Monotonicity and convexity involving generalized elliptic integral of the first kind

In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind K a ( r ) and its approximation log [ 1 + 2 / ( a r ′ ) ] , and also the convexity (concavity) of their difference for a ∈ ( 0 , 1 / 2 ] . As an application, we give new bounds...

Full description

Saved in:
Bibliographic Details
Published inRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Vol. 115; no. 2
Main Authors Zhao, Tie-Hong, Wang, Miao-Kun, Chu, Yu-Ming
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind K a ( r ) and its approximation log [ 1 + 2 / ( a r ′ ) ] , and also the convexity (concavity) of their difference for a ∈ ( 0 , 1 / 2 ] . As an application, we give new bounds for generalized Grötzsch ring function μ a ( r ) and a upper bound for K a ( r ) .
AbstractList In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind K a ( r ) and its approximation log [ 1 + 2 / ( a r ′ ) ] , and also the convexity (concavity) of their difference for a ∈ ( 0 , 1 / 2 ] . As an application, we give new bounds for generalized Grötzsch ring function μ a ( r ) and a upper bound for K a ( r ) .
In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind Ka(r) and its approximation log[1+2/(ar′)], and also the convexity (concavity) of their difference for a∈(0,1/2]. As an application, we give new bounds for generalized Grötzsch ring function μa(r) and a upper bound for Ka(r).
ArticleNumber 46
Author Zhao, Tie-Hong
Chu, Yu-Ming
Wang, Miao-Kun
Author_xml – sequence: 1
  givenname: Tie-Hong
  orcidid: 0000-0002-6394-1049
  surname: Zhao
  fullname: Zhao, Tie-Hong
  organization: Department of Mathematics, Hangzhou Normal University
– sequence: 2
  givenname: Miao-Kun
  surname: Wang
  fullname: Wang, Miao-Kun
  organization: Department of Mathematics, Huzhou University
– sequence: 3
  givenname: Yu-Ming
  surname: Chu
  fullname: Chu, Yu-Ming
  email: chuyuming2005@126.com
  organization: Department of Mathematics, Huzhou University
BookMark eNp9kMtOwzAQRS1UJErpD7CyxNrgRxInS1TxkorYlLXlJpPgEuxiuxXl63EbJCQWnY3HnntmPPccjayzgNAlo9eMUnkTmBBVSSinhNKq4kScoDHLZUVYTvPRIS-JFFScoWkIK5pCsKykcowWz8666KypTdxhbRtcO7uFr_3N2K3rt8Z2uAMLXvfmGxoMfW_W0dSpHKFLr9i1OL4Bbo0PEb8b21yg01b3Aaa_5wS93t8tZo9k_vLwNLudk1qwKpKiKBi0kmVLyRpWc8iZyGCZNqCy1bqhTcGrkjegi1SWOQiqNc1LJnJRc5aJCboa-q69-9xAiGrlNt6mkYpnskhrJ2VS8UFVexeCh1atvfnQfqcYVXsD1WCgSgaqg4FqD5X_oGSQjsbZ6LXpj6NiQEOaYzvwf786Qv0AHhWHMQ
CitedBy_id crossref_primary_10_3390_sym15010246
crossref_primary_10_1007_s13204_021_02319_z
crossref_primary_10_1515_dema_2024_0024
crossref_primary_10_1155_2023_4624604
crossref_primary_10_1007_s13398_021_01021_7
crossref_primary_10_3390_math11092043
crossref_primary_10_3390_math10203851
crossref_primary_10_1007_s00339_022_05789_2
crossref_primary_10_1007_s11082_022_03879_2
crossref_primary_10_1515_math_2022_0045
crossref_primary_10_3390_buildings12030356
crossref_primary_10_1038_s41598_022_13692_2
crossref_primary_10_1007_s13204_021_02139_1
crossref_primary_10_2166_wst_2022_318
crossref_primary_10_3389_fenrg_2021_789316
crossref_primary_10_1007_s10971_022_05859_0
crossref_primary_10_1007_s00894_022_05102_1
crossref_primary_10_1155_2022_3832330
crossref_primary_10_3390_su14073989
crossref_primary_10_1016_j_cplett_2021_139162
crossref_primary_10_1155_2022_9113745
crossref_primary_10_3390_axioms12020195
crossref_primary_10_1007_s13398_021_01117_0
crossref_primary_10_1140_epjp_s13360_022_02505_0
crossref_primary_10_3390_su14063395
crossref_primary_10_1007_s00894_022_05127_6
crossref_primary_10_3934_math_20241620
crossref_primary_10_1142_S0129183123500195
crossref_primary_10_3390_a16030148
crossref_primary_10_3390_math11081957
crossref_primary_10_1140_epjp_s13360_022_02848_8
crossref_primary_10_1007_s13204_021_02183_x
crossref_primary_10_1155_2022_1750331
crossref_primary_10_1155_2024_8481103
crossref_primary_10_1007_s11766_023_4223_9
crossref_primary_10_1007_s13204_021_02168_w
crossref_primary_10_1007_s40315_021_00415_3
crossref_primary_10_1088_1402_4896_ac51c7
crossref_primary_10_1515_dema_2022_0225
crossref_primary_10_1140_epjp_s13360_021_02327_6
crossref_primary_10_1088_1361_6641_ac7b9f
crossref_primary_10_1007_s13398_021_01162_9
crossref_primary_10_3390_sym15091656
crossref_primary_10_1007_s13398_022_01211_x
crossref_primary_10_1515_math_2021_0067
crossref_primary_10_1007_s00025_022_01799_x
crossref_primary_10_1007_s00289_022_04626_z
crossref_primary_10_1140_epjp_s13360_021_02106_3
crossref_primary_10_1007_s13204_022_02363_3
crossref_primary_10_1007_s13398_021_01197_y
crossref_primary_10_2298_AADM200613020J
crossref_primary_10_3390_math10244817
crossref_primary_10_1155_2023_9969407
crossref_primary_10_1007_s10473_022_0302_x
crossref_primary_10_1007_s13398_023_01472_0
crossref_primary_10_1007_s41980_024_00889_6
crossref_primary_10_2298_AADM230417005Z
crossref_primary_10_1007_s13204_021_02136_4
crossref_primary_10_1007_s13398_023_01453_3
crossref_primary_10_3390_mi13060874
crossref_primary_10_3934_math_2023374
crossref_primary_10_1007_s13204_021_02285_6
crossref_primary_10_1016_j_est_2021_103427
crossref_primary_10_1007_s40840_023_01533_y
crossref_primary_10_1016_j_molliq_2022_119147
crossref_primary_10_1007_s10473_022_0204_y
crossref_primary_10_1155_2022_6285367
crossref_primary_10_1007_s10904_022_02467_x
crossref_primary_10_1155_2023_3848846
crossref_primary_10_1186_s13660_022_02768_2
crossref_primary_10_1007_s12668_022_01048_z
crossref_primary_10_1088_1402_4896_ac6382
crossref_primary_10_1515_ntrev_2022_0143
crossref_primary_10_1007_s13398_021_01040_4
crossref_primary_10_3934_math_2024553
crossref_primary_10_1007_s12633_022_02008_8
crossref_primary_10_1007_s40840_023_01523_0
crossref_primary_10_1155_2022_8396644
crossref_primary_10_1007_s13226_021_00016_9
crossref_primary_10_1142_S0217984922501184
crossref_primary_10_1007_s13398_022_01258_w
crossref_primary_10_1515_ms_2023_0032
Cites_doi 10.1016/j.jmaa.2015.03.043
10.1137/S0036141096310491
10.3934/math.2020290
10.1080/10652469.2011.627511
10.1017/S030821050000264X
10.1016/j.jmaa.2018.03.005
10.1007/s00209-007-0111-x
10.1007/s13398-020-00856-w
10.1007/s13398-020-00784-9
10.1007/s11139-018-0061-4
10.1016/j.jnt.2015.10.013
10.1186/s13660-020-02327-7
10.1090/bproc/41
10.1186/s13660-017-1606-6
10.1007/s10476-014-0101-2
10.1016/j.jmaa.2018.08.061
10.1016/j.jmaa.2015.04.035
10.1186/s13660-017-1578-6
10.1007/s13398-019-00719-z
10.1137/0523025
10.2140/pjm.2000.192.1
10.1016/j.jnt.2016.01.021
10.2298/AADM171015001Y
ContentType Journal Article
Copyright The Royal Academy of Sciences, Madrid 2021
The Royal Academy of Sciences, Madrid 2021.
Copyright_xml – notice: The Royal Academy of Sciences, Madrid 2021
– notice: The Royal Academy of Sciences, Madrid 2021.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s13398-020-00992-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1579-1505
ExternalDocumentID 10_1007_s13398_020_00992_3
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY19A010012
  funderid: http://dx.doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 11601485
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11971142; 11871202
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
203
2JN
2KG
2LR
2WC
30V
4.4
406
408
8FE
8FG
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AAYIU
AAYQN
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFKRA
AFLOW
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGRSB
GJIRD
GNWQR
GQ6
H13
HCIFZ
HF~
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
L6V
LLZTM
LO0
M4Y
M7S
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P9R
PT4
PTHSS
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-6661ef714b71d1c2e5134eb99207faad0d62982dea6d1c75e30aa0581353c2143
IEDL.DBID U2A
ISSN 1578-7303
IngestDate Fri Jul 25 09:09:55 EDT 2025
Tue Jul 01 04:26:14 EDT 2025
Thu Apr 24 23:12:21 EDT 2025
Fri Feb 21 02:48:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ramanujan constant
Generalized elliptic integral
Convexity
33E05
Monotonicity
33C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6661ef714b71d1c2e5134eb99207faad0d62982dea6d1c75e30aa0581353c2143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6394-1049
PQID 2476157353
PQPubID 1476358
ParticipantIDs proquest_journals_2476157353
crossref_primary_10_1007_s13398_020_00992_3
crossref_citationtrail_10_1007_s13398_020_00992_3
springer_journals_10_1007_s13398_020_00992_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210400
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Milan
PublicationTitle Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
PublicationTitleAbbrev RACSAM
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References OlvermFWJLozierDWBoisvertRFClarkCWNIST Handbook of Mathematical Functions2010CambridgeCambridge University Press1198.00002
BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x
QiFLiW-HA logarithmically completely monotonic function involving the ratio of gamma functionsJ. Appl. Anal. Comput.20155462663433674571447.33002
AlzerHSome beta-function inequalitiesProc. R. Soc. Edinburgh.2003133A4731745200619910.1017/S030821050000264X
YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4
HaiG-JZhaoT-HMonotonicity properties and bounds involving the two-parameter generalized Grötzsch ring functionJ. Inequal. Appl.202020201710.1186/s13660-020-02327-7(Article 66)
YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043
HuangT-RQiuS-LMaX-YMonotonicity properties and inequalities for the generalized elliptic integral of the first kindJ. Math. Anal. Appl.2019469195116385751210.1016/j.jmaa.2018.08.061
AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1964WashingtonU.S. Government Printing Office0171.38503
ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290
YinLHuangL-GWangY-LLinX-LAn inequality for generalized complete elliptic integralJ. Inequal. Appl.201720176373659910.1186/s13660-017-1578-6( Article 303)
YangZ-HTianJ-FWangM-KA positive answer to Bhatia–Li conjecture on the monotonicity for a new mean in its parameterRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.20201143126409544710.1007/s13398-020-00856-w1439.33002
ChenC-PInequalities and asymptotic expansions for the psi function and the Euler–Mascheroni constantJ. Number Theory.2016163596607345958910.1016/j.jnt.2015.10.013
QianW-MHeZ-HChuY-MApproximation for the complete elliptic integral of the first kindRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2020114257404987610.1007/s13398-020-00784-91434.33023
YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discret. Math.2019131240260394805410.2298/AADM171015001Y
Yang, Z.-H.: A new way to prove L’Hospital monotone rules with applications. arXiv:1409.6408 [math.CA]
AndrewsGEAskeyRRoyRSpecial Functions. Encyclopedia of Mathematics and Its Applications1999CambridgeCambridge University Press
GuoB-NQiFMonotonicity of functions connected with the gamma function and the volume of the unit ballIntegral Transforms Spec. Funct.2012239701708296888710.1080/10652469.2011.627511
RichardsKCA note on inequalities for the ratio of zero-balanced hypergeometric functionsProc. Am. Math. Soc. Ser. B201961520394686210.1090/bproc/41
WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.2015429744757334249010.1016/j.jmaa.2015.04.035
HuangT-RHanB-WMaX-YChuY-MOptimal bounds for the generalized Euler–Mascheroni constantJ. Inequal. Appl.201820189380408610.1186/s13660-017-1606-6(Article 118)
AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPac. J. Math.20001921137174103110.2140/pjm.2000.192.1
AndersonGDVamanamurthyMKVuorinenMFunctional inequalities for hypergeometric functions and complete elliptic integralsSIAM J. Math. Anal.199223512524114787510.1137/0523025
YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005
AndersonGDQiuS-LVamanamurthyMKVuorinenMConformal Invariants, Inequalities, and Quasiconformal Maps1997New YorkWiley0885.30012
AlzerHInequalities for the beta functionAnal. Math.2014401111316863810.1007/s10476-014-0101-2
BorweinJMBorweinPBPi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Study in Analytic Number Theory and Computational Complexity; A Wiley-Interscience Publication1987New YorkWiley
ChenC-PSharp inequalities and asymptotic series of a product related to the Euler–Mascheroni constantJ. Number Theory.2016165314323347922610.1016/j.jnt.2016.01.021
QiFBounds for the ratio of two gamma functionsJ. Inequal. Appl.2010Article ID 4930588426110441194.33005
YangZ-HTianJ-FMonotonicity, convexity, and complete monotonicity of two functions related to the gamma functionRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2019113436033617399903710.1007/s13398-019-00719-z
QiuS-LVamanamurthyMKVuorinenMSome inequalities for the growth of elliptic integralsSIAM J. Math. Anal.19982912241237162570310.1137/S0036141096310491
G-J Hai (992_CR15) 2020; 2020
B-N Guo (992_CR12) 2012; 23
T-R Huang (992_CR13) 2018; 2018
T-H Zhao (992_CR31) 2020; 5
Z-H Yang (992_CR29) 2019; 113
FWJ Olverm (992_CR16) 2010
Z-H Yang (992_CR30) 2020; 114
T-R Huang (992_CR14) 2019; 469
L Yin (992_CR25) 2017; 2017
S-L Qiu (992_CR19) 1998; 29
C-P Chen (992_CR10) 2016; 163
GD Anderson (992_CR6) 1992; 23
Z-H Yang (992_CR27) 2019; 48
GD Anderson (992_CR7) 1997
KC Richards (992_CR20) 2019; 6
M Abramowitz (992_CR4) 1964
GD Anderson (992_CR5) 2000; 192
Z-H Yang (992_CR28) 2019; 13
C-P Chen (992_CR11) 2016; 165
JM Borwein (992_CR9) 1987
H Alzer (992_CR2) 2003; 133A
Z-H Yang (992_CR24) 2015; 428
992_CR23
F Qi (992_CR18) 2015; 5
GE Andrews (992_CR1) 1999
Z-H Yang (992_CR26) 2018; 462
M-K Wang (992_CR21) 2015; 429
Á Baricz (992_CR8) 2007; 256
F Qi (992_CR17) 2010; Article ID 4930
H Alzer (992_CR3) 2014; 40
W-M Qian (992_CR22) 2020; 114
References_xml – reference: YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4
– reference: ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290
– reference: BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x
– reference: QiFBounds for the ratio of two gamma functionsJ. Inequal. Appl.2010Article ID 4930588426110441194.33005
– reference: HaiG-JZhaoT-HMonotonicity properties and bounds involving the two-parameter generalized Grötzsch ring functionJ. Inequal. Appl.202020201710.1186/s13660-020-02327-7(Article 66)
– reference: YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043
– reference: ChenC-PSharp inequalities and asymptotic series of a product related to the Euler–Mascheroni constantJ. Number Theory.2016165314323347922610.1016/j.jnt.2016.01.021
– reference: ChenC-PInequalities and asymptotic expansions for the psi function and the Euler–Mascheroni constantJ. Number Theory.2016163596607345958910.1016/j.jnt.2015.10.013
– reference: AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1964WashingtonU.S. Government Printing Office0171.38503
– reference: QiFLiW-HA logarithmically completely monotonic function involving the ratio of gamma functionsJ. Appl. Anal. Comput.20155462663433674571447.33002
– reference: AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPac. J. Math.20001921137174103110.2140/pjm.2000.192.1
– reference: AndrewsGEAskeyRRoyRSpecial Functions. Encyclopedia of Mathematics and Its Applications1999CambridgeCambridge University Press
– reference: AndersonGDQiuS-LVamanamurthyMKVuorinenMConformal Invariants, Inequalities, and Quasiconformal Maps1997New YorkWiley0885.30012
– reference: QianW-MHeZ-HChuY-MApproximation for the complete elliptic integral of the first kindRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2020114257404987610.1007/s13398-020-00784-91434.33023
– reference: HuangT-RHanB-WMaX-YChuY-MOptimal bounds for the generalized Euler–Mascheroni constantJ. Inequal. Appl.201820189380408610.1186/s13660-017-1606-6(Article 118)
– reference: BorweinJMBorweinPBPi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Study in Analytic Number Theory and Computational Complexity; A Wiley-Interscience Publication1987New YorkWiley
– reference: YinLHuangL-GWangY-LLinX-LAn inequality for generalized complete elliptic integralJ. Inequal. Appl.201720176373659910.1186/s13660-017-1578-6( Article 303)
– reference: AlzerHSome beta-function inequalitiesProc. R. Soc. Edinburgh.2003133A4731745200619910.1017/S030821050000264X
– reference: RichardsKCA note on inequalities for the ratio of zero-balanced hypergeometric functionsProc. Am. Math. Soc. Ser. B201961520394686210.1090/bproc/41
– reference: Yang, Z.-H.: A new way to prove L’Hospital monotone rules with applications. arXiv:1409.6408 [math.CA]
– reference: YangZ-HTianJ-FMonotonicity, convexity, and complete monotonicity of two functions related to the gamma functionRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.2019113436033617399903710.1007/s13398-019-00719-z
– reference: YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005
– reference: QiuS-LVamanamurthyMKVuorinenMSome inequalities for the growth of elliptic integralsSIAM J. Math. Anal.19982912241237162570310.1137/S0036141096310491
– reference: WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.2015429744757334249010.1016/j.jmaa.2015.04.035
– reference: AndersonGDVamanamurthyMKVuorinenMFunctional inequalities for hypergeometric functions and complete elliptic integralsSIAM J. Math. Anal.199223512524114787510.1137/0523025
– reference: GuoB-NQiFMonotonicity of functions connected with the gamma function and the volume of the unit ballIntegral Transforms Spec. Funct.2012239701708296888710.1080/10652469.2011.627511
– reference: YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discret. Math.2019131240260394805410.2298/AADM171015001Y
– reference: YangZ-HTianJ-FWangM-KA positive answer to Bhatia–Li conjecture on the monotonicity for a new mean in its parameterRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.20201143126409544710.1007/s13398-020-00856-w1439.33002
– reference: OlvermFWJLozierDWBoisvertRFClarkCWNIST Handbook of Mathematical Functions2010CambridgeCambridge University Press1198.00002
– reference: AlzerHInequalities for the beta functionAnal. Math.2014401111316863810.1007/s10476-014-0101-2
– reference: HuangT-RQiuS-LMaX-YMonotonicity properties and inequalities for the generalized elliptic integral of the first kindJ. Math. Anal. Appl.2019469195116385751210.1016/j.jmaa.2018.08.061
– volume-title: Special Functions. Encyclopedia of Mathematics and Its Applications
  year: 1999
  ident: 992_CR1
– volume: 428
  start-page: 587
  issue: 1
  year: 2015
  ident: 992_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.03.043
– volume: 29
  start-page: 1224
  year: 1998
  ident: 992_CR19
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141096310491
– volume: 5
  start-page: 4512
  issue: 5
  year: 2020
  ident: 992_CR31
  publication-title: AIMS Math.
  doi: 10.3934/math.2020290
– volume: 23
  start-page: 701
  issue: 9
  year: 2012
  ident: 992_CR12
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652469.2011.627511
– volume: 133A
  start-page: 731
  issue: 4
  year: 2003
  ident: 992_CR2
  publication-title: Proc. R. Soc. Edinburgh.
  doi: 10.1017/S030821050000264X
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: 992_CR4
– volume-title: Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Study in Analytic Number Theory and Computational Complexity; A Wiley-Interscience Publication
  year: 1987
  ident: 992_CR9
– volume: 462
  start-page: 1714
  issue: 2
  year: 2018
  ident: 992_CR26
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.03.005
– volume: 256
  start-page: 895
  issue: 4
  year: 2007
  ident: 992_CR8
  publication-title: Math. Z.
  doi: 10.1007/s00209-007-0111-x
– volume: 114
  start-page: 126
  issue: 3
  year: 2020
  ident: 992_CR30
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
  doi: 10.1007/s13398-020-00856-w
– volume: 114
  start-page: 57
  issue: 2
  year: 2020
  ident: 992_CR22
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
  doi: 10.1007/s13398-020-00784-9
– ident: 992_CR23
– volume: 48
  start-page: 91
  issue: 1
  year: 2019
  ident: 992_CR27
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-018-0061-4
– volume: 163
  start-page: 596
  year: 2016
  ident: 992_CR10
  publication-title: J. Number Theory.
  doi: 10.1016/j.jnt.2015.10.013
– volume: 2020
  start-page: 17
  year: 2020
  ident: 992_CR15
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-020-02327-7
– volume: 6
  start-page: 15
  year: 2019
  ident: 992_CR20
  publication-title: Proc. Am. Math. Soc. Ser. B
  doi: 10.1090/bproc/41
– volume: 2018
  start-page: 9
  year: 2018
  ident: 992_CR13
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-017-1606-6
– volume: 40
  start-page: 1
  issue: 1
  year: 2014
  ident: 992_CR3
  publication-title: Anal. Math.
  doi: 10.1007/s10476-014-0101-2
– volume: 469
  start-page: 95
  issue: 1
  year: 2019
  ident: 992_CR14
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.08.061
– volume: 429
  start-page: 744
  year: 2015
  ident: 992_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.04.035
– volume: Article ID 4930
  start-page: 84
  year: 2010
  ident: 992_CR17
  publication-title: J. Inequal. Appl.
– volume: 2017
  start-page: 6
  year: 2017
  ident: 992_CR25
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-017-1578-6
– volume: 113
  start-page: 3603
  issue: 4
  year: 2019
  ident: 992_CR29
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
  doi: 10.1007/s13398-019-00719-z
– volume: 23
  start-page: 512
  year: 1992
  ident: 992_CR6
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0523025
– volume: 192
  start-page: 1
  issue: 1
  year: 2000
  ident: 992_CR5
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.2000.192.1
– volume: 165
  start-page: 314
  year: 2016
  ident: 992_CR11
  publication-title: J. Number Theory.
  doi: 10.1016/j.jnt.2016.01.021
– volume-title: NIST Handbook of Mathematical Functions
  year: 2010
  ident: 992_CR16
– volume: 13
  start-page: 240
  issue: 1
  year: 2019
  ident: 992_CR28
  publication-title: Appl. Anal. Discret. Math.
  doi: 10.2298/AADM171015001Y
– volume-title: Conformal Invariants, Inequalities, and Quasiconformal Maps
  year: 1997
  ident: 992_CR7
– volume: 5
  start-page: 626
  issue: 4
  year: 2015
  ident: 992_CR18
  publication-title: J. Appl. Anal. Comput.
SSID ssj0000314807
Score 2.565707
Snippet In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind K a ( r ) and its approximation log...
In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind Ka(r) and its approximation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Concavity
Convexity
Integrals
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Theoretical
Upper bounds
Title Monotonicity and convexity involving generalized elliptic integral of the first kind
URI https://link.springer.com/article/10.1007/s13398-020-00992-3
https://www.proquest.com/docview/2476157353
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGDuKk4nSMHD4oW2vRH2uOQzaHM0wbzVNI0keHoxFYQ_3pf2nRFUUHopSRN25f3ku8l730BOEcE7SMOVxZOzqnlMRpaPApCSyVRgpdgfsl4M30IJnPvbuEvTFJYXke711uS5UjdJLu5rk4HozoTWsdMutvQ9rXvjlo8p8PNyoomZK_ypB1URwtV2DXZMj8383VGamDmt53RcsIZ78OeQYpkWHVtB7Zk1oXd6YZmNe9Cx1hmTi4MffTlAczQTNeFZrxFgE14lpIysvxd3y0zHI30EgJ5quovP2RKNCcnjhyCGO6IFVkrgq8haonYkDyj234I8_FodjOxzNkJlkCjKiz0ShypmOMlzEkdQaXvuJ5M8IdtpjhP7TSgUUhTyQMsZr50bc5tP9THYAiKIOoIWtk6k8dAHI8KxZWIUld4PBGRLQVDNyRUnt6X5T1wavnFwhCL6_MtVnFDiaxlHqPM41LmsduDq80zLxWtxp-1-3W3xMbE8ph6DNEYw-_twXXdVU3x762d_K_6KexQHcdSRuv0oVW8vskzBCJFMoD28PbxfjQo9e8TMCrT0Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPKgHcVNxOjUHD4oW2vRH2uMQZeq20wa7lTRNZDg6sRXEv96XNl1RVBB6KUnT9r285Evee18AzhFB-4jDlYWTc2p5jIYWj4LQUkmU4CWYXzLejMbBYOo9zPyZSQrL62j32iVZjtRNspvr6nQwqjOhdcykuw4bCAZCHcg1pf3VzoomZK_ypB3sjhZ2Yddky_zczNcZqYGZ3zyj5YRztws7BimSfqXaNqzJrAPboxXNat6BtrHMnFwY-ujLPZigmS4LzXiLAJvwLCVlZPm7vptnOBrpLQTyVNWff8iUaE5OHDkEMdwRC7JUBF9D1ByxIXnGZfs-TO9uJzcDy5ydYAk0qsLCVYkjFXO8hDmpI6j0HdeTCf6wzRTnqZ0GNAppKnmAxcyXrs257Yf6GAxBEUQdQCtbZvIQiONRobgSUeoKjycisqVguAwJlaf9srwLTi2_WBhicX2-xSJuKJG1zGOUeVzKPHa7cLV65qWi1fizdq9WS2xMLI-pxxCNMfzeLlzXqmqKf2_t6H_Vz2BzMBkN4-H9-PEYtqiOaSkjd3rQKl7f5AmCkiI5LfvgJ6q71TA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oBNGDuKk4nZqDB0XLmrRd2uNQx_yJhw12K2l-yHB0w1UQ_3pf2m5TUUHopSRN25eX5Evyvi8Ax4igA8ThxsHBWTk-Z6EjolbomCRK8JI8yBVv7h9a3b5_MwgGn1j8ebT7bEuy4DRYlaY0a06UaS6Ib55nqWHMsqJt_KS3DCvYHVPr133Wnq-yWHH2gjNN0TUddGevZM78XMzX0WkBOb_tkuaDT2cTNkrUSNpFNVdhSac1WL-fS65Oa1AtW-mUnJRS0qdb0MMmO86s-i2CbSJSRfIo8zd7N0yxZ7LLCeSpyD9814pYfU7sRSQpdSRGZGwIvoaYIeJE8oxT-G3od656F12nPEfBkWiRzMEZCtWGUz_hVFHJdEA9Xyf4wy43QihXtVgUMqVFC5N5oD1XCDcI7ZEYkiGg2oFKOk71LhDqM2mEkZHypC8SGblacpyShMa3e7SiDnRmv1iWIuP2rItRvJBHtjaP0eZxbvPYq8PZ_JlJIbHxZ-7GrFrisrlNY-ZzRGYcv7cO57OqWiT_Xtre_7IfwerjZSe-u3643Yc1ZsNb8iCeBlSyl1d9gPgkSw5zF_wAO4vZbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monotonicity+and+convexity+involving+generalized+elliptic+integral+of+the+first+kind&rft.jtitle=Revista+de+la+Real+Academia+de+Ciencias+Exactas%2C+F%C3%ADsicas+y+Naturales.+Serie+A%2C+Matem%C3%A1ticas&rft.au=Zhao%2C+Tie-Hong&rft.au=Wang%2C+Miao-Kun&rft.au=Chu%2C+Yu-Ming&rft.date=2021-04-01&rft.pub=Springer+International+Publishing&rft.issn=1578-7303&rft.eissn=1579-1505&rft.volume=115&rft.issue=2&rft_id=info:doi/10.1007%2Fs13398-020-00992-3&rft.externalDocID=10_1007_s13398_020_00992_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1578-7303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1578-7303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1578-7303&client=summon