Research of image recognition method based on enhanced inception-ResNet-V2

In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separab...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 24; pp. 34345 - 34365
Main Authors Peng, Cheng, Liu, Yikun, Yuan, Xinpan, Chen, Qing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to improve the accuracy of CNN (convolutional neural network) in image classification, an enhanced Inception-ResNet-v2 model based on CNN is designed through the comparative study and analysis of the structure of classification model. This paper proposes to use multi-scale depthwise separable convolution to replace the convolution structure in Inception-ResNet-v2 model, which can reduce the amount of model parameters and extract features under different receptive fields. At the same time, this paper establishes channel filtering module based on global information comparison to filter and join channels, which realizes the effective extraction of features. Finally, through data enhancement, batch normalization and learning rate adjustment, the effect of the model used in this paper is better than most other models in each dataset, and the accuracy rate can reach 94.8%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-022-12387-0