The impact of the spacer and metal layer on the absorption of the heterostructures composed of TMDCs to design narrowband and broadband absorbers
Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorpt...
Saved in:
Published in | Optical and quantum electronics Vol. 55; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0306-8919 1572-817X |
DOI | 10.1007/s11082-023-04846-1 |
Cover
Loading…
Abstract | Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorption of the narrowband and broadband in the visible range. This study investigates the effects of the number, place, and thickness of the spacers; metal thickness; and angle and polarization of the incident light on the absorption. Inserting the spacer into the structure increases the absorption via inducing light localization and enhancing the intensity of the light in the TMDC monolayers. Further, the effect of employing one spacer on improving the absorption is almost equal to making use of double spacers. The proposed structures by enhanced light-material interaction can raise the amount of the absorption over 90% throughout the broadband wavelength range of 300–480 nm and above 65% at the narrowband wavelength of 617 nm. The findings of the study suggest promising prospects of these structures for a variety of applications particularly in narrowband and broadband optical devices. |
---|---|
AbstractList | Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorption of the narrowband and broadband in the visible range. This study investigates the effects of the number, place, and thickness of the spacers; metal thickness; and angle and polarization of the incident light on the absorption. Inserting the spacer into the structure increases the absorption via inducing light localization and enhancing the intensity of the light in the TMDC monolayers. Further, the effect of employing one spacer on improving the absorption is almost equal to making use of double spacers. The proposed structures by enhanced light-material interaction can raise the amount of the absorption over 90% throughout the broadband wavelength range of 300–480 nm and above 65% at the narrowband wavelength of 617 nm. The findings of the study suggest promising prospects of these structures for a variety of applications particularly in narrowband and broadband optical devices. Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal of attention. In fact, it has been suggested that heterostructures including spacers, metals, and two of the TMDC monolayers increase absorption of the narrowband and broadband in the visible range. This study investigates the effects of the number, place, and thickness of the spacers; metal thickness; and angle and polarization of the incident light on the absorption. Inserting the spacer into the structure increases the absorption via inducing light localization and enhancing the intensity of the light in the TMDC monolayers. Further, the effect of employing one spacer on improving the absorption is almost equal to making use of double spacers. The proposed structures by enhanced light-material interaction can raise the amount of the absorption over 90% throughout the broadband wavelength range of 300–480 nm and above 65% at the narrowband wavelength of 617 nm. The findings of the study suggest promising prospects of these structures for a variety of applications particularly in narrowband and broadband optical devices. |
ArticleNumber | 593 |
Author | Rezaei, Narges Ansari, Narges Mohebbi, Ensyieh |
Author_xml | – sequence: 1 givenname: Narges orcidid: 0000-0002-1050-7505 surname: Ansari fullname: Ansari, Narges email: n.ansari@alzahra.ac.ir organization: Department of Atomic and Molecular Physics, Faculty of Physics, Alzahra University – sequence: 2 givenname: Ensyieh orcidid: 0000-0001-8466-9016 surname: Mohebbi fullname: Mohebbi, Ensyieh organization: Department of Atomic and Molecular Physics, Faculty of Physics, Alzahra University – sequence: 3 givenname: Narges surname: Rezaei fullname: Rezaei, Narges organization: Department of Theoretical and Nano Physics, Alzahra University |
BookMark | eNp9kc1KJDEUhYMo2P68gKuA6xpvkqp0aimtMyMoblpwF1LJjZZ0V8okzeBj-MamLEGYhYsQDvnOubmcI7I_hAEJOWPwiwEsLxJjoHgFXFRQq1pWbI8sWLPklWLLx32yAAGyUi1rD8lRSi8AIOsGFuR9_Yy0347GZho8zUWlIjBSMzi6xWw2dGPeig7D56vpUohj7ov84p8xYwwpx53Nu4iJ2rAdQ0I3Aeu7q1WiOVCHqX8a6GBiDP-6KXw6XQzGzWrK7TCmE3LgzSbh6dd9TB5-X69Xf6vb-z83q8vbygrW5kq2wKUHu6yl814IxoTvwPDGdzUqxx0gWNcxW4OXTirWOoV1x71soLENF8fkfM4dY3jdYcr6JeziUEZqrpiQXPFaFErNlC0rpohe2z6baf0cTb_RDPRUgJ4L0KUA_VmAZsXK_7OOsd-a-PazScymVODhCeP3r35wfQDf1Jyr |
CitedBy_id | crossref_primary_10_1007_s10825_025_02304_7 |
Cites_doi | 10.1038/natrevmats.2017.33 10.1002/adom.201800441 10.1016/j.spmi.2017.09.008 10.1016/j.optlastec.2020.106771 10.1364/JOSAB.35.001179 10.1103/PhysRevB.6.4370 10.1016/j.mattod.2016.10.002 10.1149/1945-7111/ac4f25 10.1016/j.optmat.2020.110039 10.1088/1402-4896/ac710a 10.1063/1.5131699 10.1063/5.0011881 10.1364/AO.37.005271 10.1039/C9TC04187G 10.1016/j.optmat.2020.110491 10.1364/JOSA.41.000416 10.1016/j.jmat.2015.03.003 10.1016/S0030-4018(99)00091-7 10.1016/j.optmat.2020.109824 10.1007/BF03214833 10.1063/1.4740261 10.1364/OE.25.031612 10.1016/j.ijleo.2021.166781 10.1007/s00340-019-7352-3 10.1109/WIECON-ECE52138.2020.9397941 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-023-04846-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_023_04846_1 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8Z Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-69026f0c746dff33113fb0a25fb4e8d2d0e0cdb1c40f6d6819d8e4b2f6505c523 |
IEDL.DBID | U2A |
ISSN | 0306-8919 |
IngestDate | Fri Jul 25 11:05:42 EDT 2025 Tue Jul 01 01:26:32 EDT 2025 Thu Apr 24 23:13:25 EDT 2025 Fri Feb 21 02:43:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | TMDC monolayers Spacer Heterostructures Narrowband absorber Broadband absorber |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-69026f0c746dff33113fb0a25fb4e8d2d0e0cdb1c40f6d6819d8e4b2f6505c523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1050-7505 0000-0001-8466-9016 |
PQID | 2813628243 |
PQPubID | 2043598 |
ParticipantIDs | proquest_journals_2813628243 crossref_citationtrail_10_1007_s11082_023_04846_1 crossref_primary_10_1007_s11082_023_04846_1 springer_journals_10_1007_s11082_023_04846_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Strange, Garg, Kung, Ashaduzzaman, Szulczewski, Pan (CR24) 2022 Ansari, Mohebbi, Fallah (CR3) 2020 Luo, Chen, Hu, Zhu (CR18) 2021 Ansari, Mohebbi, Gholami (CR5) 2020 Rakić, Djurišić, Elazar, Majewski (CR21) 1998 Goodman (CR12) 2002 Li (CR16) 2017 DeVore (CR10) 1951 Sharma, Kaur, Popescu (CR22) 2020 Cheng, Wang, Zou, Liao (CR8) 2018 Soleimani-Amiri, Gholami Rudi (CR23) 2020 Johnson, Christy (CR13) 1972 Ansari, Mohebbi, Gholami (CR4) 2020 Yang, Wang, Zhou, Ming, Deng, Yu, Cheng (CR25) 2022 Choi, Choudhary, Han, Park, Akinwande, Lee (CR9) 2017 Li, Zhu (CR15) 2015 Liu, Liu, Li, Jing Li, Huang (CR17) 2012 Khan, Tareen, Aslam, Wang, Zhang, Mahmood, Ouyang, Zhang, Guo (CR14) 2020 Ansari, Goudarzi, Mohebbi (CR6) 2021 CR20 Manzeli, Ovchinnikov, Pasquier, Yazyev, Kis (CR19) 2017 Ansari, Mohebbi, Mohammadi (CR2) 2020 Ansari, Ghorbani (CR1) 2018 Cao (CR7) 2017; 110 Ghosh (CR11) 1999 L Yang (4846_CR25) 2022 W Choi (4846_CR9) 2017 N Ansari (4846_CR4) 2020 J Cao (4846_CR7) 2017; 110 N Ansari (4846_CR2) 2020 J Cheng (4846_CR8) 2018 H Li (4846_CR16) 2017 P Goodman (4846_CR12) 2002 N Ansari (4846_CR6) 2021 LE Strange (4846_CR24) 2022 K Khan (4846_CR14) 2020 X Li (4846_CR15) 2015 AD Rakić (4846_CR21) 1998 AK Sharma (4846_CR22) 2020 S Soleimani-Amiri (4846_CR23) 2020 JR DeVore (4846_CR10) 1951 4846_CR20 N Ansari (4846_CR1) 2018 PB Johnson (4846_CR13) 1972 N Ansari (4846_CR3) 2020 G Ghosh (4846_CR11) 1999 JT Liu (4846_CR17) 2012 GP Luo (4846_CR18) 2021 N Ansari (4846_CR5) 2020 S Manzeli (4846_CR19) 2017 |
References_xml | – year: 2017 ident: CR19 article-title: 2D transition metal dichalcogenides publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.33 – year: 2018 ident: CR8 article-title: Recent advances in optoelectronic devices based on 2D materials and their heterostructures publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800441 – volume: 110 start-page: 26 year: 2017 end-page: 30 ident: CR7 article-title: Enhancement of broad-band light absorption in monolayer mos2 using ag grating hybrid with distributed bragg reflector publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.09.008 – year: 2021 ident: CR6 article-title: Design of narrowband or broadband absorber by heterostructures including TMDCs and spacers publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106771 – year: 2018 ident: CR1 article-title: Light absorption optimization in two-dimensional transition metal dichalcogenide van der Waals heterostructures publication-title: JOSA B doi: 10.1364/JOSAB.35.001179 – year: 1972 ident: CR13 article-title: Optical constants of the noble metals publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.6.4370 – year: 2017 ident: CR9 article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications publication-title: Mater. Today. doi: 10.1016/j.mattod.2016.10.002 – year: 2022 ident: CR24 article-title: Electrodeposited transition metal dichalcogenides for use in hydrogen evolution electrocatalysts publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac4f25 – year: 2020 ident: CR3 article-title: Ultra-broadband and broad-angle absorbers with transition metal dichalcogenide monolayer using Thue-Morse quasi-photonic crystals publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110039 – year: 2022 ident: CR25 article-title: Approaching multi-band and broadband high absorption based on one-dimensional layered structures containing monolayer MoS2 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac710a – year: 2020 ident: CR4 article-title: Enhancement of light absorption in a WS monolayer using spacer and Au layers publication-title: J. Appl. Phys. doi: 10.1063/1.5131699 – year: 2020 ident: CR2 article-title: Ultra-narrowband wavelength adjustable multichannel near perfect absorber in Thue-Morse defective quasi-photonic crystals embedded with MoS2 monolayer publication-title: J. Appl. Phys. doi: 10.1063/5.0011881 – year: 1998 ident: CR21 article-title: Optical properties of metallic films for vertical-cavity optoelectronic devices publication-title: Appl. Opt. doi: 10.1364/AO.37.005271 – year: 2020 ident: CR14 article-title: Recent developments in emerging two-dimensional materials and their applications publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04187G – year: 2020 ident: CR23 article-title: Effects of sulfur line vacancy defects on the electronic and optical properties of armchair MoS2 nanoribbon publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110491 – year: 1951 ident: CR10 article-title: Sensitive 4-aminoantipyrine method for phenolic compounds publication-title: JOSA doi: 10.1364/JOSA.41.000416 – year: 2015 ident: CR15 article-title: Two-dimensional MoS2: properties, preparation, and applications publication-title: J. Materiom. doi: 10.1016/j.jmat.2015.03.003 – year: 1999 ident: CR11 article-title: Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals publication-title: Opt. Commun. doi: 10.1016/S0030-4018(99)00091-7 – year: 2020 ident: CR22 article-title: On the role of different 2D materials/heterostructures in fiber-optic SPR humidity sensor in visible spectral region publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.109824 – year: 2002 ident: CR12 article-title: Current and future uses of gold in electronics publication-title: Gold Bull. doi: 10.1007/BF03214833 – year: 2012 ident: CR17 article-title: Enhanced absorption of graphene with one-dimensional photonic crystal publication-title: Appl. Phys. Lett. doi: 10.1063/1.4740261 – year: 2017 ident: CR16 article-title: Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling publication-title: Opt. Express. doi: 10.1364/OE.25.031612 – year: 2021 ident: CR18 article-title: Enhanced light absorption in monolayer tungsten disulfide with dielectric Bragg reflector and metallic thin film publication-title: Optik doi: 10.1016/j.ijleo.2021.166781 – year: 2020 ident: CR5 article-title: Nearly perfect and broadband optical absorption by TMDCs in cover/TMDC/spacer/Au/substrate multilayers publication-title: Appl. Phys. B doi: 10.1007/s00340-019-7352-3 – ident: CR20 – year: 2022 ident: 4846_CR24 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac4f25 – year: 1999 ident: 4846_CR11 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(99)00091-7 – year: 2020 ident: 4846_CR5 publication-title: Appl. Phys. B doi: 10.1007/s00340-019-7352-3 – year: 2002 ident: 4846_CR12 publication-title: Gold Bull. doi: 10.1007/BF03214833 – year: 2018 ident: 4846_CR1 publication-title: JOSA B doi: 10.1364/JOSAB.35.001179 – volume: 110 start-page: 26 year: 2017 ident: 4846_CR7 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.09.008 – ident: 4846_CR20 doi: 10.1109/WIECON-ECE52138.2020.9397941 – year: 1951 ident: 4846_CR10 publication-title: JOSA doi: 10.1364/JOSA.41.000416 – year: 2020 ident: 4846_CR14 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04187G – year: 2020 ident: 4846_CR4 publication-title: J. Appl. Phys. doi: 10.1063/1.5131699 – year: 2020 ident: 4846_CR22 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.109824 – year: 2020 ident: 4846_CR2 publication-title: J. Appl. Phys. doi: 10.1063/5.0011881 – year: 2015 ident: 4846_CR15 publication-title: J. Materiom. doi: 10.1016/j.jmat.2015.03.003 – year: 2017 ident: 4846_CR9 publication-title: Mater. Today. doi: 10.1016/j.mattod.2016.10.002 – year: 1972 ident: 4846_CR13 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.6.4370 – year: 2017 ident: 4846_CR16 publication-title: Opt. Express. doi: 10.1364/OE.25.031612 – year: 2022 ident: 4846_CR25 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac710a – year: 2012 ident: 4846_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4740261 – year: 2017 ident: 4846_CR19 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.33 – year: 2020 ident: 4846_CR3 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110039 – year: 1998 ident: 4846_CR21 publication-title: Appl. Opt. doi: 10.1364/AO.37.005271 – year: 2020 ident: 4846_CR23 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110491 – year: 2018 ident: 4846_CR8 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800441 – year: 2021 ident: 4846_CR6 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106771 – year: 2021 ident: 4846_CR18 publication-title: Optik doi: 10.1016/j.ijleo.2021.166781 |
SSID | ssj0006450 |
Score | 2.3349173 |
Snippet | Owing to their exceptional optical and electronic properties, the two-dimensional transition metal dichalcogenide (TMDC) monolayers have received a great deal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorption Broadband Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Heterostructures Incident light Lasers Luminous intensity Monolayers Narrowband Optical Devices Optical properties Optics Photonics Physics Physics and Astronomy Spacers Thickness Transition metal compounds |
Title | The impact of the spacer and metal layer on the absorption of the heterostructures composed of TMDCs to design narrowband and broadband absorbers |
URI | https://link.springer.com/article/10.1007/s11082-023-04846-1 https://www.proquest.com/docview/2813628243 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kIujBR1WsL_bgTReSzeZ1LNUqar1ooZ5C9oWHmkhTf4j_2NlNYlVU8BBCyGRy-GZnvmFnZgFOvDzUWuqUKhHHFCNeTkXAMFnxAyO5TmXdPja6i67G_HoSTpqmsKqtdm-3JJ2nXjS7-RiuKMYYilbHI4o5z3Joc3e04jHrf_jfiLtzWS0Zpknqp02rzM86voajBcf8ti3qos1wE9Ybmkj6Na5bsKSLLmw0lJE0C7LqwtqneYJdWHH1nLLahjeEn9QdkKQ0BFkeQdch9YzkhSLPGik3meZIt0lZuLe5qMqZcx-t_JMtlCnr-bKvmJQTW31eVvh7FHgYnQ8qMi-JchUgpHCzHIVVbi8xK3NVP1m9AjnmDoyHFw-DK9qcvkAlLss5xbSZRcaTMY-UMUFg0RNezkIjuE4UU572pBK-5J6JVITMQiWaC2aQ84US89td6BRlofeAKN8gy8y5J2TA0SiEilkYhCKIBBOJUj3wWxAy2YwmtydkTLPFUGULXIbAZQ64zO_B6cc3L_Vgjj-lD1tss2aRVhlLfAzfCeNBD85avBevf9e2_z_xA1hlzuRske8hdBA4fYRUZi6OYbl_Prq9t_fLx5uLY2fJ778P7hk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQEAIOPAaIwYAcuEGkNk0fOyJgGrDttEncquYlDqNF6_gh_GOctGWAAIlDD1Vc9_A59mfFdgDOvSzUWuoeVSKOKUa8jIqAYbLiB0Zy3ZNV-9hoHA2m_P4xfKybwsqm2r05knSeetns5mO4ohhjKFodjyjmPKtIBhJbyDVlVx_-N-LuXlZLhmnS83t1q8zPOr6GoyXH_HYs6qJNfwe2appIripcd2FF523YrikjqTdk2YbNT_ME27Dm6jlluQdvCD-pOiBJYQiyPIKuQ-o5yXJFnjVSbjLLkG6TInermSiLuXMfjfyTLZQpqvmyr5iUE1t9XpT4exSYjG6uS7IoiHIVICR3sxyFVW4fMS8yVb1ZvQI55j5M-7eT6wGtb1-gErflgmLazCLjyZhHypggsOgJL2OhEVwniilPe1IJX3LPRCpCZqESzQUzyPlCifntAbTyIteHQJRvkGVm3BMy4GgUQsUsDEIRRIKJRKkO-A0IqaxHk9sbMmbpcqiyBS5F4FIHXOp34OLjm5dqMMef0t0G27TepGXKEh_Dd8J40IHLBu_l8u_ajv4nfgbrg8lomA7vxg_HsMGc-dmC3y60EER9grRmIU6dFb8DMp_t5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYQCAQHHgPEeObADSKaNO26I2JMPCcOm8Stal7iAC1axw_hH-OkLRsIkDj0UNV1pX6O_VmxHYDjIIuMUaZLtex0KEa8jMqQY7LCQquE6aqqfex-EF-NxM1j9DjTxe-r3ZstyaqnwU1pyidnr9qeTRvfGIYuivGGogWKmGL-s4DumDm7HvHzT18cC39GqyPGNOmybt0287OOr6Fpyje_bZH6yNNfh9WaMpLzCuMNmDN5C9Zq-kjqxVm2YGVmtmALFn1tpyo34R1NgVTdkKSwBBkfQTeizJhkuSYvBuk3ec6QepMi908zWRZj70oa-SdXNFNUs2bfMEEnrhK9KPHzKDC8712UZFIQ7atBSO7nOkqn3F1yXGS6unN6JfLNLRj1L4cXV7Q-iYEq_KcTiik0j22gOiLW1oahQ1IGGY-sFCbRXAcmUFoyJQIb6xhZhk6MkNwi_4sU5rrbMJ8XudkBoplFxpmJQKpQoIFI3eFRGMkwllwmWreBNSCkqh5T7k7LeE6nA5YdcCkCl3rgUtaGk893XqshHX9K7zfYpvWCLVOeMAzlCRdhG04bvKePf9e2-z_xI1h66PXTu-vB7R4sc299rvZ3H-YRQ3OADGciD70RfwDjpPIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+the+spacer+and+metal+layer+on+the+absorption+of+the+heterostructures+composed+of+TMDCs+to+design+narrowband+and+broadband+absorbers&rft.jtitle=Optical+and+quantum+electronics&rft.au=Ansari%2C+Narges&rft.au=Mohebbi%2C+Ensyieh&rft.au=Rezaei%2C+Narges&rft.date=2023-07-01&rft.pub=Springer+US&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=55&rft.issue=7&rft_id=info:doi/10.1007%2Fs11082-023-04846-1&rft.externalDocID=10_1007_s11082_023_04846_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon |