Multi-source deep feature fusion for medical image analysis

In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help to improve the accuracy of diagnosis and treatment planning. One approach to image fusion is the saliency map, where an algorithm highlights t...

Full description

Saved in:
Bibliographic Details
Published inMultidimensional systems and signal processing Vol. 36; no. 1
Main Authors Gürsoy, Ercan, Kaya, Yasin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help to improve the accuracy of diagnosis and treatment planning. One approach to image fusion is the saliency map, where an algorithm highlights the most informative regions of the image and then combines these regions into a single image. This method can be particularly useful in medical image analysis, where certain areas of an image may be especially critical. This study proposes a novel model for multi-head medical image analysis based on ResNet using the fusion of saliency maps and RGB images as input from medical images. The image fusion generated by saliency maps contains more visible features. The saliency maps generated with the pre-trained model also contain background information. A combined dataset from two publicly available sources containing three classes, healthy, COVID-19, and pneumonia X-ray images, was used to evaluate the proposed model. The proposed multi-head CNN model improves the average classification accuracy from 94.68 to 96.72% with five-fold cross-validation. This approach could be implemented in an end-to-end computer-aided diagnosis system to shorten the evaluation time.
AbstractList In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help to improve the accuracy of diagnosis and treatment planning. One approach to image fusion is the saliency map, where an algorithm highlights the most informative regions of the image and then combines these regions into a single image. This method can be particularly useful in medical image analysis, where certain areas of an image may be especially critical. This study proposes a novel model for multi-head medical image analysis based on ResNet using the fusion of saliency maps and RGB images as input from medical images. The image fusion generated by saliency maps contains more visible features. The saliency maps generated with the pre-trained model also contain background information. A combined dataset from two publicly available sources containing three classes, healthy, COVID-19, and pneumonia X-ray images, was used to evaluate the proposed model. The proposed multi-head CNN model improves the average classification accuracy from 94.68 to 96.72% with five-fold cross-validation. This approach could be implemented in an end-to-end computer-aided diagnosis system to shorten the evaluation time.
ArticleNumber 4
Author Kaya, Yasin
Gürsoy, Ercan
Author_xml – sequence: 1
  givenname: Ercan
  surname: Gürsoy
  fullname: Gürsoy, Ercan
  organization: Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University
– sequence: 2
  givenname: Yasin
  surname: Kaya
  fullname: Kaya, Yasin
  email: ykaya@atu.edu.tr
  organization: Department of Artificial Intelligence Engineering, Adana Alparslan Turkes Science and Technology University
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8BydfLRN8SSLX7DiRc8hTSdLl267Julh99cbrSB48DTM8D4z77wLMuuHHgm5ZHDNAMqbwBjInAKXFEBVJT2ekDnLS0FBcTkjc6i4oEVqzsgihC1AwlgxJ7cvYxdbGobRW8waxH3m0MTRY-bG0A595gaf7bBpremydmc2mJnedIfQhnNy6kwX8OKnLsn7w_3b6omuXx-fV3dragWrIi1qDk42kpWGKQWNs1gbYXNTMFcpqSxYgdKqNMwVU3VZGi7LgiPH3NTKiiW5mvbu_fAxYoh6m-wmE0ELJnkl08N5UvFJZf0Qgken9z759QfNQH-FpKeQdApJf4ekjwlSfyDbRhPT39GbtvsfFRMa0p1-g_7X1T_UJ8Ccfjc
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110004
Cites_doi 10.1016/j.mehy.2020.109761
10.1101/2020.04.13.20063461
10.1109/34.730558
10.1016/j.compag.2020.105878
10.35940/ijrte.C1019.1083S219
10.1109/CVPRW.2014.131
10.1016/j.ijleo.2021.166405
10.1016/j.cviu.2017.03.001
10.1016/j.patcog.2019.05.002
10.1016/j.cmpb.2020.105581
10.32604/cmc.2020.011326
10.1016/j.patrec.2021.08.018
10.1007/978-981-15-0936-0
10.1016/j.imavis.2020.103887
10.1016/j.imu.2020.100360
10.1097/RTI.0000000000000388
10.1097/00004424-199010000-00006
10.1109/CVPR.2016.319
10.1038/35058500
10.1016/j.image.2018.05.005
10.1109/ICCV.2013.26
10.1038/s41598-020-76550-z
10.1007/s00530-023-01083-0
10.1007/s13204-021-01868-7
10.1109/TIP.2020.2971105
10.1007/978-3-030-42058-1_11
10.1007/s11831-022-09823-7
10.1016/j.compbiomed.2021.104375
10.1016/j.compbiomed.2024.108971
10.1016/j.asoc.2020.106580
10.1016/j.media.2020.101794
10.1145/2983576.2983582
10.1016/j.neuron.2011.10.035
10.1155/2015/871602
10.1007/s00330-021-07715-1
10.1007/s10044-021-00984-y
10.1016/j.irbm.2020.05.003
10.1007/978-3-030-55258-9_9
10.1088/1361-6560/abcd17
10.1186/s40537-019-0197-0
10.3390/electronics9091388
10.1016/j.compbiomed.2020.103898
10.1101/2020.03.26.20044610
10.48550/arXiv.1905.00780
10.3233/HIS-210008
10.48550/arXiv.1706.03825
10.1007/s13246-020-00865-4
10.1101/2020.04.11.20054643
10.1007/s10489-020-01900-3
10.18178/jiii.4.2.158-162
10.1109/ICCV.2019.00168
10.1007/s42600-021-00151-6
10.1016/j.compbiomed.2020.103805
10.1016/j.compag.2023.107698
10.48550/arXiv.2003.11055
10.1148/83.6.1029
10.48550/arXiv.1612.03928
10.1016/j.eswa.2022.119162
10.1007/s11042-022-12500-3
10.1007/s00500-022-07798-y
10.1109/ICEIEC49280.2020.9152329
10.1371/journal.pmed.1002683
10.1016/j.asoc.2020.106859
10.1007/s00500-020-05275-y
10.1016/j.compbiomed.2022.105221
10.3390/jpm12050680
10.1016/j.compbiomed.2022.105383
10.1088/2057-1976/ac0d91
10.1016/j.eng.2020.04.010
10.1016/j.ecoinf.2023.101998
10.1109/CVPR.2007.383267
10.3233/XST-200715
10.1109/CVPR.2016.80
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s11045-024-00897-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-0824
ExternalDocumentID 10_1007_s11045_024_00897_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-6b20f4d417a1880dfceba3c5a61f9848c0c3e4c8ba35818b77a24762e2e5ab8c3
IEDL.DBID U2A
ISSN 0923-6082
IngestDate Sun Jul 13 05:38:51 EDT 2025
Tue Jul 01 05:27:58 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Sat Mar 01 01:15:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
Medical Image Analysis
Pneumonia
CNN
Saliency Maps
Deep Learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6b20f4d417a1880dfceba3c5a61f9848c0c3e4c8ba35818b77a24762e2e5ab8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3142948975
PQPubID 2043747
ParticipantIDs proquest_journals_3142948975
crossref_primary_10_1007_s11045_024_00897_z
crossref_citationtrail_10_1007_s11045_024_00897_z
springer_journals_10_1007_s11045_024_00897_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Multidimensional systems and signal processing
PublicationTitleAbbrev Multidim Syst Sign Process
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References L Itti (897_CR24) 2001; 2
897_CR22
E Gürsoy (897_CR19) 2024; 180
RF Mansour (897_CR39) 2021; 151
897_CR68
897_CR28
X Xu (897_CR70) 2020; 6
FJM Shamrat (897_CR58) 2022; 12
M Toğaçar (897_CR65) 2020; 121
S Singhal (897_CR62) 2023; 30
897_CR60
Ameer Sardar Kwekha-Rashid (897_CR33) 2023; 13
897_CR63
M Rahimzadeh (897_CR52) 2020; 19
897_CR21
897_CR20
897_CR64
Y. Pathak (897_CR48) 2022; 43
M Nour (897_CR47) 2020; 97
NA Baghdadi (897_CR3) 2022; 144
Yasin Kaya (897_CR29) 2023; 75
897_CR12
897_CR56
JR Zech (897_CR73) 2018; 15
897_CR11
L Itti (897_CR25) 1998; 20
897_CR55
897_CR13
897_CR59
AS Elkorany (897_CR15) 2021; 231
897_CR18
PH Meyers (897_CR40) 1964; 83
N Rai (897_CR53) 2023; 206
897_CR54
Eduardo Luz (897_CR38) 2022; 38
X Xu (897_CR71) 2021; 180
R Monroy (897_CR43) 2018; 69
S Minaee (897_CR41) 2020; 65
PP de San Roman (897_CR14) 2017; 164
MMA Monshi (897_CR44) 2021; 133
CF Flores (897_CR16) 2019; 94
897_CR45
Shenquan Qu (897_CR50) 2016
ID Apostolopoulos (897_CR2) 2020; 43
L Wang (897_CR67) 2020; 10
E Kıymaç (897_CR34) 2023; 213
SM Shah (897_CR57) 2022; 142
S Jia (897_CR26) 2020; 95
MM Rahaman (897_CR51) 2020; 28
Rahul Kumar (897_CR32) 2022; 81
A Narin (897_CR46) 2021; 24
S Wang (897_CR69) 2021; 31
897_CR77
897_CR36
S Misra (897_CR42) 2020; 9
897_CR37
NS Punn (897_CR49) 2021; 51
897_CR4
897_CR5
897_CR6
HP Chan (897_CR10) 1990; 1001
897_CR72
897_CR7
897_CR74
897_CR1
897_CR76
C Can (897_CR8) 2021; 7
897_CR31
C Shorten (897_CR61) 2019; 6
Y Li (897_CR35) 2020; 123
AI Khan (897_CR30) 2020; 196
S Jin (897_CR27) 2020; 29
X Zhang (897_CR75) 2012; 73
DT Huff (897_CR23) 2021; 66
MJ Cha (897_CR9) 2019; 34
A Gupta (897_CR17) 2021; 99
F Ucar (897_CR66) 2020; 140
References_xml – volume: 140
  start-page: 109761
  year: 2020
  ident: 897_CR66
  publication-title: Medical Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– ident: 897_CR31
  doi: 10.1101/2020.04.13.20063461
– volume: 20
  start-page: 1254
  issue: 11
  year: 1998
  ident: 897_CR25
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.730558
– volume: 180
  start-page: 105878
  year: 2021
  ident: 897_CR71
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105878
– ident: 897_CR4
  doi: 10.35940/ijrte.C1019.1083S219
– ident: 897_CR54
  doi: 10.1109/CVPRW.2014.131
– volume: 231
  start-page: 166405
  year: 2021
  ident: 897_CR15
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166405
– volume: 164
  start-page: 82
  year: 2017
  ident: 897_CR14
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2017.03.001
– volume: 94
  start-page: 62
  year: 2019
  ident: 897_CR16
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.05.002
– volume: 196
  start-page: 105581
  year: 2020
  ident: 897_CR30
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105581
– ident: 897_CR60
  doi: 10.32604/cmc.2020.011326
– volume: 151
  start-page: 267
  year: 2021
  ident: 897_CR39
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2021.08.018
– ident: 897_CR45
  doi: 10.1007/978-981-15-0936-0
– ident: 897_CR12
– volume: 95
  start-page: 103887
  year: 2020
  ident: 897_CR26
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2020.103887
– volume: 19
  start-page: 100360
  year: 2020
  ident: 897_CR52
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100360
– volume: 34
  start-page: 86
  issue: 2
  year: 2019
  ident: 897_CR9
  publication-title: Journal of Thoracic Imaging
  doi: 10.1097/RTI.0000000000000388
– volume: 1001
  start-page: 48109
  year: 1990
  ident: 897_CR10
  publication-title: Arbor
  doi: 10.1097/00004424-199010000-00006
– ident: 897_CR77
  doi: 10.1109/CVPR.2016.319
– volume: 2
  start-page: 194
  issue: 3
  year: 2001
  ident: 897_CR24
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/35058500
– volume: 69
  start-page: 26
  year: 2018
  ident: 897_CR43
  publication-title: Signal Processing: Image Communication
  doi: 10.1016/j.image.2018.05.005
– ident: 897_CR74
  doi: 10.1109/ICCV.2013.26
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 897_CR67
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-76550-z
– ident: 897_CR18
  doi: 10.1007/s00530-023-01083-0
– volume: 13
  start-page: 2013
  issue: 3
  year: 2023
  ident: 897_CR33
  publication-title: Applied Nanoscience
  doi: 10.1007/s13204-021-01868-7
– volume: 29
  start-page: 5336
  year: 2020
  ident: 897_CR27
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2971105
– ident: 897_CR1
  doi: 10.1007/978-3-030-42058-1_11
– volume: 30
  start-page: 865
  issue: 2
  year: 2023
  ident: 897_CR62
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-022-09823-7
– volume: 133
  start-page: 104375
  year: 2021
  ident: 897_CR44
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104375
– volume: 180
  start-page: 108971
  year: 2024
  ident: 897_CR19
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2024.108971
– volume: 97
  start-page: 106580
  year: 2020
  ident: 897_CR47
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106580
– volume: 65
  start-page: 101794
  year: 2020
  ident: 897_CR41
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101794
– ident: 897_CR56
  doi: 10.1145/2983576.2983582
– volume: 73
  start-page: 183
  issue: 1
  year: 2012
  ident: 897_CR75
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.10.035
– ident: 897_CR5
  doi: 10.1155/2015/871602
– volume: 31
  start-page: 6096
  issue: 8
  year: 2021
  ident: 897_CR69
  publication-title: European Radiology
  doi: 10.1007/s00330-021-07715-1
– volume: 24
  start-page: 1207
  issue: 3
  year: 2021
  ident: 897_CR46
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-021-00984-y
– volume: 43
  start-page: 87
  issue: 2
  year: 2022
  ident: 897_CR48
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.05.003
– ident: 897_CR59
  doi: 10.1007/978-3-030-55258-9_9
– volume: 66
  start-page: 04TR01
  issue: 4
  year: 2021
  ident: 897_CR23
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/abcd17
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 897_CR61
  publication-title: Journal of big data
  doi: 10.1186/s40537-019-0197-0
– volume: 9
  start-page: 1388
  issue: 9
  year: 2020
  ident: 897_CR42
  publication-title: Electronics
  doi: 10.3390/electronics9091388
– volume: 123
  start-page: 103898
  year: 2020
  ident: 897_CR35
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103898
– ident: 897_CR7
  doi: 10.1101/2020.03.26.20044610
– ident: 897_CR64
  doi: 10.48550/arXiv.1905.00780
– ident: 897_CR6
  doi: 10.3233/HIS-210008
– ident: 897_CR63
  doi: 10.48550/arXiv.1706.03825
– ident: 897_CR20
– volume: 43
  start-page: 635
  issue: 2
  year: 2020
  ident: 897_CR2
  publication-title: Physical and Engineering Sciences in Medicine
  doi: 10.1007/s13246-020-00865-4
– ident: 897_CR55
  doi: 10.1101/2020.04.11.20054643
– volume: 51
  start-page: 2689
  issue: 5
  year: 2021
  ident: 897_CR49
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01900-3
– year: 2016
  ident: 897_CR50
  publication-title: Journal of Industrial and Intelligent Information
  doi: 10.18178/jiii.4.2.158-162
– ident: 897_CR76
  doi: 10.1109/ICCV.2019.00168
– volume: 38
  start-page: 149
  issue: 1
  year: 2022
  ident: 897_CR38
  publication-title: Research on Biomedical Engineering
  doi: 10.1007/s42600-021-00151-6
– volume: 121
  start-page: 103805
  year: 2020
  ident: 897_CR65
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103805
– volume: 206
  start-page: 107698
  year: 2023
  ident: 897_CR53
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.107698
– ident: 897_CR21
  doi: 10.48550/arXiv.2003.11055
– volume: 83
  start-page: 1029
  issue: 6
  year: 1964
  ident: 897_CR40
  publication-title: Radiology
  doi: 10.1148/83.6.1029
– ident: 897_CR72
  doi: 10.48550/arXiv.1612.03928
– volume: 213
  start-page: 119162
  year: 2023
  ident: 897_CR34
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119162
– volume: 81
  start-page: 27631
  issue: 19
  year: 2022
  ident: 897_CR32
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-12500-3
– ident: 897_CR28
  doi: 10.1007/s00500-022-07798-y
– ident: 897_CR68
  doi: 10.1109/ICEIEC49280.2020.9152329
– volume: 15
  start-page: e1002683
  issue: 11
  year: 2018
  ident: 897_CR73
  publication-title: PLoS Medicine
  doi: 10.1371/journal.pmed.1002683
– volume: 99
  start-page: 106859
  year: 2021
  ident: 897_CR17
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106859
– ident: 897_CR13
  doi: 10.1007/s00500-020-05275-y
– volume: 142
  start-page: 105221
  year: 2022
  ident: 897_CR57
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105221
– volume: 12
  start-page: 680
  issue: 5
  year: 2022
  ident: 897_CR58
  publication-title: Journal of Personalized Medicine
  doi: 10.3390/jpm12050680
– volume: 144
  start-page: 105383
  year: 2022
  ident: 897_CR3
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105383
– ident: 897_CR11
– volume: 7
  start-page: 055005
  issue: 5
  year: 2021
  ident: 897_CR8
  publication-title: Biomedical Physics & Engineering Express
  doi: 10.1088/2057-1976/ac0d91
– ident: 897_CR36
– volume: 6
  start-page: 1122
  issue: 10
  year: 2020
  ident: 897_CR70
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.04.010
– volume: 75
  start-page: 101998
  year: 2023
  ident: 897_CR29
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2023.101998
– ident: 897_CR22
  doi: 10.1109/CVPR.2007.383267
– volume: 28
  start-page: 821
  issue: 5
  year: 2020
  ident: 897_CR51
  publication-title: Journal of X-Ray Science and Technology
  doi: 10.3233/XST-200715
– ident: 897_CR37
  doi: 10.1109/CVPR.2016.80
SSID ssj0010016
Score 2.401517
Snippet In image fusion, several images are combined into one image that contains information from all input images. In medical image analysis, image fusion can help...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Circuits and Systems
Color imagery
Computer vision
Diagnosis
Electrical Engineering
Engineering
Image analysis
Medical imaging
Salience
Signal,Image and Speech Processing
Title Multi-source deep feature fusion for medical image analysis
URI https://link.springer.com/article/10.1007/s11045-024-00897-z
https://www.proquest.com/docview/3142948975
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGD-InTOXLwpoE2Sb_wtMnmUNzJwTyVNElBcHO47bK_3pe0XVVU8FAKTZrDL8n7yMv7PYBLmdvC1VxTHRtNRcIUlZ4nqZK5ipMsU9qljz2OwuFY3E-CSZkUtqhuu1chSSep62Q39BxsNrGgqLeSiK63oRlY3x1X8Zh1N7EDa8U4hj3GaYgarkyV-XmMr-qotjG_hUWdthnsw15pJpJuMa8HsGVmh7D7iTzwCG5c7iwtTt-JNmZOcuNoOkm-smdgBO1RMi0CMeRlioKDyJKC5BjGg_7T7ZCWpRCowj2ypGHGvFxo4UfSEqjpXJlMchXI0M-TWMTKU9wIFePHAFVwFkWSCZRzhplAZrHiJ9CYvc3MKRAdMePhIyKlBdovkice5wEXGTo_jKsW-BUiqSp5wm25ite0Zji2KKaIYupQTNctuNr8My9YMv7s3a6ATssds0i5j5pRYHvQgusK_Lr599HO_tf9HHaYLeHrbqS0obF8X5kLtCuWWQea3UGvN7Lvu-eHfsctqw9RocaM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sYCmxnZeYKkRVoO3USt0svyIh0VLRdumv5-wkDSBAYsgSOx4-x3effb7vELqWuStczQwxqTWEZ1QTGQSSaJnrNFNKG58-1h_E3RF_GkfjMilsXt12r0KS3lLXyW6wc3DZxJyA38oSstpEW0AGUneRa0Tb69iBYzFeYY8yEoOHK1Nlfh7jqzuqOea3sKj3Np19tFfSRNwu5vUAbdjpIdr9JB54hO587iwpTt-xsXaGc-tlOnG-dGdgGPgonhSBGPwyAcOBZSlBcoxGnYfhfZeUpRCIhjWyILGiQc4NDxPpBNRMrq2STEcyDvMs5akONLNcp_AyAheskkRSDnbOUhtJlWp2ghrTt6k9Rdgk1Abw8EQbDvxFsixgLGJcweaHMt1EYYWI0KVOuCtX8SpqhWOHogAUhUdRrJroZv3NrFDJ-LN3qwJalCtmLlgInpFDe9REtxX4dfPvo539r_sV2u4O-z3Rexw8n6Md6sr5-tspLdRYvC_tBXCMhbr0v9QHYJTGbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86QfQgfuJ0ag7eNNgm6Reehjrm1_DgYLeQJikIrg7tLvvrfUnbdYoKHnpp0kBf0_d-ycvv9xA6lZktXM000bHRhCdUEel5kiiZqThJU6UdfexxEPaH_G4UjBZY_O60e52SLDkNVqUpLy4mOrtoiG-wirDMYk4ghiURmS2jFXDHvp3XQ9qd5xEsonFqe5SREKJdRZv5eYyvoanBm99SpC7y9DbRRgUZcbf8xltoyeTbaH1BSHAHXToeLSl34rE2ZoIz4yQ7cTa1-2EYsCkel0kZ_DIGJ4JlJUeyi4a9m-erPqnKIhAFL1iQMKVexjX3I2nF1HSmTCqZCmToZ0nMY-UpZriK4WYA4TiNIkk5-DxDTSDTWLE91MrfcrOPsI6o8eDikdIcsIxkicdYwHgKCyHKVBv5tUWEqjTDbemKV9GoHVsrCrCicFYUszY6mz8zKRUz_uzdqQ0tqr_nQzAfoiSH9qCNzmvjN82_j3bwv-4naPXpuicebgf3h2iN2sq-7qBKB7WK96k5ArhRpMduRn0CLtnKqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-source+deep+feature+fusion+for+medical+image+analysis&rft.jtitle=Multidimensional+systems+and+signal+processing&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0923-6082&rft.eissn=1573-0824&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1007%2Fs11045-024-00897-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-6082&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-6082&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-6082&client=summon