Connecting latent relationships over heterogeneous attributed network for recommendation
Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing graph-structured information, is convenient for the recommendation. However, most exi...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 14; pp. 16214 - 16232 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing graph-structured information, is convenient for the recommendation. However, most existing GNN models mainly focus on the homogeneous graph. They cannot characterize heterogeneous and complex data in the recommendation system. Meanwhile, it is challenging to develop effective methods to mine the heterogeneity and latent correlations in the graph. In this paper, we adopt Heterogeneous Attributed Network (HAN), which involves different node types as well as rich node attributes, to model data in the recommendation system. Furthermore, we propose a novel graph neural network-based model to deal with HAN for Recommendation, called HANRec. In particular, we design a component connecting potential neighbors to explore the influence among neighbors and provide two different strategies with the attention mechanism to aggregate neighbors’ information. The experimental results on two real-world datasets prove that HANRec outperforms other state-of-the-art methods. |
---|---|
AbstractList | Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN), which can generate high-quality embeddings by capturing graph-structured information, is convenient for the recommendation. However, most existing GNN models mainly focus on the homogeneous graph. They cannot characterize heterogeneous and complex data in the recommendation system. Meanwhile, it is challenging to develop effective methods to mine the heterogeneity and latent correlations in the graph. In this paper, we adopt Heterogeneous Attributed Network (HAN), which involves different node types as well as rich node attributes, to model data in the recommendation system. Furthermore, we propose a novel graph neural network-based model to deal with HAN for Recommendation, called HANRec. In particular, we design a component connecting potential neighbors to explore the influence among neighbors and provide two different strategies with the attention mechanism to aggregate neighbors’ information. The experimental results on two real-world datasets prove that HANRec outperforms other state-of-the-art methods. |
Author | Wang, Yueyang Ye, Weihao Li, Xiuhua Fan, Qilin Duan, Ziheng |
Author_xml | – sequence: 1 givenname: Ziheng surname: Duan fullname: Duan, Ziheng organization: School of Big Data and Software Engineering, Chongqing University, College of Control Science and Engineering, Zhejiang University – sequence: 2 givenname: Yueyang orcidid: 0000-0003-3210-0930 surname: Wang fullname: Wang, Yueyang email: yueyangw@cqu.edu.cn organization: School of Big Data and Software Engineering, Chongqing University – sequence: 3 givenname: Weihao surname: Ye fullname: Ye, Weihao organization: School of Big Data and Software Engineering, Chongqing University – sequence: 4 givenname: Qilin surname: Fan fullname: Fan, Qilin organization: School of Big Data and Software Engineering, Chongqing University – sequence: 5 givenname: Xiuhua surname: Li fullname: Li, Xiuhua organization: School of Big Data and Software Engineering, Chongqing University |
BookMark | eNp9kD1PwzAQQC1UJNrCH2CKxGw4x06cjKjiS6rEAlI3K43PaUprF9sB8e8xDRIb093w3p30ZmRinUVCLhlcMwB5ExiIqqaQ5xQ4F0DlCZmyQnIqRS0nZAp1LmhZ1qszMgthC5AwYFOyWjhrsY297bJdE9HGzGNaemfDpj-EzH2gzzYY0bsOLbohZE2Mvl8PEXVmMX46_5YZ55PXuv0erT7a5-TUNLuAF79zTl7v714Wj3T5_PC0uF3SlrM60lIDMFZUWnCUvM152QhmCtMw5CBFpXVZIcs1GAMCCtRmzWsmylJg3Qip-ZxcjXcP3r0PGKLausHb9FLlkgvBZSUgUflItd6F4NGog-_3jf9SDNRPQTUWVKmgOhZUMkl8lEKCbYf-7_Q_1jf8HXce |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btae339 crossref_primary_10_1007_s10489_022_04057_3 crossref_primary_10_1007_s10489_022_04215_7 crossref_primary_10_26599_TST_2021_9010081 crossref_primary_10_1016_j_ins_2024_121127 crossref_primary_10_1016_j_patrec_2021_12_008 crossref_primary_10_1093_bib_bbae096 |
Cites_doi | 10.1016/j.neucom.2021.01.068 10.1145/3219819.3219869 10.1007/s11280-020-00824-9 10.1109/TKDE.2005.99 10.1109/TPAMI.2016.2605085 10.1145/3331184.3331214 10.1145/1458082.1458205 10.1109/MSP.2017.2693418 10.1145/2736277.2741093 10.1145/3097983.3098036 10.1145/3397271.3401063 10.5555/2627435.2670313 10.1007/s11280-013-0243-3 10.1145/3292500.3330686 10.1145/2872427.2882971 10.5555/2981562.2981720 10.1007/978-3-540-72079-9_9 10.1007/s10489-019-01594-2 10.5555/3295222.3295349 10.1145/3219819.3219885 10.1145/963770.963772 10.1145/3038912.3052569 10.1609/aaai.v33i01.330110061 10.1007/978-3-540-72079-9_10 10.1145/3269206.3271761 10.1145/3394486.3403118 10.1073/pnas.1220184110 10.1016/S1352-2310(97)00447-0 10.1145/2623330.2623732 10.1145/3383313.3412247 10.1145/3219819.3219950 10.1016/j.knosys.2011.07.021 10.1007/s10489-020-01921-y 10.1007/978-0-387-85820-3_1 10.1109/ICDM.2018.00113 10.1016/j.aiopen.2021.01.001 10.1145/3308558.3313488 10.1145/2783258.2783273 10.1145/3308558.3313417 10.1109/MC.2009.263 10.1145/1401890.1402008 10.5555/3044805.3045025 10.1007/s10489-020-01703-6 10.1109/TMM.2020.2978618 10.1016/j.inffus.2021.01.008 10.1145/3292500.3330964 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-022-03340-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest_ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
EndPage | 16232 |
ExternalDocumentID | 10_1007_s10489_022_03340_7 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z87 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z91 Z92 ZMTXR ZY4 ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-6d001158d43e73c236a41f5fa1e30748dd68e12d0ff0405edfb3914664e9a47d3 |
IEDL.DBID | U2A |
ISSN | 0924-669X |
IngestDate | Thu Oct 10 18:58:26 EDT 2024 Thu Sep 12 16:55:15 EDT 2024 Sat Dec 16 12:06:59 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Deep learning Heterogeneous attributed network Recommendatino system Graph neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-6d001158d43e73c236a41f5fa1e30748dd68e12d0ff0405edfb3914664e9a47d3 |
ORCID | 0000-0003-3210-0930 |
PQID | 2734437840 |
PQPubID | 326365 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2734437840 crossref_primary_10_1007_s10489_022_03340_7 springer_journals_10_1007_s10489_022_03340_7 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: going beyond euclidean dataIEEE Signal Proc Mag2017344184210.1109/MSP.2017.2693418https://doi.org/10.1109/MSP.2017.2693418 StallingsJVanceEYangJVannierMWLiangJPangLDaiLYeIWangGDetermining scientific impact using a collaboration indexProc Natl Acad Sci20131102496809685308227210.1073/pnas.12201841101292.62147https://doi.org/10.1073/pnas.1220184110 Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd international conference on learning representations, ICLR 2015. Conference Track Proceedings, San Diego Wang Y, Duan Z, Liao B, Wu F, Zhuang Y (2019) Heterogeneous attributed network embedding with graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v33i01.330110061, vol 33, pp 10061–10062 Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. https://doi.org/10.1145/1401890.1402008, pp 990–998 Ma H, Yang H, Lyu MR, King I (2008) Sorec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM conference on information and knowledge management. https://doi.org/10.1145/1458082.1458205, pp 931–940 WuJChenLYuQHanPWuZTrust-aware media recommendation in heterogeneous social networksWorld Wide Web201518113915710.1007/s11280-013-0243-3https://doi.org/10.1007/s11280-013-0243-3 Cen Y, Zou X, Zhang J, Yang H, Zhou J, Tang J (2019) Representation learning for attributed multiplex heterogeneous network. In: proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. https://doi.org/10.1145/3292500.3330964, pp 1358–1368 JiSYangWGuoSChiuDicksonKWZhangCYuanXAsymmetric response aggregation heuristics for rating prediction and recommendationAppl Intell20205051416143610.1007/s10489-019-01594-2https://doi.org/10.1007/s10489-019-01594-2 ZhouJCuiGHuSZhangZYangCLiuZWangLLiCSunMGraph neural networks: A review of methods and applicationsAI Open20201578110.1016/j.aiopen.2021.01.001https://doi.org/10.1016/j.aiopen.2021.01.001 GardnerMWDorlingSRArtificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciencesAtmosph Environ19983214-152627263610.1016/S1352-2310(97)00447-0https://doi.org/10.1016/S1352-2310(97)00447-0 He R, McAuley J (2016) Fusing similarity models with markov chains for sparse sequential recommendation. In: 2016 IEEE 16th international conference on data mining (ICDM). https://doi.org/10.1145/3383313.3412247. IEEE, pp 191–200 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. https://doi.org/10.1145/2623330.2623732, pp 701–710 Derr T, Ma Y, Tang J (2018) Signed graph convolutional networks. In: 2018 IEEE International Conference on Data Mining (ICDM). https://doi.org/10.1109/ICDM.2018.00113. IEEE, pp 929–934 AdomaviciusGTuzhilinAToward the next generation of recommender systems: A survey of the state-of-the-art and possible extensionsIEEE Trans Knowl Data Eng200517673474910.1109/TKDE.2005.99https://doi.org/10.1109/TKDE.2005.99 Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, Yin D (2019) Graph neural networks for social recommendation. In: The World Wide Web Conference. https://doi.org/10.1145/3308558.3313488, pp 417–426 XuHDuanZWangYFengJChenRZhangQXuZGraph partitioning and graph neural network based hierarchical graph matching for graph similarity computationNeurocomputing202143934836210.1016/j.neucom.2021.01.068https://doi.org/10.1016/j.neucom.2021.01.068 Zhao J, Zhou Z, Guan Z, Zhao W, Ning W, Qiu G, He X (2019) Intentgc: a scalable graph convolution framework fusing heterogeneous information for recommendation. In: proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. https://doi.org/10.1145/3292500.3330686, pp 2347–2357 SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153https://doi.org/10.5555/2627435.2670313 HerlockerJLKonstanJATerveenLGRiedlJTEvaluating collaborative filtering recommender systemsACM Trans Inf Syst (TOIS)200422155310.1145/963770.963772https://doi.org/10.1145/963770.963772 Kipf TN, Welling M (2017) Semi-Supervised Classification with Graph Convolutional Networks. In: Proceedings of the 5th International Conference on Learning Representations, ICLR ’17 HolzingerAMalleBSarantiAPfeiferBTowards multi-modal causability with graph neural networks enabling information fusion for explainable aiInf Fusion202171283710.1016/j.inffus.2021.01.008 Wang H, Zhao M, Xie X, Li W, Guo M (2019) Knowledge graph convolutional networks for recommender systems. In: The world wide web conference. https://doi.org/10.1145/3308558.3313417, pp 3307–3313 WenPYuanWQinQSangSZhangZNeural attention model for recommendation based on factorization machinesAppl Intell20215141829184410.1007/s10489-020-01921-yhttps://doi.org/10.1007/s10489-020-01921-y Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: Large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web. https://doi.org/10.1145/2736277.2741093, pp 1067–1077 Wang J, Huang P, Zhao H, Zhang Z, Zhao B, Lee DL (2018) Billion-scale commodity embedding for e-commerce recommendation in alibaba. In: proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 839–848 Mandal S, Maiti A (2020) Explicit feedback meet with implicit feedback in gpmf: a generalized probabilistic matrix factorization model for recommendation. Appl Intell:1–24. https://doi.org/10.1007/s10489-019-01594-2 Wu L, Sun P, Fu Y, Hong R, Wang X, Wang M (2019) A neural influence diffusion model for social recommendation. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval. https://doi.org/10.1145/3331184.3331214, pp 235–244 Tang J, Aggarwal C, Liu H (2016) Recommendations in signed social networks. In: Proceedings of the 25th International Conference on World Wide Web. https://doi.org/10.1145/2872427.2882971, pp 31–40 He X, Deng K, Wang X, Li Y, Zhang Y, Wang M (2020) Lightgcn: Simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. https://doi.org/10.1145/3397271.3401063, pp 639–648 ZhangXLuoHChenBGuoGMulti-view visual bayesian personalized ranking for restaurant recommendationAppl Intell20205092901291510.1007/s10489-020-01703-6https://doi.org/10.1007/s10489-020-01703-6 ZhongTZhangSZhouFZhangKTrajcevskiGWuJHybrid graph convolutional networks with multi-head attention for location recommendationWorld Wide Web20202363125315110.1007/s11280-020-00824-9https://doi.org/10.1007/s11280ndash020∖ndash{}00824∖ndash{}9 Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C (2020) Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. https://doi.org/10.1145/3394486.3403118, pp 753–763 Dong Y, Chawla NV, Swami A (2017) metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. https://doi.org/10.1145/3097983.3098036, pp 135–144 Pazzani MJ, Billsus D (2007) Content-based recommendation systems. In: The adaptive web. https://doi.org/10.1007/978-3-540-72079-9_10. Springer, pp 325–341 YangBLeiYLiuJLiWSocial collaborative filtering by trustIEEE Trans Pattern Anal Mach Intell20163981633164710.1109/TPAMI.2016.2605085https://doi.org/10.1109/TPAMI.2016.2605085 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems. https://doi.org/10.5555/3295222.3295349, pp 5998–6008 KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer2009428303710.1109/MC.2009.263https://doi.org/10.1109/MC.2009.263 Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. In: The adaptive web. https://doi.org/10.1007/978-3-540-72079-9_9. Springer, pp 291–324 MnihASalakhutdinovRRProbabilistic matrix factorizationAdv Neural Inf Process Syst20072012571264https://doi.org/10.5555/2981562.2981720 Wang H, Wang N, Yeung D-Y (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. https://doi.org/10.1145/2783258.2783273, pp 1235–1244 Ricci F, Rokach L, Shapira B (2011) Introduction to recommender systems handbook. In: Recommender systems handbook. https://doi.org/10.1007/978-0-387-85820-3_1. Springer, pp 1–35 Grbovic M, Cheng H (2018) Real-time personalization using embeddings for search ranking at airbnb. In: proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 311–320 ChenXLiuDXiongZZhaZ-JLearning and fusing multiple user interest representations for micro-video and movie recommendationsIEEE Trans Multimed20202348449610.1109/TMM.2020.2978618https://doi.org/10.1109/TMM.2020.2978618 Liu Q, Zeng Y, Mokhosi R, Zhang H (2018) Stamp: short-term attention/memory priority model for session-based recommendation. In: proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. https://doi.org/10.1145/3219819.3219950, pp 1831–1839 Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: International conference on machine learning. https://doi.org/10.5555/304480 3340_CR9 S Ji (3340_CR12) 2020; 50 3340_CR6 JL Herlocker (3340_CR20) 2004; 22 P Wen (3340_CR2) 2021; 51 3340_CR5 3340_CR3 3340_CR30 3340_CR35 J Stallings (3340_CR41) 2013; 110 3340_CR37 Y Koren (3340_CR21) 2009; 42 3340_CR32 3340_CR31 J Wu (3340_CR4) 2015; 18 3340_CR34 3340_CR33 X Chen (3340_CR10) 2020; 23 3340_CR39 B Yang (3340_CR18) 2016; 39 3340_CR40 N Srivastava (3340_CR38) 2014; 15 3340_CR46 X Zhang (3340_CR15) 2020; 50 3340_CR49 J Bobadilla (3340_CR47) 2012; 26 3340_CR48 3340_CR43 3340_CR42 3340_CR45 3340_CR44 J Zhou (3340_CR11) 2020; 1 H Xu (3340_CR27) 2021; 439 3340_CR14 3340_CR13 3340_CR16 G Adomavicius (3340_CR28) 2005; 17 MM Bronstein (3340_CR23) 2017; 34 3340_CR17 A Holzinger (3340_CR8) 2021; 71 3340_CR19 T Zhong (3340_CR7) 2020; 23 3340_CR25 3340_CR24 MW Gardner (3340_CR36) 1998; 32 3340_CR26 3340_CR1 A Mnih (3340_CR22) 2007; 20 3340_CR29 |
References_xml | – volume: 439 start-page: 348 year: 2021 ident: 3340_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.068 contributor: fullname: H Xu – ident: 3340_CR48 doi: 10.1145/3219819.3219869 – volume: 23 start-page: 3125 issue: 6 year: 2020 ident: 3340_CR7 publication-title: World Wide Web doi: 10.1007/s11280-020-00824-9 contributor: fullname: T Zhong – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 3340_CR28 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.99 contributor: fullname: G Adomavicius – volume: 39 start-page: 1633 issue: 8 year: 2016 ident: 3340_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2605085 contributor: fullname: B Yang – ident: 3340_CR32 doi: 10.1145/3331184.3331214 – ident: 3340_CR3 doi: 10.1145/1458082.1458205 – volume: 34 start-page: 18 issue: 4 year: 2017 ident: 3340_CR23 publication-title: IEEE Signal Proc Mag doi: 10.1109/MSP.2017.2693418 contributor: fullname: MM Bronstein – ident: 3340_CR44 doi: 10.1145/2736277.2741093 – ident: 3340_CR42 doi: 10.1145/3097983.3098036 – ident: 3340_CR45 doi: 10.1145/3397271.3401063 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 3340_CR38 publication-title: J Mach Learn Res doi: 10.5555/2627435.2670313 contributor: fullname: N Srivastava – volume: 18 start-page: 139 issue: 1 year: 2015 ident: 3340_CR4 publication-title: World Wide Web doi: 10.1007/s11280-013-0243-3 contributor: fullname: J Wu – ident: 3340_CR34 doi: 10.1145/3292500.3330686 – ident: 3340_CR17 doi: 10.1145/2872427.2882971 – volume: 20 start-page: 1257 year: 2007 ident: 3340_CR22 publication-title: Adv Neural Inf Process Syst doi: 10.5555/2981562.2981720 contributor: fullname: A Mnih – ident: 3340_CR46 doi: 10.1007/978-3-540-72079-9_9 – ident: 3340_CR14 doi: 10.1007/s10489-019-01594-2 – ident: 3340_CR16 doi: 10.5555/3295222.3295349 – ident: 3340_CR49 doi: 10.1145/3219819.3219885 – volume: 22 start-page: 5 issue: 1 year: 2004 ident: 3340_CR20 publication-title: ACM Trans Inf Syst (TOIS) doi: 10.1145/963770.963772 contributor: fullname: JL Herlocker – ident: 3340_CR39 doi: 10.1145/3038912.3052569 – ident: 3340_CR6 doi: 10.1609/aaai.v33i01.330110061 – ident: 3340_CR19 doi: 10.1007/978-3-540-72079-9_10 – ident: 3340_CR30 doi: 10.1145/3269206.3271761 – ident: 3340_CR13 doi: 10.1145/3394486.3403118 – volume: 110 start-page: 9680 issue: 24 year: 2013 ident: 3340_CR41 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1220184110 contributor: fullname: J Stallings – volume: 32 start-page: 2627 issue: 14-15 year: 1998 ident: 3340_CR36 publication-title: Atmosph Environ doi: 10.1016/S1352-2310(97)00447-0 contributor: fullname: MW Gardner – ident: 3340_CR24 doi: 10.1145/2623330.2623732 – ident: 3340_CR29 doi: 10.1145/3383313.3412247 – ident: 3340_CR31 doi: 10.1145/3219819.3219950 – ident: 3340_CR37 – volume: 26 start-page: 225 year: 2012 ident: 3340_CR47 publication-title: Knowl-based Syst doi: 10.1016/j.knosys.2011.07.021 contributor: fullname: J Bobadilla – volume: 51 start-page: 1829 issue: 4 year: 2021 ident: 3340_CR2 publication-title: Appl Intell doi: 10.1007/s10489-020-01921-y contributor: fullname: P Wen – ident: 3340_CR1 doi: 10.1007/978-0-387-85820-3_1 – ident: 3340_CR9 doi: 10.1109/ICDM.2018.00113 – volume: 1 start-page: 57 year: 2020 ident: 3340_CR11 publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 contributor: fullname: J Zhou – ident: 3340_CR5 doi: 10.1145/3308558.3313488 – ident: 3340_CR25 doi: 10.1145/2783258.2783273 – ident: 3340_CR33 doi: 10.1145/3308558.3313417 – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 3340_CR21 publication-title: Computer doi: 10.1109/MC.2009.263 contributor: fullname: Y Koren – ident: 3340_CR40 doi: 10.1145/1401890.1402008 – ident: 3340_CR26 – ident: 3340_CR43 doi: 10.5555/3044805.3045025 – volume: 50 start-page: 1416 issue: 5 year: 2020 ident: 3340_CR12 publication-title: Appl Intell doi: 10.1007/s10489-019-01594-2 contributor: fullname: S Ji – volume: 50 start-page: 2901 issue: 9 year: 2020 ident: 3340_CR15 publication-title: Appl Intell doi: 10.1007/s10489-020-01703-6 contributor: fullname: X Zhang – volume: 23 start-page: 484 year: 2020 ident: 3340_CR10 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.2978618 contributor: fullname: X Chen – volume: 71 start-page: 28 year: 2021 ident: 3340_CR8 publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.01.008 contributor: fullname: A Holzinger – ident: 3340_CR35 doi: 10.1145/3292500.3330964 |
SSID | ssj0003301 |
Score | 2.396569 |
Snippet | Recently, deep neural network models for graph-structured data have been demonstrated to be influential in recommendation systems. Graph Neural Network (GNN),... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 16214 |
SubjectTerms | Artificial Intelligence Artificial neural networks Computer Science Heterogeneity Machines Manufacturing Mechanical Engineering Neural networks Processes Recommender systems Structured data |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odvHib3E6JQdvGlyaNG1PorIxBIeIg95K2iRM0G5u9f_3pUstCnpuyeElL_m-5HvvA7hwBdZWRormeWGoMDaiCcJSyqyOOdeYUdrVDj9O5HgqHtIw9RduKy-rbPbEeqPW88LdkV-7NiyCR8hHbhYf1LlGuddVb6GxCd0AmULQge7dcPL0_L0XI1uvPfOQZVApk9SXzfjiOeHkQkjG8Denq_t5NLV489cTaX3yjHZh20NGcrue4z3YMOU-7DR2DMRn5wGktWilcDpm8oYQsqzIspG6zV4XK-LUmmTm9C9zXDYGOT9R1drxymhSrgXhBFEscTT5_d14w6VDmI6GL_dj6o0TaIEZVVGpa6QXa8FNxIuASyWYDa1iBlNaxFrL2LBAD6zFHA6NtjlPmGs0bxIlIs2PoFPOS3MMhMfKDvJwYJlSQrM4DmUR5TZnBY4VJrwHl03MssW6P0bWdkJ2Ec4wwlkd4SzqQb8Ja-ZzZZW1M9uDqybU7ee_Rzv5f7RT2Arc7NaFg33oVMtPc4YIosrP_TL5AhBCxIM priority: 102 providerName: ProQuest |
Title | Connecting latent relationships over heterogeneous attributed network for recommendation |
URI | https://link.springer.com/article/10.1007/s10489-022-03340-7 https://www.proquest.com/docview/2734437840 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdmHhG1EolQc2iJTUztfYoqYViAohKoUpcmJbRaJp1Yb_z9lJCCAYmDwk8vDsZ7-T390BXOkEa-X53ErTTFpMKt8KUZZajhIBpQIZJXTu8MPMm87ZXezGTR63MbvXL5LmoP6S68a0uwdjJ5tSbYNrQQfFA9M-rvlg-Hn8YoBu2uRhYGF5XhhXmTK_z_H9Nmok5o9XUXPZRAewV6lEMiyX9RB2ZH4E-3UHBlIR8hhi41PJtHWZvKFqzAuyqd1ti9f1lmiDJlloy8sKd4rEMJ_womxyJQXJSw84QeFKdGS8XMqqx9IJzKPx8-3UqnolWBmSqLA8YcRdIBiVPs0G1OPMUa7ijkQWs0AIL5DOQNhKIW1dKVRKQ0fXlpchZ76gp9DOV7k8A0IDruzUtZXDORNOELhe5qcqdTKcyw1pF65rzJJ1WRIjaYofa4QTRDgxCCd-F3o1rElFj22ia-ow6mNw2YWbGurm89-znf_v9wvYHejVNrmDPWgXm3d5iSKiSPvQCqJJHzrDaDSa6XHycj_GcTSePT71zZb6APoBxTA |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248,74371,74638 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MAGFk3tOMmEEKIUaDu1UjbLiW2BRNPShv_P2XGIQII50Q13Pvud_e4eQpe2wdrwSJIsyzVh2kQkAVhKAqNiShVklLK9w6MxH0zZcxqm_sJt5WmV9Z7oNmo1z-0d-Y0dw8JoBPXI7eKDWNUo-7rqJTTW0QajcNDYTvH-4_dODLW6U8yDGoNwnqS-aca3zjFLFoJSDH6zrLqfB1ODNn89kLpzp7-Ltj1gxHdVhPfQmi720U4txoB9bh6g1FFWcstixu8AIIsSL2ui2-vbYoUtVxO_WvbLHBaNhoofy7LSu9IKFxUdHAOGxbZIns20l1s6RNP-w-R-QLxsAskhn0rClcN5sWJURzTvUS5ZYEIjAw0JzWKleKyDnuoaAxkcamUymgR2zLxOJIsUPUKtYl7oY4RpLE03C7smkJKpII5DnkeZyYIcbIUJbaOr2mdiUU3HEM0cZOthAR4WzsMiaqNO7VbhM2Ulmri20XXt6ubz39ZO_rd2gTYHk9FQDJ_GL6doq2cj7VoIO6hVLj_1GWCJMjt3C-YLFP_GDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgkxAX3ojBgBy4QcS6pGl7Qjw2jdc0ISb1VrVNoiGxbmzl_-O0KRVIcG6Ug2M7n5vP_gDOTIO1Fl5MkyRVlCvt0QBhKXW09BmTGFHS9A4_D8VgzB9CN7T8p6WlVVY5sUjUcpaaf-SXZgwLZx7WI5fa0iJGd_2r-Qc1ClLmpdXKaaxC0-PoVQ1o3vSGo5fvvIyVe6GfhxUHFSIIbQuNbaTjhjqEhRkuMxy7n9dUjT1_PZcWt1B_CzYsfCTX5Xlvw4rKdmCzkmYgNlJ3ISwILKnhNJN3hJNZThYV7W3yNl8Sw9wkE8OFmaELKaz_SZyX6ldKkqwkhxNEtMSUzNOpsuJLezDu915vB9SKKNAUoyunQhaoz5ecKY-lXSZi7mhXx47C8Oa-lMJXTld2tMZ4dpXUCQscM3ReBTH3JNuHRjbL1AEQ5se6k7gd7cQxl47vuyL1Ep04Ke7lBqwF55XNonk5KyOqpyIbC0do4aiwcOS1oF2ZNbJxs4zqU27BRWXq-vPfux3-v9sprKG3RE_3w8cjWO-agy76CdvQyBef6hiBRZ6cWI_5AtOcy7E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connecting+latent+relationships+over+heterogeneous+attributed+network+for+recommendation&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Duan%2C+Ziheng&rft.au=Wang%2C+Yueyang&rft.au=Ye%2C+Weihao&rft.au=Fan%2C+Qilin&rft.date=2022-11-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=14&rft.spage=16214&rft.epage=16232&rft_id=info:doi/10.1007%2Fs10489-022-03340-7&rft.externalDocID=10_1007_s10489_022_03340_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |