Multi-source deep feature fusion for medical image analysis
In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help to improve the accuracy of diagnosis and treatment planning. One approach to image fusion is the saliency map, where an algorithm highlights t...
Saved in:
Published in | Multidimensional systems and signal processing Vol. 36; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help to improve the accuracy of diagnosis and treatment planning. One approach to image fusion is the saliency map, where an algorithm highlights the most informative regions of the image and then combines these regions into a single image. This method can be particularly useful in medical image analysis, where certain areas of an image may be especially critical. This study proposes a novel model for multi-head medical image analysis based on ResNet using the fusion of saliency maps and RGB images as input from medical images. The image fusion generated by saliency maps contains more visible features. The saliency maps generated with the pre-trained model also contain background information. A combined dataset from two publicly available sources containing three classes, healthy, COVID-19, and pneumonia X-ray images, was used to evaluate the proposed model. The proposed multi-head CNN model improves the average classification accuracy from 94.68 to 96.72% with five-fold cross-validation. This approach could be implemented in an end-to-end computer-aided diagnosis system to shorten the evaluation time. |
---|---|
AbstractList | In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help to improve the accuracy of diagnosis and treatment planning. One approach to image fusion is the saliency map, where an algorithm highlights the most informative regions of the image and then combines these regions into a single image. This method can be particularly useful in medical image analysis, where certain areas of an image may be especially critical. This study proposes a novel model for multi-head medical image analysis based on ResNet using the fusion of saliency maps and RGB images as input from medical images. The image fusion generated by saliency maps contains more visible features. The saliency maps generated with the pre-trained model also contain background information. A combined dataset from two publicly available sources containing three classes, healthy, COVID-19, and pneumonia X-ray images, was used to evaluate the proposed model. The proposed multi-head CNN model improves the average classification accuracy from 94.68 to 96.72% with five-fold cross-validation. This approach could be implemented in an end-to-end computer-aided diagnosis system to shorten the evaluation time. |
ArticleNumber | 4 |
Author | Kaya, Yasin Gürsoy, Ercan |
Author_xml | – sequence: 1 givenname: Ercan surname: Gürsoy fullname: Gürsoy, Ercan organization: Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University – sequence: 2 givenname: Yasin surname: Kaya fullname: Kaya, Yasin email: ykaya@atu.edu.tr organization: Department of Artificial Intelligence Engineering, Adana Alparslan Turkes Science and Technology University |
BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8BydfLRN8SSLX7DiRc8hTSdLl267Julh99cbrSB48DTM8D4z77wLMuuHHgm5ZHDNAMqbwBjInAKXFEBVJT2ekDnLS0FBcTkjc6i4oEVqzsgihC1AwlgxJ7cvYxdbGobRW8waxH3m0MTRY-bG0A595gaf7bBpremydmc2mJnedIfQhnNy6kwX8OKnLsn7w_3b6omuXx-fV3dragWrIi1qDk42kpWGKQWNs1gbYXNTMFcpqSxYgdKqNMwVU3VZGi7LgiPH3NTKiiW5mvbu_fAxYoh6m-wmE0ELJnkl08N5UvFJZf0Qgken9z759QfNQH-FpKeQdApJf4ekjwlSfyDbRhPT39GbtvsfFRMa0p1-g_7X1T_UJ8Ccfjc |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_110004 |
Cites_doi | 10.1016/j.mehy.2020.109761 10.1101/2020.04.13.20063461 10.1109/34.730558 10.1016/j.compag.2020.105878 10.35940/ijrte.C1019.1083S219 10.1109/CVPRW.2014.131 10.1016/j.ijleo.2021.166405 10.1016/j.cviu.2017.03.001 10.1016/j.patcog.2019.05.002 10.1016/j.cmpb.2020.105581 10.32604/cmc.2020.011326 10.1016/j.patrec.2021.08.018 10.1007/978-981-15-0936-0 10.1016/j.imavis.2020.103887 10.1016/j.imu.2020.100360 10.1097/RTI.0000000000000388 10.1097/00004424-199010000-00006 10.1109/CVPR.2016.319 10.1038/35058500 10.1016/j.image.2018.05.005 10.1109/ICCV.2013.26 10.1038/s41598-020-76550-z 10.1007/s00530-023-01083-0 10.1007/s13204-021-01868-7 10.1109/TIP.2020.2971105 10.1007/978-3-030-42058-1_11 10.1007/s11831-022-09823-7 10.1016/j.compbiomed.2021.104375 10.1016/j.compbiomed.2024.108971 10.1016/j.asoc.2020.106580 10.1016/j.media.2020.101794 10.1145/2983576.2983582 10.1016/j.neuron.2011.10.035 10.1155/2015/871602 10.1007/s00330-021-07715-1 10.1007/s10044-021-00984-y 10.1016/j.irbm.2020.05.003 10.1007/978-3-030-55258-9_9 10.1088/1361-6560/abcd17 10.1186/s40537-019-0197-0 10.3390/electronics9091388 10.1016/j.compbiomed.2020.103898 10.1101/2020.03.26.20044610 10.48550/arXiv.1905.00780 10.3233/HIS-210008 10.48550/arXiv.1706.03825 10.1007/s13246-020-00865-4 10.1101/2020.04.11.20054643 10.1007/s10489-020-01900-3 10.18178/jiii.4.2.158-162 10.1109/ICCV.2019.00168 10.1007/s42600-021-00151-6 10.1016/j.compbiomed.2020.103805 10.1016/j.compag.2023.107698 10.48550/arXiv.2003.11055 10.1148/83.6.1029 10.48550/arXiv.1612.03928 10.1016/j.eswa.2022.119162 10.1007/s11042-022-12500-3 10.1007/s00500-022-07798-y 10.1109/ICEIEC49280.2020.9152329 10.1371/journal.pmed.1002683 10.1016/j.asoc.2020.106859 10.1007/s00500-020-05275-y 10.1016/j.compbiomed.2022.105221 10.3390/jpm12050680 10.1016/j.compbiomed.2022.105383 10.1088/2057-1976/ac0d91 10.1016/j.eng.2020.04.010 10.1016/j.ecoinf.2023.101998 10.1109/CVPR.2007.383267 10.3233/XST-200715 10.1109/CVPR.2016.80 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11045-024-00897-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-0824 |
ExternalDocumentID | 10_1007_s11045_024_00897_z |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-6b20f4d417a1880dfceba3c5a61f9848c0c3e4c8ba35818b77a24762e2e5ab8c3 |
IEDL.DBID | U2A |
ISSN | 0923-6082 |
IngestDate | Sun Jul 13 05:38:51 EDT 2025 Tue Jul 01 05:27:58 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Sat Mar 01 01:15:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | COVID-19 Medical Image Analysis Pneumonia CNN Saliency Maps Deep Learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-6b20f4d417a1880dfceba3c5a61f9848c0c3e4c8ba35818b77a24762e2e5ab8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3142948975 |
PQPubID | 2043747 |
ParticipantIDs | proquest_journals_3142948975 crossref_primary_10_1007_s11045_024_00897_z crossref_citationtrail_10_1007_s11045_024_00897_z springer_journals_10_1007_s11045_024_00897_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Multidimensional systems and signal processing |
PublicationTitleAbbrev | Multidim Syst Sign Process |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | L Itti (897_CR24) 2001; 2 897_CR22 E Gürsoy (897_CR19) 2024; 180 RF Mansour (897_CR39) 2021; 151 897_CR68 897_CR28 X Xu (897_CR70) 2020; 6 FJM Shamrat (897_CR58) 2022; 12 M Toğaçar (897_CR65) 2020; 121 S Singhal (897_CR62) 2023; 30 897_CR60 Ameer Sardar Kwekha-Rashid (897_CR33) 2023; 13 897_CR63 M Rahimzadeh (897_CR52) 2020; 19 897_CR21 897_CR20 897_CR64 Y. Pathak (897_CR48) 2022; 43 M Nour (897_CR47) 2020; 97 NA Baghdadi (897_CR3) 2022; 144 Yasin Kaya (897_CR29) 2023; 75 897_CR12 897_CR56 JR Zech (897_CR73) 2018; 15 897_CR11 L Itti (897_CR25) 1998; 20 897_CR55 897_CR13 897_CR59 AS Elkorany (897_CR15) 2021; 231 897_CR18 PH Meyers (897_CR40) 1964; 83 N Rai (897_CR53) 2023; 206 897_CR54 Eduardo Luz (897_CR38) 2022; 38 X Xu (897_CR71) 2021; 180 R Monroy (897_CR43) 2018; 69 S Minaee (897_CR41) 2020; 65 PP de San Roman (897_CR14) 2017; 164 MMA Monshi (897_CR44) 2021; 133 CF Flores (897_CR16) 2019; 94 897_CR45 Shenquan Qu (897_CR50) 2016 ID Apostolopoulos (897_CR2) 2020; 43 L Wang (897_CR67) 2020; 10 E Kıymaç (897_CR34) 2023; 213 SM Shah (897_CR57) 2022; 142 S Jia (897_CR26) 2020; 95 MM Rahaman (897_CR51) 2020; 28 Rahul Kumar (897_CR32) 2022; 81 A Narin (897_CR46) 2021; 24 S Wang (897_CR69) 2021; 31 897_CR77 897_CR36 S Misra (897_CR42) 2020; 9 897_CR37 NS Punn (897_CR49) 2021; 51 897_CR4 897_CR5 897_CR6 HP Chan (897_CR10) 1990; 1001 897_CR72 897_CR7 897_CR74 897_CR1 897_CR76 C Can (897_CR8) 2021; 7 897_CR31 C Shorten (897_CR61) 2019; 6 Y Li (897_CR35) 2020; 123 AI Khan (897_CR30) 2020; 196 S Jin (897_CR27) 2020; 29 X Zhang (897_CR75) 2012; 73 DT Huff (897_CR23) 2021; 66 MJ Cha (897_CR9) 2019; 34 A Gupta (897_CR17) 2021; 99 F Ucar (897_CR66) 2020; 140 |
References_xml | – volume: 140 start-page: 109761 year: 2020 ident: 897_CR66 publication-title: Medical Hypotheses doi: 10.1016/j.mehy.2020.109761 – ident: 897_CR31 doi: 10.1101/2020.04.13.20063461 – volume: 20 start-page: 1254 issue: 11 year: 1998 ident: 897_CR25 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.730558 – volume: 180 start-page: 105878 year: 2021 ident: 897_CR71 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105878 – ident: 897_CR4 doi: 10.35940/ijrte.C1019.1083S219 – ident: 897_CR54 doi: 10.1109/CVPRW.2014.131 – volume: 231 start-page: 166405 year: 2021 ident: 897_CR15 publication-title: Optik doi: 10.1016/j.ijleo.2021.166405 – volume: 164 start-page: 82 year: 2017 ident: 897_CR14 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2017.03.001 – volume: 94 start-page: 62 year: 2019 ident: 897_CR16 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2019.05.002 – volume: 196 start-page: 105581 year: 2020 ident: 897_CR30 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105581 – ident: 897_CR60 doi: 10.32604/cmc.2020.011326 – volume: 151 start-page: 267 year: 2021 ident: 897_CR39 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2021.08.018 – ident: 897_CR45 doi: 10.1007/978-981-15-0936-0 – ident: 897_CR12 – volume: 95 start-page: 103887 year: 2020 ident: 897_CR26 publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2020.103887 – volume: 19 start-page: 100360 year: 2020 ident: 897_CR52 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100360 – volume: 34 start-page: 86 issue: 2 year: 2019 ident: 897_CR9 publication-title: Journal of Thoracic Imaging doi: 10.1097/RTI.0000000000000388 – volume: 1001 start-page: 48109 year: 1990 ident: 897_CR10 publication-title: Arbor doi: 10.1097/00004424-199010000-00006 – ident: 897_CR77 doi: 10.1109/CVPR.2016.319 – volume: 2 start-page: 194 issue: 3 year: 2001 ident: 897_CR24 publication-title: Nature Reviews Neuroscience doi: 10.1038/35058500 – volume: 69 start-page: 26 year: 2018 ident: 897_CR43 publication-title: Signal Processing: Image Communication doi: 10.1016/j.image.2018.05.005 – ident: 897_CR74 doi: 10.1109/ICCV.2013.26 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 897_CR67 publication-title: Scientific Reports doi: 10.1038/s41598-020-76550-z – ident: 897_CR18 doi: 10.1007/s00530-023-01083-0 – volume: 13 start-page: 2013 issue: 3 year: 2023 ident: 897_CR33 publication-title: Applied Nanoscience doi: 10.1007/s13204-021-01868-7 – volume: 29 start-page: 5336 year: 2020 ident: 897_CR27 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2971105 – ident: 897_CR1 doi: 10.1007/978-3-030-42058-1_11 – volume: 30 start-page: 865 issue: 2 year: 2023 ident: 897_CR62 publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-022-09823-7 – volume: 133 start-page: 104375 year: 2021 ident: 897_CR44 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104375 – volume: 180 start-page: 108971 year: 2024 ident: 897_CR19 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2024.108971 – volume: 97 start-page: 106580 year: 2020 ident: 897_CR47 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106580 – volume: 65 start-page: 101794 year: 2020 ident: 897_CR41 publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101794 – ident: 897_CR56 doi: 10.1145/2983576.2983582 – volume: 73 start-page: 183 issue: 1 year: 2012 ident: 897_CR75 publication-title: Neuron doi: 10.1016/j.neuron.2011.10.035 – ident: 897_CR5 doi: 10.1155/2015/871602 – volume: 31 start-page: 6096 issue: 8 year: 2021 ident: 897_CR69 publication-title: European Radiology doi: 10.1007/s00330-021-07715-1 – volume: 24 start-page: 1207 issue: 3 year: 2021 ident: 897_CR46 publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-021-00984-y – volume: 43 start-page: 87 issue: 2 year: 2022 ident: 897_CR48 publication-title: IRBM doi: 10.1016/j.irbm.2020.05.003 – ident: 897_CR59 doi: 10.1007/978-3-030-55258-9_9 – volume: 66 start-page: 04TR01 issue: 4 year: 2021 ident: 897_CR23 publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/abcd17 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 897_CR61 publication-title: Journal of big data doi: 10.1186/s40537-019-0197-0 – volume: 9 start-page: 1388 issue: 9 year: 2020 ident: 897_CR42 publication-title: Electronics doi: 10.3390/electronics9091388 – volume: 123 start-page: 103898 year: 2020 ident: 897_CR35 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103898 – ident: 897_CR7 doi: 10.1101/2020.03.26.20044610 – ident: 897_CR64 doi: 10.48550/arXiv.1905.00780 – ident: 897_CR6 doi: 10.3233/HIS-210008 – ident: 897_CR63 doi: 10.48550/arXiv.1706.03825 – ident: 897_CR20 – volume: 43 start-page: 635 issue: 2 year: 2020 ident: 897_CR2 publication-title: Physical and Engineering Sciences in Medicine doi: 10.1007/s13246-020-00865-4 – ident: 897_CR55 doi: 10.1101/2020.04.11.20054643 – volume: 51 start-page: 2689 issue: 5 year: 2021 ident: 897_CR49 publication-title: Applied Intelligence doi: 10.1007/s10489-020-01900-3 – year: 2016 ident: 897_CR50 publication-title: Journal of Industrial and Intelligent Information doi: 10.18178/jiii.4.2.158-162 – ident: 897_CR76 doi: 10.1109/ICCV.2019.00168 – volume: 38 start-page: 149 issue: 1 year: 2022 ident: 897_CR38 publication-title: Research on Biomedical Engineering doi: 10.1007/s42600-021-00151-6 – volume: 121 start-page: 103805 year: 2020 ident: 897_CR65 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103805 – volume: 206 start-page: 107698 year: 2023 ident: 897_CR53 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2023.107698 – ident: 897_CR21 doi: 10.48550/arXiv.2003.11055 – volume: 83 start-page: 1029 issue: 6 year: 1964 ident: 897_CR40 publication-title: Radiology doi: 10.1148/83.6.1029 – ident: 897_CR72 doi: 10.48550/arXiv.1612.03928 – volume: 213 start-page: 119162 year: 2023 ident: 897_CR34 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119162 – volume: 81 start-page: 27631 issue: 19 year: 2022 ident: 897_CR32 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-022-12500-3 – ident: 897_CR28 doi: 10.1007/s00500-022-07798-y – ident: 897_CR68 doi: 10.1109/ICEIEC49280.2020.9152329 – volume: 15 start-page: e1002683 issue: 11 year: 2018 ident: 897_CR73 publication-title: PLoS Medicine doi: 10.1371/journal.pmed.1002683 – volume: 99 start-page: 106859 year: 2021 ident: 897_CR17 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106859 – ident: 897_CR13 doi: 10.1007/s00500-020-05275-y – volume: 142 start-page: 105221 year: 2022 ident: 897_CR57 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105221 – volume: 12 start-page: 680 issue: 5 year: 2022 ident: 897_CR58 publication-title: Journal of Personalized Medicine doi: 10.3390/jpm12050680 – volume: 144 start-page: 105383 year: 2022 ident: 897_CR3 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105383 – ident: 897_CR11 – volume: 7 start-page: 055005 issue: 5 year: 2021 ident: 897_CR8 publication-title: Biomedical Physics & Engineering Express doi: 10.1088/2057-1976/ac0d91 – ident: 897_CR36 – volume: 6 start-page: 1122 issue: 10 year: 2020 ident: 897_CR70 publication-title: Engineering doi: 10.1016/j.eng.2020.04.010 – volume: 75 start-page: 101998 year: 2023 ident: 897_CR29 publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2023.101998 – ident: 897_CR22 doi: 10.1109/CVPR.2007.383267 – volume: 28 start-page: 821 issue: 5 year: 2020 ident: 897_CR51 publication-title: Journal of X-Ray Science and Technology doi: 10.3233/XST-200715 – ident: 897_CR37 doi: 10.1109/CVPR.2016.80 |
SSID | ssj0010016 |
Score | 2.401517 |
Snippet | In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Artificial Intelligence Circuits and Systems Color imagery Computer vision Diagnosis Electrical Engineering Engineering Image analysis Medical imaging Salience Signal,Image and Speech Processing |
Title | Multi-source deep feature fusion for medical image analysis |
URI | https://link.springer.com/article/10.1007/s11045-024-00897-z https://www.proquest.com/docview/3142948975 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGD-InTOXLwpoE2Sb_wtMnmUNzJwTyVNElBcHO47bK_3pe0XVVU8FAKTZrDL8n7yMv7PYBLmdvC1VxTHRtNRcIUlZ4nqZK5ipMsU9qljz2OwuFY3E-CSZkUtqhuu1chSSep62Q39BxsNrGgqLeSiK63oRlY3x1X8Zh1N7EDa8U4hj3GaYgarkyV-XmMr-qotjG_hUWdthnsw15pJpJuMa8HsGVmh7D7iTzwCG5c7iwtTt-JNmZOcuNoOkm-smdgBO1RMi0CMeRlioKDyJKC5BjGg_7T7ZCWpRCowj2ypGHGvFxo4UfSEqjpXJlMchXI0M-TWMTKU9wIFePHAFVwFkWSCZRzhplAZrHiJ9CYvc3MKRAdMePhIyKlBdovkice5wEXGTo_jKsW-BUiqSp5wm25ite0Zji2KKaIYupQTNctuNr8My9YMv7s3a6ATssds0i5j5pRYHvQgusK_Lr599HO_tf9HHaYLeHrbqS0obF8X5kLtCuWWQea3UGvN7Lvu-eHfsctqw9RocaM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sYCmxnZeYKkRVoO3USt0svyIh0VLRdumv5-wkDSBAYsgSOx4-x3effb7vELqWuStczQwxqTWEZ1QTGQSSaJnrNFNKG58-1h_E3RF_GkfjMilsXt12r0KS3lLXyW6wc3DZxJyA38oSstpEW0AGUneRa0Tb69iBYzFeYY8yEoOHK1Nlfh7jqzuqOea3sKj3Np19tFfSRNwu5vUAbdjpIdr9JB54hO587iwpTt-xsXaGc-tlOnG-dGdgGPgonhSBGPwyAcOBZSlBcoxGnYfhfZeUpRCIhjWyILGiQc4NDxPpBNRMrq2STEcyDvMs5akONLNcp_AyAheskkRSDnbOUhtJlWp2ghrTt6k9Rdgk1Abw8EQbDvxFsixgLGJcweaHMt1EYYWI0KVOuCtX8SpqhWOHogAUhUdRrJroZv3NrFDJ-LN3qwJalCtmLlgInpFDe9REtxX4dfPvo539r_sV2u4O-z3Rexw8n6Md6sr5-tspLdRYvC_tBXCMhbr0v9QHYJTGbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86QfQgfuJ0ag7eNNgm6Reehjrm1_DgYLeQJikIrg7tLvvrfUnbdYoKHnpp0kBf0_d-ycvv9xA6lZktXM000bHRhCdUEel5kiiZqThJU6UdfexxEPaH_G4UjBZY_O60e52SLDkNVqUpLy4mOrtoiG-wirDMYk4ghiURmS2jFXDHvp3XQ9qd5xEsonFqe5SREKJdRZv5eYyvoanBm99SpC7y9DbRRgUZcbf8xltoyeTbaH1BSHAHXToeLSl34rE2ZoIz4yQ7cTa1-2EYsCkel0kZ_DIGJ4JlJUeyi4a9m-erPqnKIhAFL1iQMKVexjX3I2nF1HSmTCqZCmToZ0nMY-UpZriK4WYA4TiNIkk5-DxDTSDTWLE91MrfcrOPsI6o8eDikdIcsIxkicdYwHgKCyHKVBv5tUWEqjTDbemKV9GoHVsrCrCicFYUszY6mz8zKRUz_uzdqQ0tqr_nQzAfoiSH9qCNzmvjN82_j3bwv-4naPXpuicebgf3h2iN2sq-7qBKB7WK96k5ArhRpMduRn0CLtnKqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-source+deep+feature+fusion+for+medical+image+analysis&rft.jtitle=Multidimensional+systems+and+signal+processing&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0923-6082&rft.eissn=1573-0824&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1007%2Fs11045-024-00897-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-6082&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-6082&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-6082&client=summon |