Recurrent Quantification Analysis-Based Emotion Classification in Stroke Using Electroencephalogram Signals
Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogra...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 46; no. 10; pp. 9573 - 9588 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-567X 1319-8025 2191-4281 |
DOI | 10.1007/s13369-021-05369-1 |
Cover
Abstract | Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogram (EEG) signals. EEG signals are collected from 19 each subject of LBD, RBD, and normal control (NC) at a sampling rate of 128 Hz. The IIR Bandpass filter and amplitude thresholding methods are used to reduce noise and artifacts' effects, respectively. Discrete Wavelet Packet Transform is used to extract five EEG frequency bands (alpha, beta, gamma, alpha to gamma, and beta to gamma). A set of nonlinear features are extracted from five different EEG frequency ranges using recurrent quantification analysis. Finally, the extracted features are mapped to six corresponding emotions using three nonlinear classifiers (K nearest neighbor, probabilistic neural network, and random forest). The experimental results indicate that LBD subjects have severe emotional impairment than RBD. The mean of diagonal line length (<
L
>), recurrence rate, and maximum mean diagonal length (
L
max
) feature give maximum classification rate of 85.24% NC, 79.54%, and 79.09% using RF classifier compared to other features. The alpha to gamma (13–49 Hz) band helps identify Stroke emotional state changes compared to other frequency bands. |
---|---|
AbstractList | Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogram (EEG) signals. EEG signals are collected from 19 each subject of LBD, RBD, and normal control (NC) at a sampling rate of 128 Hz. The IIR Bandpass filter and amplitude thresholding methods are used to reduce noise and artifacts' effects, respectively. Discrete Wavelet Packet Transform is used to extract five EEG frequency bands (alpha, beta, gamma, alpha to gamma, and beta to gamma). A set of nonlinear features are extracted from five different EEG frequency ranges using recurrent quantification analysis. Finally, the extracted features are mapped to six corresponding emotions using three nonlinear classifiers (K nearest neighbor, probabilistic neural network, and random forest). The experimental results indicate that LBD subjects have severe emotional impairment than RBD. The mean of diagonal line length (<
L
>), recurrence rate, and maximum mean diagonal length (
L
max
) feature give maximum classification rate of 85.24% NC, 79.54%, and 79.09% using RF classifier compared to other features. The alpha to gamma (13–49 Hz) band helps identify Stroke emotional state changes compared to other frequency bands. Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogram (EEG) signals. EEG signals are collected from 19 each subject of LBD, RBD, and normal control (NC) at a sampling rate of 128 Hz. The IIR Bandpass filter and amplitude thresholding methods are used to reduce noise and artifacts' effects, respectively. Discrete Wavelet Packet Transform is used to extract five EEG frequency bands (alpha, beta, gamma, alpha to gamma, and beta to gamma). A set of nonlinear features are extracted from five different EEG frequency ranges using recurrent quantification analysis. Finally, the extracted features are mapped to six corresponding emotions using three nonlinear classifiers (K nearest neighbor, probabilistic neural network, and random forest). The experimental results indicate that LBD subjects have severe emotional impairment than RBD. The mean of diagonal line length (< L >), recurrence rate, and maximum mean diagonal length (Lmax) feature give maximum classification rate of 85.24% NC, 79.54%, and 79.09% using RF classifier compared to other features. The alpha to gamma (13–49 Hz) band helps identify Stroke emotional state changes compared to other frequency bands. |
Author | Khairunizam, Wan Zheng, Bong Siao Murugappan, M. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-5839-4589 surname: Murugappan fullname: Murugappan, M. email: m.murugappan@gmail.com, m.murugappan@kcst.edu.kw organization: Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (KCST) (A Private University) – sequence: 2 givenname: Bong Siao surname: Zheng fullname: Zheng, Bong Siao organization: School of Mechatronics Engineering, Universiti Malaysia Perlis (UniMAP) – sequence: 3 givenname: Wan surname: Khairunizam fullname: Khairunizam, Wan organization: School of Mechatronics Engineering, Universiti Malaysia Perlis (UniMAP) |
BookMark | eNp9kM1LwzAYxoNMcM79A54Knqv5aJL2OMf8gIHoHHgLaZrOuC6ZSXvYf2_WioIHT-8Hz-_hfZ9zMLLOagAuEbxGEPKbgAhhRQoxSiE9dugEjDEqUJrhHI36nqSU8bczMA3BlDDLSUERImOwfdGq817bNnnupG1NbZRsjbPJzMrmEExIb2XQVbLYuX49b2S0-FEZm6xa77Y6WQdjN8mi0SrO2iq9f5eN23i5S1ZmE83CBTitY9HT7zoB67vF6_whXT7dP85ny1QRVLQpo5BqwiAvJed1xRnDDGW50piRAklGy1JWLIO44AVWHCrIKq4Yo4rRGlaMTMDV4Lv37rPToRUfrvPHCwSmHGOKIMujKh9UyrsQvK6FMm3_VOulaQSC4piuGNIVMV3RpytQRPEfdO_NTvrD_xAZoBDFdqP971X_UF8Q74-Q |
CitedBy_id | crossref_primary_10_1007_s13369_023_07927_1 crossref_primary_10_1016_j_cmpb_2022_106646 crossref_primary_10_1007_s11571_023_09968_6 crossref_primary_10_3390_brainsci12121626 crossref_primary_10_1007_s11571_021_09735_5 crossref_primary_10_1007_s12559_024_10361_6 crossref_primary_10_1016_j_bspc_2023_105454 |
Cites_doi | 10.3390/bransci9110326 10.1016/j.bandc.2014.01.017 10.1016/j.bbe.2018.07.001 10.1016/j.jstrokecerebrovasdis.2015.07.025 10.1109/ICACSIS.2016.7872780 10.1186/cc11230 10.1016/j.physa.2004.05.081 10.1145/3383972.3384035 10.1109/ICICI-BME.2015.7401312 10.1109/CSPA48992.2020.9068709 10.1109/ROMAN.2017.8172372 10.33588/rn.6905.2019047 10.1155/2017/1045039 10.1177/2055668318789280 10.1016/S0254-6272(13)60073-4 10.1109/ICASSDA.2018.8477601 10.1080/02687040143000069 10.1063/1.5023857 10.3934/Neuroscience.2018.4.221 10.1016/j.bbe.2017.05.004 10.17485/ijst/2015/v8i28/70797 10.1007/s12311-020-01121-x 10.5853/jos.2016.01144 10.1016/j.jstrokecerebrovasdis.2019.05.019 10.1159/000504292 10.1037/emo0000180 10.1016/j.ijpsycho.2014.07.014 10.1155/2016/2582478 10.1023/A:1010933404324 10.5013/IJSSST.a.19.03.02 10.1063/1.5096691 10.1080/02699931.2014.924484 10.1109/EMBC.2015.7319766 10.3390/s20010059 10.1016/j.procs.2018.04.056 10.15171/icnj.2018.26 10.1002/9780471740360.ebs1355 10.1016/j.eswa.2014.03.050 10.1055/s-0037-1608859 10.1080/00207454.2019.1634070 10.1186/1475-925X-13-S2-S4 10.1177/2396987320918132 10.1007/978-3-319-63645-0_50 10.1152/jappl.1994.76.2.965 10.1080/10641960600549173 10.3390/e19060222 10.1145/2503713.2503738 10.1007/978-3-319-10978-7_8 10.1088/0967-3334/30/1/003 10.1007/s11571-018-9477-1 10.1088/0967-3334/32/8/010 10.1016/j.bspc.2017.03.016 10.1089/neu.2014.3557 10.1007/s00521-015-2149-8 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2021 King Fahd University of Petroleum & Minerals 2021. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2021 – notice: King Fahd University of Petroleum & Minerals 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-021-05369-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 9588 |
ExternalDocumentID | 10_1007_s13369_021_05369_1 |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c319t-6505e3607ba77fd76626148ce26391a65bbad64029792c70c06d7c665c65f0d63 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 09:16:40 EDT 2025 Tue Jul 01 01:34:16 EDT 2025 Thu Apr 24 23:12:39 EDT 2025 Fri Feb 21 02:47:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Stroke Machine learning algorithms Nonlinear feature extraction Emotion classification Wavelet packet transform |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-6505e3607ba77fd76626148ce26391a65bbad64029792c70c06d7c665c65f0d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5839-4589 |
PQID | 2572251068 |
PQPubID | 2044268 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2572251068 crossref_citationtrail_10_1007_s13369_021_05369_1 crossref_primary_10_1007_s13369_021_05369_1 springer_journals_10_1007_s13369_021_05369_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | VaidSSinghPKaurCClassification of human emotions using multiwavelet transform based features and random forest techniqueIndian J. Sci. Technol.201582810.17485/ijst/2015/v8i28/70797 Murugappan, M.; Waheed, A.; Ali, B.; Sai, S.; Wan, K.; Bibin, S.; Wen, Y.: Emotion classification in parkinson's disease EEG using RQA and ELM. In: 16th IEEE Colloquium on Signal Processing, (CSPA), pp. 290–295 (2020) Yu-XuanYZhong-KeGXin-MinWYan-LiLA recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEGChaos20182808572410.1063/1.5023857 BongSZWanKMurugappanMIbrahimNMRajamanickamYMohamadKImplementation of wavelet packet transform and nonlinear analysis for emotion classification in Stroke patient using brain signalsBiomed. Signal Process. Control20173610211210.1016/j.bspc.2017.03.016 ForemanBClaassenJQuantitative EEG for the detection of brain ischemiaCrit. Care201216221610.1186/cc11230 JiYCSastraKWRahmaPOsmalinaNELM (extreme learning machine) method for detecting ischemic stroke using conventional and specific asymmetry BSI (brain Symmetry Index) features based on EEG signalsAIP Conf. Proc.201910.1063/1.5096691 Mäki-MarttunenVKuusinenVBrauseMPeräkyläJPolvivaaraMRibeiroRDÖhmanJHartikainenKMEnhanced attention capture by emotional stimuli in mild traumatic brain injuryJ. Neurotrauma201532427227910.1089/neu.2014.3557 JavorkaMTurianikovaZTonhajzerovaIJavorkaKBaumertMThe effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamicsPhysiol. Meas.2008301294110.1088/0967-3334/30/1/003 Endang, P.G.; Muhamad, I.F.; Aniati, M.A.: Ischemic stroke identification based on EEG and EOG using 1D convolutional neural network and batch normalization. In: International Conference on Advanced Computer Science and Information Systems (2016). https://doi.org/10.1109/ICACSIS.2016.7872780 RahavendraURajendra AcharyaUHojjatAArtificial intelligence techniques for automated diagnosis of neurological disordersEur. Neurol.20198241–64201910.1159/000504292 Segal, M.R.: Machine Learning Benchmarks and Random Forest Regression. Retrieved August 26, 2016, from http://escholarship.org/uc/item/35x3v9t4 (2004) RajamanikamYMurugappanMNorlinahMIKennethSMohd IqbalOKhairiyahMPalaniappanROptimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's diseaseInt. J. Psychophysiol.201494348249510.1016/j.ijpsycho.2014.07.014 Chen, Z.; Dan, W.: Applying deep learning for decoding of EEG and BFV about ischemic stroke patients and visualizations. In: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 89–95. https://doi.org/10.1145/3383972.3384035 (2020) MurugappanMNagarajanRS Yaacob, Combining spatial filtering and wavelet transform for classifying human emotions usingEEG Signals20113514551 HongZZhenhuaWJiamingZChenYEEG emotion classification using an improved sincnet-based deep learning modelBrain Sci.201910.3390/bransci9110326 Sastra, K.; Wijaya Cholid, B.; Jusuf, M., et. al.: Electroencephalography (EEG) for detecting acute ischemic stroke. In: 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). https://doi.org/10.1109/ICICI-BME.2015.7401312 (2015) LalHDetecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approachCogn. Neurodyn.20181227129410.1007/s11571-018-9477-1 WHO: Stroke in Malaysia and Kuwait. Retrieved August 25 (2017) NasehiSPourghassemHAn optimal EEG-based Emotion recognition algorithm using Gabor FeaturesWSEAS Trans. Signal Process.201288799 JeanMAFabienneSLaureBSandrineGJulienBEmotional disturbances after strokeClin. Exp. Hypertens.20062824324910.1080/10641960600549173 Xiyuan, H., Olga, S.: Emotion- enabled Haptic-based serious game for post Stroke rehabilitation. In: Proceedings of the 9th ACM Symposium on Virtual Reality Software and Technology, pp. 31–34 (2013). https://doi.org/10.1145/2503713.2503738 KarowCMMarquardtTPMarshallRCAffective processing in left and right hemisphere brain-damaged subjects with and without subcortical involvementAphasiology200115871572910.1080/02687040143000069 RajamanickamYMurugappanMNorlinahMISundarajKKhairiyahMReview of emotion recognition in stroke patientsDement. Geriatr. Cogn. Disord.2013363–4179196 NoorK-QMohannadKSSawalHBMASitiAAKarlGElectroencephalogram profiles for emotion identification over the brain regions using spectral, entropy and temporal biomarkersSensors2019205912110.3390/s20010059 GalinaVPMichaelSANonlinear EEG parameters of emotional perception in patients moderate traumatic brain injury, coma. Stroke and schizophreniaAIMS Neurosci.20185422123510.3934/Neuroscience.2018.4.221 ChenWWangYCaoMuGChenGGuQA random forest model based classification scheme for neonatal amplitude-integrated EEGBioMed. Eng. OnLine201413Suppl 211310.1186/1475-925X-13-S2-S4 Bajaj, V.; Pachori, R.B.: Detection of human emotions using features based on the multiwavelet transform of EEG signals. In: Brain–Computer Interfaces Intelligent Systems Reference Library, pp. 215–240 (2014) GuoRWangYYanJYanHRecurrence quantification analysis on pulse morphological changes in patients with coronary heart diseaseJ. Tradit. Chin. Med.201232457157710.1016/S0254-6272(13)60073-4 MainAPaxtonADaleRAn exploratory analysis of emotion dynamics between mothers and adolescents during conflict discussionsEmotion201616691392810.1037/emo0000180 JosephZCharlesLWRecurrence quantification analysisWiley Encycl. Biomed. Eng.200610.1002/9780471740360.ebs1355 Morteza, Z.; Keivan, S.; Seyed, K.S.; Ali, M.N.: Emotion classification through nonlinear EEG analysis using machine learning methods. Int. Clin. Neurosci. J. 5(4), 135–149 (2018) JaccentraDATissaWAndrewHDianaPAnnukkaKLThe perception of positive and negative facial expressions by unilateral Stroke patientsBrain Cogn.201486425410.1016/j.bandc.2014.01.017 DaimiSNSahaGClassification of emotions induced by music videos and correlation with participants' ratingExpert Syst. Appl.201441136057606510.1016/j.eswa.2014.03.050 Candra, H.; Yuwono, M.; Handojoseno, A.; Chai, R.; Su, S.; Nguyen, H.T.: Recognizing emotions from EEG subbands using wavelet analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–4 (2015) Bong, S.Z.; Wan, K.; Murugappan, M.; Shahriman, A.B.; Zuradman, M.R.; Zunaidi, I.; Chong, W.Y.: Effectiveness of tuned Q-factor wavelet transform in emotion recognition among left-brain damaged stroke patients. Int. J. Simul. Syst. Sci. Technol. (2019). https://doi.org/10.5013/IJSSST.a.19.03.02 JosephZWebberCLEmbedding's and delays as derived from quantification of recurrence plotsPhys. Lett. A19921713–4199203 HugoPAYaelDRJhannaMAVisserMJacobaMSImpaired emotion recognition after left hemispheric stroke: a case report and brief review of the literatureNeurol. Med. Case Rep.201710.1155/2017/1045039 BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324 NilsSVDBRientsBHJacobaMSGert-JanLEdward, H.F.de Hann,Impairments in emotion recognition and risk-taking behavior after isolated, cerebellar strokeThe Cerenellum20201941942510.1007/s12311-020-01121-x JongKPost-stroke mood, emotional disturbances: pharmacological therapy based on mechanismsJ. Stroke201618324425510.5853/jos.2016.01144 MohebbiMGhassemianHPrediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signalPhysiol. Meas.20113281147116210.1088/0967-3334/32/8/010 JosephZMitchellJCGiulianiAColosimoAMarwanNWebberCLSingular hydrophobicity patterns and net charge: a mesoscopic principle for protein aggregation/foldingPhysica A Stat. Mech. Appl.200434334835810.1016/j.physa.2004.05.081 SchmidtLJBelopolskyAVTheeuwesJAttentional capture by signals of threatCognit. Emot.201429468769410.1080/02699931.2014.924484 CarolinaBTCamilaALLuciaCCNeurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interfaceJ. Rehab. Assist. Technol. Eng.201851–12201810.1177/2055668318789280 Marco- Garcia, S.; Ferrer-Quintero, M.; Usall, J.; Ochoa, S.; del Cacho, N.; Huerta-Ramos, E.: Facial emotion recognition in neurological disorders:a narrative review. Rev. Neurol. 69(5), 207–219 (2019). https://doi.org/10.33588/rn.6905.2019047. Navya Sri, M.; Rajeshwara Rao, R.; Daveedu Raju, A.; Ramakrishna Murty, M.M, et. al.: Robust features for emotion recognition from speech by using Gaussian mixture model classification. In: International Conference on Information and Communication Technology for Intelligent Systems, vol 2, pp. 437–444 (2017). MohammadiZFrounchiJAmiriMWavelet-based emotion recognition system using EEG signalNeural Comput. Appl.20162881985199010.1007/s00521-015-2149-8 MonISMandeepSDevelopment of a real time emotion classifier based on evoked EEGBiocybern. Biomed. Eng.201710.1016/j.bbe.2017.05.004 LaurenSArshdeepKChistopherBElectroencephalography measures are useful for identifying large acute ischemic Stroke in Emergency DepartmentJournal of Stroke Cerebrovascular Disease20192882280228610.1016/j.jstrokecerebrovasdis.2019.05.019 MunazaRSumaDLearning-based classification of valence emotion from electroencephalographyInt. J. Neurosci.201910.1080/00207454.2019.1634070 Tao, X.; Yun, Z.; Zi, W.; Yixin, P.: Learning emotions EEG-based recognition and brain activity: a survey study on BCI for intelligent tutoring system. In: International Conference on Ambient Systems, Networks, and Technologies, Procedia Computer Science, vol. 130, pp. 376–382 (2018) GoshvarpourAAbbasiAGoshvarpourARecurrence quantification analysis and neural networks for emotional EEG classificationAppl. Med. Inform.20163811324 AzizZALeeYYNgahBASidekNNLooiIHanipMRBasriHBAcute stroke registry Malaysia, 2010–2014: results from the National Neurology RegistryJ. Stroke Cerebrovasc. Dis.201524122701270910.101 5369_CR38 U Rahavendra (5369_CR49) 2019; 82 CM Karow (5369_CR5) 2001; 15 VP Galina (5369_CR47) 2018; 5 MA Jean (5369_CR8) 2006; 28 L Wang (5369_CR44) 2017; 19 5369_CR32 YC Ji (5369_CR27) 2019 Y Yu-Xuan (5369_CR50) 2018; 28 B Foreman (5369_CR22) 2012; 16 Z Joseph (5369_CR53) 2004; 343 Z Mohammadi (5369_CR14) 2016; 28 5369_CR25 A Goshvarpour (5369_CR29) 2016; 38 SVDB Nils (5369_CR36) 2020; 19 M Murugappan (5369_CR40) 2011; 35 H Lal (5369_CR45) 2018; 12 Z Hong (5369_CR51) 2019 5369_CR60 S Lauren (5369_CR24) 2019; 28 L Shuang (5369_CR26) 2016 5369_CR1 CT Donna (5369_CR37) 2018; 39 5369_CR4 ZA Aziz (5369_CR2) 2015; 24 5369_CR3 5369_CR6 PA Hugo (5369_CR10) 2017 5369_CR21 5369_CR7 Mi Sadaf (5369_CR33) 2018 K-Q Noor (5369_CR46) 2019; 20 M Mohebbi (5369_CR48) 2011; 32 5369_CR61 DA Jaccentra (5369_CR35) 2014; 86 5369_CR18 S Vaid (5369_CR43) 2015; 8 5369_CR17 5369_CR15 IS Mon (5369_CR34) 2017 Z Hanieh (5369_CR39) 2018; 17 Z Joseph (5369_CR54) 2006 K Jong (5369_CR9) 2016; 18 L Breiman (5369_CR55) 2001; 45 Y Rajamanickam (5369_CR23) 2013; 36 A Main (5369_CR31) 2016; 16 5369_CR12 CL Webber Jr (5369_CR52) 1994; 76 5369_CR56 5369_CR13 M Javorka (5369_CR63) 2008; 30 V Mäki-Marttunen (5369_CR58) 2015; 32 S Nasehi (5369_CR41) 2012; 8 R Guo (5369_CR30) 2012; 32 SZ Bong (5369_CR20) 2017; 36 Z Joseph (5369_CR28) 1992; 171 BT Carolina (5369_CR62) 2018; 5 W Chen (5369_CR57) 2014; 13 Y Rajamanikam (5369_CR19) 2014; 94 PA Hugo (5369_CR11) 2020 SN Daimi (5369_CR42) 2014; 41 R Munaza (5369_CR16) 2019 LJ Schmidt (5369_CR59) 2014; 29 |
References_xml | – reference: Xiyuan, H., Olga, S.: Emotion- enabled Haptic-based serious game for post Stroke rehabilitation. In: Proceedings of the 9th ACM Symposium on Virtual Reality Software and Technology, pp. 31–34 (2013). https://doi.org/10.1145/2503713.2503738 – reference: LaurenSArshdeepKChistopherBElectroencephalography measures are useful for identifying large acute ischemic Stroke in Emergency DepartmentJournal of Stroke Cerebrovascular Disease20192882280228610.1016/j.jstrokecerebrovasdis.2019.05.019 – reference: AzizZALeeYYNgahBASidekNNLooiIHanipMRBasriHBAcute stroke registry Malaysia, 2010–2014: results from the National Neurology RegistryJ. Stroke Cerebrovasc. Dis.201524122701270910.1016/j.jstrokecerebrovasdis.2015.07.025 – reference: Murugappan, M.; Waheed, A.; Ali, B.; Sai, S.; Wan, K.; Bibin, S.; Wen, Y.: Emotion classification in parkinson's disease EEG using RQA and ELM. In: 16th IEEE Colloquium on Signal Processing, (CSPA), pp. 290–295 (2020) – reference: Marco- Garcia, S.; Ferrer-Quintero, M.; Usall, J.; Ochoa, S.; del Cacho, N.; Huerta-Ramos, E.: Facial emotion recognition in neurological disorders:a narrative review. Rev. Neurol. 69(5), 207–219 (2019). https://doi.org/10.33588/rn.6905.2019047. – reference: Chen, Z.; Dan, W.: Applying deep learning for decoding of EEG and BFV about ischemic stroke patients and visualizations. In: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 89–95. https://doi.org/10.1145/3383972.3384035 (2020) – reference: JosephZWebberCLEmbedding's and delays as derived from quantification of recurrence plotsPhys. Lett. A19921713–4199203 – reference: NilsSVDBRientsBHJacobaMSGert-JanLEdward, H.F.de Hann,Impairments in emotion recognition and risk-taking behavior after isolated, cerebellar strokeThe Cerenellum20201941942510.1007/s12311-020-01121-x – reference: JaccentraDATissaWAndrewHDianaPAnnukkaKLThe perception of positive and negative facial expressions by unilateral Stroke patientsBrain Cogn.201486425410.1016/j.bandc.2014.01.017 – reference: HugoPAJohannaMAVisserMGeertJBPaulLMJacobaMSHigh occurrence of impaired emotion recognition after ischemic strokeStroke J. Eur.202010.1177/2396987320918132 – reference: Morteza, Z.; Keivan, S.; Seyed, K.S.; Ali, M.N.: Emotion classification through nonlinear EEG analysis using machine learning methods. Int. Clin. Neurosci. J. 5(4), 135–149 (2018) – reference: RahavendraURajendra AcharyaUHojjatAArtificial intelligence techniques for automated diagnosis of neurological disordersEur. Neurol.20198241–64201910.1159/000504292 – reference: ChenWWangYCaoMuGChenGGuQA random forest model based classification scheme for neonatal amplitude-integrated EEGBioMed. Eng. OnLine201413Suppl 211310.1186/1475-925X-13-S2-S4 – reference: DonnaCTBrittanyRGKenichiOYesseniaGEunHKImpaired recognition of emotional face after stroke involving right amygdala or insulaSemin. Speech Lang.2018391879910.1055/s-0037-1608859 – reference: JiYCSastraKWRahmaPOsmalinaNELM (extreme learning machine) method for detecting ischemic stroke using conventional and specific asymmetry BSI (brain Symmetry Index) features based on EEG signalsAIP Conf. Proc.201910.1063/1.5096691 – reference: JavorkaMTurianikovaZTonhajzerovaIJavorkaKBaumertMThe effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamicsPhysiol. Meas.2008301294110.1088/0967-3334/30/1/003 – reference: Tao, X.; Yun, Z.; Zi, W.; Yixin, P.: Learning emotions EEG-based recognition and brain activity: a survey study on BCI for intelligent tutoring system. In: International Conference on Ambient Systems, Networks, and Technologies, Procedia Computer Science, vol. 130, pp. 376–382 (2018) – reference: VaidSSinghPKaurCClassification of human emotions using multiwavelet transform based features and random forest techniqueIndian J. Sci. Technol.201582810.17485/ijst/2015/v8i28/70797 – reference: Luka, K.; Mladen, R.; Marjan, S.: Emotion classification using linear predictive features on wavelet-decomposed EEG data. In: 26th IEEE International Symposium on Robot and Human Interactive Communication (RO_MAN) (2017). https://doi.org/10.1109/ROMAN.2017.8172372 – reference: HaniehZHassanFA new feature extraction method to improve emotion detection using EEG signalsElectron. Lett. Comput. Vis. Image Anal.20181712944 – reference: Candra, H.; Yuwono, M.; Handojoseno, A.; Chai, R.; Su, S.; Nguyen, H.T.: Recognizing emotions from EEG subbands using wavelet analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–4 (2015) – reference: GoshvarpourAAbbasiAGoshvarpourARecurrence quantification analysis and neural networks for emotional EEG classificationAppl. Med. Inform.20163811324 – reference: MohammadiZFrounchiJAmiriMWavelet-based emotion recognition system using EEG signalNeural Comput. Appl.20162881985199010.1007/s00521-015-2149-8 – reference: WebberCLJrWebberCLJrJ. P.Dynamical assessment of physiological systems and states using recurrence plot strategiesJ. Appl. Physiol.199476296597310.1152/jappl.1994.76.2.965 – reference: Yu-XuanYZhong-KeGXin-MinWYan-LiLA recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEGChaos20182808572410.1063/1.5023857 – reference: BongSZWanKMurugappanMIbrahimNMRajamanickamYMohamadKImplementation of wavelet packet transform and nonlinear analysis for emotion classification in Stroke patient using brain signalsBiomed. Signal Process. Control20173610211210.1016/j.bspc.2017.03.016 – reference: WHO: Stroke in Malaysia and Kuwait. Retrieved August 25 (2017) – reference: Bajaj, V.; Pachori, R.B.: Detection of human emotions using features based on the multiwavelet transform of EEG signals. In: Brain–Computer Interfaces Intelligent Systems Reference Library, pp. 215–240 (2014) – reference: RajamanikamYMurugappanMNorlinahMIKennethSMohd IqbalOKhairiyahMPalaniappanROptimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's diseaseInt. J. Psychophysiol.201494348249510.1016/j.ijpsycho.2014.07.014 – reference: CarolinaBTCamilaALLuciaCCNeurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interfaceJ. Rehab. Assist. Technol. Eng.201851–12201810.1177/2055668318789280 – reference: SchmidtLJBelopolskyAVTheeuwesJAttentional capture by signals of threatCognit. Emot.201429468769410.1080/02699931.2014.924484 – reference: Endang, P.G.; Muhamad, I.F.; Aniati, M.A.: Ischemic stroke identification based on EEG and EOG using 1D convolutional neural network and batch normalization. In: International Conference on Advanced Computer Science and Information Systems (2016). https://doi.org/10.1109/ICACSIS.2016.7872780 – reference: MohebbiMGhassemianHPrediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signalPhysiol. Meas.20113281147116210.1088/0967-3334/32/8/010 – reference: JosephZMitchellJCGiulianiAColosimoAMarwanNWebberCLSingular hydrophobicity patterns and net charge: a mesoscopic principle for protein aggregation/foldingPhysica A Stat. Mech. Appl.200434334835810.1016/j.physa.2004.05.081 – reference: Bong, S.Z.; Wan, K.; Murugappan, M.; Shahriman, A.B.; Zuradman, M.R.; Zunaidi, I.; Chong, W.Y.: Effectiveness of tuned Q-factor wavelet transform in emotion recognition among left-brain damaged stroke patients. Int. J. Simul. Syst. Sci. Technol. (2019). https://doi.org/10.5013/IJSSST.a.19.03.02 – reference: NasehiSPourghassemHAn optimal EEG-based Emotion recognition algorithm using Gabor FeaturesWSEAS Trans. Signal Process.201288799 – reference: KarowCMMarquardtTPMarshallRCAffective processing in left and right hemisphere brain-damaged subjects with and without subcortical involvementAphasiology200115871572910.1080/02687040143000069 – reference: MainAPaxtonADaleRAn exploratory analysis of emotion dynamics between mothers and adolescents during conflict discussionsEmotion201616691392810.1037/emo0000180 – reference: Segal, M.R.: Machine Learning Benchmarks and Random Forest Regression. Retrieved August 26, 2016, from http://escholarship.org/uc/item/35x3v9t4 (2004) – reference: MurugappanMNagarajanRS Yaacob, Combining spatial filtering and wavelet transform for classifying human emotions usingEEG Signals20113514551 – reference: NoorK-QMohannadKSSawalHBMASitiAAKarlGElectroencephalogram profiles for emotion identification over the brain regions using spectral, entropy and temporal biomarkersSensors2019205912110.3390/s20010059 – reference: BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324 – reference: DaimiSNSahaGClassification of emotions induced by music videos and correlation with participants' ratingExpert Syst. Appl.201441136057606510.1016/j.eswa.2014.03.050 – reference: GalinaVPMichaelSANonlinear EEG parameters of emotional perception in patients moderate traumatic brain injury, coma. Stroke and schizophreniaAIMS Neurosci.20185422123510.3934/Neuroscience.2018.4.221 – reference: HugoPAYaelDRJhannaMAVisserMJacobaMSImpaired emotion recognition after left hemispheric stroke: a case report and brief review of the literatureNeurol. Med. Case Rep.201710.1155/2017/1045039 – reference: JosephZCharlesLWRecurrence quantification analysisWiley Encycl. Biomed. Eng.200610.1002/9780471740360.ebs1355 – reference: JongKPost-stroke mood, emotional disturbances: pharmacological therapy based on mechanismsJ. Stroke201618324425510.5853/jos.2016.01144 – reference: WangLXueWLiYLuoMHuangJCuiWHuangCAutomatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysisEntropy201719622210.3390/e19060222 – reference: Navya Sri, M.; Rajeshwara Rao, R.; Daveedu Raju, A.; Ramakrishna Murty, M.M, et. al.: Robust features for emotion recognition from speech by using Gaussian mixture model classification. In: International Conference on Information and Communication Technology for Intelligent Systems, vol 2, pp. 437–444 (2017). – reference: JeanMAFabienneSLaureBSandrineGJulienBEmotional disturbances after strokeClin. Exp. Hypertens.20062824324910.1080/10641960600549173 – reference: HongZZhenhuaWJiamingZChenYEEG emotion classification using an improved sincnet-based deep learning modelBrain Sci.201910.3390/bransci9110326 – reference: SadafMiNaderJDKeivanMModeling the 2D space of emotions based on the Poincare plot of heart rate variability signalsBiocybern. Biomed. Eng.201810.1016/j.bbe.2018.07.001 – reference: ForemanBClaassenJQuantitative EEG for the detection of brain ischemiaCrit. Care201216221610.1186/cc11230 – reference: LalHDetecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approachCogn. Neurodyn.20181227129410.1007/s11571-018-9477-1 – reference: RajamanickamYMurugappanMNorlinahMISundarajKKhairiyahMReview of emotion recognition in stroke patientsDement. Geriatr. Cogn. Disord.2013363–4179196 – reference: Sastra, K.; Wijaya Cholid, B.; Jusuf, M., et. al.: Electroencephalography (EEG) for detecting acute ischemic stroke. In: 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). https://doi.org/10.1109/ICICI-BME.2015.7401312 (2015) – reference: ShuangLJieGJiayuanMAbnormal EEG complexity and functional connectivity of brain in patients with acute thalamic ischemic strokeComputational and Mathematical Methods in Medicine2016351533910.1155/2016/25824781358.92056 – reference: MonISMandeepSDevelopment of a real time emotion classifier based on evoked EEGBiocybern. Biomed. Eng.201710.1016/j.bbe.2017.05.004 – reference: Chong, W, Wan, Mohammad, I O, Murugappan M, Bong, S Z, Shahriman AB, Zuradman M R, I Zunaidi, Y, Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients. In: 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA) (2018). https://doi.org/10.1109/ICASSDA.2018.8477601 – reference: Arooj, A..Q.; Canxiu, Z.; Rong, Z.; Ahmed, E.H.: Ischemic stroke detection using EEG signals. In: Proceedings of the 28th Annual International Conference on Computer Science and Software Engineering, pp. 301–308 (2018) – reference: GuoRWangYYanJYanHRecurrence quantification analysis on pulse morphological changes in patients with coronary heart diseaseJ. Tradit. Chin. Med.201232457157710.1016/S0254-6272(13)60073-4 – reference: Mäki-MarttunenVKuusinenVBrauseMPeräkyläJPolvivaaraMRibeiroRDÖhmanJHartikainenKMEnhanced attention capture by emotional stimuli in mild traumatic brain injuryJ. Neurotrauma201532427227910.1089/neu.2014.3557 – reference: MunazaRSumaDLearning-based classification of valence emotion from electroencephalographyInt. J. Neurosci.201910.1080/00207454.2019.1634070 – year: 2019 ident: 5369_CR51 publication-title: Brain Sci. doi: 10.3390/bransci9110326 – volume: 86 start-page: 42 year: 2014 ident: 5369_CR35 publication-title: Brain Cogn. doi: 10.1016/j.bandc.2014.01.017 – year: 2018 ident: 5369_CR33 publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.07.001 – volume: 24 start-page: 2701 issue: 12 year: 2015 ident: 5369_CR2 publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2015.07.025 – ident: 5369_CR7 doi: 10.1109/ICACSIS.2016.7872780 – volume: 16 start-page: 216 issue: 2 year: 2012 ident: 5369_CR22 publication-title: Crit. Care doi: 10.1186/cc11230 – volume: 343 start-page: 348 year: 2004 ident: 5369_CR53 publication-title: Physica A Stat. Mech. Appl. doi: 10.1016/j.physa.2004.05.081 – ident: 5369_CR3 – ident: 5369_CR6 doi: 10.1145/3383972.3384035 – ident: 5369_CR4 doi: 10.1109/ICICI-BME.2015.7401312 – ident: 5369_CR21 doi: 10.1109/CSPA48992.2020.9068709 – volume: 38 start-page: 13 issue: 1 year: 2016 ident: 5369_CR29 publication-title: Appl. Med. Inform. – ident: 5369_CR18 doi: 10.1109/ROMAN.2017.8172372 – ident: 5369_CR38 doi: 10.33588/rn.6905.2019047 – year: 2017 ident: 5369_CR10 publication-title: Neurol. Med. Case Rep. doi: 10.1155/2017/1045039 – volume: 5 start-page: 2018 issue: 1–12 year: 2018 ident: 5369_CR62 publication-title: J. Rehab. Assist. Technol. Eng. doi: 10.1177/2055668318789280 – volume: 32 start-page: 571 issue: 4 year: 2012 ident: 5369_CR30 publication-title: J. Tradit. Chin. Med. doi: 10.1016/S0254-6272(13)60073-4 – ident: 5369_CR56 – ident: 5369_CR61 doi: 10.1109/ICASSDA.2018.8477601 – volume: 15 start-page: 715 issue: 8 year: 2001 ident: 5369_CR5 publication-title: Aphasiology doi: 10.1080/02687040143000069 – volume: 28 start-page: 085724 year: 2018 ident: 5369_CR50 publication-title: Chaos doi: 10.1063/1.5023857 – volume: 5 start-page: 221 issue: 4 year: 2018 ident: 5369_CR47 publication-title: AIMS Neurosci. doi: 10.3934/Neuroscience.2018.4.221 – year: 2017 ident: 5369_CR34 publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2017.05.004 – volume: 8 start-page: 28 year: 2015 ident: 5369_CR43 publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2015/v8i28/70797 – volume: 19 start-page: 419 year: 2020 ident: 5369_CR36 publication-title: The Cerenellum doi: 10.1007/s12311-020-01121-x – volume: 18 start-page: 244 issue: 3 year: 2016 ident: 5369_CR9 publication-title: J. Stroke doi: 10.5853/jos.2016.01144 – volume: 28 start-page: 2280 issue: 8 year: 2019 ident: 5369_CR24 publication-title: Journal of Stroke Cerebrovascular Disease doi: 10.1016/j.jstrokecerebrovasdis.2019.05.019 – volume: 82 start-page: 2019 issue: 41–64 year: 2019 ident: 5369_CR49 publication-title: Eur. Neurol. doi: 10.1159/000504292 – volume: 16 start-page: 913 issue: 6 year: 2016 ident: 5369_CR31 publication-title: Emotion doi: 10.1037/emo0000180 – volume: 94 start-page: 482 issue: 3 year: 2014 ident: 5369_CR19 publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.07.014 – year: 2016 ident: 5369_CR26 publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2016/2582478 – volume: 36 start-page: 179 issue: 3–4 year: 2013 ident: 5369_CR23 publication-title: Dement. Geriatr. Cogn. Disord. – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 5369_CR55 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: 5369_CR25 doi: 10.5013/IJSSST.a.19.03.02 – year: 2019 ident: 5369_CR27 publication-title: AIP Conf. Proc. doi: 10.1063/1.5096691 – volume: 29 start-page: 687 issue: 4 year: 2014 ident: 5369_CR59 publication-title: Cognit. Emot. doi: 10.1080/02699931.2014.924484 – ident: 5369_CR13 doi: 10.1109/EMBC.2015.7319766 – volume: 20 start-page: 1 issue: 59 year: 2019 ident: 5369_CR46 publication-title: Sensors doi: 10.3390/s20010059 – ident: 5369_CR32 doi: 10.1016/j.procs.2018.04.056 – ident: 5369_CR17 doi: 10.15171/icnj.2018.26 – volume: 17 start-page: 29 issue: 1 year: 2018 ident: 5369_CR39 publication-title: Electron. Lett. Comput. Vis. Image Anal. – year: 2006 ident: 5369_CR54 publication-title: Wiley Encycl. Biomed. Eng. doi: 10.1002/9780471740360.ebs1355 – volume: 171 start-page: 199 issue: 3–4 year: 1992 ident: 5369_CR28 publication-title: Phys. Lett. A – volume: 41 start-page: 6057 issue: 13 year: 2014 ident: 5369_CR42 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.050 – volume: 39 start-page: 87 issue: 1 year: 2018 ident: 5369_CR37 publication-title: Semin. Speech Lang. doi: 10.1055/s-0037-1608859 – year: 2019 ident: 5369_CR16 publication-title: Int. J. Neurosci. doi: 10.1080/00207454.2019.1634070 – ident: 5369_CR1 – volume: 35 start-page: 45 issue: 1 year: 2011 ident: 5369_CR40 publication-title: EEG Signals – volume: 13 start-page: 1 issue: Suppl 2 year: 2014 ident: 5369_CR57 publication-title: BioMed. Eng. OnLine doi: 10.1186/1475-925X-13-S2-S4 – year: 2020 ident: 5369_CR11 publication-title: Stroke J. Eur. doi: 10.1177/2396987320918132 – ident: 5369_CR15 doi: 10.1007/978-3-319-63645-0_50 – volume: 76 start-page: 965 issue: 2 year: 1994 ident: 5369_CR52 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1994.76.2.965 – volume: 28 start-page: 243 year: 2006 ident: 5369_CR8 publication-title: Clin. Exp. Hypertens. doi: 10.1080/10641960600549173 – volume: 19 start-page: 222 issue: 6 year: 2017 ident: 5369_CR44 publication-title: Entropy doi: 10.3390/e19060222 – ident: 5369_CR60 doi: 10.1145/2503713.2503738 – ident: 5369_CR12 doi: 10.1007/978-3-319-10978-7_8 – volume: 30 start-page: 29 issue: 1 year: 2008 ident: 5369_CR63 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/1/003 – volume: 12 start-page: 271 year: 2018 ident: 5369_CR45 publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-018-9477-1 – volume: 32 start-page: 11471162 issue: 8 year: 2011 ident: 5369_CR48 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/32/8/010 – volume: 36 start-page: 102 year: 2017 ident: 5369_CR20 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.03.016 – volume: 8 start-page: 87 year: 2012 ident: 5369_CR41 publication-title: WSEAS Trans. Signal Process. – volume: 32 start-page: 272 issue: 4 year: 2015 ident: 5369_CR58 publication-title: J. Neurotrauma doi: 10.1089/neu.2014.3557 – volume: 28 start-page: 1985 issue: 8 year: 2016 ident: 5369_CR14 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2149-8 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.2879126 |
Snippet | Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9573 |
SubjectTerms | Bandpass filters Brain damage Classification Classifiers Electroencephalography Emotional factors Emotions Engineering Feature extraction Frequencies Frequency ranges Humanities and Social Sciences IIR filters multidisciplinary Neural networks Noise reduction Research Article-Electrical Engineering Science Wavelet transforms |
Title | Recurrent Quantification Analysis-Based Emotion Classification in Stroke Using Electroencephalogram Signals |
URI | https://link.springer.com/article/10.1007/s13369-021-05369-1 https://www.proquest.com/docview/2572251068 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFOElmoP3MJW9q53tz4mkFIhFQnaitysfditVUiiNLnwz_h3zHrXr9IgysWynI3leL6dV2a-QegtKxizOkpJkRacJEcmJikAiXArqEq1o6J0Cf3Tz-LkIvk047PB4Fenammz1ofm5519Jf8jVbgGcnVdsveQbHNTuADnIF84goTh-E8y_uqS5RW90peN8lU_Xp411QiZgJGyo6mf1eMnYLarSje9d7Vw5RlVxmDqR-K4vb68UhWZ9Y_RWXnpKJa7Tux4pRxTecM64SoV6_Ygl4fPW45D58A6499JOIBoN5dqufSZ19PDNnWde70zceOPzkq1aIzBlSpXG9cxWoH3WwB0yFXQuKl66-cqR9uovEDrgQZlhAs58waqvgaBLvWzXWq1HTKXAZ5RRwmn3E9HCQY95X5w4B_GIgrN04yJlLinBYUEZ3FrGpuCxZbc2S3OYHFWLc4g8N6lUroKgd3x5MPkuFZmCXie4MyyNuEHjjitJho3PzE0cflWzttP0XeU2ujn1h_2lR90_gQ9DgEMHns0PkWDfP4MPerQWj5H1w0ucR-XuI9LHHCJ-7jE5Rx7XOIKl_guXOKAyxfo4nh6_v6EhKEexIC2XxOICHjORCS1krKwUsBLgZDc5BR85VgJrrWyInEz1VJqZGQiYaURghvBi8gK9hLtzBfz_BXCNrcJ-HiSgludcFpoqzWNWGEgTC8gNBiiuH6DmQmM927wyvdsuziHaNR8Z-n5Xv66er8WTBb23E0GRhCMZByJoyF6Vwur_Xj73V7fb_keetjusX20s15t8jfgIa_1QcDiAXrwcRb_Bs_atvc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+Quantification+Analysis-Based+Emotion+Classification+in+Stroke+Using+Electroencephalogram+Signals&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Murugappan%2C+M.&rft.au=Zheng%2C+Bong+Siao&rft.au=Khairunizam%2C+Wan&rft.date=2021-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=46&rft.issue=10&rft.spage=9573&rft.epage=9588&rft_id=info:doi/10.1007%2Fs13369-021-05369-1&rft.externalDocID=10_1007_s13369_021_05369_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |