Identification of systolic and diastolic heart failure progression with Krawtchouk moment feature-aided Harris hawks optimized support vector machine

The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of systolic and diastolic heart failure and left ventricle (LV) myocardial tissue variations is presented in this work. The corr-entropy and opti...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 16; no. 1; pp. 127 - 135
Main Authors Muthunayagam, Muthulakshmi, Ganesan, Kavitha
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of systolic and diastolic heart failure and left ventricle (LV) myocardial tissue variations is presented in this work. The corr-entropy and optimized edge criterion has been incorporated into the level set (CEOELS) for effective segmentation of myocardium in cardiovascular magnetic resonance images to handle noise, intensity inhomogeneity and contour initialization. In order to learn shape and local variations in segmented myocardium, Krawtchouk moment features are computed for ten different moment orders. The relevant extracted features are obtained through Harris hawks optimization algorithm. The optimized features are fed to support vector machine (SVM) that uses fivefold cross-validation approach for classification. Experimental results show that CEOELS has provided better segmentation of LV blood cavity and myocardium with a similarity measure of 0.93 and 0.92, respectively. It is also observed that individual Krawtchouk moment orders greater than 30 have provided better HF prediction performance. Consequently, optimized Krawtchouk moment features produced an increased overall accuracy (80.8%) than individual feature sets. Significant improvement has also been achieved in distinction of hyperdynamic patients from normal and systolic dysfunction subjects that is less explored.
AbstractList The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of systolic and diastolic heart failure and left ventricle (LV) myocardial tissue variations is presented in this work. The corr-entropy and optimized edge criterion has been incorporated into the level set (CEOELS) for effective segmentation of myocardium in cardiovascular magnetic resonance images to handle noise, intensity inhomogeneity and contour initialization. In order to learn shape and local variations in segmented myocardium, Krawtchouk moment features are computed for ten different moment orders. The relevant extracted features are obtained through Harris hawks optimization algorithm. The optimized features are fed to support vector machine (SVM) that uses fivefold cross-validation approach for classification. Experimental results show that CEOELS has provided better segmentation of LV blood cavity and myocardium with a similarity measure of 0.93 and 0.92, respectively. It is also observed that individual Krawtchouk moment orders greater than 30 have provided better HF prediction performance. Consequently, optimized Krawtchouk moment features produced an increased overall accuracy (80.8%) than individual feature sets. Significant improvement has also been achieved in distinction of hyperdynamic patients from normal and systolic dysfunction subjects that is less explored.
Author Muthunayagam, Muthulakshmi
Ganesan, Kavitha
Author_xml – sequence: 1
  givenname: Muthulakshmi
  orcidid: 0000-0003-2721-0211
  surname: Muthunayagam
  fullname: Muthunayagam, Muthulakshmi
  email: lakshmingm.2@gmail.com
  organization: Department of Electronics Engineering, MIT Campus, Anna University
– sequence: 2
  givenname: Kavitha
  surname: Ganesan
  fullname: Ganesan, Kavitha
  organization: Department of Electronics Engineering, MIT Campus, Anna University
BookMark eNp9kcFOHSEUhkljE631BVyRdD0tZ7iXgWVj2mpq4kbX5Fzm4KB3hikwvdH36PsWvaZNXMgGDvm__8D5P7CDKU7E2CmIzyBE9yUDdEo0ooVGgOl0I9-xI9BKNtABHPw7C3nITnK-E3XJttNKH7E_Fz1NJfjgsIQ48eh5fsglboPjOPW8D_hSDYSpcI9huyTic4q3iXJ-YnahDPxnwl1xQ1zu-RjH6sk9YanSBkNPPT_HlELmA-7uM49zCWN4rNd5medYfX-TKzHxEd0QJvrI3nvcZjp52Y_Zzfdv12fnzeXVj4uzr5eNk2BKo3ANaFCR87QhYaBv0axQ-3YttPS1ULpfbQTghgwACCWNaVe6EogdCHnMPu1963d-LZSLvYtLmmpL2yowrVwbpapK71UuxZwTeetCeR5XSXUcFoR9ysHuc7A1B_ucg5UVbV-hcwojpoe3IbmHchVPt5T-v-oN6i_gLKCV
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3468163
crossref_primary_10_1142_S0218339023300014
crossref_primary_10_1109_ACCESS_2022_3213065
crossref_primary_10_35741_issn_0258_2724_59_2_8
Cites_doi 10.1007/s11042-017-5473-4
10.1016/j.future.2019.02.028
10.1016/j.sigpro.2016.12.021
10.1016/j.media.2020.101723
10.1016/j.csbj.2016.11.001
10.1016/j.mri.2015.12.027
10.1007/978-3-319-75541-0_11
10.1109/TIP.2003.818019
10.1007/978-3-319-75541-0_15
10.1155/2018/7310496
10.1161/CIRCULATIONAHA.110.954388
10.1016/j.bbe.2013.12.002
10.1016/j.mri.2017.01.011
10.1001/jama.2020.10262
10.1016/j.compmedimag.2020.101795
10.1186/1471-2342-10-1
10.1016/j.neucom.2018.09.001
10.1109/TCYB.2017.2778799
10.1007/978-3-319-75541-0_13
10.1002/mp.12783
10.1016/j.neucom.2017.01.013
10.1016/j.mri.2019.08.004
10.1109/TMI.2019.2894322
10.1109/TMI.2018.2837502
10.1016/j.media.2016.05.009
10.1002/ima.22210
10.1016/j.media.2017.04.002
10.1002/jmri.25932
10.1093/eurheartj/ehz706
10.1109/ICIP.2019.8803083
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11760-021-01978-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 135
ExternalDocumentID 10_1007_s11760_021_01978_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-6a51a9a6ecfebe091d2a94a8f25083f2a968d4b01abe911106399248a6eaa7103
IEDL.DBID U2A
ISSN 1863-1703
IngestDate Tue Aug 26 14:40:28 EDT 2025
Tue Jul 01 03:24:17 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Fri Feb 21 02:46:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heart failure
Support vector machine
Cardiovascular magnetic resonance
Krawtchouk moment
Harris hawks optimization
Corr-entropy level set
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6a51a9a6ecfebe091d2a94a8f25083f2a968d4b01abe911106399248a6eaa7103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2721-0211
PQID 2619235966
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_2619235966
crossref_citationtrail_10_1007_s11760_021_01978_3
crossref_primary_10_1007_s11760_021_01978_3
springer_journals_10_1007_s11760_021_01978_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Zeng, Qiu, Wang, Liu, Zhang, Li (CR27) 2018; 320
Khened, Alex, Krishnamurthi, Pop (CR19) 2018
Tan, McLaughlin, Lim, Abdul Aziz, Liew (CR10) 2018; 48
Zhou, Wang, Zhang, Cai, Gong (CR14) 2017; 234
Vijayanandh, Shenbagavalli (CR22) 2018; 77
Tan, Liew, Lim, McLaughlin (CR9) 2017; 39
Yap, Paramesran, Ong (CR23) 2003; 12
Wolterink, Leiner, Veirgever, Isgum, Pop (CR20) 2018
Ding, Xiao, Weng (CR15) 2017; 134
Ngo, Lu, Carneiro (CR11) 2017; 35
Hunt, Abraham, Chin, Feldman, Francis, Ganiats, Jessup, Konstam, Mancini, Michl, Oates, Rahko, Silver, Stevenson, Yancy (CR2) 2009; 119
Ng, Bax (CR5) 2020; 41
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR28) 2019; 97
Kotu, Engan, Skretting, Måløy, Orn, Woie, Eftestøl (CR16) 2013; 12
Lin, Wu, Yang (CR32) 2020; 66
Liu, Zhang, Li, Li, Zou, Chen (CR33) 2020; 86
Cygan, Werys, Błaszczyk, Kubik, Kałużyński (CR6) 2014; 34
Liao, Chen, Hu, Song (CR8) 2017; 49
Tang, Qian, Li, Hu, Wu (CR21) 2017; 27
Tripoliti, Papadopoulos, Karanasiou, Naka, Fotiadis (CR34) 2017; 15
Borlaug, Redfield (CR1) 2011; 123
Luo, Wang, Tam, Wang, Cao, Zhang, Chen, Li (CR31) 2020; 64
Premkumar, Janney, Nanda, Divakaran, Lavanya (CR26) 2019; 11
CR29
Liu, Captur, Moon, Guo, Yang, Zhang, Li (CR13) 2016; 34
Larroza, López-Lereu, Monmeneu, Gavara, Chorro, Bodí, Moratal (CR24) 2018; 45
Yang, Wu, Su, Zhang (CR12) 2017; 38
Isensee, Jaeger, Full, Wolf, Engelhardt, Maier-Hein, Pop (CR18) 2018
Murphy, Ibrahim, Januzzi (CR3) 2020; 324
Duan, Bello, Schlemper, Bai, Dawes, Biffi, Marvao, Doumou, O’Regan, Rueckert (CR7) 2019; 38
Heiberg, Sjogren, Ugander, Carlsson, Engblom, Arheden (CR30) 2010; 10
Gorantla, Ahmed, Voruganti, Menzies (CR4) 2015; 9
Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Ballester, Sanroma (CR17) 2018; 37
Mustaqeem, Anwar, Majid (CR25) 2018; 2018
F Isensee (1978_CR18) 2018
JM Wolterink (1978_CR20) 2018
AA Heidari (1978_CR28) 2019; 97
SP Murphy (1978_CR3) 2020; 324
A Mustaqeem (1978_CR25) 2018; 2018
E Heiberg (1978_CR30) 2010; 10
F Liao (1978_CR8) 2017; 49
BA Borlaug (1978_CR1) 2011; 123
M Khened (1978_CR19) 2018
EE Tripoliti (1978_CR34) 2017; 15
Z Liu (1978_CR33) 2020; 86
O Bernard (1978_CR17) 2018; 37
LP Kotu (1978_CR16) 2013; 12
G Luo (1978_CR31) 2020; 64
L Tang (1978_CR21) 2017; 27
PT Yap (1978_CR23) 2003; 12
Y Liu (1978_CR13) 2016; 34
N Zeng (1978_CR27) 2018; 320
LK Tan (1978_CR9) 2017; 39
S Zhou (1978_CR14) 2017; 234
C Yang (1978_CR12) 2017; 38
K Ding (1978_CR15) 2017; 134
RS Gorantla (1978_CR4) 2015; 9
LK Tan (1978_CR10) 2018; 48
A Lin (1978_CR32) 2020; 66
J Duan (1978_CR7) 2019; 38
TA Ngo (1978_CR11) 2017; 35
S Cygan (1978_CR6) 2014; 34
1978_CR29
ACT Ng (1978_CR5) 2020; 41
J Premkumar (1978_CR26) 2019; 11
SA Hunt (1978_CR2) 2009; 119
T Vijayanandh (1978_CR22) 2018; 77
A Larroza (1978_CR24) 2018; 45
References_xml – volume: 77
  start-page: 10273
  year: 2018
  end-page: 10284
  ident: CR22
  article-title: Tamper detection of medical images using statistical moments against various attacks
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5473-4
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: CR28
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener. Comp. Sy.
  doi: 10.1016/j.future.2019.02.028
– volume: 134
  start-page: 224
  year: 2017
  end-page: 233
  ident: CR15
  article-title: Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.12.021
– volume: 64
  start-page: 101723
  year: 2020
  ident: CR31
  article-title: Dynamically constructed network with error correction for accurate ventricle volume estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101723
– volume: 15
  start-page: 26
  year: 2017
  end-page: 47
  ident: CR34
  article-title: Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2016.11.001
– volume: 34
  start-page: 699
  issue: 5
  year: 2016
  end-page: 706
  ident: CR13
  article-title: Distance regularized two level sets for segmentation of left and right ventricles from Cine-MRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2015.12.027
– start-page: 101
  year: 2018
  end-page: 110
  ident: CR20
  article-title: Automatic segmentation and disease classification using cardiac cine MR images
  publication-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges
  doi: 10.1007/978-3-319-75541-0_11
– volume: 12
  start-page: 1367
  issue: 11
  year: 2003
  end-page: 1377
  ident: CR23
  article-title: Image analysis by Krawtchouk moments
  publication-title: IEEE Trans. Image. Process.
  doi: 10.1109/TIP.2003.818019
– volume: 9
  start-page: 43
  year: 2015
  end-page: 47
  ident: CR4
  article-title: Hyperdynamic left ventricle on radionuclide myocardial perfusion imaging (RNMPI): A marker of diastolic dysfunction in patients presenting with dyspnea on exertion
  publication-title: Int. J. Cardiol. Heart Vasc.
– volume: 41
  start-page: 1258
  issue: 12
  year: 2020
  end-page: 1259
  ident: CR5
  article-title: Hyperdynamic left ventricular function and the prognostic implications for heart failure with preserved ejection fraction
  publication-title: Eur Heart J.
– start-page: 140
  year: 2018
  end-page: 151
  ident: CR19
  article-title: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest
  publication-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges
  doi: 10.1007/978-3-319-75541-0_15
– ident: CR29
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR25
  article-title: Multiclass classification of cardiac arrhythmia using improved feature selection and SVM invariants
  publication-title: Comput. Math. Methods. Med.
  doi: 10.1155/2018/7310496
– volume: 119
  start-page: e391
  issue: 14
  year: 2009
  end-page: e479
  ident: CR2
  article-title: Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation
  publication-title: Circulation
– volume: 123
  start-page: 2006
  issue: 18
  year: 2011
  end-page: 2013
  ident: CR1
  article-title: Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.954388
– volume: 34
  start-page: 19
  issue: 1
  year: 2014
  end-page: 24
  ident: CR6
  article-title: Left ventricle phantom and experimental setup for MRI and echocardiography—Preliminary results of data acquisitions
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2013.12.002
– volume: 38
  start-page: 202
  year: 2017
  end-page: 213
  ident: CR12
  article-title: Left ventricle segmentation via two-layer level sets with circular shape constraint
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2017.01.011
– volume: 11
  start-page: 3264
  issue: 9
  year: 2019
  end-page: 3268
  ident: CR26
  article-title: Detection of caries in dental X ray images using Multiclass SVM
  publication-title: J Pharm. Sci. Res.
– volume: 324
  start-page: 488
  issue: 5
  year: 2020
  end-page: 504
  ident: CR3
  article-title: Heart failure with reduced ejection fraction a review
  publication-title: JAMA
  doi: 10.1001/jama.2020.10262
– volume: 12
  start-page: 1
  issue: 91
  year: 2013
  end-page: 19
  ident: CR16
  article-title: Probability mapping of scarred myocardium using texture and intensity features in CMR images
  publication-title: Biomed. Eng. Online.
– volume: 86
  start-page: 101795
  year: 2020
  ident: CR33
  article-title: Multislice left ventricular ejection fraction prediction from cardiac MRIs without segmentation using shared SptDenNet
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2020.101795
– volume: 10
  start-page: 1
  year: 2010
  end-page: 13
  ident: CR30
  article-title: Design and validation of Segment—freely available software for cardiovascular image analysis
  publication-title: BMC. Med. Imaging.
  doi: 10.1186/1471-2342-10-1
– volume: 320
  start-page: 195
  year: 2018
  end-page: 202
  ident: CR27
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.001
– volume: 49
  start-page: 495
  issue: 2
  year: 2017
  end-page: 504
  ident: CR8
  article-title: Estimation of the volume of the left ventricle from MRI images using deep neural networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2778799
– start-page: 120
  year: 2018
  end-page: 129
  ident: CR18
  article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features
  publication-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges
  doi: 10.1007/978-3-319-75541-0_13
– volume: 45
  start-page: 1471
  issue: 4
  year: 2018
  end-page: 1480
  ident: CR24
  article-title: Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction
  publication-title: Med. Phys.
  doi: 10.1002/mp.12783
– volume: 234
  start-page: 216
  year: 2017
  end-page: 229
  ident: CR14
  article-title: Correntropy-based level set method for medical image segmentation and bias correction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.013
– volume: 66
  start-page: 152
  year: 2020
  end-page: 164
  ident: CR32
  article-title: A data augmentation approach to train fully convolutional networks for left ventricle segmentation
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.08.004
– volume: 38
  start-page: 2151
  issue: 9
  year: 2019
  end-page: 2164
  ident: CR7
  article-title: Automatic 3D Bi-Ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2019.2894322
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  end-page: 2525
  ident: CR17
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
– volume: 35
  start-page: 159
  year: 2017
  end-page: 171
  ident: CR11
  article-title: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2016.05.009
– volume: 27
  start-page: 57
  issue: 1
  year: 2017
  end-page: 65
  ident: CR21
  article-title: Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22210
– volume: 39
  start-page: 78
  year: 2017
  end-page: 86
  ident: CR9
  article-title: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.04.002
– volume: 48
  start-page: 140
  issue: 1
  year: 2018
  end-page: 152
  ident: CR10
  article-title: Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25932
– volume: 97
  start-page: 849
  year: 2019
  ident: 1978_CR28
  publication-title: Future Gener. Comp. Sy.
  doi: 10.1016/j.future.2019.02.028
– volume: 38
  start-page: 2151
  issue: 9
  year: 2019
  ident: 1978_CR7
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2019.2894322
– volume: 41
  start-page: 1258
  issue: 12
  year: 2020
  ident: 1978_CR5
  publication-title: Eur Heart J.
  doi: 10.1093/eurheartj/ehz706
– volume: 12
  start-page: 1367
  issue: 11
  year: 2003
  ident: 1978_CR23
  publication-title: IEEE Trans. Image. Process.
  doi: 10.1109/TIP.2003.818019
– volume: 9
  start-page: 43
  year: 2015
  ident: 1978_CR4
  publication-title: Int. J. Cardiol. Heart Vasc.
– ident: 1978_CR29
  doi: 10.1109/ICIP.2019.8803083
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1978_CR25
  publication-title: Comput. Math. Methods. Med.
  doi: 10.1155/2018/7310496
– volume: 86
  start-page: 101795
  year: 2020
  ident: 1978_CR33
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2020.101795
– volume: 49
  start-page: 495
  issue: 2
  year: 2017
  ident: 1978_CR8
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2778799
– volume: 64
  start-page: 101723
  year: 2020
  ident: 1978_CR31
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101723
– volume: 15
  start-page: 26
  year: 2017
  ident: 1978_CR34
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2016.11.001
– volume: 27
  start-page: 57
  issue: 1
  year: 2017
  ident: 1978_CR21
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22210
– volume: 34
  start-page: 19
  issue: 1
  year: 2014
  ident: 1978_CR6
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2013.12.002
– volume: 134
  start-page: 224
  year: 2017
  ident: 1978_CR15
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.12.021
– volume: 119
  start-page: e391
  issue: 14
  year: 2009
  ident: 1978_CR2
  publication-title: Circulation
– start-page: 120
  volume-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges
  year: 2018
  ident: 1978_CR18
  doi: 10.1007/978-3-319-75541-0_13
– start-page: 140
  volume-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges
  year: 2018
  ident: 1978_CR19
  doi: 10.1007/978-3-319-75541-0_15
– volume: 123
  start-page: 2006
  issue: 18
  year: 2011
  ident: 1978_CR1
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.954388
– volume: 35
  start-page: 159
  year: 2017
  ident: 1978_CR11
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2016.05.009
– volume: 48
  start-page: 140
  issue: 1
  year: 2018
  ident: 1978_CR10
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25932
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  ident: 1978_CR17
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
– volume: 45
  start-page: 1471
  issue: 4
  year: 2018
  ident: 1978_CR24
  publication-title: Med. Phys.
  doi: 10.1002/mp.12783
– volume: 66
  start-page: 152
  year: 2020
  ident: 1978_CR32
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.08.004
– volume: 12
  start-page: 1
  issue: 91
  year: 2013
  ident: 1978_CR16
  publication-title: Biomed. Eng. Online.
– volume: 77
  start-page: 10273
  year: 2018
  ident: 1978_CR22
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5473-4
– volume: 38
  start-page: 202
  year: 2017
  ident: 1978_CR12
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2017.01.011
– volume: 234
  start-page: 216
  year: 2017
  ident: 1978_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.013
– volume: 320
  start-page: 195
  year: 2018
  ident: 1978_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.001
– volume: 324
  start-page: 488
  issue: 5
  year: 2020
  ident: 1978_CR3
  publication-title: JAMA
  doi: 10.1001/jama.2020.10262
– volume: 11
  start-page: 3264
  issue: 9
  year: 2019
  ident: 1978_CR26
  publication-title: J Pharm. Sci. Res.
– volume: 39
  start-page: 78
  year: 2017
  ident: 1978_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.04.002
– start-page: 101
  volume-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges
  year: 2018
  ident: 1978_CR20
  doi: 10.1007/978-3-319-75541-0_11
– volume: 10
  start-page: 1
  year: 2010
  ident: 1978_CR30
  publication-title: BMC. Med. Imaging.
  doi: 10.1186/1471-2342-10-1
– volume: 34
  start-page: 699
  issue: 5
  year: 2016
  ident: 1978_CR13
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2015.12.027
SSID ssj0000327868
Score 2.2394154
Snippet The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Algorithms
Computer Imaging
Computer Science
Feature extraction
Heart failure
Image Processing and Computer Vision
Image segmentation
Inhomogeneity
Magnetic resonance imaging
Multimedia Information Systems
Myocardium
Noise intensity
Optimization
Original Paper
Pattern Recognition and Graphics
Shape
Signal,Image and Speech Processing
Support vector machines
Vision
Title Identification of systolic and diastolic heart failure progression with Krawtchouk moment feature-aided Harris hawks optimized support vector machine
URI https://link.springer.com/article/10.1007/s11760-021-01978-3
https://www.proquest.com/docview/2619235966
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcKEHKFBEykNz6K1YstfO2j4mFSEqghOR4GSN410V0SQoD5D4H_zfzqzXpKAWqSdrvY-Dv93xt7sz3wB8rSJDikztNhgklY0DytI8SDXpUtuyzFMJFL641INh8uO6c-2DwuaNt3tzJeks9SrYLUp5OHEpYFoil_ofYL3De3dx5Bqq7svJShirNKtj4DIt-pth7KNl_j7M6z_Sima-uRl1P5z-J9j0TBG7NbTbsGYmO7DVZGFAvyh34OMfkoK78FxH3lp_FIdTiyLWLOq_SJMKeTr4kqSyXqClW3FMR-enVWt0oJzN4vmMHhnR6fIOx6LSwE2NEwENRFSywgHN2D7gT3q8m-OUDc_49olfz5f3wujxwd0G4Nj5aprPMOyfXn0fBD71QjDiNbkINHUiykmbkWWUmVNUivKEMqtEPt5yQWdVUoYRlUbMpSM6Ksm4BxGTlngPWpPpxOwDpjF3UamJk5y5mQ3LXBQqtUrIckU4akPUfP5i5HXJJT3Gr2KlqCyQFQxZ4SAr4jZ8e-lzX6tyvNv6sEG18Ct0XtQ7xw7v9tpw0iC9qv73aF_-r_kBbCiJmHCO3ofQWsyW5oh5zKI8hvVuv9e7lOfZzfnpsZvGvwFsLu2_
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0xcGA4AAODaNY6zI2JlDhpJzkiBGrWEy1xiyodWyDobtQLSPwH_0uV49AwYkaao-PlkOfl2VX1CuBXFRlSZGq3wSCpbBxQluZBqkmX2pZlnkqg8OWV7nSTs5v2jQ8KGzfe7o1J0u3Us2C3KOXhxKWAaYkY9b_BApOBTOZyVx2-v6yEsUqzOgYu06K_GcY-WubrYT6fSDOa-Ydl1B04J6uw7JkiHtbQ_oA5M1iDlSYLA_pFuQZLHyQF1-G1jry1_ikOhxZFrFnUf5EGFfJ08CVJZT1BS3fimI7OT6vW6EB5m8XzET0zosPpPfZFpYGbGicCGoioZIUdGvH-gLf0fD_GIW88_bsX_jyePgqjxydnDcC-89U0P6F7cnx91Al86oWgx2tyEmhqR5STNj3LKDOnqBTlCWVWiXy85YLOqqQMIyqNbJeO6Kgk4x5ETFriDZgfDAdmEzCNuYtKTZzkzM1sWOaiUKlVQpYrwl4Loub3Fz2vSy7pMR6KmaKyQFYwZIWDrIhbcPDe57FW5fhn650G1cKv0HFR3xzbfNtrwe8G6Vn130fb-r_m-7DYub68KC5Or8634buS6Ann9L0D85PR1Owyp5mUe24KvwHiZu2i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkFB7KJQWNS3QOXCjFvbaWdtHVIgCtIhDI3GzxvGuQBAnShyQ-B_9v51Z24SiUonjeh8Hzz6-3ZnvG4C9IjCkyNRhg15U2NCjJE69WJPOtc3zNBai8M9z3R9Ep5fdyycsfhft3roka06DqDSV1cGksAcL4lsQ89ASXsAQRRz8y7AaCRuYZ_RAHT6-svihipOaD5do0eL0w4Y58-9h_j6dFpDzmZfUHT69DXjXoEY8rM38HpZMuQnrbUYGbBboJrx9Ii_4AX7XLFzbPMvh2KIIN4sSMFJZIE-NpiRprSu0dC1B6uhitmq9DpR3Wjyb0j1bdzy_wZEoNnBT4wRBPRGYLLBPU94r8Irub2Y45k1odP3An2fziaB7vHOeARy5uE3zEQa941_f-16ThsEb8vqsPE3dgFLSZmjZ4owvCkVpRIlVIiVvuaCTIsr9gHIjW6cDPSpKuAcRA5hwC1bKcWk-AcYhd1GxCaOUcZr181TUKrWKyHKFP-xA0P7-bNholEuqjNtsoa4sJsvYZJkzWRZ2YP-xz6RW6Phv6-3WqlmzWmdZfYvs8s2vA99aSy-qXx7t8-uaf4W1i6Ne9uPk_OwLvFFCpHDx39uwUk3nZofhTZXvuhn8B2zG8dU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+systolic+and+diastolic+heart+failure+progression+with+Krawtchouk+moment+feature-aided+Harris+hawks+optimized+support+vector+machine&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Muthunayagam%2C+Muthulakshmi&rft.au=Ganesan%2C+Kavitha&rft.date=2022-02-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=16&rft.issue=1&rft.spage=127&rft.epage=135&rft_id=info:doi/10.1007%2Fs11760-021-01978-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_021_01978_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon