The role of water content in rate dependence of tensile strength of a fine-grained sandstone

Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-drie...

Full description

Saved in:
Bibliographic Details
Published inArchives of Civil and Mechanical Engineering Vol. 22; no. 1; p. 58
Main Authors Cai, Xin, Cheng, Chuanqing, Zhao, Yuan, Zhou, Zilong, Wang, Shaofeng
Format Journal Article
LanguageEnglish
Published London Springer London 28.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2083-3318
1644-9665
2083-3318
DOI10.1007/s43452-022-00379-8

Cover

Loading…
Abstract Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-dried to water-saturated) under various loading rates (from 100 to 600 GPa/s) using a split Hopkinson pressure bar. The test results show that for each water content, the dynamic tensile strength of sandstone is positively sensitive to loading rate. The rate dependence of tensile strength increases as the rise of water content. The change trends of tensile strength against water content depend on loading rate: as water content rises, the tensile strength displays the manner of “no change followed by fast drop” at loading rates of 10 –4 and 100 GPa/s. However, when the loading rate is above 200 GPa/s, the tensile strength increases first and then declines. The turning point occurs at water content between 1.0 and 2.0%. These observations can be interpreted with the competition between water weakening and enhancing effects under different loading conditions.
AbstractList Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-dried to water-saturated) under various loading rates (from 100 to 600 GPa/s) using a split Hopkinson pressure bar. The test results show that for each water content, the dynamic tensile strength of sandstone is positively sensitive to loading rate. The rate dependence of tensile strength increases as the rise of water content. The change trends of tensile strength against water content depend on loading rate: as water content rises, the tensile strength displays the manner of “no change followed by fast drop” at loading rates of 10–4 and 100 GPa/s. However, when the loading rate is above 200 GPa/s, the tensile strength increases first and then declines. The turning point occurs at water content between 1.0 and 2.0%. These observations can be interpreted with the competition between water weakening and enhancing effects under different loading conditions.
Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-dried to water-saturated) under various loading rates (from 100 to 600 GPa/s) using a split Hopkinson pressure bar. The test results show that for each water content, the dynamic tensile strength of sandstone is positively sensitive to loading rate. The rate dependence of tensile strength increases as the rise of water content. The change trends of tensile strength against water content depend on loading rate: as water content rises, the tensile strength displays the manner of “no change followed by fast drop” at loading rates of 10 –4 and 100 GPa/s. However, when the loading rate is above 200 GPa/s, the tensile strength increases first and then declines. The turning point occurs at water content between 1.0 and 2.0%. These observations can be interpreted with the competition between water weakening and enhancing effects under different loading conditions.
ArticleNumber 58
Author Cheng, Chuanqing
Wang, Shaofeng
Cai, Xin
Zhou, Zilong
Zhao, Yuan
Author_xml – sequence: 1
  givenname: Xin
  surname: Cai
  fullname: Cai, Xin
  organization: School of Resources and Safety Engineering, Central South University, Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines
– sequence: 2
  givenname: Chuanqing
  surname: Cheng
  fullname: Cheng, Chuanqing
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0003-2553-0975
  surname: Zhao
  fullname: Zhao, Yuan
  email: zhaoyuan92@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 4
  givenname: Zilong
  surname: Zhou
  fullname: Zhou, Zilong
  organization: School of Resources and Safety Engineering, Central South University, Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines
– sequence: 5
  givenname: Shaofeng
  surname: Wang
  fullname: Wang, Shaofeng
  organization: School of Resources and Safety Engineering, Central South University, Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines
BookMark eNp9kEFLAzEQhYNUsNb-AU8Bz6tJZrPJHqWoFQpe6k0IITvbbqnZmqSI_960KygeeggTZt43eXmXZOR7j4Rcc3bLGVN3sYRSioKJfBioutBnZCyYhgKA69Gf-wWZxrhhjHGmBK_kmLwt10hDv0Xat_TTJgzU9T6hT7TzNOQGbXCHvkHvjpo8il2WxxTQr9L60LO07TwWq2BzaWi0vokpe7wi563dRpz-1Al5fXxYzubF4uXpeXa_KBzwOhVVVTXKIWgABq5yIIXgrJKWY81dqWuuWqvyQAtUkoMCUepWttzW1gqpYEJuhr270H_sMSaz6ffB5yeNqEHIGiSTWaUHlQt9jAFb47pkU5e_m41vDWfmEKcZ4jQ5TnOM0-iMin_oLnTvNnydhmCAYhb7FYZfVyeob6GhiCY
CitedBy_id crossref_primary_10_1016_j_energy_2023_127050
crossref_primary_10_3390_app13084685
crossref_primary_10_1007_s00603_023_03252_z
crossref_primary_10_1007_s00603_022_03042_z
crossref_primary_10_1016_j_ijrmms_2022_105139
crossref_primary_10_1007_s40948_024_00890_7
crossref_primary_10_3390_math10081308
crossref_primary_10_1016_j_compgeo_2023_105270
crossref_primary_10_1038_s41598_023_49319_3
crossref_primary_10_1007_s43452_023_00748_x
crossref_primary_10_3390_math11234746
crossref_primary_10_1007_s00603_023_03287_2
crossref_primary_10_1016_j_simpat_2024_103065
crossref_primary_10_1016_j_tafmec_2024_104255
crossref_primary_10_1155_2022_6988292
crossref_primary_10_1016_j_soildyn_2023_108053
crossref_primary_10_1038_s41598_024_70155_6
crossref_primary_10_2113_2022_1790417
crossref_primary_10_3390_app122110875
crossref_primary_10_1016_j_enggeo_2023_107059
crossref_primary_10_1016_j_soildyn_2024_109191
crossref_primary_10_1061_IJGNAI_GMENG_8526
crossref_primary_10_1007_s42243_023_00990_w
Cites_doi 10.1016/j.ijrmms.2020.104352
10.1016/j.eng.2020.03.017
10.1016/j.proeps.2013.03.138
10.1007/s00603-013-0463-y
10.1016/j.tafmec.2021.103002
10.1016/j.ijrmms.2021.104648
10.1002/2015JB012286
10.1016/j.ijrmms.2008.07.002
10.1016/j.engfracmech.2018.02.028
10.1007/s00603-016-1087-9
10.1016/0013-7952(81)90001-6
10.12989/sem.2021.78.3.281
10.1007/s10064-021-02467-0
10.1007/s00603-021-02409-y
10.1016/j.ijsolstr.2013.08.030
10.1007/s00603-014-0603-z
10.1007/s00603-015-0849-0
10.1016/0148-9062(74)92202-5
10.1016/j.ijrmms.2018.12.014
10.1007/s00603-010-0083-8
10.1007/BF02472015
10.1007/BF02482196
10.1007/s11440-015-0407-7
10.1016/j.ijimpeng.2021.103855
10.1016/0040-1951(81)90157-8
10.1016/j.chemosphere.2021.131163
10.1016/j.enggeo.2020.105760
10.1016/0148-9062(81)90742-7
10.1029/2000WR900090
10.1007/s00603-012-0257-7
10.4028/www.scientific.net/MSF.465-466.361
10.1016/j.ijrmms.2011.10.004
10.1016/j.ijimpeng.2004.03.005
10.1016/j.ijrmms.2016.07.005
10.1016/j.ijimpeng.2016.10.001
10.1007/BF02473042
10.1016/j.jngse.2015.10.004
10.1007/s00603-010-0091-8
10.1007/s11771-021-4766-y
10.1016/j.jrmge.2016.09.004
10.1016/j.ijrmms.2021.104893
10.1007/s00603-004-0030-7
10.1016/j.enggeo.2019.05.002
10.1007/s00603-021-02676-9
10.1007/s00603-014-0674-x
10.1016/0167-9031(90)90158-O
10.1007/s00603-016-0987-z
10.1016/0148-9062(78)90003-7
10.1016/0148-9062(76)90705-1
10.1016/j.ijrmms.2019.03.025
10.1007/s00603-013-0436-1
10.1520/D2936-20
10.1520/D3967-16
10.1063/1.3043420
10.13512/j.hndz.1991.02.001
ContentType Journal Article
Copyright Wroclaw University of Science and Technology 2022
Copyright Springer Nature B.V. Feb 2022
Copyright_xml – notice: Wroclaw University of Science and Technology 2022
– notice: Copyright Springer Nature B.V. Feb 2022
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s43452-022-00379-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central UK/Ireland
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2083-3318
ExternalDocumentID 10_1007_s43452_022_00379_8
GrantInformation_xml – fundername: National Natural Science Foundation for Young Scientists of China
  grantid: 52104111
– fundername: the Natural Science Foundation of Hunan
  grantid: 2021JJ30819; 2015JJ4067
– fundername: National Natural ScienceFoundation of China
  grantid: 41772313
GroupedDBID --M
.~1
1~.
23M
2JY
4.4
406
457
4G.
5GY
7-5
8P~
AACDK
AAEDT
AAEPC
AAHNG
AAIKJ
AAJBT
AALRI
AAOAW
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABJCF
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ABTMW
ABXRA
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACPIV
ACSTC
ACZOJ
ADBBV
ADEZE
ADTZH
AECPX
AEFQL
AEKER
AEMSY
AENEX
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFOHR
AFQWF
AFTJW
AGHFR
AGMZJ
AGQEE
AGUBO
AGYEJ
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
BENPR
BGLVJ
BLXMC
CCPQU
DPUIP
EBLON
EBS
ESX
FDB
FEDTE
FIGPU
FIRID
FNPLU
GBLVA
HCIFZ
HVGLF
IKXTQ
IWAJR
JJJVA
JZLTJ
LLZTM
M7S
MAGPM
MO0
NPVJJ
NQJWS
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PQGLB
PT4
PTHSS
Q38
ROL
RSV
SDF
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
Y2W
~G-
AAYXX
CITATION
8FE
8FG
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-666d7ce383303c6c35221065a1e91c48917fa7c6c82e751373248f5f1a9aa2573
IEDL.DBID 8FG
ISSN 2083-3318
1644-9665
IngestDate Fri Jul 25 11:34:07 EDT 2025
Tue Jul 01 04:16:38 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Mon Jul 21 06:08:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SHPB
Rate dependence
Brazilian disc test
Tensile strength
Loading rate
Water content
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-666d7ce383303c6c35221065a1e91c48917fa7c6c82e751373248f5f1a9aa2573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2553-0975
PQID 2932593505
PQPubID 6587200
ParticipantIDs proquest_journals_2932593505
crossref_citationtrail_10_1007_s43452_022_00379_8
crossref_primary_10_1007_s43452_022_00379_8
springer_journals_10_1007_s43452_022_00379_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-28
PublicationDateYYYYMMDD 2022-01-28
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Wrocław
PublicationTitle Archives of Civil and Mechanical Engineering
PublicationTitleAbbrev Archiv.Civ.Mech.Eng
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Z Zhao (379_CR14) 2017; 50
Y Zhao (379_CR38) 2016; 49
K Kawai (379_CR49) 2015; 120
F Dai (379_CR44) 2010; 43
379_CR55
379_CR13
379_CR56
XB Li (379_CR41) 2005; 38
379_CR17
Q Lyu (379_CR53) 2015; 27
MO Ciantia (379_CR50) 2015; 48
M You (379_CR11) 2011; 30
RM Iverson (379_CR3) 2000; 36
379_CR40
P Rossi (379_CR57) 1991; 24
Z Song (379_CR16) 2021; 78
E Cadoni (379_CR36) 2001; 34
379_CR42
L Tan (379_CR7) 2021; 114
379_CR45
379_CR47
J Lankford (379_CR46) 1981; 18
C Zhong (379_CR48) 2019; 257
379_CR8
BK Atkinson (379_CR51) 1981; 77
379_CR6
379_CR4
379_CR1
J Ožbolt (379_CR54) 2013; 50
ISRM (379_CR30) 1978; 15
379_CR33
I Vegt (379_CR58) 2016
VS Vutukuri (379_CR10) 1974; 11
379_CR34
QB Zhang (379_CR20) 2014; 47
Y Yan (379_CR15) 1991; 11
X Li (379_CR21) 2014
EM Van Eeckhout (379_CR52) 1976; 13
379_CR29
LNY Wong (379_CR2) 2016; 11
LNY Wong (379_CR9) 2014; 47
Z Han (379_CR43) 2020; 131
Y Ogata (379_CR35) 2004; 465–466
YV Petrov (379_CR39) 2017; 9
ZA Erguler (379_CR12) 2009; 46
YX Zhou (379_CR31) 2012; 49
P Rossi (379_CR37) 1994; 27
379_CR22
379_CR24
379_CR23
379_CR26
Z Zhou (379_CR32) 2016; 49
379_CR25
379_CR28
379_CR27
379_CR19
379_CR18
YP Chugh (379_CR5) 1981; 17
References_xml – volume: 131
  year: 2020
  ident: 379_CR43
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2020.104352
– ident: 379_CR19
  doi: 10.1016/j.eng.2020.03.017
– ident: 379_CR24
  doi: 10.1016/j.proeps.2013.03.138
– volume: 47
  start-page: 1411
  year: 2014
  ident: 379_CR20
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0463-y
– volume: 114
  year: 2021
  ident: 379_CR7
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2021.103002
– ident: 379_CR18
  doi: 10.1016/j.ijrmms.2021.104648
– volume: 120
  start-page: 6209
  year: 2015
  ident: 379_CR49
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2015JB012286
– volume: 46
  start-page: 355
  year: 2009
  ident: 379_CR12
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.07.002
– ident: 379_CR25
  doi: 10.1016/j.engfracmech.2018.02.028
– volume: 50
  start-page: 485
  year: 2017
  ident: 379_CR14
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1087-9
– volume: 17
  start-page: 241
  year: 1981
  ident: 379_CR5
  publication-title: Eng Geol
  doi: 10.1016/0013-7952(81)90001-6
– volume: 30
  start-page: 464
  year: 2011
  ident: 379_CR11
  publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng
– volume: 78
  start-page: 281
  year: 2021
  ident: 379_CR16
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2021.78.3.281
– ident: 379_CR1
  doi: 10.1007/s10064-021-02467-0
– ident: 379_CR42
  doi: 10.1007/s00603-021-02409-y
– volume: 50
  start-page: 4270
  year: 2013
  ident: 379_CR54
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2013.08.030
– volume: 48
  start-page: 441
  year: 2015
  ident: 379_CR50
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0603-z
– volume: 49
  start-page: 1709
  year: 2016
  ident: 379_CR38
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-015-0849-0
– volume: 11
  start-page: 27
  year: 1974
  ident: 379_CR10
  publication-title: Int J Rock Mech Min Sci Geomech Abstr.
  doi: 10.1016/0148-9062(74)92202-5
– ident: 379_CR56
  doi: 10.1016/j.ijrmms.2018.12.014
– ident: 379_CR22
  doi: 10.1007/s00603-010-0083-8
– volume: 24
  start-page: 422
  year: 1991
  ident: 379_CR57
  publication-title: Mater Struct
  doi: 10.1007/BF02472015
– volume: 34
  start-page: 21
  year: 2001
  ident: 379_CR36
  publication-title: Mater Struct
  doi: 10.1007/BF02482196
– volume: 11
  start-page: 713
  year: 2016
  ident: 379_CR2
  publication-title: Acta Geotech
  doi: 10.1007/s11440-015-0407-7
– ident: 379_CR45
  doi: 10.1016/j.ijimpeng.2021.103855
– volume: 77
  start-page: T1
  year: 1981
  ident: 379_CR51
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(81)90157-8
– ident: 379_CR4
  doi: 10.1016/j.chemosphere.2021.131163
– ident: 379_CR47
  doi: 10.1016/j.enggeo.2020.105760
– volume: 18
  start-page: 65
  year: 1981
  ident: 379_CR46
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(81)90742-7
– volume: 36
  start-page: 1897
  year: 2000
  ident: 379_CR3
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900090
– ident: 379_CR6
  doi: 10.1007/s00603-012-0257-7
– volume: 465–466
  start-page: 361
  year: 2004
  ident: 379_CR35
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.465-466.361
– volume: 49
  start-page: 105
  year: 2012
  ident: 379_CR31
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.10.004
– ident: 379_CR55
  doi: 10.1016/j.ijimpeng.2004.03.005
– ident: 379_CR23
  doi: 10.1016/j.ijrmms.2016.07.005
– ident: 379_CR29
  doi: 10.1016/j.ijimpeng.2016.10.001
– volume: 27
  start-page: 260
  year: 1994
  ident: 379_CR37
  publication-title: Mater Struct
  doi: 10.1007/BF02473042
– volume: 27
  start-page: 1421
  year: 2015
  ident: 379_CR53
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2015.10.004
– volume: 43
  start-page: 657
  year: 2010
  ident: 379_CR44
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-010-0091-8
– ident: 379_CR40
  doi: 10.1007/s11771-021-4766-y
– volume: 9
  start-page: 125
  year: 2017
  ident: 379_CR39
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2016.09.004
– ident: 379_CR34
  doi: 10.1016/j.ijrmms.2021.104893
– volume: 38
  start-page: 21
  year: 2005
  ident: 379_CR41
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-004-0030-7
– volume: 257
  year: 2019
  ident: 379_CR48
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2019.05.002
– ident: 379_CR17
  doi: 10.1007/s00603-021-02676-9
– ident: 379_CR8
  doi: 10.1007/s00603-014-0674-x
– ident: 379_CR13
  doi: 10.1016/0167-9031(90)90158-O
– volume: 49
  start-page: 3009
  year: 2016
  ident: 379_CR32
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-0987-z
– volume-title: Concrete in dynamic tension: the fracture process
  year: 2016
  ident: 379_CR58
– volume-title: Rock dynamics: fundamentals and applications
  year: 2014
  ident: 379_CR21
– volume: 15
  start-page: 99
  year: 1978
  ident: 379_CR30
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(78)90003-7
– volume: 13
  start-page: 61
  year: 1976
  ident: 379_CR52
  publication-title: Int J Rock Mech Min Sci Geomech
  doi: 10.1016/0148-9062(76)90705-1
– ident: 379_CR33
  doi: 10.1016/j.ijrmms.2019.03.025
– volume: 47
  start-page: 1103
  year: 2014
  ident: 379_CR9
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0436-1
– ident: 379_CR26
  doi: 10.1520/D2936-20
– ident: 379_CR27
  doi: 10.1520/D3967-16
– ident: 379_CR28
  doi: 10.1063/1.3043420
– volume: 11
  start-page: 1
  year: 1991
  ident: 379_CR15
  publication-title: J Seismol
  doi: 10.13512/j.hndz.1991.02.001
SSID ssj0001072165
Score 2.3974519
Snippet Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Civil Engineering
Dynamic loads
Engineering
Humidity
Loading rate
Mechanical Engineering
Methods
Moisture content
NMR
Nuclear magnetic resonance
Original Article
Sandstone
Split Hopkinson pressure bars
Stone
Stress concentration
Structural Materials
Tensile strength
Tension tests
Title The role of water content in rate dependence of tensile strength of a fine-grained sandstone
URI https://link.springer.com/article/10.1007/s43452-022-00379-8
https://www.proquest.com/docview/2932593505
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLYYXOCAeIrBmHLgBoGlTdr0hAAxEBIIISZxQKrStBlIaBtsiBu_HTu0KyCxa5P6YDvxI_ZngL2wk0WuI3Ou88hyKeKcZw6jlE6QF4lwRgUFJfSvb6LLnrx6UA9lwm1cllVWd6K_qPOhpRz5EZol9NRDNNjHo1dOU6PodbUcodGABYGWhvRcdy_qHAuBf_lpkhgUSAKiVGXfjO-ek6FUAadydkJhSbj-bZtqh_PPG6k3Pd0VWC59RnbyLeRVmCsGa7D0A0lwHR5R3IwqBdnQsQ_0H98YFaGjRWHPA0ZwEKwad2v9Hl-4jtupV2TQnzzRN8McUuR9mhpR5GxMXcCE1b0Bve75_dklLwcncIsnasIxJMljW2DwiQbKRpacLAz9lBHIfys1hmjOxLiggyJWIozRq9JOOWESY_AMh5swP0DyW8CUjZNEZoHKMfKy0mXaoDkzIjQyQp4lTRAVy1JboorTcIuXdIqH7NmcIptTz-ZUN2F_-s_oG1Nj5u5WJYm0PF_jtNaGJhxU0qmX_6e2PZvaDiwGXiEED3QL5idv78Uueh2TrA2Nw0_R9grWhoXT85vbuy-ikdIQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIAD4inGMwc4QcSaJn0cEOKp8ZoQAokDUknTZiChAdvQxJ_iN2JnLQMkuHFtUqtyvsZ2Yn8GWPNraWBrMuNRFhguvTDjqcUopSayPPasViKnA_3zRlC_lic36mYI3staGEqrLPdEt1FnT4bOyLfQLKGn7qPB3nl-4dQ1im5XyxYafVic5m89DNk628cHuL7rQhwdXu3XedFVgBuEW5ejv56FJsfIDHdvExjyQDAuUtrDjzMywvjF6hAHIpGHyvNDdDkiq6ynY60R4D7KHYYRSRWtFRjZO2xcXA5OdYhuzPWvxDBEEvWlKip1XL2e9KUSnBLoifcl5tF3azhwcX_cyjpjdzQJE4WXynb7sJqCobw1DeNfuAtn4BYBxig3kT1Z1kOPtc0o7R1tGHtoMSKgYGWDXePmuFR5nE7VKa1m956eaWZRIm9Sn4o8Yx2qOyZ28Fm4_helzkGlheLngSkTxrFMhcow1jPSppFGA6o9X8sAdRZXwStVlpiCx5zaaTwmnwzMTs0Jqjlxak6iKmx8vvPcZ_H4c_ZSuRJJ8Ud3kgH-qrBZrs5g-HdpC39LW4XR-tX5WXJ23DhdhDHhwOFxES1Bpdt-zZfR5-mmKwXQGNz9N7Y_AHWrC24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+water+content+in+rate+dependence+of+tensile+strength+of+a+fine-grained+sandstone&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.date=2022-01-28&rft.pub=Springer+Nature+B.V&rft.issn=1644-9665&rft.eissn=2083-3318&rft.volume=22&rft.issue=1&rft.spage=58&rft_id=info:doi/10.1007%2Fs43452-022-00379-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon