The impact of the spacer and metal layer on the absorption of the heterostructures composed of TMDCs to design narrowband and broadband absorbers

Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorpt...

Full description

Saved in:
Bibliographic Details
Published inOptical and quantum electronics Vol. 55; no. 7
Main Authors Ansari, Narges, Mohebbi, Ensyieh, Rezaei, Narges
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0306-8919
1572-817X
DOI10.1007/s11082-023-04846-1

Cover

Loading…
Abstract Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorption of the narrowband and broadband in the visible range. This study investigates the effects of the number, place, and thickness of the spacers; metal thickness; and angle and polarization of the incident light on the absorption. Inserting the spacer into the structure increases the absorption via inducing light localization and enhancing the intensity of the light in the TMDC monolayers. Further, the effect of employing one spacer on improving the absorption is almost equal to making use of double spacers. The proposed structures by enhanced light-material interaction can raise the amount of the absorption over 90% throughout the broadband wavelength range of 300–480 nm and above 65% at the narrowband wavelength of 617 nm. The findings of the study suggest promising prospects of these structures for a variety of applications particularly in narrowband and broadband optical devices.
AbstractList Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorption of the narrowband and broadband in the visible range. This study investigates the effects of the number, place, and thickness of the spacers; metal thickness; and angle and polarization of the incident light on the absorption. Inserting the spacer into the structure increases the absorption via inducing light localization and enhancing the intensity of the light in the TMDC monolayers. Further, the effect of employing one spacer on improving the absorption is almost equal to making use of double spacers. The proposed structures by enhanced light-material interaction can raise the amount of the absorption over 90% throughout the broadband wavelength range of 300–480 nm and above 65% at the narrowband wavelength of 617 nm. The findings of the study suggest promising prospects of these structures for a variety of applications particularly in narrowband and broadband optical devices.
Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorption of the narrowband and broadband in the visible range. This study investigates the effects of the number, place, and thickness of the spacers; metal thickness; and angle and polarization of the incident light on the absorption. Inserting the spacer into the structure increases the absorption via inducing light localization and enhancing the intensity of the light in the TMDC monolayers. Further, the effect of employing one spacer on improving the absorption is almost equal to making use of double spacers. The proposed structures by enhanced light-material interaction can raise the amount of the absorption over 90% throughout the broadband wavelength range of 300–480 nm and above 65% at the narrowband wavelength of 617 nm. The findings of the study suggest promising prospects of these structures for a variety of applications particularly in narrowband and broadband optical devices.
ArticleNumber 593
Author Rezaei, Narges
Ansari, Narges
Mohebbi, Ensyieh
Author_xml – sequence: 1
  givenname: Narges
  orcidid: 0000-0002-1050-7505
  surname: Ansari
  fullname: Ansari, Narges
  email: n.ansari@alzahra.ac.ir
  organization: Department of Atomic and Molecular Physics, Faculty of Physics, Alzahra University
– sequence: 2
  givenname: Ensyieh
  orcidid: 0000-0001-8466-9016
  surname: Mohebbi
  fullname: Mohebbi, Ensyieh
  organization: Department of Atomic and Molecular Physics, Faculty of Physics, Alzahra University
– sequence: 3
  givenname: Narges
  surname: Rezaei
  fullname: Rezaei, Narges
  organization: Department of Theoretical and Nano Physics, Alzahra University
BookMark eNp9kc1KJDEUhYMo2P68gKuA6xpvkqp0aimtMyMoblpwF1LJjZZ0V8okzeBj-MamLEGYhYsQDvnOubmcI7I_hAEJOWPwiwEsLxJjoHgFXFRQq1pWbI8sWLPklWLLx32yAAGyUi1rD8lRSi8AIOsGFuR9_Yy0347GZho8zUWlIjBSMzi6xWw2dGPeig7D56vpUohj7ov84p8xYwwpx53Nu4iJ2rAdQ0I3Aeu7q1WiOVCHqX8a6GBiDP-6KXw6XQzGzWrK7TCmE3LgzSbh6dd9TB5-X69Xf6vb-z83q8vbygrW5kq2wKUHu6yl814IxoTvwPDGdzUqxx0gWNcxW4OXTirWOoV1x71soLENF8fkfM4dY3jdYcr6JeziUEZqrpiQXPFaFErNlC0rpohe2z6baf0cTb_RDPRUgJ4L0KUA_VmAZsXK_7OOsd-a-PazScymVODhCeP3r35wfQDf1Jyr
CitedBy_id crossref_primary_10_1007_s10825_025_02304_7
Cites_doi 10.1038/natrevmats.2017.33
10.1002/adom.201800441
10.1016/j.spmi.2017.09.008
10.1016/j.optlastec.2020.106771
10.1364/JOSAB.35.001179
10.1103/PhysRevB.6.4370
10.1016/j.mattod.2016.10.002
10.1149/1945-7111/ac4f25
10.1016/j.optmat.2020.110039
10.1088/1402-4896/ac710a
10.1063/1.5131699
10.1063/5.0011881
10.1364/AO.37.005271
10.1039/C9TC04187G
10.1016/j.optmat.2020.110491
10.1364/JOSA.41.000416
10.1016/j.jmat.2015.03.003
10.1016/S0030-4018(99)00091-7
10.1016/j.optmat.2020.109824
10.1007/BF03214833
10.1063/1.4740261
10.1364/OE.25.031612
10.1016/j.ijleo.2021.166781
10.1007/s00340-019-7352-3
10.1109/WIECON-ECE52138.2020.9397941
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11082-023-04846-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1572-817X
ExternalDocumentID 10_1007_s11082_023_04846_1
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8Z
Z92
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-69026f0c746dff33113fb0a25fb4e8d2d0e0cdb1c40f6d6819d8e4b2f6505c523
IEDL.DBID U2A
ISSN 0306-8919
IngestDate Fri Jul 25 11:05:42 EDT 2025
Tue Jul 01 01:26:32 EDT 2025
Thu Apr 24 23:13:25 EDT 2025
Fri Feb 21 02:43:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords TMDC monolayers
Spacer
Heterostructures
Narrowband absorber
Broadband absorber
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-69026f0c746dff33113fb0a25fb4e8d2d0e0cdb1c40f6d6819d8e4b2f6505c523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1050-7505
0000-0001-8466-9016
PQID 2813628243
PQPubID 2043598
ParticipantIDs proquest_journals_2813628243
crossref_citationtrail_10_1007_s11082_023_04846_1
crossref_primary_10_1007_s11082_023_04846_1
springer_journals_10_1007_s11082_023_04846_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Optical and quantum electronics
PublicationTitleAbbrev Opt Quant Electron
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Strange, Garg, Kung, Ashaduzzaman, Szulczewski, Pan (CR24) 2022
Ansari, Mohebbi, Fallah (CR3) 2020
Luo, Chen, Hu, Zhu (CR18) 2021
Ansari, Mohebbi, Gholami (CR5) 2020
Rakić, Djurišić, Elazar, Majewski (CR21) 1998
Goodman (CR12) 2002
Li (CR16) 2017
DeVore (CR10) 1951
Sharma, Kaur, Popescu (CR22) 2020
Cheng, Wang, Zou, Liao (CR8) 2018
Soleimani-Amiri, Gholami Rudi (CR23) 2020
Johnson, Christy (CR13) 1972
Ansari, Mohebbi, Gholami (CR4) 2020
Yang, Wang, Zhou, Ming, Deng, Yu, Cheng (CR25) 2022
Choi, Choudhary, Han, Park, Akinwande, Lee (CR9) 2017
Li, Zhu (CR15) 2015
Liu, Liu, Li, Jing Li, Huang (CR17) 2012
Khan, Tareen, Aslam, Wang, Zhang, Mahmood, Ouyang, Zhang, Guo (CR14) 2020
Ansari, Goudarzi, Mohebbi (CR6) 2021
CR20
Manzeli, Ovchinnikov, Pasquier, Yazyev, Kis (CR19) 2017
Ansari, Mohebbi, Mohammadi (CR2) 2020
Ansari, Ghorbani (CR1) 2018
Cao (CR7) 2017; 110
Ghosh (CR11) 1999
L Yang (4846_CR25) 2022
W Choi (4846_CR9) 2017
N Ansari (4846_CR4) 2020
J Cao (4846_CR7) 2017; 110
N Ansari (4846_CR2) 2020
J Cheng (4846_CR8) 2018
H Li (4846_CR16) 2017
P Goodman (4846_CR12) 2002
N Ansari (4846_CR6) 2021
LE Strange (4846_CR24) 2022
K Khan (4846_CR14) 2020
X Li (4846_CR15) 2015
AD Rakić (4846_CR21) 1998
AK Sharma (4846_CR22) 2020
S Soleimani-Amiri (4846_CR23) 2020
JR DeVore (4846_CR10) 1951
4846_CR20
N Ansari (4846_CR1) 2018
PB Johnson (4846_CR13) 1972
N Ansari (4846_CR3) 2020
G Ghosh (4846_CR11) 1999
JT Liu (4846_CR17) 2012
GP Luo (4846_CR18) 2021
N Ansari (4846_CR5) 2020
S Manzeli (4846_CR19) 2017
References_xml – year: 2017
  ident: CR19
  article-title: 2D transition metal dichalcogenides
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.33
– year: 2018
  ident: CR8
  article-title: Recent advances in optoelectronic devices based on 2D materials and their heterostructures
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800441
– volume: 110
  start-page: 26
  year: 2017
  end-page: 30
  ident: CR7
  article-title: Enhancement of broad-band light absorption in monolayer mos2 using ag grating hybrid with distributed bragg reflector
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.09.008
– year: 2021
  ident: CR6
  article-title: Design of narrowband or broadband absorber by heterostructures including TMDCs and spacers
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106771
– year: 2018
  ident: CR1
  article-title: Light absorption optimization in two-dimensional transition metal dichalcogenide van der Waals heterostructures
  publication-title: JOSA B
  doi: 10.1364/JOSAB.35.001179
– year: 1972
  ident: CR13
  article-title: Optical constants of the noble metals
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.6.4370
– year: 2017
  ident: CR9
  article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications
  publication-title: Mater. Today.
  doi: 10.1016/j.mattod.2016.10.002
– year: 2022
  ident: CR24
  article-title: Electrodeposited transition metal dichalcogenides for use in hydrogen evolution electrocatalysts
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4f25
– year: 2020
  ident: CR3
  article-title: Ultra-broadband and broad-angle absorbers with transition metal dichalcogenide monolayer using Thue-Morse quasi-photonic crystals
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110039
– year: 2022
  ident: CR25
  article-title: Approaching multi-band and broadband high absorption based on one-dimensional layered structures containing monolayer MoS2
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac710a
– year: 2020
  ident: CR4
  article-title: Enhancement of light absorption in a WS monolayer using spacer and Au layers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5131699
– year: 2020
  ident: CR2
  article-title: Ultra-narrowband wavelength adjustable multichannel near perfect absorber in Thue-Morse defective quasi-photonic crystals embedded with MoS2 monolayer
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0011881
– year: 1998
  ident: CR21
  article-title: Optical properties of metallic films for vertical-cavity optoelectronic devices
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.005271
– year: 2020
  ident: CR14
  article-title: Recent developments in emerging two-dimensional materials and their applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC04187G
– year: 2020
  ident: CR23
  article-title: Effects of sulfur line vacancy defects on the electronic and optical properties of armchair MoS2 nanoribbon
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110491
– year: 1951
  ident: CR10
  article-title: Sensitive 4-aminoantipyrine method for phenolic compounds
  publication-title: JOSA
  doi: 10.1364/JOSA.41.000416
– year: 2015
  ident: CR15
  article-title: Two-dimensional MoS2: properties, preparation, and applications
  publication-title: J. Materiom.
  doi: 10.1016/j.jmat.2015.03.003
– year: 1999
  ident: CR11
  article-title: Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(99)00091-7
– year: 2020
  ident: CR22
  article-title: On the role of different 2D materials/heterostructures in fiber-optic SPR humidity sensor in visible spectral region
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.109824
– year: 2002
  ident: CR12
  article-title: Current and future uses of gold in electronics
  publication-title: Gold Bull.
  doi: 10.1007/BF03214833
– year: 2012
  ident: CR17
  article-title: Enhanced absorption of graphene with one-dimensional photonic crystal
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4740261
– year: 2017
  ident: CR16
  article-title: Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling
  publication-title: Opt. Express.
  doi: 10.1364/OE.25.031612
– year: 2021
  ident: CR18
  article-title: Enhanced light absorption in monolayer tungsten disulfide with dielectric Bragg reflector and metallic thin film
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166781
– year: 2020
  ident: CR5
  article-title: Nearly perfect and broadband optical absorption by TMDCs in cover/TMDC/spacer/Au/substrate multilayers
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-019-7352-3
– ident: CR20
– year: 2022
  ident: 4846_CR24
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4f25
– year: 1999
  ident: 4846_CR11
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(99)00091-7
– year: 2020
  ident: 4846_CR5
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-019-7352-3
– year: 2002
  ident: 4846_CR12
  publication-title: Gold Bull.
  doi: 10.1007/BF03214833
– year: 2018
  ident: 4846_CR1
  publication-title: JOSA B
  doi: 10.1364/JOSAB.35.001179
– volume: 110
  start-page: 26
  year: 2017
  ident: 4846_CR7
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.09.008
– ident: 4846_CR20
  doi: 10.1109/WIECON-ECE52138.2020.9397941
– year: 1951
  ident: 4846_CR10
  publication-title: JOSA
  doi: 10.1364/JOSA.41.000416
– year: 2020
  ident: 4846_CR14
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC04187G
– year: 2020
  ident: 4846_CR4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5131699
– year: 2020
  ident: 4846_CR22
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.109824
– year: 2020
  ident: 4846_CR2
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0011881
– year: 2015
  ident: 4846_CR15
  publication-title: J. Materiom.
  doi: 10.1016/j.jmat.2015.03.003
– year: 2017
  ident: 4846_CR9
  publication-title: Mater. Today.
  doi: 10.1016/j.mattod.2016.10.002
– year: 1972
  ident: 4846_CR13
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.6.4370
– year: 2017
  ident: 4846_CR16
  publication-title: Opt. Express.
  doi: 10.1364/OE.25.031612
– year: 2022
  ident: 4846_CR25
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac710a
– year: 2012
  ident: 4846_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4740261
– year: 2017
  ident: 4846_CR19
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.33
– year: 2020
  ident: 4846_CR3
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110039
– year: 1998
  ident: 4846_CR21
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.005271
– year: 2020
  ident: 4846_CR23
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110491
– year: 2018
  ident: 4846_CR8
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800441
– year: 2021
  ident: 4846_CR6
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106771
– year: 2021
  ident: 4846_CR18
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166781
SSID ssj0006450
Score 2.3349173
Snippet Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorption
Broadband
Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Heterostructures
Incident light
Lasers
Luminous intensity
Monolayers
Narrowband
Optical Devices
Optical properties
Optics
Photonics
Physics
Physics and Astronomy
Spacers
Thickness
Transition metal compounds
Title The impact of the spacer and metal layer on the absorption of the heterostructures composed of TMDCs to design narrowband and broadband absorbers
URI https://link.springer.com/article/10.1007/s11082-023-04846-1
https://www.proquest.com/docview/2813628243
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kIujBR1WsL_bgTReSzeZ1LNUqar1ooZ5C9oWHmkhTf4j_2NlNYlVU8BBCyGRy-GZnvmFnZgFOvDzUWuqUKhHHFCNeTkXAMFnxAyO5TmXdPja6i67G_HoSTpqmsKqtdm-3JJ2nXjS7-RiuKMYYilbHI4o5z3Joc3e04jHrf_jfiLtzWS0Zpknqp02rzM86voajBcf8ti3qos1wE9Ybmkj6Na5bsKSLLmw0lJE0C7LqwtqneYJdWHH1nLLahjeEn9QdkKQ0BFkeQdch9YzkhSLPGik3meZIt0lZuLe5qMqZcx-t_JMtlCnr-bKvmJQTW31eVvh7FHgYnQ8qMi-JchUgpHCzHIVVbi8xK3NVP1m9AjnmDoyHFw-DK9qcvkAlLss5xbSZRcaTMY-UMUFg0RNezkIjuE4UU572pBK-5J6JVITMQiWaC2aQ84US89td6BRlofeAKN8gy8y5J2TA0SiEilkYhCKIBBOJUj3wWxAy2YwmtydkTLPFUGULXIbAZQ64zO_B6cc3L_Vgjj-lD1tss2aRVhlLfAzfCeNBD85avBevf9e2_z_xA1hlzuRske8hdBA4fYRUZi6OYbl_Prq9t_fLx5uLY2fJ778P7hk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQEAIOPAaIwYAcuEGkNk0fOyJgGrDttEncquYlDqNF6_gh_GOctGWAAIlDD1Vc9_A59mfFdgDOvSzUWuoeVSKOKUa8jIqAYbLiB0Zy3ZNV-9hoHA2m_P4xfKybwsqm2r05knSeetns5mO4ohhjKFodjyjmPKtIBhJbyDVlVx_-N-LuXlZLhmnS83t1q8zPOr6GoyXH_HYs6qJNfwe2appIripcd2FF523YrikjqTdk2YbNT_ME27Dm6jlluQdvCD-pOiBJYQiyPIKuQ-o5yXJFnjVSbjLLkG6TInermSiLuXMfjfyTLZQpqvmyr5iUE1t9XpT4exSYjG6uS7IoiHIVICR3sxyFVW4fMS8yVb1ZvQI55j5M-7eT6wGtb1-gErflgmLazCLjyZhHypggsOgJL2OhEVwniilPe1IJX3LPRCpCZqESzQUzyPlCifntAbTyIteHQJRvkGVm3BMy4GgUQsUsDEIRRIKJRKkO-A0IqaxHk9sbMmbpcqiyBS5F4FIHXOp34OLjm5dqMMef0t0G27TepGXKEh_Dd8J40IHLBu_l8u_ajv4nfgbrg8lomA7vxg_HsMGc-dmC3y60EER9grRmIU6dFb8DMp_t5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYQCAQHHgPEeObADSKaNO26I2JMPCcOm8Stal7iAC1axw_hH-OkLRsIkDj0UNV1pX6O_VmxHYDjIIuMUaZLtex0KEa8jMqQY7LCQquE6aqqfex-EF-NxM1j9DjTxe-r3ZstyaqnwU1pyidnr9qeTRvfGIYuivGGogWKmGL-s4DumDm7HvHzT18cC39GqyPGNOmybt0287OOr6Fpyje_bZH6yNNfh9WaMpLzCuMNmDN5C9Zq-kjqxVm2YGVmtmALFn1tpyo34R1NgVTdkKSwBBkfQTeizJhkuSYvBuk3ec6QepMi908zWRZj70oa-SdXNFNUs2bfMEEnrhK9KPHzKDC8712UZFIQ7atBSO7nOkqn3F1yXGS6unN6JfLNLRj1L4cXV7Q-iYEq_KcTiik0j22gOiLW1oahQ1IGGY-sFCbRXAcmUFoyJQIb6xhZhk6MkNwi_4sU5rrbMJ8XudkBoplFxpmJQKpQoIFI3eFRGMkwllwmWreBNSCkqh5T7k7LeE6nA5YdcCkCl3rgUtaGk893XqshHX9K7zfYpvWCLVOeMAzlCRdhG04bvKePf9e2-z_xI1h66PXTu-vB7R4sc299rvZ3H-YRQ3OADGciD70RfwDjpPIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+the+spacer+and+metal+layer+on+the+absorption+of+the+heterostructures+composed+of+TMDCs+to+design+narrowband+and+broadband+absorbers&rft.jtitle=Optical+and+quantum+electronics&rft.au=Ansari%2C+Narges&rft.au=Mohebbi%2C+Ensyieh&rft.au=Rezaei%2C+Narges&rft.date=2023-07-01&rft.pub=Springer+US&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=55&rft.issue=7&rft_id=info:doi/10.1007%2Fs11082-023-04846-1&rft.externalDocID=10_1007_s11082_023_04846_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon