Method for selecting representative videos for change detection datasets
In evaluating the change detection algorithms, the algorithm evaluated must show a superior performance than the state-of-the-art algorithms. The evaluation process steps comprise executing a new algorithm to segment a set of videos from a dataset and compare the results regarding a ground truth. In...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 3; pp. 3773 - 3791 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In evaluating the change detection algorithms, the algorithm evaluated must show a superior performance than the state-of-the-art algorithms. The evaluation process steps comprise executing a new algorithm to segment a set of videos from a dataset and compare the results regarding a ground truth. In this paper, we propose using additional information in evaluating change detection algorithms: the level of difficulty in classifying a pixel. First, for each video frame used in the evaluation, we created a difficulty map structure, which stores values representing the level of difficulty required by an algorithm to classify each pixel of that frame. Second, we developed a metric to estimate each dataset video’s difficulty based on our difficulty maps. Third, we applied the metric to selecting the more representative videos from the dataset based on their difficulty level. Finally, to demonstrate the method’s contribution, we evaluated it using all videos from the CDNet 2014 dataset. The results showed that a subset of videos selected by our method has the same potential as the original CDNet 2014 dataset. Hence, a new change detection algorithm can be evaluated more quickly using our subset of videos selected. |
---|---|
AbstractList | In evaluating the change detection algorithms, the algorithm evaluated must show a superior performance than the state-of-the-art algorithms. The evaluation process steps comprise executing a new algorithm to segment a set of videos from a dataset and compare the results regarding a ground truth. In this paper, we propose using additional information in evaluating change detection algorithms: the level of difficulty in classifying a pixel. First, for each video frame used in the evaluation, we created a difficulty map structure, which stores values representing the level of difficulty required by an algorithm to classify each pixel of that frame. Second, we developed a metric to estimate each dataset video’s difficulty based on our difficulty maps. Third, we applied the metric to selecting the more representative videos from the dataset based on their difficulty level. Finally, to demonstrate the method’s contribution, we evaluated it using all videos from the CDNet 2014 dataset. The results showed that a subset of videos selected by our method has the same potential as the original CDNet 2014 dataset. Hence, a new change detection algorithm can be evaluated more quickly using our subset of videos selected. |
Author | Corrêa, Cléber G. Sanches, Silvio R. R. Saito, Priscila T. M. Bugatti, Pedro H. Yokoyama, Roberto S. Silva, Claudinei M. Rosa, Katharina A. I. |
Author_xml | – sequence: 1 givenname: Claudinei M. surname: Silva fullname: Silva, Claudinei M. organization: Universidade Tecnológica Federal do Paraná – sequence: 2 givenname: Katharina A. I. surname: Rosa fullname: Rosa, Katharina A. I. organization: Universidade Tecnológica Federal do Paraná – sequence: 3 givenname: Pedro H. surname: Bugatti fullname: Bugatti, Pedro H. organization: Universidade Tecnológica Federal do Paraná – sequence: 4 givenname: Priscila T. M. surname: Saito fullname: Saito, Priscila T. M. organization: Universidade Tecnológica Federal do Paraná – sequence: 5 givenname: Cléber G. surname: Corrêa fullname: Corrêa, Cléber G. organization: Universidade Tecnológica Federal do Paraná – sequence: 6 givenname: Roberto S. surname: Yokoyama fullname: Yokoyama, Roberto S. organization: Universidade Federal do ABC – sequence: 7 givenname: Silvio R. R. orcidid: 0000-0003-3635-7477 surname: Sanches fullname: Sanches, Silvio R. R. email: silviosanches@utfpr.edu.br organization: Universidade Tecnológica Federal do Paraná |
BookMark | eNp9kLFOwzAQhi0EEm3hBZgiMRt8ZydORlQBRSpigdlykkubqsTFdivx9rgNEhvT3fD9_-m-KTsf3ECM3YC4AyH0fQAQCrlA4ACFEhzP2ARyLbnWCOdpl6XgOhdwyaYhbISAIkc1YYtXimvXZp3zWaAtNbEfVpmnnadAQ7SxP1B26Fty4cQ0azusKGspHlE3ZK2NNlAMV-yis9tA179zxj6eHt_nC758e36ZPyx5I6GKvNBtU1kp6grrGkBXbSmULUQpqGjrMkfCUjUIjcJKaSJSiHlRqgoRcqk7OWO3Y-_Ou689hWg2bu-HdNJgIdObEpRIFI5U410Injqz8_2n9d8GhDkaM6Mxk4yZkzGDKSTHUEhw-tL_Vf-T-gFUZG7j |
CitedBy_id | crossref_primary_10_1007_s11042_024_18271_3 |
Cites_doi | 10.1007/s00521-009-0285-8 10.1117/1.3456695 10.1109/ACCESS.2019.2914961 10.1109/ICIP.2017.8297144 10.1186/s41074-017-0036-1 10.1109/TCSVT.2017.2711659 10.1109/ACCESS.2020.2997962 10.1016/j.neucom.2019.04.088 10.1109/ICCV.1999.791228 10.1016/j.patrec.2018.08.002 10.1109/CVPRW.2012.6238922 10.1109/ACCESS.2018.2812880 10.1007/978-3-319-58838-4_6 10.1109/ICME.2015.7177419 10.1109/ICPR.2004.1333992 10.1109/CVPRW.2012.6238919 10.3390/sym11050621 10.1016/j.patrec.2016.09.014 10.1109/CVPR.1999.784637 10.1016/j.patcog.2017.09.040 10.1109/CVPRW.2014.65 10.1016/j.neucom.2015.04.118 10.1109/CVPRW.2014.64 10.1007/s10044-019-00845-9 10.1007/978-3-319-68560-1_9 10.1109/CVPRW.2014.66 10.1109/WACV.2015.137 10.1109/IWSSIP.2015.7314229 10.1007/s10489-018-1346-4 10.1016/j.cviu.2013.12.005 10.1007/978-3-642-37410-4_25 10.1109/TIP.2017.2695882 10.1109/CVPRW.2014.68 10.1109/AVSS.2013.6636617 10.1109/TEVC.2017.2694160 10.1007/3-540-45053-X_48 10.1016/j.patcog.2014.10.020 10.1117/1.JEI.27.2.023002 10.1109/TIP.2014.2378053 10.1007/978-3-319-25903-1_12 10.1117/1.JEI.28.1.013038 10.1109/ICIP.2014.7025661 10.1007/s11042-020-09838-x 10.1109/VSPETS.2005.1570931 10.1109/ECTICon.2016.7561253 10.1007/978-3-319-29971-6_23 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-021-11640-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest research library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 3791 |
ExternalDocumentID | 10_1007_s11042_021_11640_2 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AACDK AAEOY AAGNY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-67dc9a30b92bb1179d804a6080e6db852e284c21c42947eee42256849221537f3 |
IEDL.DBID | AGYKE |
ISSN | 1380-7501 |
IngestDate | Thu Nov 14 06:12:08 EST 2024 Thu Nov 21 21:06:41 EST 2024 Sat Dec 16 12:08:41 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Algorithm evaluation Change detection Dataset |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-67dc9a30b92bb1179d804a6080e6db852e284c21c42947eee42256849221537f3 |
ORCID | 0000-0003-3635-7477 |
PQID | 2631383140 |
PQPubID | 54626 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2631383140 crossref_primary_10_1007_s11042_021_11640_2 springer_journals_10_1007_s11042_021_11640_2 |
PublicationCentury | 2000 |
PublicationDate | 1-2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 1-2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Maddalena L, Petrosino A (2012) The sobs algorithm: what are the limits? In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops, pp 21–26. https://doi.org/10.1109/CVPRW.2012.6238922 Lu X (2014) A multiscale spatio-temporal background model for motion detection. In: 2014 IEEE International Conference on Image Processing (ICIP), pp 3268–3271. https://doi.org/10.1109/ICIP.2014.7025661 Chen Y, Wang J, Lu H (2015) Learning sharable models for robust background subtraction. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp 1–6. https://doi.org/10.1109/ICME.2015.7177419 ZhengWWangKWangFYA novel background subtraction algorithm based on parallel vision and bayesian gansNeurocomputing201910.1016/j.neucom.2019.04.088 Allebosch G, Van Hamme D, Deboeverie F, Veelaert P, Philips W (2016) C-efic: color and edge based foreground background segmentation with interior classification. In: Braz J, Pettré J, Richard P, Kerren A, Linsen L, Battiato S, Imai F (eds) Computer vision, imaging and computer graphics theory and applications. Springer International Publishing, Cham, pp 433–454. https://doi.org/10.1007/978-3-319-29971-6_23 Russel J, Cohn R (2013) Interquartile range. Tbilisi State University Miron A, Badii A (2015) Change detection based on graph cuts. In: 2015 International conference on systems, signals and image processing (IWSSIP), pp 273–276. https://doi.org/10.1109/IWSSIP.2015.7314229 Université de Sherbrooke (2019) ChangeDetection.NET – a video database for testing change detection algorithms. http://www.changedetection.net. Accessed 22 Jul 2018 Fisher R (2019) CAVIAR test case scenarios. http://groups.inf.ed.ac.uk/vision/CAVIAR Accessed 24 Sep 2019 JiangSLuXWesambe: a weight-sample-based method for background subtractionIEEE Transactions on Circuits and Systems for Video Technology20182892105211510.1109/TCSVT.2017.2711659 ChanYTDeep learning-based scene-awareness approach for intelligent change detection in videosJournal of Electronic Imaging201928111210.1117/1.JEI.28.1.013038 BiancoSCioccaGSchettiniRCombination of video change detection algorithms by genetic programmingIEEE Transactions on Evolutionary Computation201721691492810.1109/TEVC.2017.2694160 Sedky M, Moniri M, Chibelushi CC (2014) Spectral-360: a physics-based technique for change detection. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 405–408. https://doi.org/10.1109/CVPRW.2014.65 Vacavant A, Chateau T, Wilhelm A, Lequiévre L (2013) A benchmark dataset for outdoor foreground/background extraction. Springer, Berlin, pp 291–300. https://doi.org/10.1007/978-3-642-37410-4_25 SanchesSRRSementilleACAguilarIAFreireVRecommendations for evaluating the performance of background subtraction algorithms for surveillance systemsMultimed Tools Applic20218034421445410.1007/s11042-020-09838-x Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. In: Proceedings of the seventh IEEE international conference on computer vision, vol 1, pp 255–261. https://doi.org/10.1109/ICCV.1999.791228 LimLAKelesHYForeground segmentation using convolutional neural networks for multiscale feature encodingPattern Recogn Lett201811225626210.1016/j.patrec.2018.08.002 SanchesSRROliveiraCSementilleACFreireVChallenging situations for background subtraction algorithmsApplied Intelligence20194951771178410.1007/s10489-018-1346-4 Varadarajan S, Miller P, Zhou H (2013) Spatial mixture of gaussians for dynamic background modelling. In: 2013 10th IEEE international conference on advanced video and signal based surveillance, pp 63–68. https://doi.org/10.1109/AVSS.2013.6636617 Bianco S, Ciocca G, Schettini R (2017b) How far can you get by combining change detection algorithms? In: Battiato S, Gallo G, Schettini R, Stanco F (eds) Image analysis and processing - ICIAP 2017. Springer International Publishing, Cham, pp 96–107. https://doi.org/10.1007/978-3-319-68560-1_9 Gregorio MD, Giordano M (2017) Wisardrp for change detection in video sequences. In: 25th European symposium on artificial neural networks, computational intelligence and machine learning (ESANN 2017), pp 453–458 St-CharlesPBilodeauGBergevinRSubsense: a universal change detection method with local adaptive sensitivityIEEE Transactions on Image Processing2015241359373330067410.1109/TIP.2014.23780531408.94896 Wang B, Dudek P (2014) A fast self-tuning background subtraction algorithm. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 401–404. https://doi.org/10.1109/CVPRW.2014.64 MaddalenaLPetrosinoAA fuzzy spatial coherence-based approach to background/foreground separation for moving object detectionNeural Computing and Applications201019217918610.1007/s00521-009-0285-8 Wang R, Bunyak F, Seetharaman G, Palaniappan K (2014) Static and moving object detection using flux tensor with split gaussian models. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 420–424. https://doi.org/10.1109/CVPRW.2014.68 Wang Y, Luo Z, Jodoin PM (2017) Interactive deep learning method for segmenting moving objects. Pattern Recognition Letters 96:66–75 https://doi.org/10.1016/j.patrec.2016.09.014 LimLAKelesHYLearning multi-scale features for foreground segmentationPattern Analysis and Applications201910.1007/s10044-019-00845-9 Soomro K, Shah M (2012) Ucf101: a dataset of 101 human action classes from videos in the wild. Tech. rep., CRCV-TR-12-01 University of Naples Parthenope (2019) SceneBackgroundModeling.net.NET – a video database for testing background estimation algorithms. http://scenebackgroundmodeling.net. Accessed 24 Jul 2019 Braham M, Pierard S, Droogenbroeck MV (2017) Semantic background subtraction. In: 2017 IEEE International Conference on Image Processing (ICIP), pp 4552–4556 LeeShGcLeeYooJKwonSWisenetmd: motion detection using dynamic background region analysisSymmetry201911511510.3390/sym11050621 Young DP, Ferryman JM (2005) Pets metrics: on-line performance evaluation service. In: 2005 IEEE international workshop on visual surveillance and performance evaluation of tracking and surveillance, pp 317–324. https://doi.org/10.1109/VSPETS.2005.1570931 Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Vernon D (ed) Computer vision — ECCV 2000. Springer, Berlin, pp 751–767.https://doi.org/10.1007/3-540-45053-X_48 Ramírez-AlonsoGChacon-MurguiaMIAuto-adaptive parallel som architecture with a modular analysis for dynamic object segmentation in videosNeurocomputing2016175990100010.1016/j.neucom.2015.04.118 YilmazAAGuzelMSBostanciEAskerzadeIA novel action recognition framework based on deep-learning and genetic algorithmsIEEE Access2020810063110064410.1109/ACCESS.2020.2997962 IsikSÖzkanKGünalSGerekONSwcd: a sliding window and self-regulated learning-based background updating method for change detection in videosJournal of Electronic Imaging201827211110.1117/1.JEI.27.2.023002 Microsoft Corporation (2019) Test images for wallflower paper. https://www.microsoft.com/en-us/download/details.aspx?id=54651. Accessed 9 Aug 2019 Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), vol 2, 246–252. https://doi.org/10.1109/CVPR.1999.784637 BabaeeMDinhDTRigollGA deep convolutional neural network for video sequence background subtractionPattern Recogn20187663564910.1016/j.patcog.2017.09.040 SobralAVacavantAA comprehensive review of background subtraction algorithms evaluated with synthetic and real videosComputer Vision and Image Understanding201412242110.1016/j.cviu.2013.12.005 OpenCV team (2019) OpenCV. https://opencv.org/. Accessed 24 Sep 2019 Krungkaew R, Kusakunniran W (2016) Foreground segmentation in a video by using a novel dynamic codebook. 2016 13th International Conference on Electrical Engineering/Electronics. Computer, Telecommunications and Information Technology (ECTI-CON), pp 1–6 Martins I, Carvalho P, Corte-Real L, Alba-Castro JL (2017) Bmog: boosted gaussian mixture model with controlled complexity. In: Alexandre LA, Salvador Sánchez J, Rodrigues JMF (eds) Pattern recognition and image analysis. Springer International Publishing, Cham, pp 50–57. https://doi.org/10.1007/978-3-319-58838-4_6 SajidHCheungSSUniversal multimode background subtractionIEEE Transactions on Image Processing201726732493260365330910.1109/TIP.2017.26958821409.94523 Wang K, Gou C, Wang FY (2018) M4cd: A robust change detection method for intelligent visual surveillance. arXiv:1802.04979. Cornell University. Accessed 12 Nov 2019 BenezethYJodoinPMEmileBLaurentHRosenbergerCComparative study of background subtraction algorithmsJournal of Electronic Imaging201019311210.1117/1.3456695 KalsotraRAroraSA comprehensive survey of video datasets for background subtractionIEEE Access20197591435917110.1109/ACCESS.2019.2914961 St-Charles P, Bilodeau G, Bergevin R (2015a) A self-adjusting approach to change detection based on background word consensus. In: 2015 IEEE winter conference on applications of computer vision, pp 990–997 https://doi.org/10.1109/WACV.2015.137 ZhengWWangKWangFYA novel background subtraction algorithm based on parallel vision and bayesian gansNeurocomputing202039417820010.1016/j.neucom.2019.04.088 VargheseAGSSample-based integrated background subtraction and shadow detectionIPSJ Transactions on Computer Vision and Applications2017912510.1186/s41074-017-0036-1 LiangDKanekoSHashimotoMIwataKZhaoXCo-occurrence probability-based pixel pairs background model for robust object detection in dynamic scenesPattern Recogn20154841374139010.1016/j.patcog.2014.10.020 Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2012) Changedetection.net: a new change detection benchmark dataset. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops, pp 1–8. https://doi.org/10.1109/CVPRW.2012.6238919 Gregorio M AGS Varghese (11640_CR46) 2017; 9 11640_CR37 11640_CR38 R Kalsotra (11640_CR17) 2019; 7 11640_CR47 11640_CR44 11640_CR45 11640_CR42 11640_CR43 11640_CR40 11640_CR41 Y Benezeth (11640_CR4) 2010; 19 YT Chan (11640_CR8) 2019; 28 L Maddalena (11640_CR24) 2010; 19 A Sobral (11640_CR36) 2014; 122 11640_CR28 S Bianco (11640_CR5) 2017; 21 11640_CR29 G Ramírez-Alonso (11640_CR30) 2016; 175 cr-split#-11640_CR10.2 11640_CR26 H Sajid (11640_CR32) 2017; 26 cr-split#-11640_CR10.1 11640_CR27 11640_CR35 S Jiang (11640_CR16) 2018; 28 11640_CR9 11640_CR7 11640_CR31 11640_CR6 11640_CR2 11640_CR1 AA Yilmaz (11640_CR51) 2020; 8 LA Lim (11640_CR22) 2019 11640_CR18 M Babaee (11640_CR3) 2018; 76 11640_CR25 W Zheng (11640_CR54) 2020; 394 S Isik (11640_CR15) 2018; 27 11640_CR23 LA Lim (11640_CR21) 2018; 112 W Zheng (11640_CR53) 2019 SRR Sanches (11640_CR33) 2019; 49 Sh Lee (11640_CR19) 2019; 11 D Liang (11640_CR20) 2015; 48 11640_CR48 11640_CR49 11640_CR13 11640_CR14 11640_CR11 11640_CR55 11640_CR12 P St-Charles (11640_CR39) 2015; 24 11640_CR52 11640_CR50 SRR Sanches (11640_CR34) 2021; 80 |
References_xml | – volume: 19 start-page: 179 issue: 2 year: 2010 ident: 11640_CR24 publication-title: Neural Computing and Applications doi: 10.1007/s00521-009-0285-8 contributor: fullname: L Maddalena – ident: 11640_CR29 – volume: 19 start-page: 1 issue: 3 year: 2010 ident: 11640_CR4 publication-title: Journal of Electronic Imaging doi: 10.1117/1.3456695 contributor: fullname: Y Benezeth – ident: 11640_CR31 – volume: 7 start-page: 59143 year: 2019 ident: 11640_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914961 contributor: fullname: R Kalsotra – ident: 11640_CR7 doi: 10.1109/ICIP.2017.8297144 – volume: 9 start-page: 25 issue: 1 year: 2017 ident: 11640_CR46 publication-title: IPSJ Transactions on Computer Vision and Applications doi: 10.1186/s41074-017-0036-1 contributor: fullname: AGS Varghese – volume: 28 start-page: 2105 issue: 9 year: 2018 ident: 11640_CR16 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2017.2711659 contributor: fullname: S Jiang – volume: 8 start-page: 100631 year: 2020 ident: 11640_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997962 contributor: fullname: AA Yilmaz – volume: 394 start-page: 178 year: 2020 ident: 11640_CR54 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.088 contributor: fullname: W Zheng – ident: 11640_CR41 doi: 10.1109/ICCV.1999.791228 – volume: 112 start-page: 256 year: 2018 ident: 11640_CR21 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.08.002 contributor: fullname: LA Lim – ident: 11640_CR25 doi: 10.1109/CVPRW.2012.6238922 – ident: 11640_CR48 doi: 10.1109/ACCESS.2018.2812880 – ident: 11640_CR26 doi: 10.1007/978-3-319-58838-4_6 – ident: 11640_CR9 doi: 10.1109/ICME.2015.7177419 – ident: 11640_CR55 doi: 10.1109/ICPR.2004.1333992 – ident: 11640_CR12 doi: 10.1109/CVPRW.2012.6238919 – volume: 11 start-page: 1 issue: 5 year: 2019 ident: 11640_CR19 publication-title: Symmetry doi: 10.3390/sym11050621 contributor: fullname: Sh Lee – ident: 11640_CR50 doi: 10.1016/j.patrec.2016.09.014 – ident: 11640_CR40 doi: 10.1109/CVPR.1999.784637 – volume: 76 start-page: 635 year: 2018 ident: 11640_CR3 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.09.040 contributor: fullname: M Babaee – ident: 11640_CR35 doi: 10.1109/CVPRW.2014.65 – ident: 11640_CR27 – volume: 175 start-page: 990 year: 2016 ident: 11640_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.118 contributor: fullname: G Ramírez-Alonso – ident: 11640_CR47 doi: 10.1109/CVPRW.2014.64 – year: 2019 ident: 11640_CR22 publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-019-00845-9 contributor: fullname: LA Lim – ident: 11640_CR6 doi: 10.1007/978-3-319-68560-1_9 – ident: 11640_CR13 doi: 10.1109/CVPRW.2014.66 – ident: 11640_CR42 – ident: 11640_CR14 – ident: 11640_CR38 doi: 10.1109/WACV.2015.137 – ident: 11640_CR28 doi: 10.1109/IWSSIP.2015.7314229 – ident: 11640_CR37 – volume: 49 start-page: 1771 issue: 5 year: 2019 ident: 11640_CR33 publication-title: Applied Intelligence doi: 10.1007/s10489-018-1346-4 contributor: fullname: SRR Sanches – volume: 122 start-page: 4 year: 2014 ident: 11640_CR36 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2013.12.005 contributor: fullname: A Sobral – ident: 11640_CR44 doi: 10.1007/978-3-642-37410-4_25 – volume: 26 start-page: 3249 issue: 7 year: 2017 ident: 11640_CR32 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2017.2695882 contributor: fullname: H Sajid – ident: 11640_CR11 – ident: 11640_CR49 doi: 10.1109/CVPRW.2014.68 – ident: 11640_CR45 doi: 10.1109/AVSS.2013.6636617 – volume: 21 start-page: 914 issue: 6 year: 2017 ident: 11640_CR5 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2017.2694160 contributor: fullname: S Bianco – ident: #cr-split#-11640_CR10.2 doi: 10.1007/3-540-45053-X_48 – volume: 48 start-page: 1374 issue: 4 year: 2015 ident: 11640_CR20 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.10.020 contributor: fullname: D Liang – year: 2019 ident: 11640_CR53 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.088 contributor: fullname: W Zheng – ident: 11640_CR43 – volume: 27 start-page: 1 issue: 2 year: 2018 ident: 11640_CR15 publication-title: Journal of Electronic Imaging doi: 10.1117/1.JEI.27.2.023002 contributor: fullname: S Isik – volume: 24 start-page: 359 issue: 1 year: 2015 ident: 11640_CR39 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2014.2378053 contributor: fullname: P St-Charles – ident: 11640_CR1 doi: 10.1007/978-3-319-25903-1_12 – ident: #cr-split#-11640_CR10.1 doi: 10.1007/3-540-45053-X_48 – volume: 28 start-page: 1 issue: 1 year: 2019 ident: 11640_CR8 publication-title: Journal of Electronic Imaging doi: 10.1117/1.JEI.28.1.013038 contributor: fullname: YT Chan – ident: 11640_CR23 doi: 10.1109/ICIP.2014.7025661 – volume: 80 start-page: 4421 issue: 3 year: 2021 ident: 11640_CR34 publication-title: Multimed Tools Applic doi: 10.1007/s11042-020-09838-x contributor: fullname: SRR Sanches – ident: 11640_CR52 doi: 10.1109/VSPETS.2005.1570931 – ident: 11640_CR18 doi: 10.1109/ECTICon.2016.7561253 – ident: 11640_CR2 doi: 10.1007/978-3-319-29971-6_23 |
SSID | ssj0016524 |
Score | 2.332495 |
Snippet | In evaluating the change detection algorithms, the algorithm evaluated must show a superior performance than the state-of-the-art algorithms. The evaluation... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 3773 |
SubjectTerms | Algorithms Change detection Classification Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Multimedia Information Systems Pixels Special Purpose and Application-Based Systems State-of-the-art reviews Video data |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BWWDgo4AoFOSBDSwSx3GSCSFEqZDKRKVukRNfx7SQwO_n7DgEkGBNIg_nnN_d-d49gMtCxrEhJOURoqAERWueakpck0guCS61iUrLd549q-lcPi3ihS-41b6tsjsT3UFtVqWtkd8IFYWUTVE-cLt-5VY1yt6uegmNTdgKRaJsS186efy6RVCxF7VNA07IGHrSTEudCy0xxTYohJQxBFz8BKY-2vx1QepwZ7IPuz5gZHftDh_ABlZD2OvEGJj3zSHsfJsseAjTmVOGZhSSstpJ3dBj5iZYerbRBzJLwVvV7puW_8sMNq41q2K2c7TGpj6C-eTh5X7KvWgCL8mbGq4SU2Y6CopMFIWd92bSQGpFgSEqU6SxQAKkUoQlAZFMEFGSR6tUZoLAP0qW0TEMqlWFJ8C0NoiBTKQlw1EokGFRLlNVIIYmCeRyBFedxfJ1Oxsj76cgW_vmZN_c2TcXIxh3Rs29n9R5v6sjuO4M3b_-e7XT_1c7g21heQquVjKGQfP2jucUPTTFhftFPgE8wb7O priority: 102 providerName: ProQuest |
Title | Method for selecting representative videos for change detection datasets |
URI | https://link.springer.com/article/10.1007/s11042-021-11640-2 https://www.proquest.com/docview/2631383140 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8BAoYAolMoDG6RKHOejY4uaVqBWCLVSmaI4uS5ILSIpA7-es5MQPodOkWLLUs4-v-f43h3AlRSOkxCSGjYipwNKFBl-RAdXzxZLgssosWOld55M3fFc3C2cRaXj1sHu5Y2k3qgrrZullCQqosAiim8atO_WCXuUN9b7o6f74eflgesUtWx90yBAtAqtzN-jfMejimT-uBfVcBM0YFaKdvIok-fuJpPd-P13DsdtvuQQDgr6yfr5ejmCHVw1oVGWdmCFpzdh_0uewmMYT3SdaUYEl6W6cA69ZjofZqFdekOmBH3rVPfJ1cQswUwHeq2YikNNMUtPYB4MZ7djoyjBYMTkm5nheknci2xT9riUKntc4psicolmoptI3-FI8BZzKyZYEx4iCtofXF_0OFEJ21vap1BbrVd4BiyKEkRTeEJJ64hY9FDGS9-ViFbimWLZgutyIsKXPNNGWOVUViYLyWShNlnIW9Au5yosvC4NuWvTpNt0ZmzBTWn7qvn_0c63634Be1ypIPSfmDbUstcNXhI3yWQHdv1g1KEVGQwG006xMuk5GE4fHql1zvsf-eHcgQ |
link.rule.ids | 314,780,784,12765,21388,27924,27925,33373,33744,41081,41523,42150,42592,43600,43805,52111,52234,74035,74302 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BGYCBjwKiUMADG0QkjvM1IYQoAdpOrdQtSuLLmBYS-P2cHYcAEqxJ5OGc87s737sHcJkJz5OEpJaLyClBSVMrTClxDVxREFym0s0V33ky9eO5eF54C1Nwq0xbZXsm6oNaLnNVI7_hvutQNkX5wO3q1VKqUep21UhorMOGcAm6FVN89Ph1i-B7RtQ2tC1CRseQZhrqnKOIKapBwaGMwbb4T2Dqos1fF6Qad0Z7sGMCRnbX7PA-rGHZh91WjIEZ3-zD9rfJggcQT7QyNKOQlFVa6oYeMz3B0rCNPpApCt6y0t80_F8msdatWSVTnaMV1tUhzEcPs_vYMqIJVk7eVFt-IPMode0s4lmm5r3J0BapT4Eh-jILPY4ESDl3cgIiESCiII_2QxFxAn83KNwj6JXLEo-BpalEtEUgFBmOQoEIs7wI_QzRkYEtigFctRZLVs1sjKSbgqzsm5B9E23fhA9g2Bo1MX5SJd2uDuC6NXT3-u_VTv5f7QI249lknIyfpi-nsMUVZ0HXTYbQq9_e8YwiiTo717_LJz-NwbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgkxAceAwQgwE5cIOKNk1fJ8Rj03hsmhCTdqvaxj12gxZ-P06WUkCCa1Pl4MT57MSfP4CzVHieJCS1XEROCUqSWGFCiWvgipzgMpFupvjOo7E_nIqHmTcz9U-lKausz0R9UMt5pu7IL7nvOpRNUT5wmZuyiMnd4GrxaikFKfXSauQ0VqFNqGjzFrRv-uPJ89ebgu8ZidvQtggnHUOhWRLpHEVTUeUKDuUPtsV_wlQTe_56LtUoNNiGTRM-suvleu_AChYd2KqlGZjx1A5sfOszuAvDkdaJZhSgslIL39BnpvtZGu7RBzJFyJuX-p8lG5hJrHShVsFUHWmJVbkH00H_5XZoGQkFKyPfqiw_kFmUuHYa8TRV3d9kaIvEpzARfZmGHkeCp4w7GcGSCBBRkH_7oYg4hQJukLv70CrmBR4ASxKJaItAKGocBQYRplke-imiIwNb5F04ry0WL5adMuKmJ7Kyb0z2jbV9Y96FXm3U2HhNGTdr3IWL2tDN8N-zHf4_2yms0V6Jn-7Hj0ewzhWBQV-i9KBVvb3jMYUVVXpi9ssn03DHTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+selecting+representative+videos+for+change+detection+datasets&rft.jtitle=Multimedia+tools+and+applications&rft.au=Silva%2C+Claudinei+M.&rft.au=Rosa%2C+Katharina+A.+I.&rft.au=Bugatti%2C+Pedro+H.&rft.au=Saito%2C+Priscila+T.+M.&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=3&rft.spage=3773&rft.epage=3791&rft_id=info:doi/10.1007%2Fs11042-021-11640-2&rft.externalDocID=10_1007_s11042_021_11640_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |