Recurrent Quantification Analysis-Based Emotion Classification in Stroke Using Electroencephalogram Signals

Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogra...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 46; no. 10; pp. 9573 - 9588
Main Authors Murugappan, M., Zheng, Bong Siao, Khairunizam, Wan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
DOI10.1007/s13369-021-05369-1

Cover

Abstract Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogram (EEG) signals. EEG signals are collected from 19 each subject of LBD, RBD, and normal control (NC) at a sampling rate of 128 Hz. The IIR Bandpass filter and amplitude thresholding methods are used to reduce noise and artifacts' effects, respectively. Discrete Wavelet Packet Transform is used to extract five EEG frequency bands (alpha, beta, gamma, alpha to gamma, and beta to gamma). A set of nonlinear features are extracted from five different EEG frequency ranges using recurrent quantification analysis. Finally, the extracted features are mapped to six corresponding emotions using three nonlinear classifiers (K nearest neighbor, probabilistic neural network, and random forest). The experimental results indicate that LBD subjects have severe emotional impairment than RBD. The mean of diagonal line length (<  L  >), recurrence rate, and maximum mean diagonal length ( L max ) feature give maximum classification rate of 85.24% NC, 79.54%, and 79.09% using RF classifier compared to other features. The alpha to gamma (13–49 Hz) band helps identify Stroke emotional state changes compared to other frequency bands.
AbstractList Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogram (EEG) signals. EEG signals are collected from 19 each subject of LBD, RBD, and normal control (NC) at a sampling rate of 128 Hz. The IIR Bandpass filter and amplitude thresholding methods are used to reduce noise and artifacts' effects, respectively. Discrete Wavelet Packet Transform is used to extract five EEG frequency bands (alpha, beta, gamma, alpha to gamma, and beta to gamma). A set of nonlinear features are extracted from five different EEG frequency ranges using recurrent quantification analysis. Finally, the extracted features are mapped to six corresponding emotions using three nonlinear classifiers (K nearest neighbor, probabilistic neural network, and random forest). The experimental results indicate that LBD subjects have severe emotional impairment than RBD. The mean of diagonal line length (<  L  >), recurrence rate, and maximum mean diagonal length ( L max ) feature give maximum classification rate of 85.24% NC, 79.54%, and 79.09% using RF classifier compared to other features. The alpha to gamma (13–49 Hz) band helps identify Stroke emotional state changes compared to other frequency bands.
Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger, sadness, happiness, fear, disgust, and surprise) of two types of stroke (left brain damage and right brain-damage) using electroencephalogram (EEG) signals. EEG signals are collected from 19 each subject of LBD, RBD, and normal control (NC) at a sampling rate of 128 Hz. The IIR Bandpass filter and amplitude thresholding methods are used to reduce noise and artifacts' effects, respectively. Discrete Wavelet Packet Transform is used to extract five EEG frequency bands (alpha, beta, gamma, alpha to gamma, and beta to gamma). A set of nonlinear features are extracted from five different EEG frequency ranges using recurrent quantification analysis. Finally, the extracted features are mapped to six corresponding emotions using three nonlinear classifiers (K nearest neighbor, probabilistic neural network, and random forest). The experimental results indicate that LBD subjects have severe emotional impairment than RBD. The mean of diagonal line length (< L >), recurrence rate, and maximum mean diagonal length (Lmax) feature give maximum classification rate of 85.24% NC, 79.54%, and 79.09% using RF classifier compared to other features. The alpha to gamma (13–49 Hz) band helps identify Stroke emotional state changes compared to other frequency bands.
Author Khairunizam, Wan
Zheng, Bong Siao
Murugappan, M.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-5839-4589
  surname: Murugappan
  fullname: Murugappan, M.
  email: m.murugappan@gmail.com, m.murugappan@kcst.edu.kw
  organization: Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (KCST) (A Private University)
– sequence: 2
  givenname: Bong Siao
  surname: Zheng
  fullname: Zheng, Bong Siao
  organization: School of Mechatronics Engineering, Universiti Malaysia Perlis (UniMAP)
– sequence: 3
  givenname: Wan
  surname: Khairunizam
  fullname: Khairunizam, Wan
  organization: School of Mechatronics Engineering, Universiti Malaysia Perlis (UniMAP)
BookMark eNp9kM1LwzAYxoNMcM79A54Knqv5aJL2OMf8gIHoHHgLaZrOuC6ZSXvYf2_WioIHT-8Hz-_hfZ9zMLLOagAuEbxGEPKbgAhhRQoxSiE9dugEjDEqUJrhHI36nqSU8bczMA3BlDDLSUERImOwfdGq817bNnnupG1NbZRsjbPJzMrmEExIb2XQVbLYuX49b2S0-FEZm6xa77Y6WQdjN8mi0SrO2iq9f5eN23i5S1ZmE83CBTitY9HT7zoB67vF6_whXT7dP85ny1QRVLQpo5BqwiAvJed1xRnDDGW50piRAklGy1JWLIO44AVWHCrIKq4Yo4rRGlaMTMDV4Lv37rPToRUfrvPHCwSmHGOKIMujKh9UyrsQvK6FMm3_VOulaQSC4piuGNIVMV3RpytQRPEfdO_NTvrD_xAZoBDFdqP971X_UF8Q74-Q
CitedBy_id crossref_primary_10_1007_s13369_023_07927_1
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_1007_s11571_023_09968_6
crossref_primary_10_3390_brainsci12121626
crossref_primary_10_1007_s11571_021_09735_5
crossref_primary_10_1007_s12559_024_10361_6
crossref_primary_10_1016_j_bspc_2023_105454
Cites_doi 10.3390/bransci9110326
10.1016/j.bandc.2014.01.017
10.1016/j.bbe.2018.07.001
10.1016/j.jstrokecerebrovasdis.2015.07.025
10.1109/ICACSIS.2016.7872780
10.1186/cc11230
10.1016/j.physa.2004.05.081
10.1145/3383972.3384035
10.1109/ICICI-BME.2015.7401312
10.1109/CSPA48992.2020.9068709
10.1109/ROMAN.2017.8172372
10.33588/rn.6905.2019047
10.1155/2017/1045039
10.1177/2055668318789280
10.1016/S0254-6272(13)60073-4
10.1109/ICASSDA.2018.8477601
10.1080/02687040143000069
10.1063/1.5023857
10.3934/Neuroscience.2018.4.221
10.1016/j.bbe.2017.05.004
10.17485/ijst/2015/v8i28/70797
10.1007/s12311-020-01121-x
10.5853/jos.2016.01144
10.1016/j.jstrokecerebrovasdis.2019.05.019
10.1159/000504292
10.1037/emo0000180
10.1016/j.ijpsycho.2014.07.014
10.1155/2016/2582478
10.1023/A:1010933404324
10.5013/IJSSST.a.19.03.02
10.1063/1.5096691
10.1080/02699931.2014.924484
10.1109/EMBC.2015.7319766
10.3390/s20010059
10.1016/j.procs.2018.04.056
10.15171/icnj.2018.26
10.1002/9780471740360.ebs1355
10.1016/j.eswa.2014.03.050
10.1055/s-0037-1608859
10.1080/00207454.2019.1634070
10.1186/1475-925X-13-S2-S4
10.1177/2396987320918132
10.1007/978-3-319-63645-0_50
10.1152/jappl.1994.76.2.965
10.1080/10641960600549173
10.3390/e19060222
10.1145/2503713.2503738
10.1007/978-3-319-10978-7_8
10.1088/0967-3334/30/1/003
10.1007/s11571-018-9477-1
10.1088/0967-3334/32/8/010
10.1016/j.bspc.2017.03.016
10.1089/neu.2014.3557
10.1007/s00521-015-2149-8
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2021
King Fahd University of Petroleum & Minerals 2021.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2021
– notice: King Fahd University of Petroleum & Minerals 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13369-021-05369-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 9588
ExternalDocumentID 10_1007_s13369_021_05369_1
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-6505e3607ba77fd76626148ce26391a65bbad64029792c70c06d7c665c65f0d63
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:16:40 EDT 2025
Tue Jul 01 01:34:16 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
Fri Feb 21 02:47:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Stroke
Machine learning algorithms
Nonlinear feature extraction
Emotion classification
Wavelet packet transform
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-6505e3607ba77fd76626148ce26391a65bbad64029792c70c06d7c665c65f0d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5839-4589
PQID 2572251068
PQPubID 2044268
PageCount 16
ParticipantIDs proquest_journals_2572251068
crossref_citationtrail_10_1007_s13369_021_05369_1
crossref_primary_10_1007_s13369_021_05369_1
springer_journals_10_1007_s13369_021_05369_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References VaidSSinghPKaurCClassification of human emotions using multiwavelet transform based features and random forest techniqueIndian J. Sci. Technol.201582810.17485/ijst/2015/v8i28/70797
Murugappan, M.; Waheed, A.; Ali, B.; Sai, S.; Wan, K.; Bibin, S.; Wen, Y.: Emotion classification in parkinson's disease EEG using RQA and ELM. In: 16th IEEE Colloquium on Signal Processing, (CSPA), pp. 290–295 (2020)
Yu-XuanYZhong-KeGXin-MinWYan-LiLA recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEGChaos20182808572410.1063/1.5023857
BongSZWanKMurugappanMIbrahimNMRajamanickamYMohamadKImplementation of wavelet packet transform and nonlinear analysis for emotion classification in Stroke patient using brain signalsBiomed. Signal Process. Control20173610211210.1016/j.bspc.2017.03.016
ForemanBClaassenJQuantitative EEG for the detection of brain ischemiaCrit. Care201216221610.1186/cc11230
JiYCSastraKWRahmaPOsmalinaNELM (extreme learning machine) method for detecting ischemic stroke using conventional and specific asymmetry BSI (brain Symmetry Index) features based on EEG signalsAIP Conf. Proc.201910.1063/1.5096691
Mäki-MarttunenVKuusinenVBrauseMPeräkyläJPolvivaaraMRibeiroRDÖhmanJHartikainenKMEnhanced attention capture by emotional stimuli in mild traumatic brain injuryJ. Neurotrauma201532427227910.1089/neu.2014.3557
JavorkaMTurianikovaZTonhajzerovaIJavorkaKBaumertMThe effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamicsPhysiol. Meas.2008301294110.1088/0967-3334/30/1/003
Endang, P.G.; Muhamad, I.F.; Aniati, M.A.: Ischemic stroke identification based on EEG and EOG using 1D convolutional neural network and batch normalization. In: International Conference on Advanced Computer Science and Information Systems (2016). https://doi.org/10.1109/ICACSIS.2016.7872780
RahavendraURajendra AcharyaUHojjatAArtificial intelligence techniques for automated diagnosis of neurological disordersEur. Neurol.20198241–64201910.1159/000504292
Segal, M.R.: Machine Learning Benchmarks and Random Forest Regression. Retrieved August 26, 2016, from http://escholarship.org/uc/item/35x3v9t4 (2004)
RajamanikamYMurugappanMNorlinahMIKennethSMohd IqbalOKhairiyahMPalaniappanROptimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's diseaseInt. J. Psychophysiol.201494348249510.1016/j.ijpsycho.2014.07.014
Chen, Z.; Dan, W.: Applying deep learning for decoding of EEG and BFV about ischemic stroke patients and visualizations. In: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 89–95. https://doi.org/10.1145/3383972.3384035 (2020)
MurugappanMNagarajanRS Yaacob, Combining spatial filtering and wavelet transform for classifying human emotions usingEEG Signals20113514551
HongZZhenhuaWJiamingZChenYEEG emotion classification using an improved sincnet-based deep learning modelBrain Sci.201910.3390/bransci9110326
Sastra, K.; Wijaya Cholid, B.; Jusuf, M., et. al.: Electroencephalography (EEG) for detecting acute ischemic stroke. In: 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). https://doi.org/10.1109/ICICI-BME.2015.7401312 (2015)
LalHDetecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approachCogn. Neurodyn.20181227129410.1007/s11571-018-9477-1
WHO: Stroke in Malaysia and Kuwait. Retrieved August 25 (2017)
NasehiSPourghassemHAn optimal EEG-based Emotion recognition algorithm using Gabor FeaturesWSEAS Trans. Signal Process.201288799
JeanMAFabienneSLaureBSandrineGJulienBEmotional disturbances after strokeClin. Exp. Hypertens.20062824324910.1080/10641960600549173
Xiyuan, H., Olga, S.: Emotion- enabled Haptic-based serious game for post Stroke rehabilitation. In: Proceedings of the 9th ACM Symposium on Virtual Reality Software and Technology, pp. 31–34 (2013). https://doi.org/10.1145/2503713.2503738
KarowCMMarquardtTPMarshallRCAffective processing in left and right hemisphere brain-damaged subjects with and without subcortical involvementAphasiology200115871572910.1080/02687040143000069
RajamanickamYMurugappanMNorlinahMISundarajKKhairiyahMReview of emotion recognition in stroke patientsDement. Geriatr. Cogn. Disord.2013363–4179196
NoorK-QMohannadKSSawalHBMASitiAAKarlGElectroencephalogram profiles for emotion identification over the brain regions using spectral, entropy and temporal biomarkersSensors2019205912110.3390/s20010059
GalinaVPMichaelSANonlinear EEG parameters of emotional perception in patients moderate traumatic brain injury, coma. Stroke and schizophreniaAIMS Neurosci.20185422123510.3934/Neuroscience.2018.4.221
ChenWWangYCaoMuGChenGGuQA random forest model based classification scheme for neonatal amplitude-integrated EEGBioMed. Eng. OnLine201413Suppl 211310.1186/1475-925X-13-S2-S4
Bajaj, V.; Pachori, R.B.: Detection of human emotions using features based on the multiwavelet transform of EEG signals. In: Brain–Computer Interfaces Intelligent Systems Reference Library, pp. 215–240 (2014)
GuoRWangYYanJYanHRecurrence quantification analysis on pulse morphological changes in patients with coronary heart diseaseJ. Tradit. Chin. Med.201232457157710.1016/S0254-6272(13)60073-4
MainAPaxtonADaleRAn exploratory analysis of emotion dynamics between mothers and adolescents during conflict discussionsEmotion201616691392810.1037/emo0000180
JosephZCharlesLWRecurrence quantification analysisWiley Encycl. Biomed. Eng.200610.1002/9780471740360.ebs1355
Morteza, Z.; Keivan, S.; Seyed, K.S.; Ali, M.N.: Emotion classification through nonlinear EEG analysis using machine learning methods. Int. Clin. Neurosci. J. 5(4), 135–149 (2018)
JaccentraDATissaWAndrewHDianaPAnnukkaKLThe perception of positive and negative facial expressions by unilateral Stroke patientsBrain Cogn.201486425410.1016/j.bandc.2014.01.017
DaimiSNSahaGClassification of emotions induced by music videos and correlation with participants' ratingExpert Syst. Appl.201441136057606510.1016/j.eswa.2014.03.050
Candra, H.; Yuwono, M.; Handojoseno, A.; Chai, R.; Su, S.; Nguyen, H.T.: Recognizing emotions from EEG subbands using wavelet analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–4 (2015)
Bong, S.Z.; Wan, K.; Murugappan, M.; Shahriman, A.B.; Zuradman, M.R.; Zunaidi, I.; Chong, W.Y.: Effectiveness of tuned Q-factor wavelet transform in emotion recognition among left-brain damaged stroke patients. Int. J. Simul. Syst. Sci. Technol. (2019). https://doi.org/10.5013/IJSSST.a.19.03.02
JosephZWebberCLEmbedding's and delays as derived from quantification of recurrence plotsPhys. Lett. A19921713–4199203
HugoPAYaelDRJhannaMAVisserMJacobaMSImpaired emotion recognition after left hemispheric stroke: a case report and brief review of the literatureNeurol. Med. Case Rep.201710.1155/2017/1045039
BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
NilsSVDBRientsBHJacobaMSGert-JanLEdward, H.F.de Hann,Impairments in emotion recognition and risk-taking behavior after isolated, cerebellar strokeThe Cerenellum20201941942510.1007/s12311-020-01121-x
JongKPost-stroke mood, emotional disturbances: pharmacological therapy based on mechanismsJ. Stroke201618324425510.5853/jos.2016.01144
MohebbiMGhassemianHPrediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signalPhysiol. Meas.20113281147116210.1088/0967-3334/32/8/010
JosephZMitchellJCGiulianiAColosimoAMarwanNWebberCLSingular hydrophobicity patterns and net charge: a mesoscopic principle for protein aggregation/foldingPhysica A Stat. Mech. Appl.200434334835810.1016/j.physa.2004.05.081
SchmidtLJBelopolskyAVTheeuwesJAttentional capture by signals of threatCognit. Emot.201429468769410.1080/02699931.2014.924484
CarolinaBTCamilaALLuciaCCNeurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interfaceJ. Rehab. Assist. Technol. Eng.201851–12201810.1177/2055668318789280
Marco- Garcia, S.; Ferrer-Quintero, M.; Usall, J.; Ochoa, S.; del Cacho, N.; Huerta-Ramos, E.: Facial emotion recognition in neurological disorders:a narrative review. Rev. Neurol. 69(5), 207–219 (2019). https://doi.org/10.33588/rn.6905.2019047.
Navya Sri, M.; Rajeshwara Rao, R.; Daveedu Raju, A.; Ramakrishna Murty, M.M, et. al.: Robust features for emotion recognition from speech by using Gaussian mixture model classification. In: International Conference on Information and Communication Technology for Intelligent Systems, vol 2, pp. 437–444 (2017).
MohammadiZFrounchiJAmiriMWavelet-based emotion recognition system using EEG signalNeural Comput. Appl.20162881985199010.1007/s00521-015-2149-8
MonISMandeepSDevelopment of a real time emotion classifier based on evoked EEGBiocybern. Biomed. Eng.201710.1016/j.bbe.2017.05.004
LaurenSArshdeepKChistopherBElectroencephalography measures are useful for identifying large acute ischemic Stroke in Emergency DepartmentJournal of Stroke Cerebrovascular Disease20192882280228610.1016/j.jstrokecerebrovasdis.2019.05.019
MunazaRSumaDLearning-based classification of valence emotion from electroencephalographyInt. J. Neurosci.201910.1080/00207454.2019.1634070
Tao, X.; Yun, Z.; Zi, W.; Yixin, P.: Learning emotions EEG-based recognition and brain activity: a survey study on BCI for intelligent tutoring system. In: International Conference on Ambient Systems, Networks, and Technologies, Procedia Computer Science, vol. 130, pp. 376–382 (2018)
GoshvarpourAAbbasiAGoshvarpourARecurrence quantification analysis and neural networks for emotional EEG classificationAppl. Med. Inform.20163811324
AzizZALeeYYNgahBASidekNNLooiIHanipMRBasriHBAcute stroke registry Malaysia, 2010–2014: results from the National Neurology RegistryJ. Stroke Cerebrovasc. Dis.201524122701270910.101
5369_CR38
U Rahavendra (5369_CR49) 2019; 82
CM Karow (5369_CR5) 2001; 15
VP Galina (5369_CR47) 2018; 5
MA Jean (5369_CR8) 2006; 28
L Wang (5369_CR44) 2017; 19
5369_CR32
YC Ji (5369_CR27) 2019
Y Yu-Xuan (5369_CR50) 2018; 28
B Foreman (5369_CR22) 2012; 16
Z Joseph (5369_CR53) 2004; 343
Z Mohammadi (5369_CR14) 2016; 28
5369_CR25
A Goshvarpour (5369_CR29) 2016; 38
SVDB Nils (5369_CR36) 2020; 19
M Murugappan (5369_CR40) 2011; 35
H Lal (5369_CR45) 2018; 12
Z Hong (5369_CR51) 2019
5369_CR60
S Lauren (5369_CR24) 2019; 28
L Shuang (5369_CR26) 2016
5369_CR1
CT Donna (5369_CR37) 2018; 39
5369_CR4
ZA Aziz (5369_CR2) 2015; 24
5369_CR3
5369_CR6
PA Hugo (5369_CR10) 2017
5369_CR21
5369_CR7
Mi Sadaf (5369_CR33) 2018
K-Q Noor (5369_CR46) 2019; 20
M Mohebbi (5369_CR48) 2011; 32
5369_CR61
DA Jaccentra (5369_CR35) 2014; 86
5369_CR18
S Vaid (5369_CR43) 2015; 8
5369_CR17
5369_CR15
IS Mon (5369_CR34) 2017
Z Hanieh (5369_CR39) 2018; 17
Z Joseph (5369_CR54) 2006
K Jong (5369_CR9) 2016; 18
L Breiman (5369_CR55) 2001; 45
Y Rajamanickam (5369_CR23) 2013; 36
A Main (5369_CR31) 2016; 16
5369_CR12
CL Webber Jr (5369_CR52) 1994; 76
5369_CR56
5369_CR13
M Javorka (5369_CR63) 2008; 30
V Mäki-Marttunen (5369_CR58) 2015; 32
S Nasehi (5369_CR41) 2012; 8
R Guo (5369_CR30) 2012; 32
SZ Bong (5369_CR20) 2017; 36
Z Joseph (5369_CR28) 1992; 171
BT Carolina (5369_CR62) 2018; 5
W Chen (5369_CR57) 2014; 13
Y Rajamanikam (5369_CR19) 2014; 94
PA Hugo (5369_CR11) 2020
SN Daimi (5369_CR42) 2014; 41
R Munaza (5369_CR16) 2019
LJ Schmidt (5369_CR59) 2014; 29
References_xml – reference: Xiyuan, H., Olga, S.: Emotion- enabled Haptic-based serious game for post Stroke rehabilitation. In: Proceedings of the 9th ACM Symposium on Virtual Reality Software and Technology, pp. 31–34 (2013). https://doi.org/10.1145/2503713.2503738
– reference: LaurenSArshdeepKChistopherBElectroencephalography measures are useful for identifying large acute ischemic Stroke in Emergency DepartmentJournal of Stroke Cerebrovascular Disease20192882280228610.1016/j.jstrokecerebrovasdis.2019.05.019
– reference: AzizZALeeYYNgahBASidekNNLooiIHanipMRBasriHBAcute stroke registry Malaysia, 2010–2014: results from the National Neurology RegistryJ. Stroke Cerebrovasc. Dis.201524122701270910.1016/j.jstrokecerebrovasdis.2015.07.025
– reference: Murugappan, M.; Waheed, A.; Ali, B.; Sai, S.; Wan, K.; Bibin, S.; Wen, Y.: Emotion classification in parkinson's disease EEG using RQA and ELM. In: 16th IEEE Colloquium on Signal Processing, (CSPA), pp. 290–295 (2020)
– reference: Marco- Garcia, S.; Ferrer-Quintero, M.; Usall, J.; Ochoa, S.; del Cacho, N.; Huerta-Ramos, E.: Facial emotion recognition in neurological disorders:a narrative review. Rev. Neurol. 69(5), 207–219 (2019). https://doi.org/10.33588/rn.6905.2019047.
– reference: Chen, Z.; Dan, W.: Applying deep learning for decoding of EEG and BFV about ischemic stroke patients and visualizations. In: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 89–95. https://doi.org/10.1145/3383972.3384035 (2020)
– reference: JosephZWebberCLEmbedding's and delays as derived from quantification of recurrence plotsPhys. Lett. A19921713–4199203
– reference: NilsSVDBRientsBHJacobaMSGert-JanLEdward, H.F.de Hann,Impairments in emotion recognition and risk-taking behavior after isolated, cerebellar strokeThe Cerenellum20201941942510.1007/s12311-020-01121-x
– reference: JaccentraDATissaWAndrewHDianaPAnnukkaKLThe perception of positive and negative facial expressions by unilateral Stroke patientsBrain Cogn.201486425410.1016/j.bandc.2014.01.017
– reference: HugoPAJohannaMAVisserMGeertJBPaulLMJacobaMSHigh occurrence of impaired emotion recognition after ischemic strokeStroke J. Eur.202010.1177/2396987320918132
– reference: Morteza, Z.; Keivan, S.; Seyed, K.S.; Ali, M.N.: Emotion classification through nonlinear EEG analysis using machine learning methods. Int. Clin. Neurosci. J. 5(4), 135–149 (2018)
– reference: RahavendraURajendra AcharyaUHojjatAArtificial intelligence techniques for automated diagnosis of neurological disordersEur. Neurol.20198241–64201910.1159/000504292
– reference: ChenWWangYCaoMuGChenGGuQA random forest model based classification scheme for neonatal amplitude-integrated EEGBioMed. Eng. OnLine201413Suppl 211310.1186/1475-925X-13-S2-S4
– reference: DonnaCTBrittanyRGKenichiOYesseniaGEunHKImpaired recognition of emotional face after stroke involving right amygdala or insulaSemin. Speech Lang.2018391879910.1055/s-0037-1608859
– reference: JiYCSastraKWRahmaPOsmalinaNELM (extreme learning machine) method for detecting ischemic stroke using conventional and specific asymmetry BSI (brain Symmetry Index) features based on EEG signalsAIP Conf. Proc.201910.1063/1.5096691
– reference: JavorkaMTurianikovaZTonhajzerovaIJavorkaKBaumertMThe effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamicsPhysiol. Meas.2008301294110.1088/0967-3334/30/1/003
– reference: Tao, X.; Yun, Z.; Zi, W.; Yixin, P.: Learning emotions EEG-based recognition and brain activity: a survey study on BCI for intelligent tutoring system. In: International Conference on Ambient Systems, Networks, and Technologies, Procedia Computer Science, vol. 130, pp. 376–382 (2018)
– reference: VaidSSinghPKaurCClassification of human emotions using multiwavelet transform based features and random forest techniqueIndian J. Sci. Technol.201582810.17485/ijst/2015/v8i28/70797
– reference: Luka, K.; Mladen, R.; Marjan, S.: Emotion classification using linear predictive features on wavelet-decomposed EEG data. In: 26th IEEE International Symposium on Robot and Human Interactive Communication (RO_MAN) (2017). https://doi.org/10.1109/ROMAN.2017.8172372
– reference: HaniehZHassanFA new feature extraction method to improve emotion detection using EEG signalsElectron. Lett. Comput. Vis. Image Anal.20181712944
– reference: Candra, H.; Yuwono, M.; Handojoseno, A.; Chai, R.; Su, S.; Nguyen, H.T.: Recognizing emotions from EEG subbands using wavelet analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–4 (2015)
– reference: GoshvarpourAAbbasiAGoshvarpourARecurrence quantification analysis and neural networks for emotional EEG classificationAppl. Med. Inform.20163811324
– reference: MohammadiZFrounchiJAmiriMWavelet-based emotion recognition system using EEG signalNeural Comput. Appl.20162881985199010.1007/s00521-015-2149-8
– reference: WebberCLJrWebberCLJrJ. P.Dynamical assessment of physiological systems and states using recurrence plot strategiesJ. Appl. Physiol.199476296597310.1152/jappl.1994.76.2.965
– reference: Yu-XuanYZhong-KeGXin-MinWYan-LiLA recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEGChaos20182808572410.1063/1.5023857
– reference: BongSZWanKMurugappanMIbrahimNMRajamanickamYMohamadKImplementation of wavelet packet transform and nonlinear analysis for emotion classification in Stroke patient using brain signalsBiomed. Signal Process. Control20173610211210.1016/j.bspc.2017.03.016
– reference: WHO: Stroke in Malaysia and Kuwait. Retrieved August 25 (2017)
– reference: Bajaj, V.; Pachori, R.B.: Detection of human emotions using features based on the multiwavelet transform of EEG signals. In: Brain–Computer Interfaces Intelligent Systems Reference Library, pp. 215–240 (2014)
– reference: RajamanikamYMurugappanMNorlinahMIKennethSMohd IqbalOKhairiyahMPalaniappanROptimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's diseaseInt. J. Psychophysiol.201494348249510.1016/j.ijpsycho.2014.07.014
– reference: CarolinaBTCamilaALLuciaCCNeurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interfaceJ. Rehab. Assist. Technol. Eng.201851–12201810.1177/2055668318789280
– reference: SchmidtLJBelopolskyAVTheeuwesJAttentional capture by signals of threatCognit. Emot.201429468769410.1080/02699931.2014.924484
– reference: Endang, P.G.; Muhamad, I.F.; Aniati, M.A.: Ischemic stroke identification based on EEG and EOG using 1D convolutional neural network and batch normalization. In: International Conference on Advanced Computer Science and Information Systems (2016). https://doi.org/10.1109/ICACSIS.2016.7872780
– reference: MohebbiMGhassemianHPrediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signalPhysiol. Meas.20113281147116210.1088/0967-3334/32/8/010
– reference: JosephZMitchellJCGiulianiAColosimoAMarwanNWebberCLSingular hydrophobicity patterns and net charge: a mesoscopic principle for protein aggregation/foldingPhysica A Stat. Mech. Appl.200434334835810.1016/j.physa.2004.05.081
– reference: Bong, S.Z.; Wan, K.; Murugappan, M.; Shahriman, A.B.; Zuradman, M.R.; Zunaidi, I.; Chong, W.Y.: Effectiveness of tuned Q-factor wavelet transform in emotion recognition among left-brain damaged stroke patients. Int. J. Simul. Syst. Sci. Technol. (2019). https://doi.org/10.5013/IJSSST.a.19.03.02
– reference: NasehiSPourghassemHAn optimal EEG-based Emotion recognition algorithm using Gabor FeaturesWSEAS Trans. Signal Process.201288799
– reference: KarowCMMarquardtTPMarshallRCAffective processing in left and right hemisphere brain-damaged subjects with and without subcortical involvementAphasiology200115871572910.1080/02687040143000069
– reference: MainAPaxtonADaleRAn exploratory analysis of emotion dynamics between mothers and adolescents during conflict discussionsEmotion201616691392810.1037/emo0000180
– reference: Segal, M.R.: Machine Learning Benchmarks and Random Forest Regression. Retrieved August 26, 2016, from http://escholarship.org/uc/item/35x3v9t4 (2004)
– reference: MurugappanMNagarajanRS Yaacob, Combining spatial filtering and wavelet transform for classifying human emotions usingEEG Signals20113514551
– reference: NoorK-QMohannadKSSawalHBMASitiAAKarlGElectroencephalogram profiles for emotion identification over the brain regions using spectral, entropy and temporal biomarkersSensors2019205912110.3390/s20010059
– reference: BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
– reference: DaimiSNSahaGClassification of emotions induced by music videos and correlation with participants' ratingExpert Syst. Appl.201441136057606510.1016/j.eswa.2014.03.050
– reference: GalinaVPMichaelSANonlinear EEG parameters of emotional perception in patients moderate traumatic brain injury, coma. Stroke and schizophreniaAIMS Neurosci.20185422123510.3934/Neuroscience.2018.4.221
– reference: HugoPAYaelDRJhannaMAVisserMJacobaMSImpaired emotion recognition after left hemispheric stroke: a case report and brief review of the literatureNeurol. Med. Case Rep.201710.1155/2017/1045039
– reference: JosephZCharlesLWRecurrence quantification analysisWiley Encycl. Biomed. Eng.200610.1002/9780471740360.ebs1355
– reference: JongKPost-stroke mood, emotional disturbances: pharmacological therapy based on mechanismsJ. Stroke201618324425510.5853/jos.2016.01144
– reference: WangLXueWLiYLuoMHuangJCuiWHuangCAutomatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysisEntropy201719622210.3390/e19060222
– reference: Navya Sri, M.; Rajeshwara Rao, R.; Daveedu Raju, A.; Ramakrishna Murty, M.M, et. al.: Robust features for emotion recognition from speech by using Gaussian mixture model classification. In: International Conference on Information and Communication Technology for Intelligent Systems, vol 2, pp. 437–444 (2017).
– reference: JeanMAFabienneSLaureBSandrineGJulienBEmotional disturbances after strokeClin. Exp. Hypertens.20062824324910.1080/10641960600549173
– reference: HongZZhenhuaWJiamingZChenYEEG emotion classification using an improved sincnet-based deep learning modelBrain Sci.201910.3390/bransci9110326
– reference: SadafMiNaderJDKeivanMModeling the 2D space of emotions based on the Poincare plot of heart rate variability signalsBiocybern. Biomed. Eng.201810.1016/j.bbe.2018.07.001
– reference: ForemanBClaassenJQuantitative EEG for the detection of brain ischemiaCrit. Care201216221610.1186/cc11230
– reference: LalHDetecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approachCogn. Neurodyn.20181227129410.1007/s11571-018-9477-1
– reference: RajamanickamYMurugappanMNorlinahMISundarajKKhairiyahMReview of emotion recognition in stroke patientsDement. Geriatr. Cogn. Disord.2013363–4179196
– reference: Sastra, K.; Wijaya Cholid, B.; Jusuf, M., et. al.: Electroencephalography (EEG) for detecting acute ischemic stroke. In: 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). https://doi.org/10.1109/ICICI-BME.2015.7401312 (2015)
– reference: ShuangLJieGJiayuanMAbnormal EEG complexity and functional connectivity of brain in patients with acute thalamic ischemic strokeComputational and Mathematical Methods in Medicine2016351533910.1155/2016/25824781358.92056
– reference: MonISMandeepSDevelopment of a real time emotion classifier based on evoked EEGBiocybern. Biomed. Eng.201710.1016/j.bbe.2017.05.004
– reference: Chong, W, Wan, Mohammad, I O, Murugappan M, Bong, S Z, Shahriman AB, Zuradman M R, I Zunaidi, Y, Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients. In: 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA) (2018). https://doi.org/10.1109/ICASSDA.2018.8477601
– reference: Arooj, A..Q.; Canxiu, Z.; Rong, Z.; Ahmed, E.H.: Ischemic stroke detection using EEG signals. In: Proceedings of the 28th Annual International Conference on Computer Science and Software Engineering, pp. 301–308 (2018)
– reference: GuoRWangYYanJYanHRecurrence quantification analysis on pulse morphological changes in patients with coronary heart diseaseJ. Tradit. Chin. Med.201232457157710.1016/S0254-6272(13)60073-4
– reference: Mäki-MarttunenVKuusinenVBrauseMPeräkyläJPolvivaaraMRibeiroRDÖhmanJHartikainenKMEnhanced attention capture by emotional stimuli in mild traumatic brain injuryJ. Neurotrauma201532427227910.1089/neu.2014.3557
– reference: MunazaRSumaDLearning-based classification of valence emotion from electroencephalographyInt. J. Neurosci.201910.1080/00207454.2019.1634070
– year: 2019
  ident: 5369_CR51
  publication-title: Brain Sci.
  doi: 10.3390/bransci9110326
– volume: 86
  start-page: 42
  year: 2014
  ident: 5369_CR35
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2014.01.017
– year: 2018
  ident: 5369_CR33
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.07.001
– volume: 24
  start-page: 2701
  issue: 12
  year: 2015
  ident: 5369_CR2
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2015.07.025
– ident: 5369_CR7
  doi: 10.1109/ICACSIS.2016.7872780
– volume: 16
  start-page: 216
  issue: 2
  year: 2012
  ident: 5369_CR22
  publication-title: Crit. Care
  doi: 10.1186/cc11230
– volume: 343
  start-page: 348
  year: 2004
  ident: 5369_CR53
  publication-title: Physica A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2004.05.081
– ident: 5369_CR3
– ident: 5369_CR6
  doi: 10.1145/3383972.3384035
– ident: 5369_CR4
  doi: 10.1109/ICICI-BME.2015.7401312
– ident: 5369_CR21
  doi: 10.1109/CSPA48992.2020.9068709
– volume: 38
  start-page: 13
  issue: 1
  year: 2016
  ident: 5369_CR29
  publication-title: Appl. Med. Inform.
– ident: 5369_CR18
  doi: 10.1109/ROMAN.2017.8172372
– ident: 5369_CR38
  doi: 10.33588/rn.6905.2019047
– year: 2017
  ident: 5369_CR10
  publication-title: Neurol. Med. Case Rep.
  doi: 10.1155/2017/1045039
– volume: 5
  start-page: 2018
  issue: 1–12
  year: 2018
  ident: 5369_CR62
  publication-title: J. Rehab. Assist. Technol. Eng.
  doi: 10.1177/2055668318789280
– volume: 32
  start-page: 571
  issue: 4
  year: 2012
  ident: 5369_CR30
  publication-title: J. Tradit. Chin. Med.
  doi: 10.1016/S0254-6272(13)60073-4
– ident: 5369_CR56
– ident: 5369_CR61
  doi: 10.1109/ICASSDA.2018.8477601
– volume: 15
  start-page: 715
  issue: 8
  year: 2001
  ident: 5369_CR5
  publication-title: Aphasiology
  doi: 10.1080/02687040143000069
– volume: 28
  start-page: 085724
  year: 2018
  ident: 5369_CR50
  publication-title: Chaos
  doi: 10.1063/1.5023857
– volume: 5
  start-page: 221
  issue: 4
  year: 2018
  ident: 5369_CR47
  publication-title: AIMS Neurosci.
  doi: 10.3934/Neuroscience.2018.4.221
– year: 2017
  ident: 5369_CR34
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2017.05.004
– volume: 8
  start-page: 28
  year: 2015
  ident: 5369_CR43
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2015/v8i28/70797
– volume: 19
  start-page: 419
  year: 2020
  ident: 5369_CR36
  publication-title: The Cerenellum
  doi: 10.1007/s12311-020-01121-x
– volume: 18
  start-page: 244
  issue: 3
  year: 2016
  ident: 5369_CR9
  publication-title: J. Stroke
  doi: 10.5853/jos.2016.01144
– volume: 28
  start-page: 2280
  issue: 8
  year: 2019
  ident: 5369_CR24
  publication-title: Journal of Stroke Cerebrovascular Disease
  doi: 10.1016/j.jstrokecerebrovasdis.2019.05.019
– volume: 82
  start-page: 2019
  issue: 41–64
  year: 2019
  ident: 5369_CR49
  publication-title: Eur. Neurol.
  doi: 10.1159/000504292
– volume: 16
  start-page: 913
  issue: 6
  year: 2016
  ident: 5369_CR31
  publication-title: Emotion
  doi: 10.1037/emo0000180
– volume: 94
  start-page: 482
  issue: 3
  year: 2014
  ident: 5369_CR19
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.07.014
– year: 2016
  ident: 5369_CR26
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2016/2582478
– volume: 36
  start-page: 179
  issue: 3–4
  year: 2013
  ident: 5369_CR23
  publication-title: Dement. Geriatr. Cogn. Disord.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 5369_CR55
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 5369_CR25
  doi: 10.5013/IJSSST.a.19.03.02
– year: 2019
  ident: 5369_CR27
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5096691
– volume: 29
  start-page: 687
  issue: 4
  year: 2014
  ident: 5369_CR59
  publication-title: Cognit. Emot.
  doi: 10.1080/02699931.2014.924484
– ident: 5369_CR13
  doi: 10.1109/EMBC.2015.7319766
– volume: 20
  start-page: 1
  issue: 59
  year: 2019
  ident: 5369_CR46
  publication-title: Sensors
  doi: 10.3390/s20010059
– ident: 5369_CR32
  doi: 10.1016/j.procs.2018.04.056
– ident: 5369_CR17
  doi: 10.15171/icnj.2018.26
– volume: 17
  start-page: 29
  issue: 1
  year: 2018
  ident: 5369_CR39
  publication-title: Electron. Lett. Comput. Vis. Image Anal.
– year: 2006
  ident: 5369_CR54
  publication-title: Wiley Encycl. Biomed. Eng.
  doi: 10.1002/9780471740360.ebs1355
– volume: 171
  start-page: 199
  issue: 3–4
  year: 1992
  ident: 5369_CR28
  publication-title: Phys. Lett. A
– volume: 41
  start-page: 6057
  issue: 13
  year: 2014
  ident: 5369_CR42
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.050
– volume: 39
  start-page: 87
  issue: 1
  year: 2018
  ident: 5369_CR37
  publication-title: Semin. Speech Lang.
  doi: 10.1055/s-0037-1608859
– year: 2019
  ident: 5369_CR16
  publication-title: Int. J. Neurosci.
  doi: 10.1080/00207454.2019.1634070
– ident: 5369_CR1
– volume: 35
  start-page: 45
  issue: 1
  year: 2011
  ident: 5369_CR40
  publication-title: EEG Signals
– volume: 13
  start-page: 1
  issue: Suppl 2
  year: 2014
  ident: 5369_CR57
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/1475-925X-13-S2-S4
– year: 2020
  ident: 5369_CR11
  publication-title: Stroke J. Eur.
  doi: 10.1177/2396987320918132
– ident: 5369_CR15
  doi: 10.1007/978-3-319-63645-0_50
– volume: 76
  start-page: 965
  issue: 2
  year: 1994
  ident: 5369_CR52
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1994.76.2.965
– volume: 28
  start-page: 243
  year: 2006
  ident: 5369_CR8
  publication-title: Clin. Exp. Hypertens.
  doi: 10.1080/10641960600549173
– volume: 19
  start-page: 222
  issue: 6
  year: 2017
  ident: 5369_CR44
  publication-title: Entropy
  doi: 10.3390/e19060222
– ident: 5369_CR60
  doi: 10.1145/2503713.2503738
– ident: 5369_CR12
  doi: 10.1007/978-3-319-10978-7_8
– volume: 30
  start-page: 29
  issue: 1
  year: 2008
  ident: 5369_CR63
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/1/003
– volume: 12
  start-page: 271
  year: 2018
  ident: 5369_CR45
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-018-9477-1
– volume: 32
  start-page: 11471162
  issue: 8
  year: 2011
  ident: 5369_CR48
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/32/8/010
– volume: 36
  start-page: 102
  year: 2017
  ident: 5369_CR20
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.03.016
– volume: 8
  start-page: 87
  year: 2012
  ident: 5369_CR41
  publication-title: WSEAS Trans. Signal Process.
– volume: 32
  start-page: 272
  issue: 4
  year: 2015
  ident: 5369_CR58
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2014.3557
– volume: 28
  start-page: 1985
  issue: 8
  year: 2016
  ident: 5369_CR14
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2149-8
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.2879126
Snippet Stroke is a cerebrovascular disorder, and one of the most common effects of stroke is emotional disturbances. This present work classifies six emotions (anger,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9573
SubjectTerms Bandpass filters
Brain damage
Classification
Classifiers
Electroencephalography
Emotional factors
Emotions
Engineering
Feature extraction
Frequencies
Frequency ranges
Humanities and Social Sciences
IIR filters
multidisciplinary
Neural networks
Noise reduction
Research Article-Electrical Engineering
Science
Wavelet transforms
Title Recurrent Quantification Analysis-Based Emotion Classification in Stroke Using Electroencephalogram Signals
URI https://link.springer.com/article/10.1007/s13369-021-05369-1
https://www.proquest.com/docview/2572251068
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFOElmoP3MJW9q53tz4mkFIhFQnaitysfditVUiiNLnwz_h3zHrXr9IgysWynI3leL6dV2a-QegtKxizOkpJkRacJEcmJikAiXArqEq1o6J0Cf3Tz-LkIvk047PB4Fenammz1ofm5519Jf8jVbgGcnVdsveQbHNTuADnIF84goTh-E8y_uqS5RW90peN8lU_Xp411QiZgJGyo6mf1eMnYLarSje9d7Vw5RlVxmDqR-K4vb68UhWZ9Y_RWXnpKJa7Tux4pRxTecM64SoV6_Ygl4fPW45D58A6499JOIBoN5dqufSZ19PDNnWde70zceOPzkq1aIzBlSpXG9cxWoH3WwB0yFXQuKl66-cqR9uovEDrgQZlhAs58waqvgaBLvWzXWq1HTKXAZ5RRwmn3E9HCQY95X5w4B_GIgrN04yJlLinBYUEZ3FrGpuCxZbc2S3OYHFWLc4g8N6lUroKgd3x5MPkuFZmCXie4MyyNuEHjjitJho3PzE0cflWzttP0XeU2ujn1h_2lR90_gQ9DgEMHns0PkWDfP4MPerQWj5H1w0ucR-XuI9LHHCJ-7jE5Rx7XOIKl_guXOKAyxfo4nh6_v6EhKEexIC2XxOICHjORCS1krKwUsBLgZDc5BR85VgJrrWyInEz1VJqZGQiYaURghvBi8gK9hLtzBfz_BXCNrcJ-HiSgludcFpoqzWNWGEgTC8gNBiiuH6DmQmM927wyvdsuziHaNR8Z-n5Xv66er8WTBb23E0GRhCMZByJoyF6Vwur_Xj73V7fb_keetjusX20s15t8jfgIa_1QcDiAXrwcRb_Bs_atvc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+Quantification+Analysis-Based+Emotion+Classification+in+Stroke+Using+Electroencephalogram+Signals&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Murugappan%2C+M.&rft.au=Zheng%2C+Bong+Siao&rft.au=Khairunizam%2C+Wan&rft.date=2021-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=46&rft.issue=10&rft.spage=9573&rft.epage=9588&rft_id=info:doi/10.1007%2Fs13369-021-05369-1&rft.externalDocID=10_1007_s13369_021_05369_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon