJQXJSw84QeFKdGS8XMqqx9IJzKPx8-3UqnolWBmSqLA8YcRdIBiVPs0G1OPMUa7ijkQWs0AIL5DOQNhKIW1dKVRKQ0fXlpchZ76gp9DOV7k8A0IDruzUtZXDORNOELhe5qcqdTKcyw1pF65rzJJ1WRIjaYofa4QTRDgxCCd-F3o1rElFj22ia-ow6mNw2YWbGurm89-znf_v9wvYHejVNrmDPWgXm3d5iSKiSPvQCqJJHzrDaDSa6XHycj_GcTSePT71zZb6APoBxTA
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248,74371,74638
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MAGFk3tOMmEEKIUaDu1UjbLiW2BRNPShv_P2XGIQII50Q13Pvud_e4eQpe2wdrwSJIsyzVh2kQkAVhKAqNiShVklLK9w6MxH0zZcxqm_sJt5WmV9Z7oNmo1z-0d-Y0dw8JoBPXI7eKDWNUo-7rqJTTW0QajcNDYTvH-4_dODLW6U8yDGoNwnqS-aca3zjFLFoJSDH6zrLqfB1ODNn89kLpzp7-Ltj1gxHdVhPfQmi720U4txoB9bh6g1FFWcstixu8AIIsSL2ui2-vbYoUtVxO_WvbLHBaNhoofy7LSu9IKFxUdHAOGxbZIns20l1s6RNP-w-R-QLxsAskhn0rClcN5sWJURzTvUS5ZYEIjAw0JzWKleKyDnuoaAxkcamUymgR2zLxOJIsUPUKtYl7oY4RpLE03C7smkJKpII5DnkeZyYIcbIUJbaOr2mdiUU3HEM0cZOthAR4WzsMiaqNO7VbhM2Ulmri20XXt6ubz39ZO_rd2gTYHk9FQDJ_GL6doq2cj7VoIO6hVLj_1GWCJMjt3C-YLFP_GDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgkxAX3ojBgBy4QcS6pGl7Qjw2jdc0ISb1VrVNoiGxbmzl_-O0KRVIcG6Ug2M7n5vP_gDOTIO1Fl5MkyRVlCvt0QBhKXW09BmTGFHS9A4_D8VgzB9CN7T8p6WlVVY5sUjUcpaaf-SXZgwLZx7WI5fa0iJGd_2r-Qc1ClLmpdXKaaxC0-PoVQ1o3vSGo5fvvIyVe6GfhxUHFSIIbQuNbaTjhjqEhRkuMxy7n9dUjT1_PZcWt1B_CzYsfCTX5Xlvw4rKdmCzkmYgNlJ3ISwILKnhNJN3hJNZThYV7W3yNl8Sw9wkE8OFmaELKaz_SZyX6ldKkqwkhxNEtMSUzNOpsuJLezDu915vB9SKKNAUoyunQhaoz5ecKY-lXSZi7mhXx47C8Oa-lMJXTld2tMZ4dpXUCQscM3ReBTH3JNuHRjbL1AEQ5se6k7gd7cQxl47vuyL1Ep04Ke7lBqwF55XNonk5KyOqpyIbC0do4aiwcOS1oF2ZNbJxs4zqU27BRWXq-vPfux3-v9sprKG3RE_3w8cjWO-agy76CdvQyBef6hiBRZ6cWI_5AtOcy7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connecting+latent+relationships+over+heterogeneous+attributed+network+for+recommendation&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Duan%2C+Ziheng&rft.au=Wang%2C+Yueyang&rft.au=Ye%2C+Weihao&rft.au=Fan%2C+Qilin&rft.date=2022-11-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=14&rft.spage=16214&rft.epage=16232&rft_id=info:doi/10.1007%2Fs10489-022-03340-7&rft.externalDocID=10_1007_s10489_022_03340_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon