Identification of systolic and diastolic heart failure progression with Krawtchouk moment feature-aided Harris hawks optimized support vector machine
The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of systolic and diastolic heart failure and left ventricle (LV) myocardial tissue variations is presented in this work. The corr-entropy and opti...
Saved in:
Published in | Signal, image and video processing Vol. 16; no. 1; pp. 127 - 135 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of systolic and diastolic heart failure and left ventricle (LV) myocardial tissue variations is presented in this work. The corr-entropy and optimized edge criterion has been incorporated into the level set (CEOELS) for effective segmentation of myocardium in cardiovascular magnetic resonance images to handle noise, intensity inhomogeneity and contour initialization. In order to learn shape and local variations in segmented myocardium, Krawtchouk moment features are computed for ten different moment orders. The relevant extracted features are obtained through Harris hawks optimization algorithm. The optimized features are fed to support vector machine (SVM) that uses fivefold cross-validation approach for classification. Experimental results show that CEOELS has provided better segmentation of LV blood cavity and myocardium with a similarity measure of 0.93 and 0.92, respectively. It is also observed that individual Krawtchouk moment orders greater than 30 have provided better HF prediction performance. Consequently, optimized Krawtchouk moment features produced an increased overall accuracy (80.8%) than individual feature sets. Significant improvement has also been achieved in distinction of hyperdynamic patients from normal and systolic dysfunction subjects that is less explored. |
---|---|
AbstractList | The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of systolic and diastolic heart failure and left ventricle (LV) myocardial tissue variations is presented in this work. The corr-entropy and optimized edge criterion has been incorporated into the level set (CEOELS) for effective segmentation of myocardium in cardiovascular magnetic resonance images to handle noise, intensity inhomogeneity and contour initialization. In order to learn shape and local variations in segmented myocardium, Krawtchouk moment features are computed for ten different moment orders. The relevant extracted features are obtained through Harris hawks optimization algorithm. The optimized features are fed to support vector machine (SVM) that uses fivefold cross-validation approach for classification. Experimental results show that CEOELS has provided better segmentation of LV blood cavity and myocardium with a similarity measure of 0.93 and 0.92, respectively. It is also observed that individual Krawtchouk moment orders greater than 30 have provided better HF prediction performance. Consequently, optimized Krawtchouk moment features produced an increased overall accuracy (80.8%) than individual feature sets. Significant improvement has also been achieved in distinction of hyperdynamic patients from normal and systolic dysfunction subjects that is less explored. |
Author | Muthunayagam, Muthulakshmi Ganesan, Kavitha |
Author_xml | – sequence: 1 givenname: Muthulakshmi orcidid: 0000-0003-2721-0211 surname: Muthunayagam fullname: Muthunayagam, Muthulakshmi email: lakshmingm.2@gmail.com organization: Department of Electronics Engineering, MIT Campus, Anna University – sequence: 2 givenname: Kavitha surname: Ganesan fullname: Ganesan, Kavitha organization: Department of Electronics Engineering, MIT Campus, Anna University |
BookMark | eNp9kcFOHSEUhkljE631BVyRdD0tZ7iXgWVj2mpq4kbX5Fzm4KB3hikwvdH36PsWvaZNXMgGDvm__8D5P7CDKU7E2CmIzyBE9yUDdEo0ooVGgOl0I9-xI9BKNtABHPw7C3nITnK-E3XJttNKH7E_Fz1NJfjgsIQ48eh5fsglboPjOPW8D_hSDYSpcI9huyTic4q3iXJ-YnahDPxnwl1xQ1zu-RjH6sk9YanSBkNPPT_HlELmA-7uM49zCWN4rNd5medYfX-TKzHxEd0QJvrI3nvcZjp52Y_Zzfdv12fnzeXVj4uzr5eNk2BKo3ANaFCR87QhYaBv0axQ-3YttPS1ULpfbQTghgwACCWNaVe6EogdCHnMPu1963d-LZSLvYtLmmpL2yowrVwbpapK71UuxZwTeetCeR5XSXUcFoR9ysHuc7A1B_ucg5UVbV-hcwojpoe3IbmHchVPt5T-v-oN6i_gLKCV |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3468163 crossref_primary_10_1142_S0218339023300014 crossref_primary_10_1109_ACCESS_2022_3213065 crossref_primary_10_35741_issn_0258_2724_59_2_8 |
Cites_doi | 10.1007/s11042-017-5473-4 10.1016/j.future.2019.02.028 10.1016/j.sigpro.2016.12.021 10.1016/j.media.2020.101723 10.1016/j.csbj.2016.11.001 10.1016/j.mri.2015.12.027 10.1007/978-3-319-75541-0_11 10.1109/TIP.2003.818019 10.1007/978-3-319-75541-0_15 10.1155/2018/7310496 10.1161/CIRCULATIONAHA.110.954388 10.1016/j.bbe.2013.12.002 10.1016/j.mri.2017.01.011 10.1001/jama.2020.10262 10.1016/j.compmedimag.2020.101795 10.1186/1471-2342-10-1 10.1016/j.neucom.2018.09.001 10.1109/TCYB.2017.2778799 10.1007/978-3-319-75541-0_13 10.1002/mp.12783 10.1016/j.neucom.2017.01.013 10.1016/j.mri.2019.08.004 10.1109/TMI.2019.2894322 10.1109/TMI.2018.2837502 10.1016/j.media.2016.05.009 10.1002/ima.22210 10.1016/j.media.2017.04.002 10.1002/jmri.25932 10.1093/eurheartj/ehz706 10.1109/ICIP.2019.8803083 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11760-021-01978-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
EndPage | 135 |
ExternalDocumentID | 10_1007_s11760_021_01978_3 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-6a51a9a6ecfebe091d2a94a8f25083f2a968d4b01abe911106399248a6eaa7103 |
IEDL.DBID | U2A |
ISSN | 1863-1703 |
IngestDate | Tue Aug 26 14:40:28 EDT 2025 Tue Jul 01 03:24:17 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Fri Feb 21 02:46:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Heart failure Support vector machine Cardiovascular magnetic resonance Krawtchouk moment Harris hawks optimization Corr-entropy level set |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-6a51a9a6ecfebe091d2a94a8f25083f2a968d4b01abe911106399248a6eaa7103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2721-0211 |
PQID | 2619235966 |
PQPubID | 2044169 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2619235966 crossref_citationtrail_10_1007_s11760_021_01978_3 crossref_primary_10_1007_s11760_021_01978_3 springer_journals_10_1007_s11760_021_01978_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Zeng, Qiu, Wang, Liu, Zhang, Li (CR27) 2018; 320 Khened, Alex, Krishnamurthi, Pop (CR19) 2018 Tan, McLaughlin, Lim, Abdul Aziz, Liew (CR10) 2018; 48 Zhou, Wang, Zhang, Cai, Gong (CR14) 2017; 234 Vijayanandh, Shenbagavalli (CR22) 2018; 77 Tan, Liew, Lim, McLaughlin (CR9) 2017; 39 Yap, Paramesran, Ong (CR23) 2003; 12 Wolterink, Leiner, Veirgever, Isgum, Pop (CR20) 2018 Ding, Xiao, Weng (CR15) 2017; 134 Ngo, Lu, Carneiro (CR11) 2017; 35 Hunt, Abraham, Chin, Feldman, Francis, Ganiats, Jessup, Konstam, Mancini, Michl, Oates, Rahko, Silver, Stevenson, Yancy (CR2) 2009; 119 Ng, Bax (CR5) 2020; 41 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR28) 2019; 97 Kotu, Engan, Skretting, Måløy, Orn, Woie, Eftestøl (CR16) 2013; 12 Lin, Wu, Yang (CR32) 2020; 66 Liu, Zhang, Li, Li, Zou, Chen (CR33) 2020; 86 Cygan, Werys, Błaszczyk, Kubik, Kałużyński (CR6) 2014; 34 Liao, Chen, Hu, Song (CR8) 2017; 49 Tang, Qian, Li, Hu, Wu (CR21) 2017; 27 Tripoliti, Papadopoulos, Karanasiou, Naka, Fotiadis (CR34) 2017; 15 Borlaug, Redfield (CR1) 2011; 123 Luo, Wang, Tam, Wang, Cao, Zhang, Chen, Li (CR31) 2020; 64 Premkumar, Janney, Nanda, Divakaran, Lavanya (CR26) 2019; 11 CR29 Liu, Captur, Moon, Guo, Yang, Zhang, Li (CR13) 2016; 34 Larroza, López-Lereu, Monmeneu, Gavara, Chorro, Bodí, Moratal (CR24) 2018; 45 Yang, Wu, Su, Zhang (CR12) 2017; 38 Isensee, Jaeger, Full, Wolf, Engelhardt, Maier-Hein, Pop (CR18) 2018 Murphy, Ibrahim, Januzzi (CR3) 2020; 324 Duan, Bello, Schlemper, Bai, Dawes, Biffi, Marvao, Doumou, O’Regan, Rueckert (CR7) 2019; 38 Heiberg, Sjogren, Ugander, Carlsson, Engblom, Arheden (CR30) 2010; 10 Gorantla, Ahmed, Voruganti, Menzies (CR4) 2015; 9 Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Ballester, Sanroma (CR17) 2018; 37 Mustaqeem, Anwar, Majid (CR25) 2018; 2018 F Isensee (1978_CR18) 2018 JM Wolterink (1978_CR20) 2018 AA Heidari (1978_CR28) 2019; 97 SP Murphy (1978_CR3) 2020; 324 A Mustaqeem (1978_CR25) 2018; 2018 E Heiberg (1978_CR30) 2010; 10 F Liao (1978_CR8) 2017; 49 BA Borlaug (1978_CR1) 2011; 123 M Khened (1978_CR19) 2018 EE Tripoliti (1978_CR34) 2017; 15 Z Liu (1978_CR33) 2020; 86 O Bernard (1978_CR17) 2018; 37 LP Kotu (1978_CR16) 2013; 12 G Luo (1978_CR31) 2020; 64 L Tang (1978_CR21) 2017; 27 PT Yap (1978_CR23) 2003; 12 Y Liu (1978_CR13) 2016; 34 N Zeng (1978_CR27) 2018; 320 LK Tan (1978_CR9) 2017; 39 S Zhou (1978_CR14) 2017; 234 C Yang (1978_CR12) 2017; 38 K Ding (1978_CR15) 2017; 134 RS Gorantla (1978_CR4) 2015; 9 LK Tan (1978_CR10) 2018; 48 A Lin (1978_CR32) 2020; 66 J Duan (1978_CR7) 2019; 38 TA Ngo (1978_CR11) 2017; 35 S Cygan (1978_CR6) 2014; 34 1978_CR29 ACT Ng (1978_CR5) 2020; 41 J Premkumar (1978_CR26) 2019; 11 SA Hunt (1978_CR2) 2009; 119 T Vijayanandh (1978_CR22) 2018; 77 A Larroza (1978_CR24) 2018; 45 |
References_xml | – volume: 77 start-page: 10273 year: 2018 end-page: 10284 ident: CR22 article-title: Tamper detection of medical images using statistical moments against various attacks publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5473-4 – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR28 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener. Comp. Sy. doi: 10.1016/j.future.2019.02.028 – volume: 134 start-page: 224 year: 2017 end-page: 233 ident: CR15 article-title: Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.12.021 – volume: 64 start-page: 101723 year: 2020 ident: CR31 article-title: Dynamically constructed network with error correction for accurate ventricle volume estimation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101723 – volume: 15 start-page: 26 year: 2017 end-page: 47 ident: CR34 article-title: Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2016.11.001 – volume: 34 start-page: 699 issue: 5 year: 2016 end-page: 706 ident: CR13 article-title: Distance regularized two level sets for segmentation of left and right ventricles from Cine-MRI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2015.12.027 – start-page: 101 year: 2018 end-page: 110 ident: CR20 article-title: Automatic segmentation and disease classification using cardiac cine MR images publication-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges doi: 10.1007/978-3-319-75541-0_11 – volume: 12 start-page: 1367 issue: 11 year: 2003 end-page: 1377 ident: CR23 article-title: Image analysis by Krawtchouk moments publication-title: IEEE Trans. Image. Process. doi: 10.1109/TIP.2003.818019 – volume: 9 start-page: 43 year: 2015 end-page: 47 ident: CR4 article-title: Hyperdynamic left ventricle on radionuclide myocardial perfusion imaging (RNMPI): A marker of diastolic dysfunction in patients presenting with dyspnea on exertion publication-title: Int. J. Cardiol. Heart Vasc. – volume: 41 start-page: 1258 issue: 12 year: 2020 end-page: 1259 ident: CR5 article-title: Hyperdynamic left ventricular function and the prognostic implications for heart failure with preserved ejection fraction publication-title: Eur Heart J. – start-page: 140 year: 2018 end-page: 151 ident: CR19 article-title: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest publication-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges doi: 10.1007/978-3-319-75541-0_15 – ident: CR29 – volume: 2018 start-page: 1 year: 2018 end-page: 10 ident: CR25 article-title: Multiclass classification of cardiac arrhythmia using improved feature selection and SVM invariants publication-title: Comput. Math. Methods. Med. doi: 10.1155/2018/7310496 – volume: 119 start-page: e391 issue: 14 year: 2009 end-page: e479 ident: CR2 article-title: Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation publication-title: Circulation – volume: 123 start-page: 2006 issue: 18 year: 2011 end-page: 2013 ident: CR1 article-title: Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.954388 – volume: 34 start-page: 19 issue: 1 year: 2014 end-page: 24 ident: CR6 article-title: Left ventricle phantom and experimental setup for MRI and echocardiography—Preliminary results of data acquisitions publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2013.12.002 – volume: 38 start-page: 202 year: 2017 end-page: 213 ident: CR12 article-title: Left ventricle segmentation via two-layer level sets with circular shape constraint publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2017.01.011 – volume: 11 start-page: 3264 issue: 9 year: 2019 end-page: 3268 ident: CR26 article-title: Detection of caries in dental X ray images using Multiclass SVM publication-title: J Pharm. Sci. Res. – volume: 324 start-page: 488 issue: 5 year: 2020 end-page: 504 ident: CR3 article-title: Heart failure with reduced ejection fraction a review publication-title: JAMA doi: 10.1001/jama.2020.10262 – volume: 12 start-page: 1 issue: 91 year: 2013 end-page: 19 ident: CR16 article-title: Probability mapping of scarred myocardium using texture and intensity features in CMR images publication-title: Biomed. Eng. Online. – volume: 86 start-page: 101795 year: 2020 ident: CR33 article-title: Multislice left ventricular ejection fraction prediction from cardiac MRIs without segmentation using shared SptDenNet publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2020.101795 – volume: 10 start-page: 1 year: 2010 end-page: 13 ident: CR30 article-title: Design and validation of Segment—freely available software for cardiovascular image analysis publication-title: BMC. Med. Imaging. doi: 10.1186/1471-2342-10-1 – volume: 320 start-page: 195 year: 2018 end-page: 202 ident: CR27 article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.001 – volume: 49 start-page: 495 issue: 2 year: 2017 end-page: 504 ident: CR8 article-title: Estimation of the volume of the left ventricle from MRI images using deep neural networks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2778799 – start-page: 120 year: 2018 end-page: 129 ident: CR18 article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features publication-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges doi: 10.1007/978-3-319-75541-0_13 – volume: 45 start-page: 1471 issue: 4 year: 2018 end-page: 1480 ident: CR24 article-title: Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction publication-title: Med. Phys. doi: 10.1002/mp.12783 – volume: 234 start-page: 216 year: 2017 end-page: 229 ident: CR14 article-title: Correntropy-based level set method for medical image segmentation and bias correction publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.013 – volume: 66 start-page: 152 year: 2020 end-page: 164 ident: CR32 article-title: A data augmentation approach to train fully convolutional networks for left ventricle segmentation publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.08.004 – volume: 38 start-page: 2151 issue: 9 year: 2019 end-page: 2164 ident: CR7 article-title: Automatic 3D Bi-Ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach publication-title: IEEE Trans. Med. Imaging. doi: 10.1109/TMI.2019.2894322 – volume: 37 start-page: 2514 issue: 11 year: 2018 end-page: 2525 ident: CR17 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 – volume: 35 start-page: 159 year: 2017 end-page: 171 ident: CR11 article-title: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance publication-title: Med. Image. Anal. doi: 10.1016/j.media.2016.05.009 – volume: 27 start-page: 57 issue: 1 year: 2017 end-page: 65 ident: CR21 article-title: Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22210 – volume: 39 start-page: 78 year: 2017 end-page: 86 ident: CR9 article-title: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.04.002 – volume: 48 start-page: 140 issue: 1 year: 2018 end-page: 152 ident: CR10 article-title: Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25932 – volume: 97 start-page: 849 year: 2019 ident: 1978_CR28 publication-title: Future Gener. Comp. Sy. doi: 10.1016/j.future.2019.02.028 – volume: 38 start-page: 2151 issue: 9 year: 2019 ident: 1978_CR7 publication-title: IEEE Trans. Med. Imaging. doi: 10.1109/TMI.2019.2894322 – volume: 41 start-page: 1258 issue: 12 year: 2020 ident: 1978_CR5 publication-title: Eur Heart J. doi: 10.1093/eurheartj/ehz706 – volume: 12 start-page: 1367 issue: 11 year: 2003 ident: 1978_CR23 publication-title: IEEE Trans. Image. Process. doi: 10.1109/TIP.2003.818019 – volume: 9 start-page: 43 year: 2015 ident: 1978_CR4 publication-title: Int. J. Cardiol. Heart Vasc. – ident: 1978_CR29 doi: 10.1109/ICIP.2019.8803083 – volume: 2018 start-page: 1 year: 2018 ident: 1978_CR25 publication-title: Comput. Math. Methods. Med. doi: 10.1155/2018/7310496 – volume: 86 start-page: 101795 year: 2020 ident: 1978_CR33 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2020.101795 – volume: 49 start-page: 495 issue: 2 year: 2017 ident: 1978_CR8 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2778799 – volume: 64 start-page: 101723 year: 2020 ident: 1978_CR31 publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101723 – volume: 15 start-page: 26 year: 2017 ident: 1978_CR34 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2016.11.001 – volume: 27 start-page: 57 issue: 1 year: 2017 ident: 1978_CR21 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22210 – volume: 34 start-page: 19 issue: 1 year: 2014 ident: 1978_CR6 publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2013.12.002 – volume: 134 start-page: 224 year: 2017 ident: 1978_CR15 publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.12.021 – volume: 119 start-page: e391 issue: 14 year: 2009 ident: 1978_CR2 publication-title: Circulation – start-page: 120 volume-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges year: 2018 ident: 1978_CR18 doi: 10.1007/978-3-319-75541-0_13 – start-page: 140 volume-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges year: 2018 ident: 1978_CR19 doi: 10.1007/978-3-319-75541-0_15 – volume: 123 start-page: 2006 issue: 18 year: 2011 ident: 1978_CR1 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.954388 – volume: 35 start-page: 159 year: 2017 ident: 1978_CR11 publication-title: Med. Image. Anal. doi: 10.1016/j.media.2016.05.009 – volume: 48 start-page: 140 issue: 1 year: 2018 ident: 1978_CR10 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25932 – volume: 37 start-page: 2514 issue: 11 year: 2018 ident: 1978_CR17 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 – volume: 45 start-page: 1471 issue: 4 year: 2018 ident: 1978_CR24 publication-title: Med. Phys. doi: 10.1002/mp.12783 – volume: 66 start-page: 152 year: 2020 ident: 1978_CR32 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.08.004 – volume: 12 start-page: 1 issue: 91 year: 2013 ident: 1978_CR16 publication-title: Biomed. Eng. Online. – volume: 77 start-page: 10273 year: 2018 ident: 1978_CR22 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5473-4 – volume: 38 start-page: 202 year: 2017 ident: 1978_CR12 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2017.01.011 – volume: 234 start-page: 216 year: 2017 ident: 1978_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.013 – volume: 320 start-page: 195 year: 2018 ident: 1978_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.001 – volume: 324 start-page: 488 issue: 5 year: 2020 ident: 1978_CR3 publication-title: JAMA doi: 10.1001/jama.2020.10262 – volume: 11 start-page: 3264 issue: 9 year: 2019 ident: 1978_CR26 publication-title: J Pharm. Sci. Res. – volume: 39 start-page: 78 year: 2017 ident: 1978_CR9 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.04.002 – start-page: 101 volume-title: Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges year: 2018 ident: 1978_CR20 doi: 10.1007/978-3-319-75541-0_11 – volume: 10 start-page: 1 year: 2010 ident: 1978_CR30 publication-title: BMC. Med. Imaging. doi: 10.1186/1471-2342-10-1 – volume: 34 start-page: 699 issue: 5 year: 2016 ident: 1978_CR13 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2015.12.027 |
SSID | ssj0000327868 |
Score | 2.2394154 |
Snippet | The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127 |
SubjectTerms | Algorithms Computer Imaging Computer Science Feature extraction Heart failure Image Processing and Computer Vision Image segmentation Inhomogeneity Magnetic resonance imaging Multimedia Information Systems Myocardium Noise intensity Optimization Original Paper Pattern Recognition and Graphics Shape Signal,Image and Speech Processing Support vector machines Vision |
Title | Identification of systolic and diastolic heart failure progression with Krawtchouk moment feature-aided Harris hawks optimized support vector machine |
URI | https://link.springer.com/article/10.1007/s11760-021-01978-3 https://www.proquest.com/docview/2619235966 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcKEHKFBEykNz6K1YstfO2j4mFSEqghOR4GSN410V0SQoD5D4H_zfzqzXpKAWqSdrvY-Dv93xt7sz3wB8rSJDikztNhgklY0DytI8SDXpUtuyzFMJFL641INh8uO6c-2DwuaNt3tzJeks9SrYLUp5OHEpYFoil_ofYL3De3dx5Bqq7svJShirNKtj4DIt-pth7KNl_j7M6z_Sima-uRl1P5z-J9j0TBG7NbTbsGYmO7DVZGFAvyh34OMfkoK78FxH3lp_FIdTiyLWLOq_SJMKeTr4kqSyXqClW3FMR-enVWt0oJzN4vmMHhnR6fIOx6LSwE2NEwENRFSywgHN2D7gT3q8m-OUDc_49olfz5f3wujxwd0G4Nj5aprPMOyfXn0fBD71QjDiNbkINHUiykmbkWWUmVNUivKEMqtEPt5yQWdVUoYRlUbMpSM6Ksm4BxGTlngPWpPpxOwDpjF3UamJk5y5mQ3LXBQqtUrIckU4akPUfP5i5HXJJT3Gr2KlqCyQFQxZ4SAr4jZ8e-lzX6tyvNv6sEG18Ct0XtQ7xw7v9tpw0iC9qv73aF_-r_kBbCiJmHCO3ofQWsyW5oh5zKI8hvVuv9e7lOfZzfnpsZvGvwFsLu2_ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0xcGA4AAODaNY6zI2JlDhpJzkiBGrWEy1xiyodWyDobtQLSPwH_0uV49AwYkaao-PlkOfl2VX1CuBXFRlSZGq3wSCpbBxQluZBqkmX2pZlnkqg8OWV7nSTs5v2jQ8KGzfe7o1J0u3Us2C3KOXhxKWAaYkY9b_BApOBTOZyVx2-v6yEsUqzOgYu06K_GcY-WubrYT6fSDOa-Ydl1B04J6uw7JkiHtbQ_oA5M1iDlSYLA_pFuQZLHyQF1-G1jry1_ikOhxZFrFnUf5EGFfJ08CVJZT1BS3fimI7OT6vW6EB5m8XzET0zosPpPfZFpYGbGicCGoioZIUdGvH-gLf0fD_GIW88_bsX_jyePgqjxydnDcC-89U0P6F7cnx91Al86oWgx2tyEmhqR5STNj3LKDOnqBTlCWVWiXy85YLOqqQMIyqNbJeO6Kgk4x5ETFriDZgfDAdmEzCNuYtKTZzkzM1sWOaiUKlVQpYrwl4Loub3Fz2vSy7pMR6KmaKyQFYwZIWDrIhbcPDe57FW5fhn650G1cKv0HFR3xzbfNtrwe8G6Vn130fb-r_m-7DYub68KC5Or8634buS6Ann9L0D85PR1Owyp5mUe24KvwHiZu2i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkFB7KJQWNS3QOXCjFvbaWdtHVIgCtIhDI3GzxvGuQBAnShyQ-B_9v51Z24SiUonjeh8Hzz6-3ZnvG4C9IjCkyNRhg15U2NCjJE69WJPOtc3zNBai8M9z3R9Ep5fdyycsfhft3roka06DqDSV1cGksAcL4lsQ89ASXsAQRRz8y7AaCRuYZ_RAHT6-svihipOaD5do0eL0w4Y58-9h_j6dFpDzmZfUHT69DXjXoEY8rM38HpZMuQnrbUYGbBboJrx9Ii_4AX7XLFzbPMvh2KIIN4sSMFJZIE-NpiRprSu0dC1B6uhitmq9DpR3Wjyb0j1bdzy_wZEoNnBT4wRBPRGYLLBPU94r8Irub2Y45k1odP3An2fziaB7vHOeARy5uE3zEQa941_f-16ThsEb8vqsPE3dgFLSZmjZ4owvCkVpRIlVIiVvuaCTIsr9gHIjW6cDPSpKuAcRA5hwC1bKcWk-AcYhd1GxCaOUcZr181TUKrWKyHKFP-xA0P7-bNholEuqjNtsoa4sJsvYZJkzWRZ2YP-xz6RW6Phv6-3WqlmzWmdZfYvs8s2vA99aSy-qXx7t8-uaf4W1i6Ne9uPk_OwLvFFCpHDx39uwUk3nZofhTZXvuhn8B2zG8dU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+systolic+and+diastolic+heart+failure+progression+with+Krawtchouk+moment+feature-aided+Harris+hawks+optimized+support+vector+machine&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Muthunayagam%2C+Muthulakshmi&rft.au=Ganesan%2C+Kavitha&rft.date=2022-02-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=16&rft.issue=1&rft.spage=127&rft.epage=135&rft_id=info:doi/10.1007%2Fs11760-021-01978-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_021_01978_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |