Monotonicity and convexity involving generalized elliptic integral of the first kind
In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind K a ( r ) and its approximation log [ 1 + 2 / ( a r ′ ) ] , and also the convexity (concavity) of their difference for a ∈ ( 0 , 1 / 2 ] . As an application, we give new bounds...
Saved in:
Published in | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Vol. 115; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind
K
a
(
r
)
and its approximation
log
[
1
+
2
/
(
a
r
′
)
]
, and also the convexity (concavity) of their difference for
a
∈
(
0
,
1
/
2
]
. As an application, we give new bounds for generalized Grötzsch ring function
μ
a
(
r
)
and a upper bound for
K
a
(
r
)
. |
---|---|
AbstractList | In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind
K
a
(
r
)
and its approximation
log
[
1
+
2
/
(
a
r
′
)
]
, and also the convexity (concavity) of their difference for
a
∈
(
0
,
1
/
2
]
. As an application, we give new bounds for generalized Grötzsch ring function
μ
a
(
r
)
and a upper bound for
K
a
(
r
)
. In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind Ka(r) and its approximation log[1+2/(ar′)], and also the convexity (concavity) of their difference for a∈(0,1/2]. As an application, we give new bounds for generalized Grötzsch ring function μa(r) and a upper bound for Ka(r). |
ArticleNumber | 46 |
Author | Zhao, Tie-Hong Chu, Yu-Ming Wang, Miao-Kun |
Author_xml | – sequence: 1 givenname: Tie-Hong orcidid: 0000-0002-6394-1049 surname: Zhao fullname: Zhao, Tie-Hong organization: Department of Mathematics, Hangzhou Normal University – sequence: 2 givenname: Miao-Kun surname: Wang fullname: Wang, Miao-Kun organization: Department of Mathematics, Huzhou University – sequence: 3 givenname: Yu-Ming surname: Chu fullname: Chu, Yu-Ming email: chuyuming2005@126.com organization: Department of Mathematics, Huzhou University |
BookMark | eNp9kMtOwzAQRS1UJErpD7CyxNrgRxInS1TxkorYlLXlJpPgEuxiuxXl63EbJCQWnY3HnntmPPccjayzgNAlo9eMUnkTmBBVSSinhNKq4kScoDHLZUVYTvPRIS-JFFScoWkIK5pCsKykcowWz8666KypTdxhbRtcO7uFr_3N2K3rt8Z2uAMLXvfmGxoMfW_W0dSpHKFLr9i1OL4Bbo0PEb8b21yg01b3Aaa_5wS93t8tZo9k_vLwNLudk1qwKpKiKBi0kmVLyRpWc8iZyGCZNqCy1bqhTcGrkjegi1SWOQiqNc1LJnJRc5aJCboa-q69-9xAiGrlNt6mkYpnskhrJ2VS8UFVexeCh1atvfnQfqcYVXsD1WCgSgaqg4FqD5X_oGSQjsbZ6LXpj6NiQEOaYzvwf786Qv0AHhWHMQ |
CitedBy_id | crossref_primary_10_3390_sym15010246 crossref_primary_10_1007_s13204_021_02319_z crossref_primary_10_1515_dema_2024_0024 crossref_primary_10_1155_2023_4624604 crossref_primary_10_1007_s13398_021_01021_7 crossref_primary_10_3390_math11092043 crossref_primary_10_3390_math10203851 crossref_primary_10_1007_s00339_022_05789_2 crossref_primary_10_1007_s11082_022_03879_2 crossref_primary_10_1515_math_2022_0045 crossref_primary_10_3390_buildings12030356 crossref_primary_10_1038_s41598_022_13692_2 crossref_primary_10_1007_s13204_021_02139_1 crossref_primary_10_2166_wst_2022_318 crossref_primary_10_3389_fenrg_2021_789316 crossref_primary_10_1007_s10971_022_05859_0 crossref_primary_10_1007_s00894_022_05102_1 crossref_primary_10_1155_2022_3832330 crossref_primary_10_3390_su14073989 crossref_primary_10_1016_j_cplett_2021_139162 crossref_primary_10_1155_2022_9113745 crossref_primary_10_3390_axioms12020195 crossref_primary_10_1007_s13398_021_01117_0 crossref_primary_10_1140_epjp_s13360_022_02505_0 crossref_primary_10_3390_su14063395 crossref_primary_10_1007_s00894_022_05127_6 crossref_primary_10_3934_math_20241620 crossref_primary_10_1142_S0129183123500195 crossref_primary_10_3390_a16030148 crossref_primary_10_3390_math11081957 crossref_primary_10_1140_epjp_s13360_022_02848_8 crossref_primary_10_1007_s13204_021_02183_x crossref_primary_10_1155_2022_1750331 crossref_primary_10_1155_2024_8481103 crossref_primary_10_1007_s11766_023_4223_9 crossref_primary_10_1007_s13204_021_02168_w crossref_primary_10_1007_s40315_021_00415_3 crossref_primary_10_1088_1402_4896_ac51c7 crossref_primary_10_1515_dema_2022_0225 crossref_primary_10_1140_epjp_s13360_021_02327_6 crossref_primary_10_1088_1361_6641_ac7b9f crossref_primary_10_1007_s13398_021_01162_9 crossref_primary_10_3390_sym15091656 crossref_primary_10_1007_s13398_022_01211_x crossref_primary_10_1515_math_2021_0067 crossref_primary_10_1007_s00025_022_01799_x crossref_primary_10_1007_s00289_022_04626_z crossref_primary_10_1140_epjp_s13360_021_02106_3 crossref_primary_10_1007_s13204_022_02363_3 crossref_primary_10_1007_s13398_021_01197_y crossref_primary_10_2298_AADM200613020J crossref_primary_10_3390_math10244817 crossref_primary_10_1155_2023_9969407 crossref_primary_10_1007_s10473_022_0302_x crossref_primary_10_1007_s13398_023_01472_0 crossref_primary_10_1007_s41980_024_00889_6 crossref_primary_10_2298_AADM230417005Z crossref_primary_10_1007_s13204_021_02136_4 crossref_primary_10_1007_s13398_023_01453_3 crossref_primary_10_3390_mi13060874 crossref_primary_10_3934_math_2023374 crossref_primary_10_1007_s13204_021_02285_6 crossref_primary_10_1016_j_est_2021_103427 crossref_primary_10_1007_s40840_023_01533_y crossref_primary_10_1016_j_molliq_2022_119147 crossref_primary_10_1007_s10473_022_0204_y crossref_primary_10_1155_2022_6285367 crossref_primary_10_1007_s10904_022_02467_x crossref_primary_10_1155_2023_3848846 crossref_primary_10_1186_s13660_022_02768_2 crossref_primary_10_1007_s12668_022_01048_z crossref_primary_10_1088_1402_4896_ac6382 crossref_primary_10_1515_ntrev_2022_0143 crossref_primary_10_1007_s13398_021_01040_4 crossref_primary_10_3934_math_2024553 crossref_primary_10_1007_s12633_022_02008_8 crossref_primary_10_1007_s40840_023_01523_0 crossref_primary_10_1155_2022_8396644 crossref_primary_10_1007_s13226_021_00016_9 crossref_primary_10_1142_S0217984922501184 crossref_primary_10_1007_s13398_022_01258_w crossref_primary_10_1515_ms_2023_0032 |
Cites_doi | 10.1016/j.jmaa.2015.03.043 10.1137/S0036141096310491 10.3934/math.2020290 10.1080/10652469.2011.627511 10.1017/S030821050000264X 10.1016/j.jmaa.2018.03.005 10.1007/s00209-007-0111-x 10.1007/s13398-020-00856-w 10.1007/s13398-020-00784-9 10.1007/s11139-018-0061-4 10.1016/j.jnt.2015.10.013 10.1186/s13660-020-02327-7 10.1090/bproc/41 10.1186/s13660-017-1606-6 10.1007/s10476-014-0101-2 10.1016/j.jmaa.2018.08.061 10.1016/j.jmaa.2015.04.035 10.1186/s13660-017-1578-6 10.1007/s13398-019-00719-z 10.1137/0523025 10.2140/pjm.2000.192.1 10.1016/j.jnt.2016.01.021 10.2298/AADM171015001Y |
ContentType | Journal Article |
Copyright | The Royal Academy of Sciences, Madrid 2021 The Royal Academy of Sciences, Madrid 2021. |
Copyright_xml | – notice: The Royal Academy of Sciences, Madrid 2021 – notice: The Royal Academy of Sciences, Madrid 2021. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s13398-020-00992-3 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1579-1505 |
ExternalDocumentID | 10_1007_s13398_020_00992_3 |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LY19A010012 funderid: http://dx.doi.org/10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 11601485 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11971142; 11871202 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 06D 0R~ 0VY 203 2JN 2KG 2LR 2WC 30V 4.4 406 408 8FE 8FG 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AAYIU AAYQN AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFKRA AFLOW AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BAPOH BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGRSB GJIRD GNWQR GQ6 H13 HCIFZ HF~ HRMNR HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV L6V LLZTM LO0 M4Y M7S NB0 NPVJJ NQJWS NU0 O9- O93 O9J OK1 P9R PT4 PTHSS R9I RIG ROL RSV S1Z S27 S3B SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE AFDZB AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c319t-6661ef714b71d1c2e5134eb99207faad0d62982dea6d1c75e30aa0581353c2143 |
IEDL.DBID | U2A |
ISSN | 1578-7303 |
IngestDate | Fri Jul 25 09:09:55 EDT 2025 Tue Jul 01 04:26:14 EDT 2025 Thu Apr 24 23:12:21 EDT 2025 Fri Feb 21 02:48:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Ramanujan constant Generalized elliptic integral Convexity 33E05 Monotonicity 33C05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-6661ef714b71d1c2e5134eb99207faad0d62982dea6d1c75e30aa0581353c2143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6394-1049 |
PQID | 2476157353 |
PQPubID | 1476358 |
ParticipantIDs | proquest_journals_2476157353 crossref_primary_10_1007_s13398_020_00992_3 crossref_citationtrail_10_1007_s13398_020_00992_3 springer_journals_10_1007_s13398_020_00992_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210400 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Milan |
PublicationTitle | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas |
PublicationTitleAbbrev | RACSAM |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | OlvermFWJLozierDWBoisvertRFClarkCWNIST Handbook of Mathematical Functions2010CambridgeCambridge University Press1198.00002 BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x QiFLiW-HA logarithmically completely monotonic function involving the ratio of gamma functionsJ. Appl. Anal. Comput.20155462663433674571447.33002 AlzerHSome beta-function inequalitiesProc. R. Soc. Edinburgh.2003133A4731745200619910.1017/S030821050000264X YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4 HaiG-JZhaoT-HMonotonicity properties and bounds involving the two-parameter generalized Grötzsch ring functionJ. Inequal. Appl.202020201710.1186/s13660-020-02327-7(Article 66) YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043 HuangT-RQiuS-LMaX-YMonotonicity properties and inequalities for the generalized elliptic integral of the first kindJ. Math. Anal. Appl.2019469195116385751210.1016/j.jmaa.2018.08.061 AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1964WashingtonU.S. Government Printing Office0171.38503 ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290 YinLHuangL-GWangY-LLinX-LAn inequality for generalized complete elliptic integralJ. Inequal. Appl.201720176373659910.1186/s13660-017-1578-6( Article 303) YangZ-HTianJ-FWangM-KA positive answer to Bhatia–Li conjecture on the monotonicity for a new mean in its parameterRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.20201143126409544710.1007/s13398-020-00856-w1439.33002 ChenC-PInequalities and asymptotic expansions for the psi function and the Euler–Mascheroni constantJ. Number Theory.2016163596607345958910.1016/j.jnt.2015.10.013 QianW-MHeZ-HChuY-MApproximation for the complete elliptic integral of the first kindRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2020114257404987610.1007/s13398-020-00784-91434.33023 YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discret. Math.2019131240260394805410.2298/AADM171015001Y Yang, Z.-H.: A new way to prove L’Hospital monotone rules with applications. arXiv:1409.6408 [math.CA] AndrewsGEAskeyRRoyRSpecial Functions. Encyclopedia of Mathematics and Its Applications1999CambridgeCambridge University Press GuoB-NQiFMonotonicity of functions connected with the gamma function and the volume of the unit ballIntegral Transforms Spec. Funct.2012239701708296888710.1080/10652469.2011.627511 RichardsKCA note on inequalities for the ratio of zero-balanced hypergeometric functionsProc. Am. Math. Soc. Ser. B201961520394686210.1090/bproc/41 WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.2015429744757334249010.1016/j.jmaa.2015.04.035 HuangT-RHanB-WMaX-YChuY-MOptimal bounds for the generalized Euler–Mascheroni constantJ. Inequal. Appl.201820189380408610.1186/s13660-017-1606-6(Article 118) AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPac. J. Math.20001921137174103110.2140/pjm.2000.192.1 AndersonGDVamanamurthyMKVuorinenMFunctional inequalities for hypergeometric functions and complete elliptic integralsSIAM J. Math. Anal.199223512524114787510.1137/0523025 YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005 AndersonGDQiuS-LVamanamurthyMKVuorinenMConformal Invariants, Inequalities, and Quasiconformal Maps1997New YorkWiley0885.30012 AlzerHInequalities for the beta functionAnal. Math.2014401111316863810.1007/s10476-014-0101-2 BorweinJMBorweinPBPi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Study in Analytic Number Theory and Computational Complexity; A Wiley-Interscience Publication1987New YorkWiley ChenC-PSharp inequalities and asymptotic series of a product related to the Euler–Mascheroni constantJ. Number Theory.2016165314323347922610.1016/j.jnt.2016.01.021 QiFBounds for the ratio of two gamma functionsJ. Inequal. Appl.2010Article ID 4930588426110441194.33005 YangZ-HTianJ-FMonotonicity, convexity, and complete monotonicity of two functions related to the gamma functionRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2019113436033617399903710.1007/s13398-019-00719-z QiuS-LVamanamurthyMKVuorinenMSome inequalities for the growth of elliptic integralsSIAM J. Math. Anal.19982912241237162570310.1137/S0036141096310491 G-J Hai (992_CR15) 2020; 2020 B-N Guo (992_CR12) 2012; 23 T-R Huang (992_CR13) 2018; 2018 T-H Zhao (992_CR31) 2020; 5 Z-H Yang (992_CR29) 2019; 113 FWJ Olverm (992_CR16) 2010 Z-H Yang (992_CR30) 2020; 114 T-R Huang (992_CR14) 2019; 469 L Yin (992_CR25) 2017; 2017 S-L Qiu (992_CR19) 1998; 29 C-P Chen (992_CR10) 2016; 163 GD Anderson (992_CR6) 1992; 23 Z-H Yang (992_CR27) 2019; 48 GD Anderson (992_CR7) 1997 KC Richards (992_CR20) 2019; 6 M Abramowitz (992_CR4) 1964 GD Anderson (992_CR5) 2000; 192 Z-H Yang (992_CR28) 2019; 13 C-P Chen (992_CR11) 2016; 165 JM Borwein (992_CR9) 1987 H Alzer (992_CR2) 2003; 133A Z-H Yang (992_CR24) 2015; 428 992_CR23 F Qi (992_CR18) 2015; 5 GE Andrews (992_CR1) 1999 Z-H Yang (992_CR26) 2018; 462 M-K Wang (992_CR21) 2015; 429 Á Baricz (992_CR8) 2007; 256 F Qi (992_CR17) 2010; Article ID 4930 H Alzer (992_CR3) 2014; 40 W-M Qian (992_CR22) 2020; 114 |
References_xml | – reference: YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4 – reference: ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290 – reference: BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x – reference: QiFBounds for the ratio of two gamma functionsJ. Inequal. Appl.2010Article ID 4930588426110441194.33005 – reference: HaiG-JZhaoT-HMonotonicity properties and bounds involving the two-parameter generalized Grötzsch ring functionJ. Inequal. Appl.202020201710.1186/s13660-020-02327-7(Article 66) – reference: YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043 – reference: ChenC-PSharp inequalities and asymptotic series of a product related to the Euler–Mascheroni constantJ. Number Theory.2016165314323347922610.1016/j.jnt.2016.01.021 – reference: ChenC-PInequalities and asymptotic expansions for the psi function and the Euler–Mascheroni constantJ. Number Theory.2016163596607345958910.1016/j.jnt.2015.10.013 – reference: AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1964WashingtonU.S. Government Printing Office0171.38503 – reference: QiFLiW-HA logarithmically completely monotonic function involving the ratio of gamma functionsJ. Appl. Anal. Comput.20155462663433674571447.33002 – reference: AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPac. J. Math.20001921137174103110.2140/pjm.2000.192.1 – reference: AndrewsGEAskeyRRoyRSpecial Functions. Encyclopedia of Mathematics and Its Applications1999CambridgeCambridge University Press – reference: AndersonGDQiuS-LVamanamurthyMKVuorinenMConformal Invariants, Inequalities, and Quasiconformal Maps1997New YorkWiley0885.30012 – reference: QianW-MHeZ-HChuY-MApproximation for the complete elliptic integral of the first kindRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2020114257404987610.1007/s13398-020-00784-91434.33023 – reference: HuangT-RHanB-WMaX-YChuY-MOptimal bounds for the generalized Euler–Mascheroni constantJ. Inequal. Appl.201820189380408610.1186/s13660-017-1606-6(Article 118) – reference: BorweinJMBorweinPBPi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Study in Analytic Number Theory and Computational Complexity; A Wiley-Interscience Publication1987New YorkWiley – reference: YinLHuangL-GWangY-LLinX-LAn inequality for generalized complete elliptic integralJ. Inequal. Appl.201720176373659910.1186/s13660-017-1578-6( Article 303) – reference: AlzerHSome beta-function inequalitiesProc. R. Soc. Edinburgh.2003133A4731745200619910.1017/S030821050000264X – reference: RichardsKCA note on inequalities for the ratio of zero-balanced hypergeometric functionsProc. Am. Math. Soc. Ser. B201961520394686210.1090/bproc/41 – reference: Yang, Z.-H.: A new way to prove L’Hospital monotone rules with applications. arXiv:1409.6408 [math.CA] – reference: YangZ-HTianJ-FMonotonicity, convexity, and complete monotonicity of two functions related to the gamma functionRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2019113436033617399903710.1007/s13398-019-00719-z – reference: YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005 – reference: QiuS-LVamanamurthyMKVuorinenMSome inequalities for the growth of elliptic integralsSIAM J. Math. Anal.19982912241237162570310.1137/S0036141096310491 – reference: WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.2015429744757334249010.1016/j.jmaa.2015.04.035 – reference: AndersonGDVamanamurthyMKVuorinenMFunctional inequalities for hypergeometric functions and complete elliptic integralsSIAM J. Math. Anal.199223512524114787510.1137/0523025 – reference: GuoB-NQiFMonotonicity of functions connected with the gamma function and the volume of the unit ballIntegral Transforms Spec. Funct.2012239701708296888710.1080/10652469.2011.627511 – reference: YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discret. Math.2019131240260394805410.2298/AADM171015001Y – reference: YangZ-HTianJ-FWangM-KA positive answer to Bhatia–Li conjecture on the monotonicity for a new mean in its parameterRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.20201143126409544710.1007/s13398-020-00856-w1439.33002 – reference: OlvermFWJLozierDWBoisvertRFClarkCWNIST Handbook of Mathematical Functions2010CambridgeCambridge University Press1198.00002 – reference: AlzerHInequalities for the beta functionAnal. Math.2014401111316863810.1007/s10476-014-0101-2 – reference: HuangT-RQiuS-LMaX-YMonotonicity properties and inequalities for the generalized elliptic integral of the first kindJ. Math. Anal. Appl.2019469195116385751210.1016/j.jmaa.2018.08.061 – volume-title: Special Functions. Encyclopedia of Mathematics and Its Applications year: 1999 ident: 992_CR1 – volume: 428 start-page: 587 issue: 1 year: 2015 ident: 992_CR24 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.03.043 – volume: 29 start-page: 1224 year: 1998 ident: 992_CR19 publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141096310491 – volume: 5 start-page: 4512 issue: 5 year: 2020 ident: 992_CR31 publication-title: AIMS Math. doi: 10.3934/math.2020290 – volume: 23 start-page: 701 issue: 9 year: 2012 ident: 992_CR12 publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652469.2011.627511 – volume: 133A start-page: 731 issue: 4 year: 2003 ident: 992_CR2 publication-title: Proc. R. Soc. Edinburgh. doi: 10.1017/S030821050000264X – volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1964 ident: 992_CR4 – volume-title: Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Study in Analytic Number Theory and Computational Complexity; A Wiley-Interscience Publication year: 1987 ident: 992_CR9 – volume: 462 start-page: 1714 issue: 2 year: 2018 ident: 992_CR26 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.03.005 – volume: 256 start-page: 895 issue: 4 year: 2007 ident: 992_CR8 publication-title: Math. Z. doi: 10.1007/s00209-007-0111-x – volume: 114 start-page: 126 issue: 3 year: 2020 ident: 992_CR30 publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. doi: 10.1007/s13398-020-00856-w – volume: 114 start-page: 57 issue: 2 year: 2020 ident: 992_CR22 publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. doi: 10.1007/s13398-020-00784-9 – ident: 992_CR23 – volume: 48 start-page: 91 issue: 1 year: 2019 ident: 992_CR27 publication-title: Ramanujan J. doi: 10.1007/s11139-018-0061-4 – volume: 163 start-page: 596 year: 2016 ident: 992_CR10 publication-title: J. Number Theory. doi: 10.1016/j.jnt.2015.10.013 – volume: 2020 start-page: 17 year: 2020 ident: 992_CR15 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-020-02327-7 – volume: 6 start-page: 15 year: 2019 ident: 992_CR20 publication-title: Proc. Am. Math. Soc. Ser. B doi: 10.1090/bproc/41 – volume: 2018 start-page: 9 year: 2018 ident: 992_CR13 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-017-1606-6 – volume: 40 start-page: 1 issue: 1 year: 2014 ident: 992_CR3 publication-title: Anal. Math. doi: 10.1007/s10476-014-0101-2 – volume: 469 start-page: 95 issue: 1 year: 2019 ident: 992_CR14 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.08.061 – volume: 429 start-page: 744 year: 2015 ident: 992_CR21 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.04.035 – volume: Article ID 4930 start-page: 84 year: 2010 ident: 992_CR17 publication-title: J. Inequal. Appl. – volume: 2017 start-page: 6 year: 2017 ident: 992_CR25 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-017-1578-6 – volume: 113 start-page: 3603 issue: 4 year: 2019 ident: 992_CR29 publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. doi: 10.1007/s13398-019-00719-z – volume: 23 start-page: 512 year: 1992 ident: 992_CR6 publication-title: SIAM J. Math. Anal. doi: 10.1137/0523025 – volume: 192 start-page: 1 issue: 1 year: 2000 ident: 992_CR5 publication-title: Pac. J. Math. doi: 10.2140/pjm.2000.192.1 – volume: 165 start-page: 314 year: 2016 ident: 992_CR11 publication-title: J. Number Theory. doi: 10.1016/j.jnt.2016.01.021 – volume-title: NIST Handbook of Mathematical Functions year: 2010 ident: 992_CR16 – volume: 13 start-page: 240 issue: 1 year: 2019 ident: 992_CR28 publication-title: Appl. Anal. Discret. Math. doi: 10.2298/AADM171015001Y – volume-title: Conformal Invariants, Inequalities, and Quasiconformal Maps year: 1997 ident: 992_CR7 – volume: 5 start-page: 626 issue: 4 year: 2015 ident: 992_CR18 publication-title: J. Appl. Anal. Comput. |
SSID | ssj0000314807 |
Score | 2.565707 |
Snippet | In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind
K
a
(
r
)
and its approximation
log... In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind Ka(r) and its approximation... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applications of Mathematics Concavity Convexity Integrals Mathematical and Computational Physics Mathematics Mathematics and Statistics Original Paper Theoretical Upper bounds |
Title | Monotonicity and convexity involving generalized elliptic integral of the first kind |
URI | https://link.springer.com/article/10.1007/s13398-020-00992-3 https://www.proquest.com/docview/2476157353 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGDuKk4nSMHD4oW2vRH2uOQzaHM0wbzVNI0keHoxFYQ_3pf2nRFUUHopSRN25f3ku8l730BOEcE7SMOVxZOzqnlMRpaPApCSyVRgpdgfsl4M30IJnPvbuEvTFJYXke711uS5UjdJLu5rk4HozoTWsdMutvQ9rXvjlo8p8PNyoomZK_ypB1URwtV2DXZMj8383VGamDmt53RcsIZ78OeQYpkWHVtB7Zk1oXd6YZmNe9Cx1hmTi4MffTlAczQTNeFZrxFgE14lpIysvxd3y0zHI30EgJ5quovP2RKNCcnjhyCGO6IFVkrgq8haonYkDyj234I8_FodjOxzNkJlkCjKiz0ShypmOMlzEkdQaXvuJ5M8IdtpjhP7TSgUUhTyQMsZr50bc5tP9THYAiKIOoIWtk6k8dAHI8KxZWIUld4PBGRLQVDNyRUnt6X5T1wavnFwhCL6_MtVnFDiaxlHqPM41LmsduDq80zLxWtxp-1-3W3xMbE8ph6DNEYw-_twXXdVU3x762d_K_6KexQHcdSRuv0oVW8vskzBCJFMoD28PbxfjQo9e8TMCrT0Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPKgHcVNxOjUHD4oW2vRH2uMQZeq20wa7lTRNZDg6sRXEv96XNl1RVBB6KUnT9r285Evee18AzhFB-4jDlYWTc2p5jIYWj4LQUkmU4CWYXzLejMbBYOo9zPyZSQrL62j32iVZjtRNspvr6nQwqjOhdcykuw4bCAZCHcg1pf3VzoomZK_ypB3sjhZ2Yddky_zczNcZqYGZ3zyj5YRztws7BimSfqXaNqzJrAPboxXNat6BtrHMnFwY-ujLPZigmS4LzXiLAJvwLCVlZPm7vptnOBrpLQTyVNWff8iUaE5OHDkEMdwRC7JUBF9D1ByxIXnGZfs-TO9uJzcDy5ydYAk0qsLCVYkjFXO8hDmpI6j0HdeTCf6wzRTnqZ0GNAppKnmAxcyXrs257Yf6GAxBEUQdQCtbZvIQiONRobgSUeoKjycisqVguAwJlaf9srwLTi2_WBhicX2-xSJuKJG1zGOUeVzKPHa7cLV65qWi1fizdq9WS2xMLI-pxxCNMfzeLlzXqmqKf2_t6H_Vz2BzMBkN4-H9-PEYtqiOaSkjd3rQKl7f5AmCkiI5LfvgJ6q71TA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oBNGDuKk4nZqDB0XLmrRd2uNQx_yJhw12K2l-yHB0w1UQ_3pf2m5TUUHopSRN25eX5Evyvi8Ax4igA8ThxsHBWTk-Z6EjolbomCRK8JI8yBVv7h9a3b5_MwgGn1j8ebT7bEuy4DRYlaY0a06UaS6Ib55nqWHMsqJt_KS3DCvYHVPr133Wnq-yWHH2gjNN0TUddGevZM78XMzX0WkBOb_tkuaDT2cTNkrUSNpFNVdhSac1WL-fS65Oa1AtW-mUnJRS0qdb0MMmO86s-i2CbSJSRfIo8zd7N0yxZ7LLCeSpyD9814pYfU7sRSQpdSRGZGwIvoaYIeJE8oxT-G3od656F12nPEfBkWiRzMEZCtWGUz_hVFHJdEA9Xyf4wy43QihXtVgUMqVFC5N5oD1XCDcI7ZEYkiGg2oFKOk71LhDqM2mEkZHypC8SGblacpyShMa3e7SiDnRmv1iWIuP2rItRvJBHtjaP0eZxbvPYq8PZ_JlJIbHxZ-7GrFrisrlNY-ZzRGYcv7cO57OqWiT_Xtre_7IfwerjZSe-u3643Yc1ZsNb8iCeBlSyl1d9gPgkSw5zF_wAO4vZbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monotonicity+and+convexity+involving+generalized+elliptic+integral+of+the+first+kind&rft.jtitle=Revista+de+la+Real+Academia+de+Ciencias+Exactas%2C+F%C3%ADsicas+y+Naturales.+Serie+A%2C+Matem%C3%A1ticas&rft.au=Zhao%2C+Tie-Hong&rft.au=Wang%2C+Miao-Kun&rft.au=Chu%2C+Yu-Ming&rft.date=2021-04-01&rft.pub=Springer+International+Publishing&rft.issn=1578-7303&rft.eissn=1579-1505&rft.volume=115&rft.issue=2&rft_id=info:doi/10.1007%2Fs13398-020-00992-3&rft.externalDocID=10_1007_s13398_020_00992_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1578-7303&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1578-7303&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1578-7303&client=summon |