Research of image recognition method based on enhanced inception-ResNet-V2
In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separab...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 24; pp. 34345 - 34365 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-022-12387-0 |
Cover
Loading…
Abstract | In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separable convolution to replace the convolution structure in Inception-ResNet-v2 model, which can reduce the amount of model parameters and extract features under different receptive fields. At the same time, this paper establishes channel filtering module based on global information comparison to filter and join channels, which realizes the effective extraction of features. Finally, through data enhancement, batch normalization and learning rate adjustment, the effect of the model used in this paper is better than most other models in each dataset, and the accuracy rate can reach 94.8%. |
---|---|
AbstractList | In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separable convolution to replace the convolution structure in Inception-ResNet-v2 model, which can reduce the amount of model parameters and extract features under different receptive fields. At the same time, this paper establishes channel filtering module based on global information comparison to filter and join channels, which realizes the effective extraction of features. Finally, through data enhancement, batch normalization and learning rate adjustment, the effect of the model used in this paper is better than most other models in each dataset, and the accuracy rate can reach 94.8%. |
Author | Yuan, Xinpan Chen, Qing Liu, Yikun Peng, Cheng |
Author_xml | – sequence: 1 givenname: Cheng surname: Peng fullname: Peng, Cheng organization: School of Computer Science, Hunan University of Technology, School of Automation, Central South University – sequence: 2 givenname: Yikun surname: Liu fullname: Liu, Yikun organization: School of Computer Science, Hunan University of Technology – sequence: 3 givenname: Xinpan orcidid: 0000-0001-9509-0755 surname: Yuan fullname: Yuan, Xinpan email: xpyuanfly@163.com organization: School of Computer Science, Hunan University of Technology – sequence: 4 givenname: Qing surname: Chen fullname: Chen, Qing organization: School of Computer Science, Hunan University of Technology |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqMzSTbZPUrxk6Ig6jUku7Ptlna3JtuD_97UCoIHLzMTeJ_J8EzYqOs7Yuwc4RIBzFVEBCU4CMFRyMJwOGJjzI3kxggcpVkWwE0OeMImMa4AUOdCjdnjC0VyoVpmfZO1G7egLFDVL7p2aPsu29Cw7OvMu0h1lt7ULV1XpblNdbuP8LTgiQb-Lk7ZcePWkc5--pS93d68zu75_PnuYXY955XEcuA6LxSUdekdlIUBj6rUWpXGU-6JpFCFxEYoqoRoyqIWjdaE3iPmuqwVeDllF4e929B_7CgOdtXvQpe-tMKgNibXJk-p4pCqQh9joMZW7eD2Fw_BtWuLYPfm7MGcTebstzkLCRV_0G1IasLn_5A8QDGFuwWF36v-ob4AfD2A7w |
CitedBy_id | crossref_primary_10_3390_life15030327 crossref_primary_10_1016_j_mlwa_2024_100596 crossref_primary_10_1007_s11042_024_19442_y crossref_primary_10_1007_s11042_024_19953_8 crossref_primary_10_1007_s11042_024_18381_y crossref_primary_10_4018_IJSWIS_360653 crossref_primary_10_1109_JSEN_2023_3335613 crossref_primary_10_4081_jae_2025_1772 crossref_primary_10_1016_j_compbiomed_2024_109503 crossref_primary_10_3390_app14010295 crossref_primary_10_3390_photonics10050547 crossref_primary_10_1109_ACCESS_2025_3550423 crossref_primary_10_1155_int_6674913 crossref_primary_10_1016_j_egyr_2024_11_025 crossref_primary_10_1088_2632_2153_adc072 crossref_primary_10_1155_2024_9071328 crossref_primary_10_1016_j_engappai_2025_110241 crossref_primary_10_1007_s10668_023_03568_4 crossref_primary_10_3389_fnins_2024_1466013 crossref_primary_10_1142_S0218126625500367 crossref_primary_10_3390_s22218189 |
Cites_doi | 10.1016/j.cogsys.2019.10.004 10.1016/j.imu.2020.100360 10.1109/TCBB.2020.3003445 10.1371/journal.pone.0232127 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-022-12387-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Proquest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 34365 |
ExternalDocumentID | 10_1007_s11042_022_12387_0 |
GrantInformation_xml | – fundername: Natural Science Foundation of China grantid: No. 61871432, No. 61771492 – fundername: Natural Science Foundation of Hunan Province grantid: No.2020JJ4275, No.2019JJ6008, and No.2019JJ60054 funderid: http://dx.doi.org/10.13039/501100004735 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-658409d9ba09870b14966497be5bee324831f24ec22f98d2f66e1bb11569d40b3 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 22:56:45 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jul 01 04:13:15 EDT 2025 Fri Feb 21 02:45:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Deep learning Feature extraction Convolutional neural network Image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-658409d9ba09870b14966497be5bee324831f24ec22f98d2f66e1bb11569d40b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9509-0755 |
PQID | 2716775675 |
PQPubID | 54626 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2716775675 crossref_citationtrail_10_1007_s11042_022_12387_0 crossref_primary_10_1007_s11042_022_12387_0 springer_journals_10_1007_s11042_022_12387_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR5 CR8 CR19 CR7 McNeely-White, Beveridge, Draper (CR9) 2020; 59 Rahimzadeh, Attar (CR13) 2020; 19 CR17 Guo, Xiongjie, Luo, Changhong (CR2) 2019; 47 CR16 CR15 Shen, Yinglai, Xin, Lan (CR14) 2020; 11 CR12 CR11 Yan, Wang, Wang, Kaining, Yunhan (CR18) 2020; 26 Yu, Jingyu, Yizhuo (CR20) 2020; 39 Kewen, Xinyu (CR6) 2020; 29 He, Wu, Zheng, Wu (CR4) 2020; 41 Hao, Xiaolei, Aihua, Ce, Dongmei (CR3) 2021; 57 Can, Deng, Yang, Zhu (CR1) 2020; 44 Ni, Zou (CR10) 2020; 19 R Guo (12387_CR2) 2019; 47 Z Yan (12387_CR18) 2020; 26 12387_CR12 12387_CR11 L Kewen (12387_CR6) 2020; 29 12387_CR5 H Yu (12387_CR20) 2020; 39 12387_CR7 12387_CR8 M Rahimzadeh (12387_CR13) 2020; 19 D McNeely-White (12387_CR9) 2020; 59 12387_CR16 R Shen (12387_CR14) 2020; 11 12387_CR17 X He (12387_CR4) 2020; 41 L Ni (12387_CR10) 2020; 19 12387_CR15 C Hao (12387_CR3) 2021; 57 S Can (12387_CR1) 2020; 44 12387_CR19 |
References_xml | – volume: 47 start-page: 1216 issue: 08 year: 2019 end-page: 1224 ident: CR2 article-title: Inception ResNet a module and gradient boosting for crowd counting [J] publication-title: J Tongji Univ (Natural Science Edition) – ident: CR19 – volume: 41 start-page: 16 issue: 01 year: 2020 end-page: 21 ident: CR4 article-title: Inception- Resnetv2 for the diagnosis of breast cancer [J] publication-title: Auto Inform Eng – volume: 59 start-page: 312 year: 2020 end-page: 318 ident: CR9 article-title: Inception and ResNet features are (almost) equivalent [J] publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2019.10.004 – volume: 39 start-page: 28 issue: 07 year: 2020 end-page: 34+44 ident: CR20 article-title: Classification of ground objects in hyperspectral images based on multi-level feature SENet and multi-scale wide residuals [J] publication-title: Lab Res Explor – volume: 11 start-page: 181 issue: 07 year: 2020 end-page: 184 ident: CR14 article-title: Method of mushroom classification based on Xception and Resnet50 model [J] publication-title: J Heihe Univ – ident: CR15 – volume: 44 start-page: 33 issue: 09 year: 2020 end-page: 36 ident: CR1 article-title: PCB defect detection based on improved inception-ResNet-v2 [J] publication-title: Inform Technol – ident: CR16 – ident: CR12 – ident: CR17 – volume: 26 start-page: 643 issue: 06 year: 2020 end-page: 647 ident: CR18 article-title: Eval lower limb motor ability based Xception and LSTM [J] publication-title: Chin J Rehab Theory Pract – volume: 29 start-page: 266 issue: 04 year: 2020 end-page: 271 ident: CR6 article-title: Faster R-CNN pedestrian detection model based on SENET [J] publication-title: Comput Syst Appl – volume: 57 start-page: 130 issue: 07 year: 2021 end-page: 135 ident: CR3 article-title: Continuous blood pressure prediction based on convolutional neural network embedded with improved SENET [J] publication-title: Comp Eng Appl – ident: CR11 – ident: CR5 – ident: CR7 – ident: CR8 – volume: 19 start-page: 106 issue: 02 year: 2020 end-page: 111 ident: CR10 article-title: Improved Xception for animal species identification based on SE module [J] publication-title: Navigation Control – volume: 19 start-page: 100360 year: 2020 ident: CR13 article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2[J] publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100360 – volume: 19 start-page: 100360 year: 2020 ident: 12387_CR13 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100360 – volume: 26 start-page: 643 issue: 06 year: 2020 ident: 12387_CR18 publication-title: Chin J Rehab Theory Pract – ident: 12387_CR17 – ident: 12387_CR19 – ident: 12387_CR15 – volume: 19 start-page: 106 issue: 02 year: 2020 ident: 12387_CR10 publication-title: Navigation Control – ident: 12387_CR12 – ident: 12387_CR11 – volume: 59 start-page: 312 year: 2020 ident: 12387_CR9 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2019.10.004 – volume: 57 start-page: 130 issue: 07 year: 2021 ident: 12387_CR3 publication-title: Comp Eng Appl – ident: 12387_CR5 – volume: 29 start-page: 266 issue: 04 year: 2020 ident: 12387_CR6 publication-title: Comput Syst Appl – ident: 12387_CR8 – ident: 12387_CR7 doi: 10.1109/TCBB.2020.3003445 – volume: 39 start-page: 28 issue: 07 year: 2020 ident: 12387_CR20 publication-title: Lab Res Explor – volume: 44 start-page: 33 issue: 09 year: 2020 ident: 12387_CR1 publication-title: Inform Technol – volume: 11 start-page: 181 issue: 07 year: 2020 ident: 12387_CR14 publication-title: J Heihe Univ – volume: 41 start-page: 16 issue: 01 year: 2020 ident: 12387_CR4 publication-title: Auto Inform Eng – volume: 47 start-page: 1216 issue: 08 year: 2019 ident: 12387_CR2 publication-title: J Tongji Univ (Natural Science Edition) – ident: 12387_CR16 doi: 10.1371/journal.pone.0232127 |
SSID | ssj0016524 |
Score | 2.4862337 |
Snippet | In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 34345 |
SubjectTerms | 1168: Deep Pattern Discovery for Big Multimedia Data Accuracy Algorithms Artificial neural networks Breast cancer Classification Comparative studies Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Feature extraction Image classification Image enhancement Multimedia Multimedia Information Systems Neural networks Object recognition Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDDwKCAKBXlgAwvHdZx4QghRqkp0oqhbFDu2qARJoeH_c06cBpDoGCX2cL7HF993dwhdShsyZSglmZaSQITWRMlQE-4YCtZyZUNXO_w0EaMpH8_Cmb9wW3paZeMTK0edFdrdkd8wAPZRFAK-vV18EDc1ymVX_QiNTbQVQKRxGh4PH1dZBBH6obYxJRAZA180U5fOBa4wxXHZwXeDodHfgalFm38SpFXcGe6jXQ8Y8V19wgdow-RdtNcMY8DeNrto50dnwUM0bhh1uLB4_g5OA6-oQkWO67nR2IWwDMOzyV8rJgCe557mQmCDiSnJCztC0-HD8_2I-LEJRIM9lcRhCiozqVIqwRoV_AMJwWWkTKiMAQAVDwLLuNGMWRlnzAphAqUAGgqZcaoGx6iTF7k5QZjq1Crrsp9Kcp1GsRIqzQyzsIjbQdxDQSOzRPue4m60xVvSdkN2ck5Azkkl54T20NVqzaLuqLH2635zFIm3rmXS6kIPXTfH077-f7fT9budoW1WaYTj6vVRp_z8MueAOUp1USnWN80w0K4 priority: 102 providerName: ProQuest |
Title | Research of image recognition method based on enhanced inception-ResNet-V2 |
URI | https://link.springer.com/article/10.1007/s11042-022-12387-0 https://www.proquest.com/docview/2716775675 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e9EHP6bidI48-KaBNkvT5nHKNpk4RJzMp7K0CQ60E1f_fy9duqqo4FMJTe7hkvvifncHcCpNwJT2PJomUlK00AlVMkgotwgFY7gyga0dvhmJqzEfToKJKwpblGj3MiVZaOqq2M23pSQWfY7aFkUDA_V6gLG7fddj1l3lDkTgRtlGHkV76LtSmZ9pfDVHlY_5LS1aWJv-Dmw5N5F0l_e6C2s6a8B2OYKBOIlswOanfoJ7MCxxdGRuyOwFVQVZAYTmGVlOiybWcKUE1zp7KvL_ZJY5cAtFAiOd0we2D-N-7_7yirphCTRBKcqp9SQ8mUo19STKoMLIRwguQ6UDpTW6TVHHN4zrhDEjo5QZIbSvFDqEQqbcU50DqGXzTB8C8ZKpUcbmPJXkyTSMlFDTVDODh7jpRE3wS57FieskbgdaPMdVD2TL5xj5HBd8jr0mnK3OvC77aPy5u1VeRexkahEzDO3CMMAIpwnn5fVUv3-ndvS_7cewwYoXYhF7Lajlb-_6BD2PXLVhPeoP2lDvDh6ve_i96I1u79rF8_sAQG_Rfw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8R45gAniEjTtGsOCCFgjNdOG-JWljQRk6AbMIT4U_xGnD42QIIbx6qND84X26k_2wDb0gZcGcZooqWk6KE1VTLQVDiGgrVC2cDVDl83w0ZbXNwGt2PwUdbCOFplaRMzQ530tPtHvs8xsK_VAoxvD_tP1E2NctnVcoRGDotL8_6GV7aXg_MT3N8dzuunreMGLaYKUI1wG1DncplMpOowvG8zhVeEMBSypkygjMH4IvI9y4XRnFsZJdyGofGUwsgplIlgyke54zAhfF86CmFUPxtmLcKgGKIbMYqe2CuKdPJSPc8VwjjuPPoKPNjsuyMcRbc_ErKZn6vPwUwRoJKjHFHzMGbSBZgthz-QwhYswPSXToaLcFEy-EjPku4jGikypCb1UpLPqSbOZSYEn016nzEPSDctaDUUBTTNgN7wJWj_i0KXoZL2UrMChOmOVdZlW5UUulOLVKg6ieEWFwnrR1XwSp3Fuuhh7kZpPMSj7stOzzHqOc70HLMq7A7X9PMOHn9-vV5uRVyc5pd4hL0q7JXbM3r9u7TVv6VtwWSjdX0VX503L9dgimfocDzBdagMnl_NBsY7A7WZgYzA3X-j-hNCvQwN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4SAgOPAaI8cwBThCRZn3lgBACxmMwcQDErSxpIiZBN9gQ4q_x63DadAMkuHGs2vjgfLGd-rMNsClMwKVmjKZKCIoeWlEpAkV9y1AwxpcmsLXDl83w9MY_vwvuRuCjrIWxtMrSJuaGOu0o-498l2NgH0UBxre7xtEiro7q-91naidI2UxrOU6jgEhDv7_h9a23d3aEe73Fef34-vCUugkDVCH0-tS6XyZSIVsM795M4nUhDH0RSR1IrTHWiGue4b5WnBsRp9yEofakxCgqFKnPZA3ljsJ4VIuZnZ4Q108GGYwwcAN1Y0bRK3uuYKco2_NsUYzl0aPfwEPOvjvFYaT7Izmb-7z6LEy7YJUcFOiagxGdVWCmHARBnF2owNSXrobzcF6y-UjHkPYTGiwyoCl1MlLMrCbWfaYEn3X2kLMQSDtzFBuKApq6T2_5Atz8i0IXYSzrZHoJCFMtI43NvErhq1YUy1C2Us0NLvJNLa6CV-osUa6fuR2r8ZgMOzFbPSeo5yTXc8KqsD1Y0y26efz59Wq5FYk72b1kiMMq7JTbM3z9u7Tlv6VtwATiObk4azZWYJLn4LCUwVUY67-86jUMffpyPccYgfv_BvUnzmQQOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+of+image+recognition+method+based+on+enhanced+inception-ResNet-V2&rft.jtitle=Multimedia+tools+and+applications&rft.au=Peng%2C+Cheng&rft.au=Liu%2C+Yikun&rft.au=Yuan%2C+Xinpan&rft.au=Chen%2C+Qing&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=24&rft.spage=34345&rft.epage=34365&rft_id=info:doi/10.1007%2Fs11042-022-12387-0&rft.externalDocID=10_1007_s11042_022_12387_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |