Face anti-spoofing by identity masking using random walk patterns and outlier detection

Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. Whi...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 23; no. 4; pp. 1735 - 1754
Main Authors Katika, Balaji Rao, Karthik, Kannan
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-020-00875-8

Cover

Loading…
Abstract Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. While this arrangement works in a person-specific setting, it becomes a major drawback when single-sided training is done based on the natural face class alone. To mitigate subject identity linked content interference within the anti-spoofing frame, we propose a identity-independent architecture based on random correlated scans of natural face images. The same natural face image can be scanned multiple times through independent correlated random walks before deriving simple differential features on the 1D scanned vectors. This proposed frame tends to capture the pixel correlation statistics with minimal content interference and shows great promise, particularly when trained on natural face sets, using a one-class support vector machine and cross-validated on other databases. Performance measured in terms of EER for detection of spoof face is found to be 3.8291 % with proposed random scan features, and 2.02 % with auto-population samples for inter database.
AbstractList Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. While this arrangement works in a person-specific setting, it becomes a major drawback when single-sided training is done based on the natural face class alone. To mitigate subject identity linked content interference within the anti-spoofing frame, we propose a identity-independent architecture based on random correlated scans of natural face images. The same natural face image can be scanned multiple times through independent correlated random walks before deriving simple differential features on the 1D scanned vectors. This proposed frame tends to capture the pixel correlation statistics with minimal content interference and shows great promise, particularly when trained on natural face sets, using a one-class support vector machine and cross-validated on other databases. Performance measured in terms of EER for detection of spoof face is found to be 3.8291 % with proposed random scan features, and 2.02 % with auto-population samples for inter database.
Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. While this arrangement works in a person-specific setting, it becomes a major drawback when single-sided training is done based on the natural face class alone. To mitigate subject identity linked content interference within the anti-spoofing frame, we propose a identity-independent architecture based on random correlated scans of natural face images. The same natural face image can be scanned multiple times through independent correlated random walks before deriving simple differential features on the 1D scanned vectors. This proposed frame tends to capture the pixel correlation statistics with minimal content interference and shows great promise, particularly when trained on natural face sets, using a one-class support vector machine and cross-validated on other databases. Performance measured in terms of EER for detection of spoof face is found to be 3.8291% with proposed random scan features, and 2.02% with auto-population samples for inter database.
Author Karthik, Kannan
Katika, Balaji Rao
Author_xml – sequence: 1
  givenname: Balaji Rao
  orcidid: 0000-0002-7315-142X
  surname: Katika
  fullname: Katika, Balaji Rao
  email: k.balaji@iitg.ac.in
  organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati
– sequence: 2
  givenname: Kannan
  surname: Karthik
  fullname: Karthik, Kannan
  organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bTd7lGKtUPCi6C1kd7Ml7TZZkyzSf2_WFQUPvcwMw_vMxzsDE-usBuCa4FuCcX4XUuQcYYoRxiLPkDgDU8IZQ3mWvU9-a04uwCyEHcaMMSqm4G2lKg2VjQaFzrnG2C0sj9DUOrXiER5U2A-9PgzRK1u7A_xU7R52KkbtbUhwDV0fW6M9rHXUVTTOXoLzRrVBX_3kOXhdPbws12jz_Pi0vN-gipEiokWes4XKdE1xQXFTiDLTrGh4SRnGVGlCRUkxETmpK0q14OkF3iRGZErVDWFzcDPO7bz76HWIcud6b9NKSTlPMxZ5wZNKjKrKuxC8bmRlohrujF6ZVhIsBxvlaKNMNspvG6VIKP2Hdt4clD-ehtgIhSS2W-3_rjpBfQHPjIar
CitedBy_id crossref_primary_10_1007_s10209_021_00837_9
crossref_primary_10_1007_s11042_023_17020_2
crossref_primary_10_1007_s10044_023_01132_4
crossref_primary_10_1186_s13635_022_00135_8
crossref_primary_10_1007_s00521_021_06416_6
Cites_doi 10.1109/TIFS.2016.2578288
10.1109/TIFS.2015.2403306
10.1109/TIP.2013.2292332
10.1109/ACCESS.2017.2729161
10.1109/TIFS.2016.2555286
10.1007/s11760-013-0471-0
10.1049/iet-bmt.2017.0095
10.1109/TIFS.2015.2411394
10.1109/TIFS.2015.2400395
10.1109/ACCESS.2014.2381273
10.1109/ICPR.2014.211
10.1109/ICB.2012.6199754
10.1007/978-3-030-34869-4_1
10.1109/ICIP.2016.7532603
10.1109/BTAS.2013.6712688
10.1007/978-3-030-01261-8_18
10.1109/CSCITA.2017.8066527
10.1007/3-540-48184-2_35
10.1109/ICIINFS.2017.8300354
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10044-020-00875-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 1754
ExternalDocumentID 10_1007_s10044_020_00875_8
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-67736a5ed20920f98b5e39f4b23002ae128b201871dc22e847544f73685aadf13
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 04:03:29 EDT 2025
Tue Jul 01 01:15:17 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Fri Feb 21 02:29:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords One-class SVM
Planer spoofing
Random scan
Auto-population
Face anti-spoofing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-67736a5ed20920f98b5e39f4b23002ae128b201871dc22e847544f73685aadf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7315-142X
PQID 2440026794
PQPubID 2043691
PageCount 20
ParticipantIDs proquest_journals_2440026794
crossref_citationtrail_10_1007_s10044_020_00875_8
crossref_primary_10_1007_s10044_020_00875_8
springer_journals_10_1007_s10044_020_00875_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Yang, Lei, Yi, Li (CR20) 2015; 10
Galbally, Marcel, Fierrez (CR6) 2014; 2
Galbally, Marcel, Fierrez (CR7) 2014; 23
Wen, Han, Jain (CR19) 2015; 10
CR4
CR5
CR9
CR16
Patel, Han, Jain (CR17) 2016; 11
CR15
CR14
CR13
CR12
CR10
CR21
Sepas-Moghaddam, Malhadas, Correia, Pereira (CR18) 2017; 7
Arashloo, Kittler, Christmas (CR1) 2017; 5
Boulkenafet, Komulainen, Hadid (CR2) 2016; 11
Karthik, Kashyap (CR11) 2013; 7
Garcia, de Queiroz (CR8) 2015; 10
Chang, Lin (CR3) 2011; 2
D Wen (875_CR19) 2015; 10
A Sepas-Moghaddam (875_CR18) 2017; 7
J Galbally (875_CR7) 2014; 23
SR Arashloo (875_CR1) 2017; 5
K Karthik (875_CR11) 2013; 7
Z Boulkenafet (875_CR2) 2016; 11
CC Chang (875_CR3) 2011; 2
875_CR9
875_CR4
875_CR5
J Galbally (875_CR6) 2014; 2
DC Garcia (875_CR8) 2015; 10
875_CR10
K Patel (875_CR17) 2016; 11
J Yang (875_CR20) 2015; 10
875_CR21
875_CR14
875_CR13
875_CR12
875_CR16
875_CR15
References_xml – volume: 11
  start-page: 2268
  issue: 10
  year: 2016
  end-page: 2283
  ident: CR17
  article-title: Secure face unlock: spoof detection on smartphones
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2578288
– ident: CR21
– volume: 10
  start-page: 797
  issue: 4
  year: 2015
  end-page: 809
  ident: CR20
  article-title: Person-specific face antispoofing with subject domain adaptation
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2403306
– volume: 23
  start-page: 710
  issue: 2
  year: 2014
  end-page: 724
  ident: CR7
  article-title: Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2292332
– volume: 5
  start-page: 13868
  year: 2017
  end-page: 13882
  ident: CR1
  article-title: An anomaly detection approach to face spoofing detection: a new formulation and evaluation protocol
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2729161
– volume: 11
  start-page: 1818
  issue: 8
  year: 2016
  end-page: 1830
  ident: CR2
  article-title: Face spoofing detection using colour texture analysis
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2555286
– volume: 7
  start-page: 647
  issue: 4
  year: 2013
  end-page: 664
  ident: CR11
  article-title: Transparent hashing in the encrypted domain for privacy preserving image retrieval
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-013-0471-0
– ident: CR4
– ident: CR14
– ident: CR15
– volume: 7
  start-page: 39
  issue: 1
  year: 2017
  end-page: 48
  ident: CR18
  article-title: Face spoofing detection using a light field imaging framework
  publication-title: IET Biom
  doi: 10.1049/iet-bmt.2017.0095
– ident: CR16
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: CR3
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol TIST
– ident: CR12
– ident: CR13
– volume: 10
  start-page: 778
  issue: 4
  year: 2015
  end-page: 786
  ident: CR8
  article-title: Face-spoofing 2D-detection based on moiré-pattern analysis
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2411394
– ident: CR10
– ident: CR9
– ident: CR5
– volume: 10
  start-page: 746
  issue: 4
  year: 2015
  end-page: 761
  ident: CR19
  article-title: Face spoof detection with image distortion analysis
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2400395
– volume: 2
  start-page: 1530
  year: 2014
  end-page: 1552
  ident: CR6
  article-title: Biometric antispoofing methods: a survey in face recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2381273
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 875_CR3
  publication-title: ACM Trans Intell Syst Technol TIST
– volume: 10
  start-page: 746
  issue: 4
  year: 2015
  ident: 875_CR19
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2400395
– volume: 2
  start-page: 1530
  year: 2014
  ident: 875_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2381273
– ident: 875_CR5
  doi: 10.1109/ICPR.2014.211
– volume: 11
  start-page: 2268
  issue: 10
  year: 2016
  ident: 875_CR17
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2578288
– ident: 875_CR21
  doi: 10.1109/ICB.2012.6199754
– volume: 23
  start-page: 710
  issue: 2
  year: 2014
  ident: 875_CR7
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2292332
– volume: 5
  start-page: 13868
  year: 2017
  ident: 875_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2729161
– ident: 875_CR14
  doi: 10.1007/978-3-030-34869-4_1
– volume: 7
  start-page: 39
  issue: 1
  year: 2017
  ident: 875_CR18
  publication-title: IET Biom
  doi: 10.1049/iet-bmt.2017.0095
– ident: 875_CR9
  doi: 10.1109/ICIP.2016.7532603
– volume: 10
  start-page: 797
  issue: 4
  year: 2015
  ident: 875_CR20
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2403306
– ident: 875_CR4
  doi: 10.1109/BTAS.2013.6712688
– ident: 875_CR10
  doi: 10.1007/978-3-030-01261-8_18
– ident: 875_CR13
  doi: 10.1109/CSCITA.2017.8066527
– volume: 11
  start-page: 1818
  issue: 8
  year: 2016
  ident: 875_CR2
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2555286
– ident: 875_CR15
  doi: 10.1007/3-540-48184-2_35
– volume: 10
  start-page: 778
  issue: 4
  year: 2015
  ident: 875_CR8
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2411394
– volume: 7
  start-page: 647
  issue: 4
  year: 2013
  ident: 875_CR11
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-013-0471-0
– ident: 875_CR12
  doi: 10.1109/ICIINFS.2017.8300354
– ident: 875_CR16
SSID ssj0033328
Score 2.2647302
Snippet Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1735
SubjectTerms Computer Science
Correlation
Cybersecurity
Data analysis
Face recognition
Industrial and Commercial Application
Interference
Masking
Outliers (statistics)
Pattern Recognition
Random walk
Spoofing
Statistical methods
Support vector machines
Title Face anti-spoofing by identity masking using random walk patterns and outlier detection
URI https://link.springer.com/article/10.1007/s10044-020-00875-8
https://www.proquest.com/docview/2440026794
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXVj4RhRK5YENLDWO3SRjhVoqEExUlCmyY7uqaNOKBKH-e85uTAEBEkMWx85wPt-9i-_dIXROM8MED2LClVCEZZITaUJBTCYjy50RMbd857v7zmDIbkZ8VJHCCp_t7q8knaX-RHZrM0ZsuOPKsJN4E9W5jd1Bi4e06-1vGIauoyoAgZBEnAUVVebnb3x1R2uM-e1a1Hmb_i7armAi7q72dQ9t6Hwf7VSQEVcHsoAh35XBjx2gx77INAaBTQiErKA7-RjLJZ6sGLlLPBOF_T2Obcb7GIOrUvMZfhPTZ7xwtTbzAhYrbDOFwGVipUuXrZUfomG_93A1IFX7BJLBuSpJJ4rCjuBa0XZC2yaJJddhYpiEqKNNhQbPJKntyReojFINboozZiJbkV4IZYLwCNXyea6PEQaUFbNEaLCOlBkjBYjY6CTIJDwJlQ0UeCmmWVVb3La4mKbrqshW8ilIPnWST-MGuvhYs1hV1vhzdtNvTlqdsiIFaGJjSDApDXTpN2z9-vevnfxv-inaolZnHAWxiWrly6s-AyxSyhaqd6-fbnstp4LvvpXVVw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS4kfTTJWiKpA26kV3SI7sStEm1YkCPXfc3YTCgiQGLI4toezffedfd8dQpc0MVwKPyQilSnhiRJEGSaJSVRguTMyFJbv3Os3O0N-PxKjkhSWV9Hu1ZOk09SfyG4e58S6Oy4NOwnX0QaAgdAGcg1pq9K_jDFXURWAACOB4H5Jlfl5jq_maIUxvz2LOmvT3kXbJUzEreW67qE1ne2jnRIy4vJA5tBUVWWo2g7QY1smGoPAngi4rLB3sjFWC_y0ZOQu8FTm9noc24j3MQZTlc6m-E1OnvHc5drMchicYhspBCYTp7pw0VrZIRq2bwc3HVKWTyAJnKuCNIOANaXQKfUi6pkoVEKzyHAFXodHpQbLpKityeenCaUazJTg3AQ2I72UqfHZEapls0wfIwwoK-SR1KAdKTdGSRCx0ZGfKPgiqurIr6QYJ2VucVviYhKvsiJbyccg-dhJPg7r6OpjzHyZWePP3o1qceLylOUxQBPrQ4JKqaPrasFWv3-f7eR_3S_QZmfQ68bdu_7DKdqidv84OmID1YqXV30GuKRQ524bvgM_jNa2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWDSO3SRjBVTlVTFQ0S2yY7uqaNOKBKH-e85uQgsCJIYsjp3hfL77Lr7vDqFTmhgmuBcSroQiLJGcSOMLYhIZWO6MCLnlOz90Gu0uu-3x3gKL32W7l1eSM06DrdKU5hcTZS4WiG91xogNfVxJdhIuoxUwx57V6y5tlrbY933XXRVAgU8CzryCNvPzN766pjne_HZF6jxPaxOtF5ARN2d7vIWWdLqNNgr4iIvDmcFQ2aGhHNtBzy2RaAzCGxAIX0GP0j6WUzyYsXOneCQy-6sc2-z3Pga3pcYj_C6GL3ji6m6mGSxW2GYNgfvESucucyvdRd3W9dNlmxStFEgCQslJIwj8huBa0XpE6yYKJdd-ZJiECKROhQYvJantz-ephFINLoszZgJbnV4IZTx_D1XScar3EQbEFbJIaLCUlBkjBYjY6MhLJDwRlVXklVKMk6LOuG13MYznFZKt5GOQfOwkH4dVdPa5ZjKrsvHn7Fq5OXFx4rIYYIqNJ8G8VNF5uWHz179_7eB_00_Q6uNVK76_6dwdojVq1ccxE2uokr--6SOAKLk8dlr4AeqE2vI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+anti-spoofing+by+identity+masking+using+random+walk+patterns+and+outlier+detection&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Katika%2C+Balaji+Rao&rft.au=Karthik%2C+Kannan&rft.date=2020-11-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=4&rft.spage=1735&rft.epage=1754&rft_id=info:doi/10.1007%2Fs10044-020-00875-8&rft.externalDocID=10_1007_s10044_020_00875_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon