Multiview meta-metric learning for sign language recognition using triplet loss embeddings

Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the subject in question is a human being and the actions to be recognized from the video data are a complex set of actions called sign language. Altho...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 26; no. 3; pp. 1125 - 1141
Main Authors Mopidevi, Suneetha, Prasad, M. V. D., Kishore, Polurie Venkata Vijay
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the subject in question is a human being and the actions to be recognized from the video data are a complex set of actions called sign language. Although many deep learning models have been successfully applied for sign language recognition (SLR), very few models have considered multiple views in their training set. In this work, we propose to apply meta-metric learning for video-based SLR. Contrasting to traditional metric learning where the triplet loss is constructed on the sample-based distances, the meta-metric learns on the set-based distances. Consequently, we construct meta-cells on the entire multiview dataset and perform a task-based learning approach with respect to support cells and query sets. Additionally, we propose a maximum view pooled distance on sub-tasks for binding intra class views. Experiments conducted on the multiview sign language dataset and four human action recognition datasets show that the proposed multiview meta-metric learning model (MVDMML) achieves higher accuracies than the baselines.
AbstractList Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the subject in question is a human being and the actions to be recognized from the video data are a complex set of actions called sign language. Although many deep learning models have been successfully applied for sign language recognition (SLR), very few models have considered multiple views in their training set. In this work, we propose to apply meta-metric learning for video-based SLR. Contrasting to traditional metric learning where the triplet loss is constructed on the sample-based distances, the meta-metric learns on the set-based distances. Consequently, we construct meta-cells on the entire multiview dataset and perform a task-based learning approach with respect to support cells and query sets. Additionally, we propose a maximum view pooled distance on sub-tasks for binding intra class views. Experiments conducted on the multiview sign language dataset and four human action recognition datasets show that the proposed multiview meta-metric learning model (MVDMML) achieves higher accuracies than the baselines.
Author Prasad, M. V. D.
Kishore, Polurie Venkata Vijay
Mopidevi, Suneetha
Author_xml – sequence: 1
  givenname: Suneetha
  surname: Mopidevi
  fullname: Mopidevi, Suneetha
  organization: Department of Electronics and Communications Engineering, K.L. University
– sequence: 2
  givenname: M. V. D.
  surname: Prasad
  fullname: Prasad, M. V. D.
  organization: Department of Electronics and Communications Engineering, K.L. University
– sequence: 3
  givenname: Polurie Venkata Vijay
  orcidid: 0000-0002-3247-3043
  surname: Kishore
  fullname: Kishore, Polurie Venkata Vijay
  email: pvvkishore@kluniversity.in, pvvkishore@gmail.com
  organization: Image Speech and Signal Processing Research Group, Department of Electronics and Communications Engineering, Biomechanics and Vision Computing Research Center, K.L. University
BookMark eNp9kMtKAzEUhoNUsFVfwFXAdTS3maRLKd6g4kZB3IRkJhlSppmaZBTf3tSKgotuzjkc_u9c_hmYhCFYAM4IviAYi8tUIucIU4YwIYwjegCmhDOGRFW9TH5rTo7ALKUVxowxKqfg9WHss3_39gOubdaohOgb2Fsdgw8ddEOEyXcB9jp0o-4sjLYZuuCzHwIc01ZTiE1vM-yHlKBdG9u2pZ1OwKHTfbKnP_kYPN9cPy3u0PLx9n5xtUQNI_OMakkZZ062pjXCCCksrYwTTjRYcFsbKqUwsm3ntakqM9fC4drR2mjZVoxWmB2D893cTRzeRpuyWg1jDGWlopLjMhETWVR0p2piOTNapzbRr3X8VASrrYdq56EqHqpvDxUtkPwHNT7r7es5at_vR9kOTWVP6Gz8u2oP9QUtWoki
CitedBy_id crossref_primary_10_1007_s42979_024_02793_6
Cites_doi 10.1109/LSP.2018.2817179
10.1109/ACCESS.2019.2904749
10.1016/j.asoc.2012.11.036
10.1111/coin.12188
10.1109/JSEN.2018.2810449
10.1109/ACCESS.2018.2879490
10.1109/TSTE.2020.2985217
10.1109/JIOT.2019.2911669
10.1109/TGRS.2020.3009284
10.1016/j.jvcir.2017.01.019
10.1109/JSEN.2019.2909837
10.1007/s00371-020-01868-8
10.1109/TPAMI.2019.2896631
10.3906/elk-1907-214
10.1016/j.eswa.2020.113336
10.1016/j.neucom.2019.03.085
10.1109/TMM.2019.2962304
10.1007/s11760-019-01612-3
10.1007/s11263-018-1121-3
10.1016/j.cviu.2006.11.009
10.1007/s11042-018-6408-4
10.1109/TPAMI.2007.70711
10.1109/ACCESS.2019.2933988
10.1109/TGRS.2017.2783902
10.1007/s10044-018-0688-1
10.1016/j.patcog.2017.07.013
10.3390/fi10090089
10.1016/j.cola.2019.04.002
10.1109/TASLP.2017.2661705
10.1134/S1054661821040234
10.1109/LSP.2019.2942739
10.1007/978-3-030-01264-9_41
10.1007/978-3-030-01231-1_17
10.1109/ICPR.2014.16
10.1109/CVPR.2018.00208
10.1109/CVPR.2014.242
10.1109/CVPR.2019.01091
10.1109/ICCV.2019.00653
10.1109/ICCV.2019.00964
10.1109/CVPR.2018.00429
10.1109/CVPR.2016.115
10.1007/978-3-030-01240-3_28
10.1109/CVPR.2019.00016
10.1109/SPACES.2015.7058288
10.1109/CVPR.2018.00127
10.1609/aaai.v32i1.12228
10.1109/ICASSP.2019.8683393
10.1109/CVPR.2019.00132
10.1109/WACV.2018.00087
10.1109/WiSPNET.2016.7566526
10.1109/CVPR.2015.7298717
10.1109/SPACES.2018.8316344
10.1109/CVPR.2019.00117
10.1609/aaai.v32i1.11774
10.1109/ICCV.2017.283
10.1007/978-3-319-24261-3_7
10.1109/WACV45572.2020.9093512
10.1109/CVPRW50498.2020.00427
10.1109/CVPR.2018.00539
10.1109/AVSS.2010.63
10.1007/978-3-030-20476-1_9
10.1109/CVPR.2019.00516
10.1007/978-3-030-01261-8_28
10.1109/CVPR.2017.175
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10044-023-01134-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 1141
ExternalDocumentID 10_1007_s10044_023_01134_2
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-682343f8dbdb7b787e25bf7f7c074e6b2887b8dd96b55b9a7f06f26ba8d532503
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 01:25:02 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Tue Jul 01 01:15:18 EDT 2025
Fri Feb 21 02:42:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multiview sign language and action recognition
Triplet loss
Deep meta-metric learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-682343f8dbdb7b787e25bf7f7c074e6b2887b8dd96b55b9a7f06f26ba8d532503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3247-3043
PQID 2840787018
PQPubID 2043691
PageCount 17
ParticipantIDs proquest_journals_2840787018
crossref_primary_10_1007_s10044_023_01134_2
crossref_citationtrail_10_1007_s10044_023_01134_2
springer_journals_10_1007_s10044_023_01134_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Gorelick, Blank, Shechtman, Irani, Basri (CR15) 2007; 29
CR38
Mittal, Kumar, Roy, Balasubramanian, Chaudhuri (CR4) 2019; 19
He, Wang, Liu (CR10) 2020; 59
CR36
CR35
CR34
Zhu, Wang, Zhao, Cheng, Tao (CR33) 2020; 22
Xu, Cao, Chen (CR48) 2019; 7
Zhong, Wang, Miao (CR58) 2019; 33
Ravi, Suman, Kishore, Kumar, Kumar (CR19) 2019; 52
Ijjina, Chalavadi (CR67) 2017; 72
Gao, Xuan, Zhang, Wan, Choo (CR29) 2019; 6
Zhu, Zou, Zhu, Liang, Huang (CR61) 2019; 26
Yu, Hu, Jing, Feng (CR8) 2020; 14
Kumar, Kiran, Kishore, Sastry, Kumar, Anil Kumar (CR2) 2018; 25
Koller, Zargaran, Ney, Bowden (CR1) 2018; 126
Qu, Liu, Liu, Jiang (CR53) 2020; 12
CR6
Rastgoo, Kiani, Escalera (CR27) 2020; 150
Khan, Akram, Sharif, Javed, Muhammad, Yasmin (CR66) 2019; 22
CR5
Mambou, Krejcar, Kuca, Selamat (CR69) 2018; 10
CR7
CR9
CR47
CR46
CR45
Cheng, Yang, Yao, Guo, Han (CR39) 2018; 56
CR44
CR43
CR42
CR41
Zhu, Liu (CR32) 2019; 36
CR40
Elons, Abull-Ela, Tolba (CR60) 2013; 13
Hao, Dan, Wang, Sun (CR31) 2017; 48
Chen, Ge, Feng, Chuanyun, Yang (CR55) 2018; 6
Kishore, Anil Kumar, Chandra Sekhara Sastry, Kiran Kumar (CR20) 2018; 18
CR18
CR17
CR16
CR14
CR13
CR57
CR12
CR56
CR11
Zhang, Lan, Xing, Zeng, Xue, Zheng (CR30) 2019; 41
Ghahabi, Hernando (CR37) 2017; 25
CR52
CR51
CR50
Mary, Malin Bruntha, Manimekalai, Martin Sagayam, Dang (CR3) 2021; 31
Wang, Chen, Zhang, Wang, Gao (CR59) 2007; 108
He, Jung, Qingtao, Zhang (CR54) 2019; 78
CR28
CR26
CR25
Liu, Ying, Yang, Hu, Liu (CR68) 2021; 37
CR23
CR21
CR64
Wang, Cheng, Mo, Guo, Zhang (CR49) 2019; 349
CR63
CR62
Liao, Xiong, Min, Min, Jiahao (CR22) 2019; 7
Sagayam, Jude Hemanth (CR24) 2019; 35
Nida, Yousaf, Irtaza, Velastin (CR65) 2020; 28
TB Mary (1134_CR3) 2021; 31
1134_CR46
D Wang (1134_CR49) 2019; 349
G Cheng (1134_CR39) 2018; 56
1134_CR45
A Mittal (1134_CR4) 2019; 19
1134_CR44
1134_CR43
1134_CR42
1134_CR41
1134_CR40
J He (1134_CR10) 2020; 59
K Zhu (1134_CR33) 2020; 22
O Ghahabi (1134_CR37) 2017; 25
T Hao (1134_CR31) 2017; 48
1134_CR47
O Koller (1134_CR1) 2018; 126
P Zhong (1134_CR58) 2019; 33
N Nida (1134_CR65) 2020; 28
S Mambou (1134_CR69) 2018; 10
P Zhang (1134_CR30) 2019; 41
KM Sagayam (1134_CR24) 2019; 35
1134_CR35
1134_CR34
Qi Wang (1134_CR59) 2007; 108
J Zhu (1134_CR61) 2019; 26
Z He (1134_CR54) 2019; 78
C Liu (1134_CR68) 2021; 37
1134_CR38
PVV Kishore (1134_CR20) 2018; 18
1134_CR36
MA Khan (1134_CR66) 2019; 22
Y Liao (1134_CR22) 2019; 7
EP Ijjina (1134_CR67) 2017; 72
J Yu (1134_CR8) 2020; 14
1134_CR23
E Kumar (1134_CR2) 2018; 25
1134_CR21
S Ravi (1134_CR19) 2019; 52
1134_CR64
1134_CR63
1134_CR62
1134_CR7
1134_CR6
1134_CR5
Z Gao (1134_CR29) 2019; 6
1134_CR28
1134_CR26
1134_CR9
1134_CR25
Z Xu (1134_CR48) 2019; 7
AS Elons (1134_CR60) 2013; 13
L Gorelick (1134_CR15) 2007; 29
M Chen (1134_CR55) 2018; 6
1134_CR13
1134_CR57
1134_CR12
1134_CR56
1134_CR11
Y Zhu (1134_CR32) 2019; 36
1134_CR52
1134_CR51
F Qu (1134_CR53) 2020; 12
1134_CR50
1134_CR18
1134_CR17
1134_CR16
R Rastgoo (1134_CR27) 2020; 150
1134_CR14
References_xml – ident: CR45
– volume: 25
  start-page: 645
  issue: 5
  year: 2018
  end-page: 649
  ident: CR2
  article-title: Training CNNs for 3-D sign language recognition with color texture coded joint angular displacement maps
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2817179
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 7
  start-page: 38044
  year: 2019
  end-page: 38054
  ident: CR22
  article-title: Dynamic sign language recognition based on video sequence with BLSTM-3D residual networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904749
– volume: 13
  start-page: 1646
  issue: 4
  year: 2013
  end-page: 1660
  ident: CR60
  article-title: A proposed PCNN features quality optimization technique for pose-invariant 3D Arabic sign language recognition
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.036
– volume: 35
  start-page: 59
  issue: 1
  year: 2019
  end-page: 81
  ident: CR24
  article-title: A probabilistic model for state sequence analysis in hidden Markov model for hand gesture recognition
  publication-title: Comput Intell
  doi: 10.1111/coin.12188
– ident: CR35
– ident: CR25
– volume: 18
  start-page: 3327
  issue: 8
  year: 2018
  end-page: 3337
  ident: CR20
  article-title: Motionlets matching with adaptive kernels for 3-d indian sign language recognition
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2810449
– volume: 6
  start-page: 68089
  year: 2018
  end-page: 68095
  ident: CR55
  article-title: Person re-identification by pose invariant deep metric learning with improved triplet loss
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879490
– ident: CR42
– volume: 12
  start-page: 127
  issue: 1
  year: 2020
  end-page: 137
  ident: CR53
  article-title: A multi-fault detection method with improved triplet loss based on hard sample mining
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2020.2985217
– ident: CR21
– volume: 6
  start-page: 9280
  issue: 6
  year: 2019
  end-page: 9293
  ident: CR29
  article-title: Adaptive fusion and category-level dictionary learning model for multiview human action recognition
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2911669
– ident: CR46
– volume: 59
  start-page: 3022
  issue: 4
  year: 2020
  end-page: 3099
  ident: CR10
  article-title: Ship classification in medium-resolution SAR images via densely connected triplet CNNs integrating fisher discrimination regularized metric learning
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.3009284
– ident: CR50
– volume: 48
  start-page: 453
  year: 2017
  end-page: 460
  ident: CR31
  article-title: Multi-view representation learning for multi-view action recognition
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2017.01.019
– ident: CR11
– ident: CR9
– ident: CR57
– volume: 19
  start-page: 7056
  issue: 16
  year: 2019
  end-page: 7063
  ident: CR4
  article-title: A modified LSTM model for continuous sign language recognition using leap motion
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2909837
– ident: CR36
– ident: CR5
– ident: CR64
– ident: CR26
– volume: 37
  start-page: 1327
  year: 2021
  end-page: 1341
  ident: CR68
  article-title: Improved human action recognition approach based on two-stream convolutional neural network model
  publication-title: Vis Comput
  doi: 10.1007/s00371-020-01868-8
– volume: 41
  start-page: 1963
  issue: 8
  year: 2019
  end-page: 1978
  ident: CR30
  article-title: View adaptive neural networks for high performance skeleton-based human action recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2896631
– volume: 36
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR32
  article-title: Fine-grained action recognition using multi-view attentions
  publication-title: Visual Comput
– volume: 28
  start-page: 1371
  issue: 3
  year: 2020
  end-page: 1385
  ident: CR65
  article-title: Deep temporal motion descriptor (DTMD) for human action recognition
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1907-214
– ident: CR18
– volume: 150
  year: 2020
  ident: CR27
  article-title: Hand sign language recognition using multi-view hand skeleton
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113336
– ident: CR43
– volume: 349
  start-page: 202
  year: 2019
  end-page: 211
  ident: CR49
  article-title: A hybrid approach with optimization-based and metric-based meta-learner for few-shot learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.085
– ident: CR47
– volume: 22
  start-page: 2977
  issue: 11
  year: 2020
  end-page: 2989
  ident: CR33
  article-title: A cuboid CNN model with an attention mechanism for skeleton-based action recognition
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2019.2962304
– ident: CR14
– volume: 14
  start-page: 791
  year: 2020
  end-page: 798
  ident: CR8
  article-title: Deep metric learning with dynamic margin hard sampling loss for face verification
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-019-01612-3
– volume: 126
  start-page: 1311
  issue: 12
  year: 2018
  end-page: 1325
  ident: CR1
  article-title: Deep sign: enabling robust statistical continuous sign language recognition via hybrid CNN-HMMs
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-018-1121-3
– ident: CR6
– ident: CR56
– volume: 108
  start-page: 87
  issue: 1–2
  year: 2007
  end-page: 97
  ident: CR59
  article-title: Viewpoint invariant sign language recognition
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2006.11.009
– volume: 78
  start-page: 5863
  issue: 5
  year: 2019
  end-page: 5880
  ident: CR54
  article-title: Deep feature embedding learning for person re-identification based on lifted structured loss
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-018-6408-4
– ident: CR40
– ident: CR63
– volume: 29
  start-page: 2247
  issue: 12
  year: 2007
  end-page: 2253
  ident: CR15
  article-title: Actions as space-time shapes
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70711
– ident: CR23
– volume: 7
  start-page: 110846
  year: 2019
  end-page: 110855
  ident: CR48
  article-title: Meta-learning via weighted gradient update
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933988
– volume: 56
  start-page: 2811
  issue: 5
  year: 2018
  end-page: 2821
  ident: CR39
  article-title: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2783902
– ident: CR44
– volume: 33
  start-page: 7492
  issue: 01
  year: 2019
  end-page: 7500
  ident: CR58
  article-title: An affect-rich neural conversational model with biased attention and weighted cross-entropy loss
  publication-title: Proc AAAI Conf Artif Intell
– volume: 22
  start-page: 1377
  issue: 4
  year: 2019
  end-page: 1397
  ident: CR66
  article-title: An implementation of optimized framework for action classification using multilayers neural network on selected fused features
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-018-0688-1
– volume: 72
  start-page: 504
  year: 2017
  end-page: 516
  ident: CR67
  article-title: Human action recognition in RGB-D videos using motion sequence information and deep learning
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.07.013
– ident: CR38
– ident: CR52
– volume: 10
  start-page: 89
  issue: 9
  year: 2018
  ident: CR69
  article-title: Novel cross-view human action model recognition based on the powerful view-invariant features technique
  publication-title: Future Internet
  doi: 10.3390/fi10090089
– ident: CR17
– ident: CR13
– volume: 52
  start-page: 88
  year: 2019
  end-page: 102
  ident: CR19
  article-title: Multi modal spatio temporal co-trained CNNs with single modal testing on RGB–D based sign language gesture recognition
  publication-title: J Comput Lang
  doi: 10.1016/j.cola.2019.04.002
– ident: CR34
– volume: 25
  start-page: 807
  issue: 4
  year: 2017
  end-page: 817
  ident: CR37
  article-title: Deep learning backend for single and multisession i-vector speaker recognition
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2017.2661705
– volume: 31
  start-page: 709
  issue: 4
  year: 2021
  end-page: 721
  ident: CR3
  article-title: Investigation of an efficient integrated semantic interactive algorithm for image retrieval
  publication-title: Pattern Recognit Image Anal
  doi: 10.1134/S1054661821040234
– ident: CR7
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 26
  start-page: 1633
  issue: 11
  year: 2019
  end-page: 1637
  ident: CR61
  article-title: Action machine: toward person-centric action recognition in videos
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2019.2942739
– ident: 1134_CR9
  doi: 10.1007/978-3-030-01264-9_41
– volume: 59
  start-page: 3022
  issue: 4
  year: 2020
  ident: 1134_CR10
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.3009284
– ident: 1134_CR40
  doi: 10.1007/978-3-030-01231-1_17
– ident: 1134_CR35
  doi: 10.1109/ICPR.2014.16
– volume: 18
  start-page: 3327
  issue: 8
  year: 2018
  ident: 1134_CR20
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2810449
– volume: 108
  start-page: 87
  issue: 1–2
  year: 2007
  ident: 1134_CR59
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2006.11.009
– volume: 36
  start-page: 1
  year: 2019
  ident: 1134_CR32
  publication-title: Visual Comput
– ident: 1134_CR52
  doi: 10.1109/CVPR.2018.00208
– volume: 72
  start-page: 504
  year: 2017
  ident: 1134_CR67
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.07.013
– ident: 1134_CR36
  doi: 10.1109/CVPR.2014.242
– volume: 349
  start-page: 202
  year: 2019
  ident: 1134_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.085
– volume: 37
  start-page: 1327
  year: 2021
  ident: 1134_CR68
  publication-title: Vis Comput
  doi: 10.1007/s00371-020-01868-8
– ident: 1134_CR44
  doi: 10.1109/CVPR.2019.01091
– ident: 1134_CR45
  doi: 10.1109/ICCV.2019.00653
– volume: 41
  start-page: 1963
  issue: 8
  year: 2019
  ident: 1134_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2896631
– ident: 1134_CR12
  doi: 10.1109/ICCV.2019.00964
– volume: 150
  year: 2020
  ident: 1134_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113336
– ident: 1134_CR51
  doi: 10.1109/CVPR.2018.00429
– ident: 1134_CR13
  doi: 10.1109/CVPR.2016.115
– ident: 1134_CR16
  doi: 10.1007/978-3-030-01240-3_28
– volume: 6
  start-page: 9280
  issue: 6
  year: 2019
  ident: 1134_CR29
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2911669
– ident: 1134_CR41
  doi: 10.1109/CVPR.2019.00016
– ident: 1134_CR25
  doi: 10.1109/SPACES.2015.7058288
– volume: 7
  start-page: 38044
  year: 2019
  ident: 1134_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904749
– volume: 7
  start-page: 110846
  year: 2019
  ident: 1134_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933988
– ident: 1134_CR63
  doi: 10.1109/CVPR.2018.00127
– ident: 1134_CR64
  doi: 10.1609/aaai.v32i1.12228
– volume: 78
  start-page: 5863
  issue: 5
  year: 2019
  ident: 1134_CR54
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-018-6408-4
– volume: 19
  start-page: 7056
  issue: 16
  year: 2019
  ident: 1134_CR4
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2909837
– ident: 1134_CR7
  doi: 10.1109/ICASSP.2019.8683393
– ident: 1134_CR5
  doi: 10.1109/CVPR.2019.00132
– ident: 1134_CR11
  doi: 10.1109/WACV.2018.00087
– ident: 1134_CR50
– ident: 1134_CR23
  doi: 10.1109/WiSPNET.2016.7566526
– volume: 31
  start-page: 709
  issue: 4
  year: 2021
  ident: 1134_CR3
  publication-title: Pattern Recognit Image Anal
  doi: 10.1134/S1054661821040234
– volume: 33
  start-page: 7492
  issue: 01
  year: 2019
  ident: 1134_CR58
  publication-title: Proc AAAI Conf Artif Intell
– volume: 56
  start-page: 2811
  issue: 5
  year: 2018
  ident: 1134_CR39
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2783902
– volume: 26
  start-page: 1633
  issue: 11
  year: 2019
  ident: 1134_CR61
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2019.2942739
– volume: 35
  start-page: 59
  issue: 1
  year: 2019
  ident: 1134_CR24
  publication-title: Comput Intell
  doi: 10.1111/coin.12188
– ident: 1134_CR47
– ident: 1134_CR38
  doi: 10.1109/CVPR.2015.7298717
– ident: 1134_CR43
– volume: 48
  start-page: 453
  year: 2017
  ident: 1134_CR31
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2017.01.019
– volume: 6
  start-page: 68089
  year: 2018
  ident: 1134_CR55
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879490
– volume: 126
  start-page: 1311
  issue: 12
  year: 2018
  ident: 1134_CR1
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-018-1121-3
– ident: 1134_CR18
  doi: 10.1109/SPACES.2018.8316344
– volume: 25
  start-page: 807
  issue: 4
  year: 2017
  ident: 1134_CR37
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2017.2661705
– ident: 1134_CR28
  doi: 10.1109/CVPR.2019.00117
– volume: 25
  start-page: 645
  issue: 5
  year: 2018
  ident: 1134_CR2
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2817179
– volume: 22
  start-page: 2977
  issue: 11
  year: 2020
  ident: 1134_CR33
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2019.2962304
– ident: 1134_CR46
  doi: 10.1609/aaai.v32i1.11774
– ident: 1134_CR34
  doi: 10.1109/ICCV.2017.283
– volume: 28
  start-page: 1371
  issue: 3
  year: 2020
  ident: 1134_CR65
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1907-214
– ident: 1134_CR6
  doi: 10.1007/978-3-319-24261-3_7
– ident: 1134_CR21
  doi: 10.1109/WACV45572.2020.9093512
– volume: 12
  start-page: 127
  issue: 1
  year: 2020
  ident: 1134_CR53
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2020.2985217
– volume: 13
  start-page: 1646
  issue: 4
  year: 2013
  ident: 1134_CR60
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.036
– volume: 52
  start-page: 88
  year: 2019
  ident: 1134_CR19
  publication-title: J Comput Lang
  doi: 10.1016/j.cola.2019.04.002
– volume: 22
  start-page: 1377
  issue: 4
  year: 2019
  ident: 1134_CR66
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-018-0688-1
– ident: 1134_CR57
  doi: 10.1109/CVPRW50498.2020.00427
– ident: 1134_CR62
  doi: 10.1109/CVPR.2018.00539
– ident: 1134_CR14
  doi: 10.1109/AVSS.2010.63
– ident: 1134_CR17
  doi: 10.1007/978-3-030-20476-1_9
– ident: 1134_CR42
  doi: 10.1109/CVPR.2019.00516
– ident: 1134_CR56
  doi: 10.1007/978-3-030-01261-8_28
– ident: 1134_CR26
  doi: 10.1109/CVPR.2017.175
– volume: 29
  start-page: 2247
  issue: 12
  year: 2007
  ident: 1134_CR15
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70711
– volume: 14
  start-page: 791
  year: 2020
  ident: 1134_CR8
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-019-01612-3
– volume: 10
  start-page: 89
  issue: 9
  year: 2018
  ident: 1134_CR69
  publication-title: Future Internet
  doi: 10.3390/fi10090089
SSID ssj0033328
Score 2.320894
Snippet Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1125
SubjectTerms Computer Science
Datasets
Deep learning
Human activity recognition
Image processing
Machine learning
Pattern Recognition
Recognition
Sign language
Theoretical Advances
Video data
Title Multiview meta-metric learning for sign language recognition using triplet loss embeddings
URI https://link.springer.com/article/10.1007/s10044-023-01134-2
https://www.proquest.com/docview/2840787018
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QduHCGzEYUw7cIFLbPJodJ7QxgeDEpMGlalp3l73Eyv_HyZINECBxTZOosmP7c2zHhFyh0yAU2LQKJYAJXgiW6xgYgBFaRiAjVyj8-KSGI3E_lmNfFLYK2e4hJOk09adit0gIhjYG3d-YC4aKtynRd7eJXKOkF_Qv59x1VEUgwFkqRexLZX7e46s52mLMb2FRZ20GB2TPw0TaW_P1kOzA_Ijse8hIvUCucCh0ZQhjx-TV1dTaG386gzpnM9szq6C-PcSEIkqlNmuDhqtKukkiWsypzYOfUFyxRIbSKf4zhZmB0oWoTsho0H--HTLfQYEVKFo1Uzrhgle6NKVJDcomJNJUaZUWiBxAmQRVjNFl2VVGStPN0ypSVaJMrkvJERzxU9KYL-ZwRmieFLnS2t4ZIYTiBt2kGBelEkBCmkKLxIGQWeGfF7ddLqbZ9mFkS_wMiZ854mdJi1xv1izXj2v8Obsd-JN5QVtlaF0jq3Ni3SI3gWfbz7_vdv6_6RdkN3HHxqb-tUmjfnuHS4QjtemQZu_u5aHfcafwAwbw1kI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDhjShPD2xgKYkfcccKURVoO7VSxRLFyaVLX6Ll_3N27RYQILE6Piu68919tu9ByC0eGoQCG1ahBDDBC8FyHQMDMELLCGTkEoW7PdUeiOehHPqksEWIdg9Pks5Sf0p2i4Rg6GPw-BtzwdDwbiMY0HYvD5JmsL-cc9dRFYEAZ6kUsU-V-XmNr-5ogzG_PYs6b9M6IHseJtLmSq6HZAumR2TfQ0bqFXKBQ6ErQxg7Jq8up9be-NMJLHM2sT2zCurbQ4woolRqozZouKqk6yCi2ZTaOPgRRYo5CpSO8Z8pTAyU7onqhAxaj_2HNvMdFFiBqrVkSidc8EqXpjSpQd2ERJoqrdICkQMok6CJMbosG8pIaRp5WkWqSpTJdSk5giN-SmrT2RTOCM2TIlda2zsjhFDc4DEpRqJUAkhIU6iTODAyK3x5cdvlYpxtCiNb5mfI_MwxP0vq5G5NM18V1_hz9mWQT-YVbZGhd42szYl1ndwHmW0-_77a-f-m35Cddr_byTpPvZcLspu4LWTDAC9Jbfn2DlcITZbm2u3ED4sz16E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSIiFN6JQwAMbWE38ijtWQMWzYqBSxRLFyaVLm1Y0_H_ObkILAiRWx7aiO9_dZ9-LkHO8NEgNLqxCS2BSpJIlJgQGYKVRAajAJwo_9fRtX94P1GApi99Hu9cuyXlOg6vSVJStaZa3lhLfAikZ2hu8CodCMlTCa9JlA-OJ7vNOrYuFEL67KoICwSIlwypt5uc9vpqmBd785iL1lqe7TTYryEg7cx7vkBUodslWBR9pJZwzHKo7NNRje-TV59e61386hjJhY9c_K6VVq4ghRcRKXQQHrZ8t6WdA0aSgLiZ-SHHFFJlLR_jPFMYWMu-u2if97s3L1S2ruimwFMWsZNpwIUVuMpvZyKKcAlc2j_IoRRQB2nJUN9ZkWVtbpWw7ifJA51zbxGRKIFASB2S1mBRwSGjC00Qb496PEE4Ji1emEBdFCkBBFEGDhDUh47QqNe46XoziRZFkR_wYiR974se8QS4-10znhTb-nN2s-RNXQjeL0dIGTv-EpkEua54tPv--29H_pp-R9efrbvx413s4JhvcnyAXEdgkq-XbO5wgSintqT-IHx7x29Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiview+meta-metric+learning+for+sign+language+recognition+using+triplet+loss+embeddings&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Mopidevi+Suneetha&rft.au=Prasad+M+V+D&rft.au=Kishore+Polurie+Venkata+Vijay&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=26&rft.issue=3&rft.spage=1125&rft.epage=1141&rft_id=info:doi/10.1007%2Fs10044-023-01134-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon