Multiview meta-metric learning for sign language recognition using triplet loss embeddings
Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the subject in question is a human being and the actions to be recognized from the video data are a complex set of actions called sign language. Altho...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 26; no. 3; pp. 1125 - 1141 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the subject in question is a human being and the actions to be recognized from the video data are a complex set of actions called sign language. Although many deep learning models have been successfully applied for sign language recognition (SLR), very few models have considered multiple views in their training set. In this work, we propose to apply meta-metric learning for video-based SLR. Contrasting to traditional metric learning where the triplet loss is constructed on the sample-based distances, the meta-metric learns on the set-based distances. Consequently, we construct meta-cells on the entire multiview dataset and perform a task-based learning approach with respect to support cells and query sets. Additionally, we propose a maximum view pooled distance on sub-tasks for binding intra class views. Experiments conducted on the multiview sign language dataset and four human action recognition datasets show that the proposed multiview meta-metric learning model (MVDMML) achieves higher accuracies than the baselines. |
---|---|
AbstractList | Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the subject in question is a human being and the actions to be recognized from the video data are a complex set of actions called sign language. Although many deep learning models have been successfully applied for sign language recognition (SLR), very few models have considered multiple views in their training set. In this work, we propose to apply meta-metric learning for video-based SLR. Contrasting to traditional metric learning where the triplet loss is constructed on the sample-based distances, the meta-metric learns on the set-based distances. Consequently, we construct meta-cells on the entire multiview dataset and perform a task-based learning approach with respect to support cells and query sets. Additionally, we propose a maximum view pooled distance on sub-tasks for binding intra class views. Experiments conducted on the multiview sign language dataset and four human action recognition datasets show that the proposed multiview meta-metric learning model (MVDMML) achieves higher accuracies than the baselines. |
Author | Prasad, M. V. D. Kishore, Polurie Venkata Vijay Mopidevi, Suneetha |
Author_xml | – sequence: 1 givenname: Suneetha surname: Mopidevi fullname: Mopidevi, Suneetha organization: Department of Electronics and Communications Engineering, K.L. University – sequence: 2 givenname: M. V. D. surname: Prasad fullname: Prasad, M. V. D. organization: Department of Electronics and Communications Engineering, K.L. University – sequence: 3 givenname: Polurie Venkata Vijay orcidid: 0000-0002-3247-3043 surname: Kishore fullname: Kishore, Polurie Venkata Vijay email: pvvkishore@kluniversity.in, pvvkishore@gmail.com organization: Image Speech and Signal Processing Research Group, Department of Electronics and Communications Engineering, Biomechanics and Vision Computing Research Center, K.L. University |
BookMark | eNp9kMtKAzEUhoNUsFVfwFXAdTS3maRLKd6g4kZB3IRkJhlSppmaZBTf3tSKgotuzjkc_u9c_hmYhCFYAM4IviAYi8tUIucIU4YwIYwjegCmhDOGRFW9TH5rTo7ALKUVxowxKqfg9WHss3_39gOubdaohOgb2Fsdgw8ddEOEyXcB9jp0o-4sjLYZuuCzHwIc01ZTiE1vM-yHlKBdG9u2pZ1OwKHTfbKnP_kYPN9cPy3u0PLx9n5xtUQNI_OMakkZZ062pjXCCCksrYwTTjRYcFsbKqUwsm3ntakqM9fC4drR2mjZVoxWmB2D893cTRzeRpuyWg1jDGWlopLjMhETWVR0p2piOTNapzbRr3X8VASrrYdq56EqHqpvDxUtkPwHNT7r7es5at_vR9kOTWVP6Gz8u2oP9QUtWoki |
CitedBy_id | crossref_primary_10_1007_s42979_024_02793_6 |
Cites_doi | 10.1109/LSP.2018.2817179 10.1109/ACCESS.2019.2904749 10.1016/j.asoc.2012.11.036 10.1111/coin.12188 10.1109/JSEN.2018.2810449 10.1109/ACCESS.2018.2879490 10.1109/TSTE.2020.2985217 10.1109/JIOT.2019.2911669 10.1109/TGRS.2020.3009284 10.1016/j.jvcir.2017.01.019 10.1109/JSEN.2019.2909837 10.1007/s00371-020-01868-8 10.1109/TPAMI.2019.2896631 10.3906/elk-1907-214 10.1016/j.eswa.2020.113336 10.1016/j.neucom.2019.03.085 10.1109/TMM.2019.2962304 10.1007/s11760-019-01612-3 10.1007/s11263-018-1121-3 10.1016/j.cviu.2006.11.009 10.1007/s11042-018-6408-4 10.1109/TPAMI.2007.70711 10.1109/ACCESS.2019.2933988 10.1109/TGRS.2017.2783902 10.1007/s10044-018-0688-1 10.1016/j.patcog.2017.07.013 10.3390/fi10090089 10.1016/j.cola.2019.04.002 10.1109/TASLP.2017.2661705 10.1134/S1054661821040234 10.1109/LSP.2019.2942739 10.1007/978-3-030-01264-9_41 10.1007/978-3-030-01231-1_17 10.1109/ICPR.2014.16 10.1109/CVPR.2018.00208 10.1109/CVPR.2014.242 10.1109/CVPR.2019.01091 10.1109/ICCV.2019.00653 10.1109/ICCV.2019.00964 10.1109/CVPR.2018.00429 10.1109/CVPR.2016.115 10.1007/978-3-030-01240-3_28 10.1109/CVPR.2019.00016 10.1109/SPACES.2015.7058288 10.1109/CVPR.2018.00127 10.1609/aaai.v32i1.12228 10.1109/ICASSP.2019.8683393 10.1109/CVPR.2019.00132 10.1109/WACV.2018.00087 10.1109/WiSPNET.2016.7566526 10.1109/CVPR.2015.7298717 10.1109/SPACES.2018.8316344 10.1109/CVPR.2019.00117 10.1609/aaai.v32i1.11774 10.1109/ICCV.2017.283 10.1007/978-3-319-24261-3_7 10.1109/WACV45572.2020.9093512 10.1109/CVPRW50498.2020.00427 10.1109/CVPR.2018.00539 10.1109/AVSS.2010.63 10.1007/978-3-030-20476-1_9 10.1109/CVPR.2019.00516 10.1007/978-3-030-01261-8_28 10.1109/CVPR.2017.175 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-023-01134-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 1141 |
ExternalDocumentID | 10_1007_s10044_023_01134_2 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-682343f8dbdb7b787e25bf7f7c074e6b2887b8dd96b55b9a7f06f26ba8d532503 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 01:25:02 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Tue Jul 01 01:15:18 EDT 2025 Fri Feb 21 02:42:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Multiview sign language and action recognition Triplet loss Deep meta-metric learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-682343f8dbdb7b787e25bf7f7c074e6b2887b8dd96b55b9a7f06f26ba8d532503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3247-3043 |
PQID | 2840787018 |
PQPubID | 2043691 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2840787018 crossref_primary_10_1007_s10044_023_01134_2 crossref_citationtrail_10_1007_s10044_023_01134_2 springer_journals_10_1007_s10044_023_01134_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Gorelick, Blank, Shechtman, Irani, Basri (CR15) 2007; 29 CR38 Mittal, Kumar, Roy, Balasubramanian, Chaudhuri (CR4) 2019; 19 He, Wang, Liu (CR10) 2020; 59 CR36 CR35 CR34 Zhu, Wang, Zhao, Cheng, Tao (CR33) 2020; 22 Xu, Cao, Chen (CR48) 2019; 7 Zhong, Wang, Miao (CR58) 2019; 33 Ravi, Suman, Kishore, Kumar, Kumar (CR19) 2019; 52 Ijjina, Chalavadi (CR67) 2017; 72 Gao, Xuan, Zhang, Wan, Choo (CR29) 2019; 6 Zhu, Zou, Zhu, Liang, Huang (CR61) 2019; 26 Yu, Hu, Jing, Feng (CR8) 2020; 14 Kumar, Kiran, Kishore, Sastry, Kumar, Anil Kumar (CR2) 2018; 25 Koller, Zargaran, Ney, Bowden (CR1) 2018; 126 Qu, Liu, Liu, Jiang (CR53) 2020; 12 CR6 Rastgoo, Kiani, Escalera (CR27) 2020; 150 Khan, Akram, Sharif, Javed, Muhammad, Yasmin (CR66) 2019; 22 CR5 Mambou, Krejcar, Kuca, Selamat (CR69) 2018; 10 CR7 CR9 CR47 CR46 CR45 Cheng, Yang, Yao, Guo, Han (CR39) 2018; 56 CR44 CR43 CR42 CR41 Zhu, Liu (CR32) 2019; 36 CR40 Elons, Abull-Ela, Tolba (CR60) 2013; 13 Hao, Dan, Wang, Sun (CR31) 2017; 48 Chen, Ge, Feng, Chuanyun, Yang (CR55) 2018; 6 Kishore, Anil Kumar, Chandra Sekhara Sastry, Kiran Kumar (CR20) 2018; 18 CR18 CR17 CR16 CR14 CR13 CR57 CR12 CR56 CR11 Zhang, Lan, Xing, Zeng, Xue, Zheng (CR30) 2019; 41 Ghahabi, Hernando (CR37) 2017; 25 CR52 CR51 CR50 Mary, Malin Bruntha, Manimekalai, Martin Sagayam, Dang (CR3) 2021; 31 Wang, Chen, Zhang, Wang, Gao (CR59) 2007; 108 He, Jung, Qingtao, Zhang (CR54) 2019; 78 CR28 CR26 CR25 Liu, Ying, Yang, Hu, Liu (CR68) 2021; 37 CR23 CR21 CR64 Wang, Cheng, Mo, Guo, Zhang (CR49) 2019; 349 CR63 CR62 Liao, Xiong, Min, Min, Jiahao (CR22) 2019; 7 Sagayam, Jude Hemanth (CR24) 2019; 35 Nida, Yousaf, Irtaza, Velastin (CR65) 2020; 28 TB Mary (1134_CR3) 2021; 31 1134_CR46 D Wang (1134_CR49) 2019; 349 G Cheng (1134_CR39) 2018; 56 1134_CR45 A Mittal (1134_CR4) 2019; 19 1134_CR44 1134_CR43 1134_CR42 1134_CR41 1134_CR40 J He (1134_CR10) 2020; 59 K Zhu (1134_CR33) 2020; 22 O Ghahabi (1134_CR37) 2017; 25 T Hao (1134_CR31) 2017; 48 1134_CR47 O Koller (1134_CR1) 2018; 126 P Zhong (1134_CR58) 2019; 33 N Nida (1134_CR65) 2020; 28 S Mambou (1134_CR69) 2018; 10 P Zhang (1134_CR30) 2019; 41 KM Sagayam (1134_CR24) 2019; 35 1134_CR35 1134_CR34 Qi Wang (1134_CR59) 2007; 108 J Zhu (1134_CR61) 2019; 26 Z He (1134_CR54) 2019; 78 C Liu (1134_CR68) 2021; 37 1134_CR38 PVV Kishore (1134_CR20) 2018; 18 1134_CR36 MA Khan (1134_CR66) 2019; 22 Y Liao (1134_CR22) 2019; 7 EP Ijjina (1134_CR67) 2017; 72 J Yu (1134_CR8) 2020; 14 1134_CR23 E Kumar (1134_CR2) 2018; 25 1134_CR21 S Ravi (1134_CR19) 2019; 52 1134_CR64 1134_CR63 1134_CR62 1134_CR7 1134_CR6 1134_CR5 Z Gao (1134_CR29) 2019; 6 1134_CR28 1134_CR26 1134_CR9 1134_CR25 Z Xu (1134_CR48) 2019; 7 AS Elons (1134_CR60) 2013; 13 L Gorelick (1134_CR15) 2007; 29 M Chen (1134_CR55) 2018; 6 1134_CR13 1134_CR57 1134_CR12 1134_CR56 1134_CR11 Y Zhu (1134_CR32) 2019; 36 1134_CR52 1134_CR51 F Qu (1134_CR53) 2020; 12 1134_CR50 1134_CR18 1134_CR17 1134_CR16 R Rastgoo (1134_CR27) 2020; 150 1134_CR14 |
References_xml | – ident: CR45 – volume: 25 start-page: 645 issue: 5 year: 2018 end-page: 649 ident: CR2 article-title: Training CNNs for 3-D sign language recognition with color texture coded joint angular displacement maps publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2817179 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 7 start-page: 38044 year: 2019 end-page: 38054 ident: CR22 article-title: Dynamic sign language recognition based on video sequence with BLSTM-3D residual networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904749 – volume: 13 start-page: 1646 issue: 4 year: 2013 end-page: 1660 ident: CR60 article-title: A proposed PCNN features quality optimization technique for pose-invariant 3D Arabic sign language recognition publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.036 – volume: 35 start-page: 59 issue: 1 year: 2019 end-page: 81 ident: CR24 article-title: A probabilistic model for state sequence analysis in hidden Markov model for hand gesture recognition publication-title: Comput Intell doi: 10.1111/coin.12188 – ident: CR35 – ident: CR25 – volume: 18 start-page: 3327 issue: 8 year: 2018 end-page: 3337 ident: CR20 article-title: Motionlets matching with adaptive kernels for 3-d indian sign language recognition publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2810449 – volume: 6 start-page: 68089 year: 2018 end-page: 68095 ident: CR55 article-title: Person re-identification by pose invariant deep metric learning with improved triplet loss publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879490 – ident: CR42 – volume: 12 start-page: 127 issue: 1 year: 2020 end-page: 137 ident: CR53 article-title: A multi-fault detection method with improved triplet loss based on hard sample mining publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2020.2985217 – ident: CR21 – volume: 6 start-page: 9280 issue: 6 year: 2019 end-page: 9293 ident: CR29 article-title: Adaptive fusion and category-level dictionary learning model for multiview human action recognition publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2911669 – ident: CR46 – volume: 59 start-page: 3022 issue: 4 year: 2020 end-page: 3099 ident: CR10 article-title: Ship classification in medium-resolution SAR images via densely connected triplet CNNs integrating fisher discrimination regularized metric learning publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2020.3009284 – ident: CR50 – volume: 48 start-page: 453 year: 2017 end-page: 460 ident: CR31 article-title: Multi-view representation learning for multi-view action recognition publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2017.01.019 – ident: CR11 – ident: CR9 – ident: CR57 – volume: 19 start-page: 7056 issue: 16 year: 2019 end-page: 7063 ident: CR4 article-title: A modified LSTM model for continuous sign language recognition using leap motion publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2909837 – ident: CR36 – ident: CR5 – ident: CR64 – ident: CR26 – volume: 37 start-page: 1327 year: 2021 end-page: 1341 ident: CR68 article-title: Improved human action recognition approach based on two-stream convolutional neural network model publication-title: Vis Comput doi: 10.1007/s00371-020-01868-8 – volume: 41 start-page: 1963 issue: 8 year: 2019 end-page: 1978 ident: CR30 article-title: View adaptive neural networks for high performance skeleton-based human action recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2896631 – volume: 36 start-page: 1 year: 2019 end-page: 11 ident: CR32 article-title: Fine-grained action recognition using multi-view attentions publication-title: Visual Comput – volume: 28 start-page: 1371 issue: 3 year: 2020 end-page: 1385 ident: CR65 article-title: Deep temporal motion descriptor (DTMD) for human action recognition publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1907-214 – ident: CR18 – volume: 150 year: 2020 ident: CR27 article-title: Hand sign language recognition using multi-view hand skeleton publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113336 – ident: CR43 – volume: 349 start-page: 202 year: 2019 end-page: 211 ident: CR49 article-title: A hybrid approach with optimization-based and metric-based meta-learner for few-shot learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.085 – ident: CR47 – volume: 22 start-page: 2977 issue: 11 year: 2020 end-page: 2989 ident: CR33 article-title: A cuboid CNN model with an attention mechanism for skeleton-based action recognition publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2019.2962304 – ident: CR14 – volume: 14 start-page: 791 year: 2020 end-page: 798 ident: CR8 article-title: Deep metric learning with dynamic margin hard sampling loss for face verification publication-title: Signal Image Video Process doi: 10.1007/s11760-019-01612-3 – volume: 126 start-page: 1311 issue: 12 year: 2018 end-page: 1325 ident: CR1 article-title: Deep sign: enabling robust statistical continuous sign language recognition via hybrid CNN-HMMs publication-title: Int J Comput Vis doi: 10.1007/s11263-018-1121-3 – ident: CR6 – ident: CR56 – volume: 108 start-page: 87 issue: 1–2 year: 2007 end-page: 97 ident: CR59 article-title: Viewpoint invariant sign language recognition publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2006.11.009 – volume: 78 start-page: 5863 issue: 5 year: 2019 end-page: 5880 ident: CR54 article-title: Deep feature embedding learning for person re-identification based on lifted structured loss publication-title: Multimedia Tools Appl doi: 10.1007/s11042-018-6408-4 – ident: CR40 – ident: CR63 – volume: 29 start-page: 2247 issue: 12 year: 2007 end-page: 2253 ident: CR15 article-title: Actions as space-time shapes publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70711 – ident: CR23 – volume: 7 start-page: 110846 year: 2019 end-page: 110855 ident: CR48 article-title: Meta-learning via weighted gradient update publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933988 – volume: 56 start-page: 2811 issue: 5 year: 2018 end-page: 2821 ident: CR39 article-title: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2783902 – ident: CR44 – volume: 33 start-page: 7492 issue: 01 year: 2019 end-page: 7500 ident: CR58 article-title: An affect-rich neural conversational model with biased attention and weighted cross-entropy loss publication-title: Proc AAAI Conf Artif Intell – volume: 22 start-page: 1377 issue: 4 year: 2019 end-page: 1397 ident: CR66 article-title: An implementation of optimized framework for action classification using multilayers neural network on selected fused features publication-title: Pattern Anal Appl doi: 10.1007/s10044-018-0688-1 – volume: 72 start-page: 504 year: 2017 end-page: 516 ident: CR67 article-title: Human action recognition in RGB-D videos using motion sequence information and deep learning publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.07.013 – ident: CR38 – ident: CR52 – volume: 10 start-page: 89 issue: 9 year: 2018 ident: CR69 article-title: Novel cross-view human action model recognition based on the powerful view-invariant features technique publication-title: Future Internet doi: 10.3390/fi10090089 – ident: CR17 – ident: CR13 – volume: 52 start-page: 88 year: 2019 end-page: 102 ident: CR19 article-title: Multi modal spatio temporal co-trained CNNs with single modal testing on RGB–D based sign language gesture recognition publication-title: J Comput Lang doi: 10.1016/j.cola.2019.04.002 – ident: CR34 – volume: 25 start-page: 807 issue: 4 year: 2017 end-page: 817 ident: CR37 article-title: Deep learning backend for single and multisession i-vector speaker recognition publication-title: IEEE/ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2017.2661705 – volume: 31 start-page: 709 issue: 4 year: 2021 end-page: 721 ident: CR3 article-title: Investigation of an efficient integrated semantic interactive algorithm for image retrieval publication-title: Pattern Recognit Image Anal doi: 10.1134/S1054661821040234 – ident: CR7 – ident: CR28 – ident: CR41 – ident: CR62 – volume: 26 start-page: 1633 issue: 11 year: 2019 end-page: 1637 ident: CR61 article-title: Action machine: toward person-centric action recognition in videos publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2942739 – ident: 1134_CR9 doi: 10.1007/978-3-030-01264-9_41 – volume: 59 start-page: 3022 issue: 4 year: 2020 ident: 1134_CR10 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2020.3009284 – ident: 1134_CR40 doi: 10.1007/978-3-030-01231-1_17 – ident: 1134_CR35 doi: 10.1109/ICPR.2014.16 – volume: 18 start-page: 3327 issue: 8 year: 2018 ident: 1134_CR20 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2810449 – volume: 108 start-page: 87 issue: 1–2 year: 2007 ident: 1134_CR59 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2006.11.009 – volume: 36 start-page: 1 year: 2019 ident: 1134_CR32 publication-title: Visual Comput – ident: 1134_CR52 doi: 10.1109/CVPR.2018.00208 – volume: 72 start-page: 504 year: 2017 ident: 1134_CR67 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.07.013 – ident: 1134_CR36 doi: 10.1109/CVPR.2014.242 – volume: 349 start-page: 202 year: 2019 ident: 1134_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.085 – volume: 37 start-page: 1327 year: 2021 ident: 1134_CR68 publication-title: Vis Comput doi: 10.1007/s00371-020-01868-8 – ident: 1134_CR44 doi: 10.1109/CVPR.2019.01091 – ident: 1134_CR45 doi: 10.1109/ICCV.2019.00653 – volume: 41 start-page: 1963 issue: 8 year: 2019 ident: 1134_CR30 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2896631 – ident: 1134_CR12 doi: 10.1109/ICCV.2019.00964 – volume: 150 year: 2020 ident: 1134_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113336 – ident: 1134_CR51 doi: 10.1109/CVPR.2018.00429 – ident: 1134_CR13 doi: 10.1109/CVPR.2016.115 – ident: 1134_CR16 doi: 10.1007/978-3-030-01240-3_28 – volume: 6 start-page: 9280 issue: 6 year: 2019 ident: 1134_CR29 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2911669 – ident: 1134_CR41 doi: 10.1109/CVPR.2019.00016 – ident: 1134_CR25 doi: 10.1109/SPACES.2015.7058288 – volume: 7 start-page: 38044 year: 2019 ident: 1134_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904749 – volume: 7 start-page: 110846 year: 2019 ident: 1134_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933988 – ident: 1134_CR63 doi: 10.1109/CVPR.2018.00127 – ident: 1134_CR64 doi: 10.1609/aaai.v32i1.12228 – volume: 78 start-page: 5863 issue: 5 year: 2019 ident: 1134_CR54 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-018-6408-4 – volume: 19 start-page: 7056 issue: 16 year: 2019 ident: 1134_CR4 publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2909837 – ident: 1134_CR7 doi: 10.1109/ICASSP.2019.8683393 – ident: 1134_CR5 doi: 10.1109/CVPR.2019.00132 – ident: 1134_CR11 doi: 10.1109/WACV.2018.00087 – ident: 1134_CR50 – ident: 1134_CR23 doi: 10.1109/WiSPNET.2016.7566526 – volume: 31 start-page: 709 issue: 4 year: 2021 ident: 1134_CR3 publication-title: Pattern Recognit Image Anal doi: 10.1134/S1054661821040234 – volume: 33 start-page: 7492 issue: 01 year: 2019 ident: 1134_CR58 publication-title: Proc AAAI Conf Artif Intell – volume: 56 start-page: 2811 issue: 5 year: 2018 ident: 1134_CR39 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2783902 – volume: 26 start-page: 1633 issue: 11 year: 2019 ident: 1134_CR61 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2942739 – volume: 35 start-page: 59 issue: 1 year: 2019 ident: 1134_CR24 publication-title: Comput Intell doi: 10.1111/coin.12188 – ident: 1134_CR47 – ident: 1134_CR38 doi: 10.1109/CVPR.2015.7298717 – ident: 1134_CR43 – volume: 48 start-page: 453 year: 2017 ident: 1134_CR31 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2017.01.019 – volume: 6 start-page: 68089 year: 2018 ident: 1134_CR55 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879490 – volume: 126 start-page: 1311 issue: 12 year: 2018 ident: 1134_CR1 publication-title: Int J Comput Vis doi: 10.1007/s11263-018-1121-3 – ident: 1134_CR18 doi: 10.1109/SPACES.2018.8316344 – volume: 25 start-page: 807 issue: 4 year: 2017 ident: 1134_CR37 publication-title: IEEE/ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2017.2661705 – ident: 1134_CR28 doi: 10.1109/CVPR.2019.00117 – volume: 25 start-page: 645 issue: 5 year: 2018 ident: 1134_CR2 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2817179 – volume: 22 start-page: 2977 issue: 11 year: 2020 ident: 1134_CR33 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2019.2962304 – ident: 1134_CR46 doi: 10.1609/aaai.v32i1.11774 – ident: 1134_CR34 doi: 10.1109/ICCV.2017.283 – volume: 28 start-page: 1371 issue: 3 year: 2020 ident: 1134_CR65 publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1907-214 – ident: 1134_CR6 doi: 10.1007/978-3-319-24261-3_7 – ident: 1134_CR21 doi: 10.1109/WACV45572.2020.9093512 – volume: 12 start-page: 127 issue: 1 year: 2020 ident: 1134_CR53 publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2020.2985217 – volume: 13 start-page: 1646 issue: 4 year: 2013 ident: 1134_CR60 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.036 – volume: 52 start-page: 88 year: 2019 ident: 1134_CR19 publication-title: J Comput Lang doi: 10.1016/j.cola.2019.04.002 – volume: 22 start-page: 1377 issue: 4 year: 2019 ident: 1134_CR66 publication-title: Pattern Anal Appl doi: 10.1007/s10044-018-0688-1 – ident: 1134_CR57 doi: 10.1109/CVPRW50498.2020.00427 – ident: 1134_CR62 doi: 10.1109/CVPR.2018.00539 – ident: 1134_CR14 doi: 10.1109/AVSS.2010.63 – ident: 1134_CR17 doi: 10.1007/978-3-030-20476-1_9 – ident: 1134_CR42 doi: 10.1109/CVPR.2019.00516 – ident: 1134_CR56 doi: 10.1007/978-3-030-01261-8_28 – ident: 1134_CR26 doi: 10.1109/CVPR.2017.175 – volume: 29 start-page: 2247 issue: 12 year: 2007 ident: 1134_CR15 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70711 – volume: 14 start-page: 791 year: 2020 ident: 1134_CR8 publication-title: Signal Image Video Process doi: 10.1007/s11760-019-01612-3 – volume: 10 start-page: 89 issue: 9 year: 2018 ident: 1134_CR69 publication-title: Future Internet doi: 10.3390/fi10090089 |
SSID | ssj0033328 |
Score | 2.320894 |
Snippet | Multiview video processing for recognition is a hard problem if the subject is in continuous motion. Especially the problem becomes even tougher when the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1125 |
SubjectTerms | Computer Science Datasets Deep learning Human activity recognition Image processing Machine learning Pattern Recognition Recognition Sign language Theoretical Advances Video data |
Title | Multiview meta-metric learning for sign language recognition using triplet loss embeddings |
URI | https://link.springer.com/article/10.1007/s10044-023-01134-2 https://www.proquest.com/docview/2840787018 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QduHCGzEYUw7cIFLbPJodJ7QxgeDEpMGlalp3l73Eyv_HyZINECBxTZOosmP7c2zHhFyh0yAU2LQKJYAJXgiW6xgYgBFaRiAjVyj8-KSGI3E_lmNfFLYK2e4hJOk09adit0gIhjYG3d-YC4aKtynRd7eJXKOkF_Qv59x1VEUgwFkqRexLZX7e46s52mLMb2FRZ20GB2TPw0TaW_P1kOzA_Ijse8hIvUCucCh0ZQhjx-TV1dTaG386gzpnM9szq6C-PcSEIkqlNmuDhqtKukkiWsypzYOfUFyxRIbSKf4zhZmB0oWoTsho0H--HTLfQYEVKFo1Uzrhgle6NKVJDcomJNJUaZUWiBxAmQRVjNFl2VVGStPN0ypSVaJMrkvJERzxU9KYL-ZwRmieFLnS2t4ZIYTiBt2kGBelEkBCmkKLxIGQWeGfF7ddLqbZ9mFkS_wMiZ854mdJi1xv1izXj2v8Obsd-JN5QVtlaF0jq3Ni3SI3gWfbz7_vdv6_6RdkN3HHxqb-tUmjfnuHS4QjtemQZu_u5aHfcafwAwbw1kI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDhjShPD2xgKYkfcccKURVoO7VSxRLFyaVLX6Ll_3N27RYQILE6Piu68919tu9ByC0eGoQCG1ahBDDBC8FyHQMDMELLCGTkEoW7PdUeiOehHPqksEWIdg9Pks5Sf0p2i4Rg6GPw-BtzwdDwbiMY0HYvD5JmsL-cc9dRFYEAZ6kUsU-V-XmNr-5ogzG_PYs6b9M6IHseJtLmSq6HZAumR2TfQ0bqFXKBQ6ErQxg7Jq8up9be-NMJLHM2sT2zCurbQ4woolRqozZouKqk6yCi2ZTaOPgRRYo5CpSO8Z8pTAyU7onqhAxaj_2HNvMdFFiBqrVkSidc8EqXpjSpQd2ERJoqrdICkQMok6CJMbosG8pIaRp5WkWqSpTJdSk5giN-SmrT2RTOCM2TIlda2zsjhFDc4DEpRqJUAkhIU6iTODAyK3x5cdvlYpxtCiNb5mfI_MwxP0vq5G5NM18V1_hz9mWQT-YVbZGhd42szYl1ndwHmW0-_77a-f-m35Cddr_byTpPvZcLspu4LWTDAC9Jbfn2DlcITZbm2u3ED4sz16E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSIiFN6JQwAMbWE38ijtWQMWzYqBSxRLFyaVLm1Y0_H_ObkILAiRWx7aiO9_dZ9-LkHO8NEgNLqxCS2BSpJIlJgQGYKVRAajAJwo_9fRtX94P1GApi99Hu9cuyXlOg6vSVJStaZa3lhLfAikZ2hu8CodCMlTCa9JlA-OJ7vNOrYuFEL67KoICwSIlwypt5uc9vpqmBd785iL1lqe7TTYryEg7cx7vkBUodslWBR9pJZwzHKo7NNRje-TV59e61386hjJhY9c_K6VVq4ghRcRKXQQHrZ8t6WdA0aSgLiZ-SHHFFJlLR_jPFMYWMu-u2if97s3L1S2ruimwFMWsZNpwIUVuMpvZyKKcAlc2j_IoRRQB2nJUN9ZkWVtbpWw7ifJA51zbxGRKIFASB2S1mBRwSGjC00Qb496PEE4Ji1emEBdFCkBBFEGDhDUh47QqNe46XoziRZFkR_wYiR974se8QS4-10znhTb-nN2s-RNXQjeL0dIGTv-EpkEua54tPv--29H_pp-R9efrbvx413s4JhvcnyAXEdgkq-XbO5wgSintqT-IHx7x29Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiview+meta-metric+learning+for+sign+language+recognition+using+triplet+loss+embeddings&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Mopidevi+Suneetha&rft.au=Prasad+M+V+D&rft.au=Kishore+Polurie+Venkata+Vijay&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=26&rft.issue=3&rft.spage=1125&rft.epage=1141&rft_id=info:doi/10.1007%2Fs10044-023-01134-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |