Face anti-spoofing by identity masking using random walk patterns and outlier detection
Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. Whi...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 23; no. 4; pp. 1735 - 1754 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-020-00875-8 |
Cover
Loading…
Abstract | Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. While this arrangement works in a person-specific setting, it becomes a major drawback when single-sided training is done based on the natural face class alone. To mitigate subject identity linked content interference within the anti-spoofing frame, we propose a identity-independent architecture based on random correlated scans of natural face images. The same natural face image can be scanned multiple times through independent correlated random walks before deriving simple differential features on the 1D scanned vectors. This proposed frame tends to capture the pixel correlation statistics with minimal content interference and shows great promise, particularly when trained on natural face sets, using a one-class support vector machine and cross-validated on other databases. Performance measured in terms of EER for detection of spoof face is found to be
3.8291
%
with proposed random scan features, and
2.02
%
with auto-population samples for inter database. |
---|---|
AbstractList | Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. While this arrangement works in a person-specific setting, it becomes a major drawback when single-sided training is done based on the natural face class alone. To mitigate subject identity linked content interference within the anti-spoofing frame, we propose a identity-independent architecture based on random correlated scans of natural face images. The same natural face image can be scanned multiple times through independent correlated random walks before deriving simple differential features on the 1D scanned vectors. This proposed frame tends to capture the pixel correlation statistics with minimal content interference and shows great promise, particularly when trained on natural face sets, using a one-class support vector machine and cross-validated on other databases. Performance measured in terms of EER for detection of spoof face is found to be
3.8291
%
with proposed random scan features, and
2.02
%
with auto-population samples for inter database. Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means that the ordering or sequence in which specific statistics are computed cannot be changed, as one moves from one facial profile to another. While this arrangement works in a person-specific setting, it becomes a major drawback when single-sided training is done based on the natural face class alone. To mitigate subject identity linked content interference within the anti-spoofing frame, we propose a identity-independent architecture based on random correlated scans of natural face images. The same natural face image can be scanned multiple times through independent correlated random walks before deriving simple differential features on the 1D scanned vectors. This proposed frame tends to capture the pixel correlation statistics with minimal content interference and shows great promise, particularly when trained on natural face sets, using a one-class support vector machine and cross-validated on other databases. Performance measured in terms of EER for detection of spoof face is found to be 3.8291% with proposed random scan features, and 2.02% with auto-population samples for inter database. |
Author | Karthik, Kannan Katika, Balaji Rao |
Author_xml | – sequence: 1 givenname: Balaji Rao orcidid: 0000-0002-7315-142X surname: Katika fullname: Katika, Balaji Rao email: k.balaji@iitg.ac.in organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati – sequence: 2 givenname: Kannan surname: Karthik fullname: Karthik, Kannan organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bTd7lGKtUPCi6C1kd7Ml7TZZkyzSf2_WFQUPvcwMw_vMxzsDE-usBuCa4FuCcX4XUuQcYYoRxiLPkDgDU8IZQ3mWvU9-a04uwCyEHcaMMSqm4G2lKg2VjQaFzrnG2C0sj9DUOrXiER5U2A-9PgzRK1u7A_xU7R52KkbtbUhwDV0fW6M9rHXUVTTOXoLzRrVBX_3kOXhdPbws12jz_Pi0vN-gipEiokWes4XKdE1xQXFTiDLTrGh4SRnGVGlCRUkxETmpK0q14OkF3iRGZErVDWFzcDPO7bz76HWIcud6b9NKSTlPMxZ5wZNKjKrKuxC8bmRlohrujF6ZVhIsBxvlaKNMNspvG6VIKP2Hdt4clD-ehtgIhSS2W-3_rjpBfQHPjIar |
CitedBy_id | crossref_primary_10_1007_s10209_021_00837_9 crossref_primary_10_1007_s11042_023_17020_2 crossref_primary_10_1007_s10044_023_01132_4 crossref_primary_10_1186_s13635_022_00135_8 crossref_primary_10_1007_s00521_021_06416_6 |
Cites_doi | 10.1109/TIFS.2016.2578288 10.1109/TIFS.2015.2403306 10.1109/TIP.2013.2292332 10.1109/ACCESS.2017.2729161 10.1109/TIFS.2016.2555286 10.1007/s11760-013-0471-0 10.1049/iet-bmt.2017.0095 10.1109/TIFS.2015.2411394 10.1109/TIFS.2015.2400395 10.1109/ACCESS.2014.2381273 10.1109/ICPR.2014.211 10.1109/ICB.2012.6199754 10.1007/978-3-030-34869-4_1 10.1109/ICIP.2016.7532603 10.1109/BTAS.2013.6712688 10.1007/978-3-030-01261-8_18 10.1109/CSCITA.2017.8066527 10.1007/3-540-48184-2_35 10.1109/ICIINFS.2017.8300354 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-020-00875-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 1754 |
ExternalDocumentID | 10_1007_s10044_020_00875_8 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-67736a5ed20920f98b5e39f4b23002ae128b201871dc22e847544f73685aadf13 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 04:03:29 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Fri Feb 21 02:29:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | One-class SVM Planer spoofing Random scan Auto-population Face anti-spoofing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-67736a5ed20920f98b5e39f4b23002ae128b201871dc22e847544f73685aadf13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7315-142X |
PQID | 2440026794 |
PQPubID | 2043691 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2440026794 crossref_citationtrail_10_1007_s10044_020_00875_8 crossref_primary_10_1007_s10044_020_00875_8 springer_journals_10_1007_s10044_020_00875_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Yang, Lei, Yi, Li (CR20) 2015; 10 Galbally, Marcel, Fierrez (CR6) 2014; 2 Galbally, Marcel, Fierrez (CR7) 2014; 23 Wen, Han, Jain (CR19) 2015; 10 CR4 CR5 CR9 CR16 Patel, Han, Jain (CR17) 2016; 11 CR15 CR14 CR13 CR12 CR10 CR21 Sepas-Moghaddam, Malhadas, Correia, Pereira (CR18) 2017; 7 Arashloo, Kittler, Christmas (CR1) 2017; 5 Boulkenafet, Komulainen, Hadid (CR2) 2016; 11 Karthik, Kashyap (CR11) 2013; 7 Garcia, de Queiroz (CR8) 2015; 10 Chang, Lin (CR3) 2011; 2 D Wen (875_CR19) 2015; 10 A Sepas-Moghaddam (875_CR18) 2017; 7 J Galbally (875_CR7) 2014; 23 SR Arashloo (875_CR1) 2017; 5 K Karthik (875_CR11) 2013; 7 Z Boulkenafet (875_CR2) 2016; 11 CC Chang (875_CR3) 2011; 2 875_CR9 875_CR4 875_CR5 J Galbally (875_CR6) 2014; 2 DC Garcia (875_CR8) 2015; 10 875_CR10 K Patel (875_CR17) 2016; 11 J Yang (875_CR20) 2015; 10 875_CR21 875_CR14 875_CR13 875_CR12 875_CR16 875_CR15 |
References_xml | – volume: 11 start-page: 2268 issue: 10 year: 2016 end-page: 2283 ident: CR17 article-title: Secure face unlock: spoof detection on smartphones publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2016.2578288 – ident: CR21 – volume: 10 start-page: 797 issue: 4 year: 2015 end-page: 809 ident: CR20 article-title: Person-specific face antispoofing with subject domain adaptation publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2403306 – volume: 23 start-page: 710 issue: 2 year: 2014 end-page: 724 ident: CR7 article-title: Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2292332 – volume: 5 start-page: 13868 year: 2017 end-page: 13882 ident: CR1 article-title: An anomaly detection approach to face spoofing detection: a new formulation and evaluation protocol publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2729161 – volume: 11 start-page: 1818 issue: 8 year: 2016 end-page: 1830 ident: CR2 article-title: Face spoofing detection using colour texture analysis publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2016.2555286 – volume: 7 start-page: 647 issue: 4 year: 2013 end-page: 664 ident: CR11 article-title: Transparent hashing in the encrypted domain for privacy preserving image retrieval publication-title: Signal Image Video Process doi: 10.1007/s11760-013-0471-0 – ident: CR4 – ident: CR14 – ident: CR15 – volume: 7 start-page: 39 issue: 1 year: 2017 end-page: 48 ident: CR18 article-title: Face spoofing detection using a light field imaging framework publication-title: IET Biom doi: 10.1049/iet-bmt.2017.0095 – ident: CR16 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: CR3 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol TIST – ident: CR12 – ident: CR13 – volume: 10 start-page: 778 issue: 4 year: 2015 end-page: 786 ident: CR8 article-title: Face-spoofing 2D-detection based on moiré-pattern analysis publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2411394 – ident: CR10 – ident: CR9 – ident: CR5 – volume: 10 start-page: 746 issue: 4 year: 2015 end-page: 761 ident: CR19 article-title: Face spoof detection with image distortion analysis publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2400395 – volume: 2 start-page: 1530 year: 2014 end-page: 1552 ident: CR6 article-title: Biometric antispoofing methods: a survey in face recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2381273 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 875_CR3 publication-title: ACM Trans Intell Syst Technol TIST – volume: 10 start-page: 746 issue: 4 year: 2015 ident: 875_CR19 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2400395 – volume: 2 start-page: 1530 year: 2014 ident: 875_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2381273 – ident: 875_CR5 doi: 10.1109/ICPR.2014.211 – volume: 11 start-page: 2268 issue: 10 year: 2016 ident: 875_CR17 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2016.2578288 – ident: 875_CR21 doi: 10.1109/ICB.2012.6199754 – volume: 23 start-page: 710 issue: 2 year: 2014 ident: 875_CR7 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2292332 – volume: 5 start-page: 13868 year: 2017 ident: 875_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2729161 – ident: 875_CR14 doi: 10.1007/978-3-030-34869-4_1 – volume: 7 start-page: 39 issue: 1 year: 2017 ident: 875_CR18 publication-title: IET Biom doi: 10.1049/iet-bmt.2017.0095 – ident: 875_CR9 doi: 10.1109/ICIP.2016.7532603 – volume: 10 start-page: 797 issue: 4 year: 2015 ident: 875_CR20 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2403306 – ident: 875_CR4 doi: 10.1109/BTAS.2013.6712688 – ident: 875_CR10 doi: 10.1007/978-3-030-01261-8_18 – ident: 875_CR13 doi: 10.1109/CSCITA.2017.8066527 – volume: 11 start-page: 1818 issue: 8 year: 2016 ident: 875_CR2 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2016.2555286 – ident: 875_CR15 doi: 10.1007/3-540-48184-2_35 – volume: 10 start-page: 778 issue: 4 year: 2015 ident: 875_CR8 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2411394 – volume: 7 start-page: 647 issue: 4 year: 2013 ident: 875_CR11 publication-title: Signal Image Video Process doi: 10.1007/s11760-013-0471-0 – ident: 875_CR12 doi: 10.1109/ICIINFS.2017.8300354 – ident: 875_CR16 |
SSID | ssj0033328 |
Score | 2.2647302 |
Snippet | Existing architectures used in face anti-spoofing tend to deploy registered spatial measurements to generate feature vectors for spoof detection. This means... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1735 |
SubjectTerms | Computer Science Correlation Cybersecurity Data analysis Face recognition Industrial and Commercial Application Interference Masking Outliers (statistics) Pattern Recognition Random walk Spoofing Statistical methods Support vector machines |
Title | Face anti-spoofing by identity masking using random walk patterns and outlier detection |
URI | https://link.springer.com/article/10.1007/s10044-020-00875-8 https://www.proquest.com/docview/2440026794 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXVj4RhRK5YENLDWO3SRjhVoqEExUlCmyY7uqaNOKBKH-e85uTAEBEkMWx85wPt-9i-_dIXROM8MED2LClVCEZZITaUJBTCYjy50RMbd857v7zmDIbkZ8VJHCCp_t7q8knaX-RHZrM0ZsuOPKsJN4E9W5jd1Bi4e06-1vGIauoyoAgZBEnAUVVebnb3x1R2uM-e1a1Hmb_i7armAi7q72dQ9t6Hwf7VSQEVcHsoAh35XBjx2gx77INAaBTQiErKA7-RjLJZ6sGLlLPBOF_T2Obcb7GIOrUvMZfhPTZ7xwtTbzAhYrbDOFwGVipUuXrZUfomG_93A1IFX7BJLBuSpJJ4rCjuBa0XZC2yaJJddhYpiEqKNNhQbPJKntyReojFINboozZiJbkV4IZYLwCNXyea6PEQaUFbNEaLCOlBkjBYjY6CTIJDwJlQ0UeCmmWVVb3La4mKbrqshW8ilIPnWST-MGuvhYs1hV1vhzdtNvTlqdsiIFaGJjSDApDXTpN2z9-vevnfxv-inaolZnHAWxiWrly6s-AyxSyhaqd6-fbnstp4LvvpXVVw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS4kfTTJWiKpA26kV3SI7sStEm1YkCPXfc3YTCgiQGLI4toezffedfd8dQpc0MVwKPyQilSnhiRJEGSaJSVRguTMyFJbv3Os3O0N-PxKjkhSWV9Hu1ZOk09SfyG4e58S6Oy4NOwnX0QaAgdAGcg1pq9K_jDFXURWAACOB4H5Jlfl5jq_maIUxvz2LOmvT3kXbJUzEreW67qE1ne2jnRIy4vJA5tBUVWWo2g7QY1smGoPAngi4rLB3sjFWC_y0ZOQu8FTm9noc24j3MQZTlc6m-E1OnvHc5drMchicYhspBCYTp7pw0VrZIRq2bwc3HVKWTyAJnKuCNIOANaXQKfUi6pkoVEKzyHAFXodHpQbLpKityeenCaUazJTg3AQ2I72UqfHZEapls0wfIwwoK-SR1KAdKTdGSRCx0ZGfKPgiqurIr6QYJ2VucVviYhKvsiJbyccg-dhJPg7r6OpjzHyZWePP3o1qceLylOUxQBPrQ4JKqaPrasFWv3-f7eR_3S_QZmfQ68bdu_7DKdqidv84OmID1YqXV30GuKRQ524bvgM_jNa2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWDSO3SRjBVTlVTFQ0S2yY7uqaNOKBKH-e85uQgsCJIYsjp3hfL77Lr7vDqFTmhgmuBcSroQiLJGcSOMLYhIZWO6MCLnlOz90Gu0uu-3x3gKL32W7l1eSM06DrdKU5hcTZS4WiG91xogNfVxJdhIuoxUwx57V6y5tlrbY933XXRVAgU8CzryCNvPzN766pjne_HZF6jxPaxOtF5ARN2d7vIWWdLqNNgr4iIvDmcFQ2aGhHNtBzy2RaAzCGxAIX0GP0j6WUzyYsXOneCQy-6sc2-z3Pga3pcYj_C6GL3ji6m6mGSxW2GYNgfvESucucyvdRd3W9dNlmxStFEgCQslJIwj8huBa0XpE6yYKJdd-ZJiECKROhQYvJantz-ephFINLoszZgJbnV4IZTx_D1XScar3EQbEFbJIaLCUlBkjBYjY6MhLJDwRlVXklVKMk6LOuG13MYznFZKt5GOQfOwkH4dVdPa5ZjKrsvHn7Fq5OXFx4rIYYIqNJ8G8VNF5uWHz179_7eB_00_Q6uNVK76_6dwdojVq1ccxE2uokr--6SOAKLk8dlr4AeqE2vI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+anti-spoofing+by+identity+masking+using+random+walk+patterns+and+outlier+detection&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Katika%2C+Balaji+Rao&rft.au=Karthik%2C+Kannan&rft.date=2020-11-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=23&rft.issue=4&rft.spage=1735&rft.epage=1754&rft_id=info:doi/10.1007%2Fs10044-020-00875-8&rft.externalDocID=10_1007_s10044_020_00875_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |