The role of water content in rate dependence of tensile strength of a fine-grained sandstone
Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-drie...
Saved in:
Published in | Archives of Civil and Mechanical Engineering Vol. 22; no. 1; p. 58 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
28.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2083-3318 1644-9665 2083-3318 |
DOI | 10.1007/s43452-022-00379-8 |
Cover
Loading…
Abstract | Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-dried to water-saturated) under various loading rates (from 100 to 600 GPa/s) using a split Hopkinson pressure bar. The test results show that for each water content, the dynamic tensile strength of sandstone is positively sensitive to loading rate. The rate dependence of tensile strength increases as the rise of water content. The change trends of tensile strength against water content depend on loading rate: as water content rises, the tensile strength displays the manner of “no change followed by fast drop” at loading rates of 10
–4
and 100 GPa/s. However, when the loading rate is above 200 GPa/s, the tensile strength increases first and then declines. The turning point occurs at water content between 1.0 and 2.0%. These observations can be interpreted with the competition between water weakening and enhancing effects under different loading conditions. |
---|---|
AbstractList | Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-dried to water-saturated) under various loading rates (from 100 to 600 GPa/s) using a split Hopkinson pressure bar. The test results show that for each water content, the dynamic tensile strength of sandstone is positively sensitive to loading rate. The rate dependence of tensile strength increases as the rise of water content. The change trends of tensile strength against water content depend on loading rate: as water content rises, the tensile strength displays the manner of “no change followed by fast drop” at loading rates of 10–4 and 100 GPa/s. However, when the loading rate is above 200 GPa/s, the tensile strength increases first and then declines. The turning point occurs at water content between 1.0 and 2.0%. These observations can be interpreted with the competition between water weakening and enhancing effects under different loading conditions. Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-dried to water-saturated) under various loading rates (from 100 to 600 GPa/s) using a split Hopkinson pressure bar. The test results show that for each water content, the dynamic tensile strength of sandstone is positively sensitive to loading rate. The rate dependence of tensile strength increases as the rise of water content. The change trends of tensile strength against water content depend on loading rate: as water content rises, the tensile strength displays the manner of “no change followed by fast drop” at loading rates of 10 –4 and 100 GPa/s. However, when the loading rate is above 200 GPa/s, the tensile strength increases first and then declines. The turning point occurs at water content between 1.0 and 2.0%. These observations can be interpreted with the competition between water weakening and enhancing effects under different loading conditions. |
ArticleNumber | 58 |
Author | Cheng, Chuanqing Wang, Shaofeng Cai, Xin Zhou, Zilong Zhao, Yuan |
Author_xml | – sequence: 1 givenname: Xin surname: Cai fullname: Cai, Xin organization: School of Resources and Safety Engineering, Central South University, Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines – sequence: 2 givenname: Chuanqing surname: Cheng fullname: Cheng, Chuanqing organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Yuan orcidid: 0000-0003-2553-0975 surname: Zhao fullname: Zhao, Yuan email: zhaoyuan92@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University – sequence: 4 givenname: Zilong surname: Zhou fullname: Zhou, Zilong organization: School of Resources and Safety Engineering, Central South University, Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines – sequence: 5 givenname: Shaofeng surname: Wang fullname: Wang, Shaofeng organization: School of Resources and Safety Engineering, Central South University, Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines |
BookMark | eNp9kEFLAzEQhYNUsNb-AU8Bz6tJZrPJHqWoFQpe6k0IITvbbqnZmqSI_960KygeeggTZt43eXmXZOR7j4Rcc3bLGVN3sYRSioKJfBioutBnZCyYhgKA69Gf-wWZxrhhjHGmBK_kmLwt10hDv0Xat_TTJgzU9T6hT7TzNOQGbXCHvkHvjpo8il2WxxTQr9L60LO07TwWq2BzaWi0vokpe7wi563dRpz-1Al5fXxYzubF4uXpeXa_KBzwOhVVVTXKIWgABq5yIIXgrJKWY81dqWuuWqvyQAtUkoMCUepWttzW1gqpYEJuhr270H_sMSaz6ffB5yeNqEHIGiSTWaUHlQt9jAFb47pkU5e_m41vDWfmEKcZ4jQ5TnOM0-iMin_oLnTvNnydhmCAYhb7FYZfVyeob6GhiCY |
CitedBy_id | crossref_primary_10_1016_j_energy_2023_127050 crossref_primary_10_3390_app13084685 crossref_primary_10_1007_s00603_023_03252_z crossref_primary_10_1007_s00603_022_03042_z crossref_primary_10_1016_j_ijrmms_2022_105139 crossref_primary_10_1007_s40948_024_00890_7 crossref_primary_10_3390_math10081308 crossref_primary_10_1016_j_compgeo_2023_105270 crossref_primary_10_1038_s41598_023_49319_3 crossref_primary_10_1007_s43452_023_00748_x crossref_primary_10_3390_math11234746 crossref_primary_10_1007_s00603_023_03287_2 crossref_primary_10_1016_j_simpat_2024_103065 crossref_primary_10_1016_j_tafmec_2024_104255 crossref_primary_10_1155_2022_6988292 crossref_primary_10_1016_j_soildyn_2023_108053 crossref_primary_10_1038_s41598_024_70155_6 crossref_primary_10_2113_2022_1790417 crossref_primary_10_3390_app122110875 crossref_primary_10_1016_j_enggeo_2023_107059 crossref_primary_10_1016_j_soildyn_2024_109191 crossref_primary_10_1061_IJGNAI_GMENG_8526 crossref_primary_10_1007_s42243_023_00990_w |
Cites_doi | 10.1016/j.ijrmms.2020.104352 10.1016/j.eng.2020.03.017 10.1016/j.proeps.2013.03.138 10.1007/s00603-013-0463-y 10.1016/j.tafmec.2021.103002 10.1016/j.ijrmms.2021.104648 10.1002/2015JB012286 10.1016/j.ijrmms.2008.07.002 10.1016/j.engfracmech.2018.02.028 10.1007/s00603-016-1087-9 10.1016/0013-7952(81)90001-6 10.12989/sem.2021.78.3.281 10.1007/s10064-021-02467-0 10.1007/s00603-021-02409-y 10.1016/j.ijsolstr.2013.08.030 10.1007/s00603-014-0603-z 10.1007/s00603-015-0849-0 10.1016/0148-9062(74)92202-5 10.1016/j.ijrmms.2018.12.014 10.1007/s00603-010-0083-8 10.1007/BF02472015 10.1007/BF02482196 10.1007/s11440-015-0407-7 10.1016/j.ijimpeng.2021.103855 10.1016/0040-1951(81)90157-8 10.1016/j.chemosphere.2021.131163 10.1016/j.enggeo.2020.105760 10.1016/0148-9062(81)90742-7 10.1029/2000WR900090 10.1007/s00603-012-0257-7 10.4028/www.scientific.net/MSF.465-466.361 10.1016/j.ijrmms.2011.10.004 10.1016/j.ijimpeng.2004.03.005 10.1016/j.ijrmms.2016.07.005 10.1016/j.ijimpeng.2016.10.001 10.1007/BF02473042 10.1016/j.jngse.2015.10.004 10.1007/s00603-010-0091-8 10.1007/s11771-021-4766-y 10.1016/j.jrmge.2016.09.004 10.1016/j.ijrmms.2021.104893 10.1007/s00603-004-0030-7 10.1016/j.enggeo.2019.05.002 10.1007/s00603-021-02676-9 10.1007/s00603-014-0674-x 10.1016/0167-9031(90)90158-O 10.1007/s00603-016-0987-z 10.1016/0148-9062(78)90003-7 10.1016/0148-9062(76)90705-1 10.1016/j.ijrmms.2019.03.025 10.1007/s00603-013-0436-1 10.1520/D2936-20 10.1520/D3967-16 10.1063/1.3043420 10.13512/j.hndz.1991.02.001 |
ContentType | Journal Article |
Copyright | Wroclaw University of Science and Technology 2022 Copyright Springer Nature B.V. Feb 2022 |
Copyright_xml | – notice: Wroclaw University of Science and Technology 2022 – notice: Copyright Springer Nature B.V. Feb 2022 |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s43452-022-00379-8 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central UK/Ireland ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2083-3318 |
ExternalDocumentID | 10_1007_s43452_022_00379_8 |
GrantInformation_xml | – fundername: National Natural Science Foundation for Young Scientists of China grantid: 52104111 – fundername: the Natural Science Foundation of Hunan grantid: 2021JJ30819; 2015JJ4067 – fundername: National Natural ScienceFoundation of China grantid: 41772313 |
GroupedDBID | --M .~1 1~. 23M 2JY 4.4 406 457 4G. 5GY 7-5 8P~ AACDK AAEDT AAEPC AAHNG AAIKJ AAJBT AALRI AAOAW AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABJCF ABJNI ABMQK ABRTQ ABTEG ABTKH ABTMW ABXRA ACAOD ACDAQ ACDTI ACGFS ACHSB ACPIV ACSTC ACZOJ ADBBV ADEZE ADTZH AECPX AEFQL AEKER AEMSY AENEX AESKC AEZWR AFBBN AFDZB AFHIU AFKRA AFOHR AFQWF AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BENPR BGLVJ BLXMC CCPQU DPUIP EBLON EBS ESX FDB FEDTE FIGPU FIRID FNPLU GBLVA HCIFZ HVGLF IKXTQ IWAJR JJJVA JZLTJ LLZTM M7S MAGPM MO0 NPVJJ NQJWS O-L O9- OAUVE P-8 P-9 P2P PC. PHGZM PHGZT PQGLB PT4 PTHSS Q38 ROL RSV SDF SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ Y2W ~G- AAYXX CITATION 8FE 8FG DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-666d7ce383303c6c35221065a1e91c48917fa7c6c82e751373248f5f1a9aa2573 |
IEDL.DBID | 8FG |
ISSN | 2083-3318 1644-9665 |
IngestDate | Fri Jul 25 11:34:07 EDT 2025 Tue Jul 01 04:16:38 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Mon Jul 21 06:08:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SHPB Rate dependence Brazilian disc test Tensile strength Loading rate Water content |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-666d7ce383303c6c35221065a1e91c48917fa7c6c82e751373248f5f1a9aa2573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2553-0975 |
PQID | 2932593505 |
PQPubID | 6587200 |
ParticipantIDs | proquest_journals_2932593505 crossref_citationtrail_10_1007_s43452_022_00379_8 crossref_primary_10_1007_s43452_022_00379_8 springer_journals_10_1007_s43452_022_00379_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-28 |
PublicationDateYYYYMMDD | 2022-01-28 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Wrocław |
PublicationTitle | Archives of Civil and Mechanical Engineering |
PublicationTitleAbbrev | Archiv.Civ.Mech.Eng |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Z Zhao (379_CR14) 2017; 50 Y Zhao (379_CR38) 2016; 49 K Kawai (379_CR49) 2015; 120 F Dai (379_CR44) 2010; 43 379_CR55 379_CR13 379_CR56 XB Li (379_CR41) 2005; 38 379_CR17 Q Lyu (379_CR53) 2015; 27 MO Ciantia (379_CR50) 2015; 48 M You (379_CR11) 2011; 30 RM Iverson (379_CR3) 2000; 36 379_CR40 P Rossi (379_CR57) 1991; 24 Z Song (379_CR16) 2021; 78 E Cadoni (379_CR36) 2001; 34 379_CR42 L Tan (379_CR7) 2021; 114 379_CR45 379_CR47 J Lankford (379_CR46) 1981; 18 C Zhong (379_CR48) 2019; 257 379_CR8 BK Atkinson (379_CR51) 1981; 77 379_CR6 379_CR4 379_CR1 J Ožbolt (379_CR54) 2013; 50 ISRM (379_CR30) 1978; 15 379_CR33 I Vegt (379_CR58) 2016 VS Vutukuri (379_CR10) 1974; 11 379_CR34 QB Zhang (379_CR20) 2014; 47 Y Yan (379_CR15) 1991; 11 X Li (379_CR21) 2014 EM Van Eeckhout (379_CR52) 1976; 13 379_CR29 LNY Wong (379_CR2) 2016; 11 LNY Wong (379_CR9) 2014; 47 Z Han (379_CR43) 2020; 131 Y Ogata (379_CR35) 2004; 465–466 YV Petrov (379_CR39) 2017; 9 ZA Erguler (379_CR12) 2009; 46 YX Zhou (379_CR31) 2012; 49 P Rossi (379_CR37) 1994; 27 379_CR22 379_CR24 379_CR23 379_CR26 Z Zhou (379_CR32) 2016; 49 379_CR25 379_CR28 379_CR27 379_CR19 379_CR18 YP Chugh (379_CR5) 1981; 17 |
References_xml | – volume: 131 year: 2020 ident: 379_CR43 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104352 – ident: 379_CR19 doi: 10.1016/j.eng.2020.03.017 – ident: 379_CR24 doi: 10.1016/j.proeps.2013.03.138 – volume: 47 start-page: 1411 year: 2014 ident: 379_CR20 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0463-y – volume: 114 year: 2021 ident: 379_CR7 publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2021.103002 – ident: 379_CR18 doi: 10.1016/j.ijrmms.2021.104648 – volume: 120 start-page: 6209 year: 2015 ident: 379_CR49 publication-title: J Geophys Res Solid Earth doi: 10.1002/2015JB012286 – volume: 46 start-page: 355 year: 2009 ident: 379_CR12 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.07.002 – ident: 379_CR25 doi: 10.1016/j.engfracmech.2018.02.028 – volume: 50 start-page: 485 year: 2017 ident: 379_CR14 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1087-9 – volume: 17 start-page: 241 year: 1981 ident: 379_CR5 publication-title: Eng Geol doi: 10.1016/0013-7952(81)90001-6 – volume: 30 start-page: 464 year: 2011 ident: 379_CR11 publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng – volume: 78 start-page: 281 year: 2021 ident: 379_CR16 publication-title: Struct Eng Mech doi: 10.12989/sem.2021.78.3.281 – ident: 379_CR1 doi: 10.1007/s10064-021-02467-0 – ident: 379_CR42 doi: 10.1007/s00603-021-02409-y – volume: 50 start-page: 4270 year: 2013 ident: 379_CR54 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.08.030 – volume: 48 start-page: 441 year: 2015 ident: 379_CR50 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0603-z – volume: 49 start-page: 1709 year: 2016 ident: 379_CR38 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-015-0849-0 – volume: 11 start-page: 27 year: 1974 ident: 379_CR10 publication-title: Int J Rock Mech Min Sci Geomech Abstr. doi: 10.1016/0148-9062(74)92202-5 – ident: 379_CR56 doi: 10.1016/j.ijrmms.2018.12.014 – ident: 379_CR22 doi: 10.1007/s00603-010-0083-8 – volume: 24 start-page: 422 year: 1991 ident: 379_CR57 publication-title: Mater Struct doi: 10.1007/BF02472015 – volume: 34 start-page: 21 year: 2001 ident: 379_CR36 publication-title: Mater Struct doi: 10.1007/BF02482196 – volume: 11 start-page: 713 year: 2016 ident: 379_CR2 publication-title: Acta Geotech doi: 10.1007/s11440-015-0407-7 – ident: 379_CR45 doi: 10.1016/j.ijimpeng.2021.103855 – volume: 77 start-page: T1 year: 1981 ident: 379_CR51 publication-title: Tectonophysics doi: 10.1016/0040-1951(81)90157-8 – ident: 379_CR4 doi: 10.1016/j.chemosphere.2021.131163 – ident: 379_CR47 doi: 10.1016/j.enggeo.2020.105760 – volume: 18 start-page: 65 year: 1981 ident: 379_CR46 publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(81)90742-7 – volume: 36 start-page: 1897 year: 2000 ident: 379_CR3 publication-title: Water Resour Res doi: 10.1029/2000WR900090 – ident: 379_CR6 doi: 10.1007/s00603-012-0257-7 – volume: 465–466 start-page: 361 year: 2004 ident: 379_CR35 publication-title: Mater Sci Forum doi: 10.4028/www.scientific.net/MSF.465-466.361 – volume: 49 start-page: 105 year: 2012 ident: 379_CR31 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.10.004 – ident: 379_CR55 doi: 10.1016/j.ijimpeng.2004.03.005 – ident: 379_CR23 doi: 10.1016/j.ijrmms.2016.07.005 – ident: 379_CR29 doi: 10.1016/j.ijimpeng.2016.10.001 – volume: 27 start-page: 260 year: 1994 ident: 379_CR37 publication-title: Mater Struct doi: 10.1007/BF02473042 – volume: 27 start-page: 1421 year: 2015 ident: 379_CR53 publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2015.10.004 – volume: 43 start-page: 657 year: 2010 ident: 379_CR44 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-010-0091-8 – ident: 379_CR40 doi: 10.1007/s11771-021-4766-y – volume: 9 start-page: 125 year: 2017 ident: 379_CR39 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2016.09.004 – ident: 379_CR34 doi: 10.1016/j.ijrmms.2021.104893 – volume: 38 start-page: 21 year: 2005 ident: 379_CR41 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-004-0030-7 – volume: 257 year: 2019 ident: 379_CR48 publication-title: Eng Geol doi: 10.1016/j.enggeo.2019.05.002 – ident: 379_CR17 doi: 10.1007/s00603-021-02676-9 – ident: 379_CR8 doi: 10.1007/s00603-014-0674-x – ident: 379_CR13 doi: 10.1016/0167-9031(90)90158-O – volume: 49 start-page: 3009 year: 2016 ident: 379_CR32 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-0987-z – volume-title: Concrete in dynamic tension: the fracture process year: 2016 ident: 379_CR58 – volume-title: Rock dynamics: fundamentals and applications year: 2014 ident: 379_CR21 – volume: 15 start-page: 99 year: 1978 ident: 379_CR30 publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(78)90003-7 – volume: 13 start-page: 61 year: 1976 ident: 379_CR52 publication-title: Int J Rock Mech Min Sci Geomech doi: 10.1016/0148-9062(76)90705-1 – ident: 379_CR33 doi: 10.1016/j.ijrmms.2019.03.025 – volume: 47 start-page: 1103 year: 2014 ident: 379_CR9 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0436-1 – ident: 379_CR26 doi: 10.1520/D2936-20 – ident: 379_CR27 doi: 10.1520/D3967-16 – ident: 379_CR28 doi: 10.1063/1.3043420 – volume: 11 start-page: 1 year: 1991 ident: 379_CR15 publication-title: J Seismol doi: 10.13512/j.hndz.1991.02.001 |
SSID | ssj0001072165 |
Score | 2.3974519 |
Snippet | Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | Civil Engineering Dynamic loads Engineering Humidity Loading rate Mechanical Engineering Methods Moisture content NMR Nuclear magnetic resonance Original Article Sandstone Split Hopkinson pressure bars Stone Stress concentration Structural Materials Tensile strength Tension tests |
Title | The role of water content in rate dependence of tensile strength of a fine-grained sandstone |
URI | https://link.springer.com/article/10.1007/s43452-022-00379-8 https://www.proquest.com/docview/2932593505 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLYYXOCAeIrBmHLgBoGlTdr0hAAxEBIIISZxQKrStBlIaBtsiBu_HTu0KyCxa5P6YDvxI_ZngL2wk0WuI3Ou88hyKeKcZw6jlE6QF4lwRgUFJfSvb6LLnrx6UA9lwm1cllVWd6K_qPOhpRz5EZol9NRDNNjHo1dOU6PodbUcodGABYGWhvRcdy_qHAuBf_lpkhgUSAKiVGXfjO-ek6FUAadydkJhSbj-bZtqh_PPG6k3Pd0VWC59RnbyLeRVmCsGa7D0A0lwHR5R3IwqBdnQsQ_0H98YFaGjRWHPA0ZwEKwad2v9Hl-4jtupV2TQnzzRN8McUuR9mhpR5GxMXcCE1b0Bve75_dklLwcncIsnasIxJMljW2DwiQbKRpacLAz9lBHIfys1hmjOxLiggyJWIozRq9JOOWESY_AMh5swP0DyW8CUjZNEZoHKMfKy0mXaoDkzIjQyQp4lTRAVy1JboorTcIuXdIqH7NmcIptTz-ZUN2F_-s_oG1Nj5u5WJYm0PF_jtNaGJhxU0qmX_6e2PZvaDiwGXiEED3QL5idv78Uueh2TrA2Nw0_R9grWhoXT85vbuy-ikdIQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4inGMwc4QcSaJn0cEOKp8ZoQAokDUknTZiChAdvQxJ_iN2JnLQMkuHFtUqtyvsZ2Yn8GWPNraWBrMuNRFhguvTDjqcUopSayPPasViKnA_3zRlC_lic36mYI3staGEqrLPdEt1FnT4bOyLfQLKGn7qPB3nl-4dQ1im5XyxYafVic5m89DNk628cHuL7rQhwdXu3XedFVgBuEW5ejv56FJsfIDHdvExjyQDAuUtrDjzMywvjF6hAHIpGHyvNDdDkiq6ynY60R4D7KHYYRSRWtFRjZO2xcXA5OdYhuzPWvxDBEEvWlKip1XL2e9KUSnBLoifcl5tF3azhwcX_cyjpjdzQJE4WXynb7sJqCobw1DeNfuAtn4BYBxig3kT1Z1kOPtc0o7R1tGHtoMSKgYGWDXePmuFR5nE7VKa1m956eaWZRIm9Sn4o8Yx2qOyZ28Fm4_helzkGlheLngSkTxrFMhcow1jPSppFGA6o9X8sAdRZXwStVlpiCx5zaaTwmnwzMTs0Jqjlxak6iKmx8vvPcZ_H4c_ZSuRJJ8Ud3kgH-qrBZrs5g-HdpC39LW4XR-tX5WXJ23DhdhDHhwOFxES1Bpdt-zZfR5-mmKwXQGNz9N7Y_AHWrC24 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+water+content+in+rate+dependence+of+tensile+strength+of+a+fine-grained+sandstone&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.date=2022-01-28&rft.pub=Springer+Nature+B.V&rft.issn=1644-9665&rft.eissn=2083-3318&rft.volume=22&rft.issue=1&rft.spage=58&rft_id=info:doi/10.1007%2Fs43452-022-00379-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon |