Deep motion templates and extreme learning machine for sign language recognition

Sign language is a visual language used by persons with hearing and speech impairment to communicate through fingerspellings and body gestures. This paper proposes a framework for automatic sign language recognition without the need of hand segmentation. The proposed method first generates three dif...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 36; no. 6; pp. 1233 - 1246
Main Authors Imran, Javed, Raman, Balasubramanian
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sign language is a visual language used by persons with hearing and speech impairment to communicate through fingerspellings and body gestures. This paper proposes a framework for automatic sign language recognition without the need of hand segmentation. The proposed method first generates three different types of motion templates: motion history image, dynamic image and our proposed RGB motion image. These motion templates are used to fine-tune three ConvNets trained on ImageNet dataset. Fine-tuning avoids learning all the parameters from scratch, leading to faster network convergence even with a small number of training samples. For combining the output of three ConvNets, we propose a fusion technique based on Kernel-based extreme learning machine (KELM). The features extracted from the last fully connected layer of trained ConvNets are used to train three KELMs, and the final class label is predicted by averaging their scores. The proposed approach is validated on a number of publicly available sign language as well as human action recognition datasets, and state-of-the-art results are achieved. Finally, an Indian sign language dataset is also collected using a thermal camera. The experimental results obtained show that our ConvNet-based deep features along with proposed KELM-based fusion are robust for any type of human motion recognition.
AbstractList Sign language is a visual language used by persons with hearing and speech impairment to communicate through fingerspellings and body gestures. This paper proposes a framework for automatic sign language recognition without the need of hand segmentation. The proposed method first generates three different types of motion templates: motion history image, dynamic image and our proposed RGB motion image. These motion templates are used to fine-tune three ConvNets trained on ImageNet dataset. Fine-tuning avoids learning all the parameters from scratch, leading to faster network convergence even with a small number of training samples. For combining the output of three ConvNets, we propose a fusion technique based on Kernel-based extreme learning machine (KELM). The features extracted from the last fully connected layer of trained ConvNets are used to train three KELMs, and the final class label is predicted by averaging their scores. The proposed approach is validated on a number of publicly available sign language as well as human action recognition datasets, and state-of-the-art results are achieved. Finally, an Indian sign language dataset is also collected using a thermal camera. The experimental results obtained show that our ConvNet-based deep features along with proposed KELM-based fusion are robust for any type of human motion recognition.
Sign language is a visual language used by persons with hearing and speech impairment to communicate through fingerspellings and body gestures. This paper proposes a framework for automatic sign language recognition without the need of hand segmentation. The proposed method first generates three different types of motion templates: motion history image, dynamic image and our proposed RGB motion image. These motion templates are used to fine-tune three ConvNets trained on ImageNet dataset. Fine-tuning avoids learning all the parameters from scratch, leading to faster network convergence even with a small number of training samples. For combining the output of three ConvNets, we propose a fusion technique based on Kernel-based extreme learning machine (KELM). The features extracted from the last fully connected layer of trained ConvNets are used to train three KELMs, and the final class label is predicted by averaging their scores. The proposed approach is validated on a number of publicly available sign language as well as human action recognition datasets, and state-of-the-art results are achieved. Finally, an Indian sign language dataset is also collected using a thermal camera. The experimental results obtained show that our ConvNet-based deep features along with proposed KELM-based fusion are robust for any type of human motion recognition.
Author Raman, Balasubramanian
Imran, Javed
Author_xml – sequence: 1
  givenname: Javed
  surname: Imran
  fullname: Imran, Javed
  email: jimran@cs.iitr.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Roorkee
– sequence: 2
  givenname: Balasubramanian
  surname: Raman
  fullname: Raman, Balasubramanian
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Roorkee
BookMark eNp9kE9LxDAQxYOs4O7qF_AU8FxNmmzTHGX9C4Ie9BzSdFKztMmaZEG_vV0rCB72MAwzvN_M4y3QzAcPCJ1TckkJEVeJECZoQagcS5Srgh2hOeWsLEpGVzM0H7d1UYpanqBFShsyzoLLOXq5AdjiIWQXPM4wbHudIWHtWwyfOcIAuAcdvfMdHrR5dx6wDREn13nca9_tdAc4ggmdd_sjp-jY6j7B2W9fore729f1Q_H0fP-4vn4qDKMyF1XTNpwaYNwQUUreNpZWLQhmWclkY_hKSmoF1by1VrdQ88o2lDHJqsq0lWFLdDHd3cbwsYOU1Sbsoh9fqlLSmgjGaz6q6kllYkgpglXGZb33maN2vaJE7fNTU35qzE_95KfYiJb_0G10g45fhyE2QWkU-w7in6sD1Dev0IV7
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124268
crossref_primary_10_3390_electronics13081591
crossref_primary_10_1007_s00521_021_05802_4
crossref_primary_10_1007_s00521_023_08380_9
crossref_primary_10_3390_informatics8020033
crossref_primary_10_1016_j_infrared_2021_103754
crossref_primary_10_3390_math12081155
crossref_primary_10_1109_ACCESS_2024_3421992
crossref_primary_10_1007_s00371_022_02720_x
crossref_primary_10_1016_j_neucom_2024_127479
crossref_primary_10_1007_s00500_023_09103_x
crossref_primary_10_1109_ACCESS_2022_3151362
crossref_primary_10_32604_cmc_2021_016264
crossref_primary_10_3390_electronics13071188
crossref_primary_10_1109_ACCESS_2020_3019233
crossref_primary_10_1155_2023_9503961
crossref_primary_10_1007_s00371_021_02225_z
crossref_primary_10_1007_s00371_024_03394_3
crossref_primary_10_1109_ACCESS_2022_3204110
crossref_primary_10_1007_s12652_023_04585_x
crossref_primary_10_1109_ACCESS_2023_3247761
crossref_primary_10_1007_s00371_022_02530_1
crossref_primary_10_1155_2021_3902030
crossref_primary_10_1109_ACCESS_2020_2990699
crossref_primary_10_1109_ACCESS_2023_3349020
crossref_primary_10_1007_s42979_022_01341_4
crossref_primary_10_1109_ACCESS_2024_3512455
crossref_primary_10_3390_app9204397
crossref_primary_10_1007_s11042_023_14428_8
crossref_primary_10_1016_j_compeleceng_2023_109009
crossref_primary_10_4236_jcc_2024_1212002
crossref_primary_10_1007_s11042_020_10296_8
crossref_primary_10_1007_s12559_023_10182_z
crossref_primary_10_7717_peerj_cs_2054
Cites_doi 10.1109/TSMCB.2011.2168604
10.1016/j.neucom.2015.11.005
10.1023/B:STCO.0000035301.49549.88
10.1007/s00371-018-1556-0
10.1109/THMS.2015.2504550
10.1007/s00138-010-0298-4
10.1109/ACCESS.2017.2684186
10.1016/j.neucom.2005.12.126
10.1007/s11042-016-3988-8
10.1007/s00371-018-1519-5
10.3837/tiis.2014.02.009
10.1109/TPAMI.2017.2712608
10.1007/s00371-018-1582-y
10.1109/34.910878
10.1016/j.neucom.2014.06.085
10.1007/s00521-015-2002-0
10.1007/s00371-018-1565-z
10.1007/s00371-018-1585-8
10.1007/s00371-018-1559-x
10.1109/CVPR.2016.331
10.1109/3DV.2014.10
10.1109/ICACCI.2016.7732038
10.1145/2733373.2806296
10.21236/ADA623249
10.1109/CVPR.2016.115
10.1109/CVPR.2017.243
10.1007/978-3-319-16178-5_40
10.1109/CVPR.2017.502
10.1109/CVPR.2016.90
10.1109/CVPR.2009.5206848
10.1109/CVPR.2015.7298594
10.1145/2676585.2676600
10.1145/2393347.2396381
10.1109/WACV.2015.150
10.1109/ICCV.2015.510
10.1109/CVPRW.2016.100
10.1109/CVPR.2015.7298965
10.1007/978-3-319-16178-5_32
10.1145/2658861.2658938
10.1007/978-3-319-29451-3_54
10.1109/ICIP.2015.7351693
10.1109/CVPRW.2014.107
10.1109/ICPR.2016.7899599
10.1109/CVPR.2016.213
10.1109/CVPR.2011.5995407
10.1109/CVPR.2014.81
10.1109/CVPR.2015.7298698
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-019-01725-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 1246
ExternalDocumentID 10_1007_s00371_019_01725_3
GrantInformation_xml – fundername: SMILE Project, IIT Roorkee
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-6bdb41ce34c07294dbf16de73f3239bc45991f71a4dffade846fb1339366cd6c3
IEDL.DBID BENPR
ISSN 0178-2789
IngestDate Fri Jul 25 23:35:02 EDT 2025
Tue Jul 01 01:05:48 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Fri Feb 21 02:34:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Sign language recognition
Dynamic image
Late fusion
Extreme learning machine
Motion history image
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6bdb41ce34c07294dbf16de73f3239bc45991f71a4dffade846fb1339366cd6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918073484
PQPubID 2043737
PageCount 14
ParticipantIDs proquest_journals_2918073484
crossref_citationtrail_10_1007_s00371_019_01725_3
crossref_primary_10_1007_s00371_019_01725_3
springer_journals_10_1007_s00371_019_01725_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-6-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liu, Shao (CR36) 2013; 1
Wang, Li, Gao, Zhang, Tang, Ogunbona (CR55) 2016; 46
Chen, Liu, Kehtarnavaz (CR8) 2013; 23
CR38
CR35
CR34
CR32
CR30
Ahad, Tan, Kim, Ishikawa (CR1) 2012; 23
Gao, Zhang, Liu, Xue, Xu (CR18) 2014; 8
CR2
Bobick, Davis (CR6) 2001; 23
CR3
CR5
Tanwar, Buckchash, Raman, Bhargava (CR48) 2018; 78
CR7
Smola, Schölkopf (CR46) 2004; 14
CR9
CR49
CR47
Liu, Liu (CR37) 2016; 175
CR45
CR44
CR43
CR42
CR41
CR40
Jiang, Zhang, Yang (CR31) 2018
Varol, Laptev, Schmid (CR51) 2017; 40
Zheng, Feng, Xu, Hu, Ge (CR58) 2017; 76
Huang, Zhou, Ding, Zhang (CR29) 2012; 42
Ma, Wang, Chen, Xu (CR39) 2018; 34
Bi, Feng, Kim (CR4) 2018; 34
Gao, Zhang, Liu, Xu, Xue (CR20) 2016; 27
CR17
CR16
CR15
CR59
CR14
CR13
CR12
CR56
CR11
CR10
CR54
CR53
CR52
CR50
Li, Huang, Zhao, Wang, Hu (CR33) 2018
Gao, Zhang, Xu, Xue (CR19) 2015; 151
Zhu, Zhang, Shen, Song (CR60) 2017; 5
CR27
CR26
CR25
CR24
CR23
CR22
CR21
Yu, Liu, Liu (CR57) 2017; 34
Huang, Zhu, Siew (CR28) 2006; 70
M Liu (1725_CR37) 2016; 175
GB Huang (1725_CR28) 2006; 70
J Zheng (1725_CR58) 2017; 76
Z Gao (1725_CR19) 2015; 151
G Zhu (1725_CR60) 2017; 5
G Varol (1725_CR51) 2017; 40
1725_CR38
1725_CR32
1725_CR34
C Ma (1725_CR39) 2018; 34
1725_CR35
1725_CR30
Z Gao (1725_CR18) 2014; 8
P Wang (1725_CR55) 2016; 46
GB Huang (1725_CR29) 2012; 42
Z Yu (1725_CR57) 2017; 34
1725_CR5
C Chen (1725_CR8) 2013; 23
MAR Ahad (1725_CR1) 2012; 23
1725_CR7
1725_CR9
1725_CR2
1725_CR25
1725_CR26
1725_CR27
1725_CR3
1725_CR21
1725_CR22
1725_CR23
1725_CR24
L Liu (1725_CR36) 2013; 1
X Li (1725_CR33) 2018
T Jiang (1725_CR31) 2018
VK Tanwar (1725_CR48) 2018; 78
AF Bobick (1725_CR6) 2001; 23
1725_CR14
1725_CR15
1725_CR59
1725_CR16
AJ Smola (1725_CR46) 2004; 14
1725_CR17
1725_CR10
1725_CR54
1725_CR11
1725_CR12
1725_CR56
1725_CR13
1725_CR50
1725_CR52
1725_CR53
1725_CR47
1725_CR49
1725_CR43
1725_CR44
1725_CR45
L Bi (1725_CR4) 2018; 34
1725_CR40
1725_CR41
Z Gao (1725_CR20) 2016; 27
1725_CR42
References_xml – ident: CR45
– ident: CR22
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  end-page: 529
  ident: CR29
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– volume: 175
  start-page: 747
  year: 2016
  end-page: 758
  ident: CR37
  article-title: Depth context: a new descriptor for human activity recognition by using sole depth sequences
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.005
– volume: 1
  start-page: 1493
  year: 2013
  end-page: 1500
  ident: CR36
  article-title: Learning discriminative representations from RGB-D video data
  publication-title: IJCAI
– ident: CR49
– ident: CR16
– ident: CR12
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  ident: CR46
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: CR35
– volume: 34
  start-page: 1053
  issue: 6–8
  year: 2018
  end-page: 1063
  ident: CR39
  article-title: Hand joints-based gesture recognition for noisy dataset using nested interval unscented Kalman filter with LSTM network
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1556-0
– ident: CR54
– volume: 46
  start-page: 498
  issue: 4
  year: 2016
  end-page: 509
  ident: CR55
  article-title: Action recognition from depth maps using deep convolutional neural networks
  publication-title: IEEE Trans. Hum.–Mach. Syst.
  doi: 10.1109/THMS.2015.2504550
– ident: CR25
– ident: CR42
– volume: 23
  start-page: 255
  issue: 2
  year: 2012
  end-page: 281
  ident: CR1
  article-title: Motion history image: its variants and applications
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-010-0298-4
– ident: CR21
– ident: CR15
– ident: CR50
– volume: 78
  start-page: 1
  year: 2018
  end-page: 26
  ident: CR48
  article-title: Dense motion analysis of German finger spellings
  publication-title: Multimed. Tools Appl.
– ident: CR11
– ident: CR9
– ident: CR32
– volume: 23
  start-page: 1
  year: 2013
  end-page: 9
  ident: CR8
  article-title: Real-time human action recognition based on depth motion maps
  publication-title: J. Real-Time Image Process.
– ident: CR5
– ident: CR26
– volume: 5
  start-page: 4517
  year: 2017
  end-page: 4524
  ident: CR60
  article-title: Multimodal gesture recognition using 3-D convolution and convolutional LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2684186
– ident: CR43
– ident: CR47
– ident: CR14
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR28
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: CR2
– ident: CR53
– ident: CR30
– ident: CR10
– volume: 76
  start-page: 20525
  issue: 20
  year: 2017
  end-page: 20544
  ident: CR58
  article-title: Fusing shape and spatio-temporal features for depth-based dynamic hand gesture recognition
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3988-8
– volume: 34
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR4
  article-title: Dual-path adversarial learning for fully convolutional network (fcn)-based medical image segmentation
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1519-5
– ident: CR56
– volume: 8
  start-page: 483
  issue: 2
  year: 2014
  end-page: 503
  ident: CR18
  article-title: Human action recognition using pyramid histograms of oriented gradients and collaborative multi-task learning
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
  doi: 10.3837/tiis.2014.02.009
– ident: CR40
– volume: 40
  start-page: 1510
  year: 2017
  end-page: 1517
  ident: CR51
  article-title: Long-term temporal convolutions for action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2712608
– ident: CR27
– ident: CR23
– year: 2018
  ident: CR33
  article-title: Learning a convolutional neural network for propagation-based stereo image segmentation
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1582-y
– ident: CR44
– volume: 23
  start-page: 257
  issue: 3
  year: 2001
  end-page: 267
  ident: CR6
  article-title: The recognition of human movement using temporal templates
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.910878
– ident: CR3
– volume: 151
  start-page: 554
  year: 2015
  end-page: 564
  ident: CR19
  article-title: Multi-perspective and multi-modality joint representation and recognition model for 3D action recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.085
– ident: CR38
– ident: CR52
– ident: CR17
– ident: CR13
– volume: 27
  start-page: 2047
  issue: 7
  year: 2016
  end-page: 2054
  ident: CR20
  article-title: Human action recognition on depth dataset
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2002-0
– ident: CR34
– volume: 34
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR57
  article-title: Deeper cascaded peak-piloted network for weak expression recognition
  publication-title: Vis. Comput.
– year: 2018
  ident: CR31
  article-title: Modeling coverage with semantic embedding for image caption generation
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1565-z
– ident: CR7
– ident: CR59
– ident: CR41
– ident: CR24
– volume: 34
  start-page: 1
  year: 2018
  ident: 1725_CR4
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1519-5
– ident: 1725_CR23
  doi: 10.1007/s00371-018-1585-8
– ident: 1725_CR59
  doi: 10.1007/s00371-018-1559-x
– ident: 1725_CR5
  doi: 10.1109/CVPR.2016.331
– ident: 1725_CR11
  doi: 10.1109/3DV.2014.10
– ident: 1725_CR30
  doi: 10.1109/ICACCI.2016.7732038
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 1725_CR46
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 40
  start-page: 1510
  year: 2017
  ident: 1725_CR51
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2712608
– year: 2018
  ident: 1725_CR33
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1582-y
– volume: 34
  start-page: 1
  year: 2017
  ident: 1725_CR57
  publication-title: Vis. Comput.
– ident: 1725_CR26
– ident: 1725_CR42
– ident: 1725_CR54
  doi: 10.1145/2733373.2806296
– volume: 23
  start-page: 255
  issue: 2
  year: 2012
  ident: 1725_CR1
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-010-0298-4
– volume: 78
  start-page: 1
  year: 2018
  ident: 1725_CR48
  publication-title: Multimed. Tools Appl.
– ident: 1725_CR13
  doi: 10.21236/ADA623249
– ident: 1725_CR43
  doi: 10.1109/CVPR.2016.115
– ident: 1725_CR32
– volume: 76
  start-page: 20525
  issue: 20
  year: 2017
  ident: 1725_CR58
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3988-8
– ident: 1725_CR27
  doi: 10.1109/CVPR.2017.243
– ident: 1725_CR41
  doi: 10.1007/978-3-319-16178-5_40
– ident: 1725_CR3
– ident: 1725_CR21
– ident: 1725_CR45
– ident: 1725_CR7
  doi: 10.1109/CVPR.2017.502
– ident: 1725_CR24
  doi: 10.1109/CVPR.2016.90
– year: 2018
  ident: 1725_CR31
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1565-z
– ident: 1725_CR12
  doi: 10.1109/CVPR.2009.5206848
– ident: 1725_CR47
  doi: 10.1109/CVPR.2015.7298594
– ident: 1725_CR50
  doi: 10.1145/2676585.2676600
– volume: 23
  start-page: 1
  year: 2013
  ident: 1725_CR8
  publication-title: J. Real-Time Image Process.
– ident: 1725_CR14
– ident: 1725_CR34
  doi: 10.1145/2393347.2396381
– ident: 1725_CR9
  doi: 10.1109/WACV.2015.150
– ident: 1725_CR49
  doi: 10.1109/ICCV.2015.510
– ident: 1725_CR52
  doi: 10.1109/CVPRW.2016.100
– ident: 1725_CR38
  doi: 10.1109/CVPR.2015.7298965
– volume: 23
  start-page: 257
  issue: 3
  year: 2001
  ident: 1725_CR6
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.910878
– volume: 1
  start-page: 1493
  year: 2013
  ident: 1725_CR36
  publication-title: IJCAI
– ident: 1725_CR44
– ident: 1725_CR16
  doi: 10.1007/978-3-319-16178-5_32
– ident: 1725_CR10
  doi: 10.1145/2658861.2658938
– volume: 175
  start-page: 747
  year: 2016
  ident: 1725_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.005
– volume: 5
  start-page: 4517
  year: 2017
  ident: 1725_CR60
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2684186
– ident: 1725_CR15
– volume: 34
  start-page: 1053
  issue: 6–8
  year: 2018
  ident: 1725_CR39
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1556-0
– ident: 1725_CR40
  doi: 10.1007/978-3-319-29451-3_54
– volume: 151
  start-page: 554
  year: 2015
  ident: 1725_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.085
– ident: 1725_CR35
  doi: 10.1109/ICIP.2015.7351693
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 1725_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 27
  start-page: 2047
  issue: 7
  year: 2016
  ident: 1725_CR20
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2002-0
– ident: 1725_CR2
  doi: 10.1109/CVPRW.2014.107
– volume: 46
  start-page: 498
  issue: 4
  year: 2016
  ident: 1725_CR55
  publication-title: IEEE Trans. Hum.–Mach. Syst.
  doi: 10.1109/THMS.2015.2504550
– ident: 1725_CR56
  doi: 10.1109/ICPR.2016.7899599
– volume: 8
  start-page: 483
  issue: 2
  year: 2014
  ident: 1725_CR18
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
  doi: 10.3837/tiis.2014.02.009
– ident: 1725_CR17
  doi: 10.1109/CVPR.2016.213
– ident: 1725_CR53
  doi: 10.1109/CVPR.2011.5995407
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 1725_CR29
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– ident: 1725_CR22
  doi: 10.1109/CVPR.2014.81
– ident: 1725_CR25
  doi: 10.1109/CVPR.2015.7298698
SSID ssj0017749
Score 2.4564974
Snippet Sign language is a visual language used by persons with hearing and speech impairment to communicate through fingerspellings and body gestures. This paper...
Sign language is a visual language used by persons with hearing and speech impairment to communicate through fingerspellings and body gestures. This paper...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1233
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Classification
Computer Graphics
Computer Science
Datasets
Deep learning
Human activity recognition
Human motion
Image Processing and Computer Vision
Machine learning
Motion perception
Neural networks
Original Article
Recognition
Sign language
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWGDgUUAUCvLABpES20masQKqigExUKmbFT_CUtKKlv_PneukgACJOY4V3eXs717fAVxZrq0peYEmnvNIovMVaW1dFAt0NxAhEDsAVVs8ZqOxfJikk9AUtmiq3ZuUpD-p22Y3zy6Hri_V9-Q8jcQmbKfou1Mh15gP2twBAhoPehP0j6jPM7TK_LzH1-tojTG_pUX9bTM8gL0AE9lgpddD2HB1B_abEQwsWGQHdj_xCR7B051zc7YazMOIdGpKSJKVtWV4BlMkkIUpES_s1VdROoaglVERB2sil6ytKZrVxzAe3j_fjqIwMiEyaEvLKNNWy8Q4IQ1RgkurqySzLheV4KLQRqaIB6s8KaWtqtI6RB-VRje1EFlmbGbECWzVs9qdAqMUq-lrnpJhm35c2sKiwqUzsSwReHQhaSSnTOATp7EWU9UyIXtpK5S28tJWogvX7TvzFZvGn6t7jUJUsKyF4kXSj4mSBz_gplHS-vHvu539b_k57HByrX3ApQdby7d3d4H4Y6kv_e_2AU59z8k
  priority: 102
  providerName: Springer Nature
Title Deep motion templates and extreme learning machine for sign language recognition
URI https://link.springer.com/article/10.1007/s00371-019-01725-3
https://www.proquest.com/docview/2918073484
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oXPRgfEZ8kB686Ua2Lfs4GVTAaGKIkQRPm-1jveCCiv_fmdIFNZHrPnqYdqbfvL4BODNcGZ3zFFU85oFE5ytQytigJdDdQIRA7ABUbfEY3Q3l_ag98gG3T19WWdlEZ6jNRFOM_JKnYdIiKhZ5NX0PaGoUZVf9CI11qKMJTpIa1K-7j4OnRR4BwY0DwCH6StTz6dtmXPOcY6tDV5rqhWLeDsTvq2mJN_-kSN3N09uGLQ8ZWWe-xzuwZstd2PxBJLgHg1trp2w-kYcR29SYICTLS8PQ-FIIkPnxEK_szZVPWoZolVH1BqtClmxRTDQp92HY6z7f3AV-VkKgUYlmQaSMkqG2QmriApdGFWFkbCwKwUWqtGwjECziMJemKHJjEXYUCv3TVESRNpEWB1ArJ6U9BEa5VZ0o3iaN1kkrN6nBnZZWt2SOiKMBYSWmTHsicZpnMc4WFMhOtBmKNnOizUQDzhf_TOc0Giu_Pqmkn3mV-syWB6ABF9WOLF__v9rR6tWOYYOTD-0iKydQm3182VMEGjPVhPWk129CvdN_eeg2_dnCp0Pe-QbD9NFv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07TwJBEJ6gFmphfEYUdQut9CK3uxxcYYxREQSNBSZ25-3jbPBAxRj_lL_RmeUO1EQ62ntsMTs7-83rG4B9w5XRMQ_xiFe5J9H58pQy1isLdDcQIRA7AFVb3AaNe3n9UHkowFfeC0NllblNdIba9DTFyI956NfKRMUiT_svHk2NouxqPkJjqBYt-_mBLtvbSfMC9_eA8_pl57zhZVMFPI3qNvACZZT0tRVSE2u2NCrxA2OrIhFchErLCkKmpOrH0iRJbCxe0IlCTy4UQaBNoAWuOwNzEp-Qs1erX42yFgilHNz20TOjDtOsSce16jluPHTcqTqpyiue-H0RjtHtn4Ssu-fqy7CUAVR2NtSoFSjYdBUWf9AWrsHdhbV9Npz_w4jbqkuAlcWpYWjqKeDIsmEUT-zZFWtahtiYUa0IywOkbFS61EvX4X4qMtyA2bSX2k1glMnVNcUrZD90rRyb0KBeSavLMkZ8UwQ_F1OkM9pymp7RjUaEy060EYo2cqKNRBEOR__0h6QdE78u5dKPsgP8Fo3VrQhH-Y6MX_-_2tbk1fZgvtG5aUft5m1rGxY4ee8uplOC2cHru91BiDNQu06vGDxOW5G_AXp8Cpc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4gJkYPPlAjitqDnnQD2y0Le_BARAJiCAdJuK3bx3rBhcga47_yJzrtPlCjJh44b7dppjPtN52ZbwDOJOVSBNRDE29Qi6HzZXEulVVz0N1AhKDZAXS2xcDtjtjtuD4uwHtWC2Oy3bOQZFLToFmaorg6k2E1L3wzTHPoButcnwatW1n76r56e0WnbX7Va-MOn1Paubm_7lppXwFLoMLFlsslZ7ZQDhOaN5tJHtquVA0ndKjjccHqCJrChh0wGYaBVHhFhxx9Oc9xXSFd4eC8K7DKdPUxWtCItvK4BYIpA7ht9M10jWlapvPzmr9ehQt8-y0ka266zjZsphCVtBKd2oGCikqwlbV_IOlpUIKNT1yGuzBsKzUjSVMgogmvJhrFkiCSBM9__QpJ0g4Vj-TJZHAqgoCZ6AQSkr2akjyfaRrtwWgpYt2HYjSN1AEQHd4VTU7r-lARzVogPYnKxpSosQBBTxnsTHK-SLnMdUuNiZ-zMBtp-yht30jbd8pwkf8zS5g8_hxdyTbET6167lPPbtY0HRAu4DLbpMXn32c7_N_wU1gbtjv-XW_QP4J1qj188-5TgWL8_KKOEQbF_MRoHoGHZav6B5K0Egw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+motion+templates+and+extreme+learning+machine+for+sign+language+recognition&rft.jtitle=The+Visual+computer&rft.au=Imran%2C+Javed&rft.au=Raman%2C+Balasubramanian&rft.date=2020-06-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=36&rft.issue=6&rft.spage=1233&rft.epage=1246&rft_id=info:doi/10.1007%2Fs00371-019-01725-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_019_01725_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon