Research of image recognition method based on enhanced inception-ResNet-V2

In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separab...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 24; pp. 34345 - 34365
Main Authors Peng, Cheng, Liu, Yikun, Yuan, Xinpan, Chen, Qing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-022-12387-0

Cover

Loading…
Abstract In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separable convolution to replace the convolution structure in Inception-ResNet-v2 model, which can reduce the amount of model parameters and extract features under different receptive fields. At the same time, this paper establishes channel filtering module based on global information comparison to filter and join channels, which realizes the effective extraction of features. Finally, through data enhancement, batch normalization and learning rate adjustment, the effect of the model used in this paper is better than most other models in each dataset, and the accuracy rate can reach 94.8%.
AbstractList In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separable convolution to replace the convolution structure in Inception-ResNet-v2 model, which can reduce the amount of model parameters and extract features under different receptive fields. At the same time, this paper establishes channel filtering module based on global information comparison to filter and join channels, which realizes the effective extraction of features. Finally, through data enhancement, batch normalization and learning rate adjustment, the effect of the model used in this paper is better than most other models in each dataset, and the accuracy rate can reach 94.8%.
Author Yuan, Xinpan
Chen, Qing
Liu, Yikun
Peng, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Peng
  fullname: Peng, Cheng
  organization: School of Computer Science, Hunan University of Technology, School of Automation, Central South University
– sequence: 2
  givenname: Yikun
  surname: Liu
  fullname: Liu, Yikun
  organization: School of Computer Science, Hunan University of Technology
– sequence: 3
  givenname: Xinpan
  orcidid: 0000-0001-9509-0755
  surname: Yuan
  fullname: Yuan, Xinpan
  email: xpyuanfly@163.com
  organization: School of Computer Science, Hunan University of Technology
– sequence: 4
  givenname: Qing
  surname: Chen
  fullname: Chen, Qing
  organization: School of Computer Science, Hunan University of Technology
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqMzSTbZPUrxk6Ig6jUku7Ptlna3JtuD_97UCoIHLzMTeJ_J8EzYqOs7Yuwc4RIBzFVEBCU4CMFRyMJwOGJjzI3kxggcpVkWwE0OeMImMa4AUOdCjdnjC0VyoVpmfZO1G7egLFDVL7p2aPsu29Cw7OvMu0h1lt7ULV1XpblNdbuP8LTgiQb-Lk7ZcePWkc5--pS93d68zu75_PnuYXY955XEcuA6LxSUdekdlIUBj6rUWpXGU-6JpFCFxEYoqoRoyqIWjdaE3iPmuqwVeDllF4e929B_7CgOdtXvQpe-tMKgNibXJk-p4pCqQh9joMZW7eD2Fw_BtWuLYPfm7MGcTebstzkLCRV_0G1IasLn_5A8QDGFuwWF36v-ob4AfD2A7w
CitedBy_id crossref_primary_10_3390_life15030327
crossref_primary_10_1016_j_mlwa_2024_100596
crossref_primary_10_1007_s11042_024_19442_y
crossref_primary_10_1007_s11042_024_19953_8
crossref_primary_10_1007_s11042_024_18381_y
crossref_primary_10_4018_IJSWIS_360653
crossref_primary_10_1109_JSEN_2023_3335613
crossref_primary_10_4081_jae_2025_1772
crossref_primary_10_1016_j_compbiomed_2024_109503
crossref_primary_10_3390_app14010295
crossref_primary_10_3390_photonics10050547
crossref_primary_10_1109_ACCESS_2025_3550423
crossref_primary_10_1155_int_6674913
crossref_primary_10_1016_j_egyr_2024_11_025
crossref_primary_10_1088_2632_2153_adc072
crossref_primary_10_1155_2024_9071328
crossref_primary_10_1016_j_engappai_2025_110241
crossref_primary_10_1007_s10668_023_03568_4
crossref_primary_10_3389_fnins_2024_1466013
crossref_primary_10_1142_S0218126625500367
crossref_primary_10_3390_s22218189
Cites_doi 10.1016/j.cogsys.2019.10.004
10.1016/j.imu.2020.100360
10.1109/TCBB.2020.3003445
10.1371/journal.pone.0232127
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-022-12387-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Proquest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 34365
ExternalDocumentID 10_1007_s11042_022_12387_0
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: No. 61871432, No. 61771492
– fundername: Natural Science Foundation of Hunan Province
  grantid: No.2020JJ4275, No.2019JJ6008, and No.2019JJ60054
  funderid: http://dx.doi.org/10.13039/501100004735
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-658409d9ba09870b14966497be5bee324831f24ec22f98d2f66e1bb11569d40b3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 22:56:45 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Tue Jul 01 04:13:15 EDT 2025
Fri Feb 21 02:45:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Deep learning
Feature extraction
Convolutional neural network
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-658409d9ba09870b14966497be5bee324831f24ec22f98d2f66e1bb11569d40b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9509-0755
PQID 2716775675
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_2716775675
crossref_citationtrail_10_1007_s11042_022_12387_0
crossref_primary_10_1007_s11042_022_12387_0
springer_journals_10_1007_s11042_022_12387_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR5
CR8
CR19
CR7
McNeely-White, Beveridge, Draper (CR9) 2020; 59
Rahimzadeh, Attar (CR13) 2020; 19
CR17
Guo, Xiongjie, Luo, Changhong (CR2) 2019; 47
CR16
CR15
Shen, Yinglai, Xin, Lan (CR14) 2020; 11
CR12
CR11
Yan, Wang, Wang, Kaining, Yunhan (CR18) 2020; 26
Yu, Jingyu, Yizhuo (CR20) 2020; 39
Kewen, Xinyu (CR6) 2020; 29
He, Wu, Zheng, Wu (CR4) 2020; 41
Hao, Xiaolei, Aihua, Ce, Dongmei (CR3) 2021; 57
Can, Deng, Yang, Zhu (CR1) 2020; 44
Ni, Zou (CR10) 2020; 19
R Guo (12387_CR2) 2019; 47
Z Yan (12387_CR18) 2020; 26
12387_CR12
12387_CR11
L Kewen (12387_CR6) 2020; 29
12387_CR5
H Yu (12387_CR20) 2020; 39
12387_CR7
12387_CR8
M Rahimzadeh (12387_CR13) 2020; 19
D McNeely-White (12387_CR9) 2020; 59
12387_CR16
R Shen (12387_CR14) 2020; 11
12387_CR17
X He (12387_CR4) 2020; 41
L Ni (12387_CR10) 2020; 19
12387_CR15
C Hao (12387_CR3) 2021; 57
S Can (12387_CR1) 2020; 44
12387_CR19
References_xml – volume: 47
  start-page: 1216
  issue: 08
  year: 2019
  end-page: 1224
  ident: CR2
  article-title: Inception ResNet a module and gradient boosting for crowd counting [J]
  publication-title: J Tongji Univ (Natural Science Edition)
– ident: CR19
– volume: 41
  start-page: 16
  issue: 01
  year: 2020
  end-page: 21
  ident: CR4
  article-title: Inception- Resnetv2 for the diagnosis of breast cancer [J]
  publication-title: Auto Inform Eng
– volume: 59
  start-page: 312
  year: 2020
  end-page: 318
  ident: CR9
  article-title: Inception and ResNet features are (almost) equivalent [J]
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2019.10.004
– volume: 39
  start-page: 28
  issue: 07
  year: 2020
  end-page: 34+44
  ident: CR20
  article-title: Classification of ground objects in hyperspectral images based on multi-level feature SENet and multi-scale wide residuals [J]
  publication-title: Lab Res Explor
– volume: 11
  start-page: 181
  issue: 07
  year: 2020
  end-page: 184
  ident: CR14
  article-title: Method of mushroom classification based on Xception and Resnet50 model [J]
  publication-title: J Heihe Univ
– ident: CR15
– volume: 44
  start-page: 33
  issue: 09
  year: 2020
  end-page: 36
  ident: CR1
  article-title: PCB defect detection based on improved inception-ResNet-v2 [J]
  publication-title: Inform Technol
– ident: CR16
– ident: CR12
– ident: CR17
– volume: 26
  start-page: 643
  issue: 06
  year: 2020
  end-page: 647
  ident: CR18
  article-title: Eval lower limb motor ability based Xception and LSTM [J]
  publication-title: Chin J Rehab Theory Pract
– volume: 29
  start-page: 266
  issue: 04
  year: 2020
  end-page: 271
  ident: CR6
  article-title: Faster R-CNN pedestrian detection model based on SENET [J]
  publication-title: Comput Syst Appl
– volume: 57
  start-page: 130
  issue: 07
  year: 2021
  end-page: 135
  ident: CR3
  article-title: Continuous blood pressure prediction based on convolutional neural network embedded with improved SENET [J]
  publication-title: Comp Eng Appl
– ident: CR11
– ident: CR5
– ident: CR7
– ident: CR8
– volume: 19
  start-page: 106
  issue: 02
  year: 2020
  end-page: 111
  ident: CR10
  article-title: Improved Xception for animal species identification based on SE module [J]
  publication-title: Navigation Control
– volume: 19
  start-page: 100360
  year: 2020
  ident: CR13
  article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2[J]
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100360
– volume: 19
  start-page: 100360
  year: 2020
  ident: 12387_CR13
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100360
– volume: 26
  start-page: 643
  issue: 06
  year: 2020
  ident: 12387_CR18
  publication-title: Chin J Rehab Theory Pract
– ident: 12387_CR17
– ident: 12387_CR19
– ident: 12387_CR15
– volume: 19
  start-page: 106
  issue: 02
  year: 2020
  ident: 12387_CR10
  publication-title: Navigation Control
– ident: 12387_CR12
– ident: 12387_CR11
– volume: 59
  start-page: 312
  year: 2020
  ident: 12387_CR9
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2019.10.004
– volume: 57
  start-page: 130
  issue: 07
  year: 2021
  ident: 12387_CR3
  publication-title: Comp Eng Appl
– ident: 12387_CR5
– volume: 29
  start-page: 266
  issue: 04
  year: 2020
  ident: 12387_CR6
  publication-title: Comput Syst Appl
– ident: 12387_CR8
– ident: 12387_CR7
  doi: 10.1109/TCBB.2020.3003445
– volume: 39
  start-page: 28
  issue: 07
  year: 2020
  ident: 12387_CR20
  publication-title: Lab Res Explor
– volume: 44
  start-page: 33
  issue: 09
  year: 2020
  ident: 12387_CR1
  publication-title: Inform Technol
– volume: 11
  start-page: 181
  issue: 07
  year: 2020
  ident: 12387_CR14
  publication-title: J Heihe Univ
– volume: 41
  start-page: 16
  issue: 01
  year: 2020
  ident: 12387_CR4
  publication-title: Auto Inform Eng
– volume: 47
  start-page: 1216
  issue: 08
  year: 2019
  ident: 12387_CR2
  publication-title: J Tongji Univ (Natural Science Edition)
– ident: 12387_CR16
  doi: 10.1371/journal.pone.0232127
SSID ssj0016524
Score 2.4862337
Snippet In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34345
SubjectTerms 1168: Deep Pattern Discovery for Big Multimedia Data
Accuracy
Algorithms
Artificial neural networks
Breast cancer
Classification
Comparative studies
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Feature extraction
Image classification
Image enhancement
Multimedia
Multimedia Information Systems
Neural networks
Object recognition
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDDwKCAKBXlgAwvHdZx4QghRqkp0oqhbFDu2qARJoeH_c06cBpDoGCX2cL7HF993dwhdShsyZSglmZaSQITWRMlQE-4YCtZyZUNXO_w0EaMpH8_Cmb9wW3paZeMTK0edFdrdkd8wAPZRFAK-vV18EDc1ymVX_QiNTbQVQKRxGh4PH1dZBBH6obYxJRAZA180U5fOBa4wxXHZwXeDodHfgalFm38SpFXcGe6jXQ8Y8V19wgdow-RdtNcMY8DeNrto50dnwUM0bhh1uLB4_g5OA6-oQkWO67nR2IWwDMOzyV8rJgCe557mQmCDiSnJCztC0-HD8_2I-LEJRIM9lcRhCiozqVIqwRoV_AMJwWWkTKiMAQAVDwLLuNGMWRlnzAphAqUAGgqZcaoGx6iTF7k5QZjq1Crrsp9Kcp1GsRIqzQyzsIjbQdxDQSOzRPue4m60xVvSdkN2ck5Azkkl54T20NVqzaLuqLH2635zFIm3rmXS6kIPXTfH077-f7fT9budoW1WaYTj6vVRp_z8MueAOUp1USnWN80w0K4
  priority: 102
  providerName: ProQuest
Title Research of image recognition method based on enhanced inception-ResNet-V2
URI https://link.springer.com/article/10.1007/s11042-022-12387-0
https://www.proquest.com/docview/2716775675
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e9EHP6bidI48-KaBNkvT5nHKNpk4RJzMp7K0CQ60E1f_fy9duqqo4FMJTe7hkvvifncHcCpNwJT2PJomUlK00AlVMkgotwgFY7gyga0dvhmJqzEfToKJKwpblGj3MiVZaOqq2M23pSQWfY7aFkUDA_V6gLG7fddj1l3lDkTgRtlGHkV76LtSmZ9pfDVHlY_5LS1aWJv-Dmw5N5F0l_e6C2s6a8B2OYKBOIlswOanfoJ7MCxxdGRuyOwFVQVZAYTmGVlOiybWcKUE1zp7KvL_ZJY5cAtFAiOd0we2D-N-7_7yirphCTRBKcqp9SQ8mUo19STKoMLIRwguQ6UDpTW6TVHHN4zrhDEjo5QZIbSvFDqEQqbcU50DqGXzTB8C8ZKpUcbmPJXkyTSMlFDTVDODh7jpRE3wS57FieskbgdaPMdVD2TL5xj5HBd8jr0mnK3OvC77aPy5u1VeRexkahEzDO3CMMAIpwnn5fVUv3-ndvS_7cewwYoXYhF7Lajlb-_6BD2PXLVhPeoP2lDvDh6ve_i96I1u79rF8_sAQG_Rfw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8R45gAniEjTtGsOCCFgjNdOG-JWljQRk6AbMIT4U_xGnD42QIIbx6qND84X26k_2wDb0gZcGcZooqWk6KE1VTLQVDiGgrVC2cDVDl83w0ZbXNwGt2PwUdbCOFplaRMzQ530tPtHvs8xsK_VAoxvD_tP1E2NctnVcoRGDotL8_6GV7aXg_MT3N8dzuunreMGLaYKUI1wG1DncplMpOowvG8zhVeEMBSypkygjMH4IvI9y4XRnFsZJdyGofGUwsgplIlgyke54zAhfF86CmFUPxtmLcKgGKIbMYqe2CuKdPJSPc8VwjjuPPoKPNjsuyMcRbc_ErKZn6vPwUwRoJKjHFHzMGbSBZgthz-QwhYswPSXToaLcFEy-EjPku4jGikypCb1UpLPqSbOZSYEn016nzEPSDctaDUUBTTNgN7wJWj_i0KXoZL2UrMChOmOVdZlW5UUulOLVKg6ieEWFwnrR1XwSp3Fuuhh7kZpPMSj7stOzzHqOc70HLMq7A7X9PMOHn9-vV5uRVyc5pd4hL0q7JXbM3r9u7TVv6VtwWSjdX0VX503L9dgimfocDzBdagMnl_NBsY7A7WZgYzA3X-j-hNCvQwN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4SAgOPAaI8cwBThCRZn3lgBACxmMwcQDErSxpIiZBN9gQ4q_x63DadAMkuHGs2vjgfLGd-rMNsClMwKVmjKZKCIoeWlEpAkV9y1AwxpcmsLXDl83w9MY_vwvuRuCjrIWxtMrSJuaGOu0o-498l2NgH0UBxre7xtEiro7q-91naidI2UxrOU6jgEhDv7_h9a23d3aEe73Fef34-vCUugkDVCH0-tS6XyZSIVsM795M4nUhDH0RSR1IrTHWiGue4b5WnBsRp9yEofakxCgqFKnPZA3ljsJ4VIuZnZ4Q108GGYwwcAN1Y0bRK3uuYKco2_NsUYzl0aPfwEPOvjvFYaT7Izmb-7z6LEy7YJUcFOiagxGdVWCmHARBnF2owNSXrobzcF6y-UjHkPYTGiwyoCl1MlLMrCbWfaYEn3X2kLMQSDtzFBuKApq6T2_5Atz8i0IXYSzrZHoJCFMtI43NvErhq1YUy1C2Us0NLvJNLa6CV-osUa6fuR2r8ZgMOzFbPSeo5yTXc8KqsD1Y0y26efz59Wq5FYk72b1kiMMq7JTbM3z9u7Tlv6VtwATiObk4azZWYJLn4LCUwVUY67-86jUMffpyPccYgfv_BvUnzmQQOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+of+image+recognition+method+based+on+enhanced+inception-ResNet-V2&rft.jtitle=Multimedia+tools+and+applications&rft.au=Peng%2C+Cheng&rft.au=Liu%2C+Yikun&rft.au=Yuan%2C+Xinpan&rft.au=Chen%2C+Qing&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=24&rft.spage=34345&rft.epage=34365&rft_id=info:doi/10.1007%2Fs11042-022-12387-0&rft.externalDocID=10_1007_s11042_022_12387_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon