Machine Learning-Based Automated Method for Effective De-noising of Magnetocardiography Signals Using Independent Component Analysis
This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography (MCG) system. The traditional approach of applying ICA involves manual visual inspection to determine the retention or removal of independent c...
Saved in:
Published in | Circuits, systems, and signal processing Vol. 43; no. 8; pp. 4968 - 4990 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0278-081X 1531-5878 |
DOI | 10.1007/s00034-024-02655-9 |
Cover
Abstract | This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography (MCG) system. The traditional approach of applying ICA involves manual visual inspection to determine the retention or removal of independent component (IC) related to signal or noise, which is time-consuming and lacks assurance in preserving essential attributes of signal components during the de-noising process. To address these challenges, we propose a novel approach. A feature set comprising spectral, statistical, and nonlinear time series properties is computed from the ICs of thirty subjects. These features are then evaluated by a few machine learning (ML) models to optimally select ICs for de-noising cardiac time series. It is found that ICs evaluated by a gradient boosting decision tree (GBDT) classifier could accomplish the task of efficiently selecting components to de-noise MCG with an accuracy of 93%. The performance of the proposed method is qualitatively and quantitatively compared against conventional methods for noise elimination and preserving signal features. The proposed method has extensive application in de-noising multichannel MCG signals where the characteristics of the noise are not clearly known and for routine diagnostic assessments of subjects with cardiac anomalies in hospital settings. |
---|---|
AbstractList | This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography (MCG) system. The traditional approach of applying ICA involves manual visual inspection to determine the retention or removal of independent component (IC) related to signal or noise, which is time-consuming and lacks assurance in preserving essential attributes of signal components during the de-noising process. To address these challenges, we propose a novel approach. A feature set comprising spectral, statistical, and nonlinear time series properties is computed from the ICs of thirty subjects. These features are then evaluated by a few machine learning (ML) models to optimally select ICs for de-noising cardiac time series. It is found that ICs evaluated by a gradient boosting decision tree (GBDT) classifier could accomplish the task of efficiently selecting components to de-noise MCG with an accuracy of 93%. The performance of the proposed method is qualitatively and quantitatively compared against conventional methods for noise elimination and preserving signal features. The proposed method has extensive application in de-noising multichannel MCG signals where the characteristics of the noise are not clearly known and for routine diagnostic assessments of subjects with cardiac anomalies in hospital settings. |
Author | Kesavaraja, C. Patel, Rajesh Mani, Awadhesh Sengottuvel, S. |
Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0002-2843-7963 surname: Kesavaraja fullname: Kesavaraja, C. email: mailtokesavaraja@gmail.com organization: Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute – sequence: 2 givenname: S. surname: Sengottuvel fullname: Sengottuvel, S. organization: SQUIDs Applications Section, SQUID & Detector Technology Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR) – sequence: 3 givenname: Rajesh surname: Patel fullname: Patel, Rajesh organization: SQUIDs Applications Section, SQUID & Detector Technology Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR) – sequence: 4 givenname: Awadhesh surname: Mani fullname: Mani, Awadhesh email: mani@igcar.gov.in organization: Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute, Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR) |
BookMark | eNp9kMFuGyEURVGVSnXS_kBXSF3TPIZhBpaumzaRbHXRRuoO4eHNmCiGKeBI3vfDi-NKlbrIAniLc3hX95JchBiQkPccPnKA_joDgGgZNKfTScn0K7LgUnAmVa8uyAKaXjFQ_OcbcpnzAwDXrW4W5PfGDjsfkK7RpuDDxD7ZjI4uDyXubanTBssuOjrGRG_GEYfin5B-Rhaiz5WncaQbOwUscbDJ-TglO--O9Lufgn3M9P4ZugsOZ6xXKHQV93NNX6dlJY7Z57fk9VhZfPf3vSL3X25-rG7Z-tvXu9VyzQbBdWFd2_SyRdV3jXbQKZBicL0EIaDbblvdyu0ITjrVW2yGXm4byfkJR1ROyFFckQ_nf-cUfx0wF_MQD-kU0whQHW9brVWlmjM1pJhzwtHMye9tOhoO5tS2ObdtatvmuW2jq6T-kwZfbPExlGT948uqOKu57gkTpn-pXrD-APJ-lyo |
CitedBy_id | crossref_primary_10_1016_j_nucengdes_2025_113955 |
Cites_doi | 10.1109/72.761722 10.1109/TMAG.2005.854851 10.1007/s11517-006-0055-z 10.1109/TBME.2018.2837647 10.1016/j.bspc.2011.07.007 10.1016/j.jelectrocard.2010.07.007 10.1152/ajpheart.2000.278.6.H2039 10.3379/msjmag.1702R001 10.1007/978-0-387-84858-7 10.1111/j.1540-8167.2005.00332.x 10.1080/03091900500520379 10.1109/TMAG.2018.2845903 10.7551/mitpress/7558.001.0001 10.1016/j.cmpb.2019.105304 10.1093/acprof:oso/9780195058239.001.0001 10.1088/0031-9155/46/4/305 10.1016/j.compbiomed.2007.06.003 10.1016/j.bspc.2014.12.012 10.1002/9781119068129 10.1016/S0893-6080(00)00026-5 10.1109/TMAG.2004.828990 10.1007/s40846-017-0274-9 10.1162/neco.1995.7.6.1129 10.1016/j.sigpro.2007.01.011 10.1109/TBME.2010.2051440 10.3389/fpsyg.2018.01679 10.1063/5.0167372 10.1016/S0893-6080(00)00071-X 10.1201/9781315139470 10.1121/1.1907229 10.1063/1.4710279 10.1007/s11517-006-0119-0 10.1088/0031-9155/52/5/N02 10.1016/j.bspc.2019.101664 10.3389/fcvm.2023.1232882 10.1063/1.166141 10.1161/circ.130.suppl_2.17191 10.1109/IEMBS.2005.1615516 10.1109/IEMBS.2002.1106637 10.1016/S0925-2312(98)00056-3 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7SP 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1007/s00034-024-02655-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1531-5878 |
EndPage | 4990 |
ExternalDocumentID | 10_1007_s00034_024_02655_9 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7SP 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-642754e87629d068053cd7503306bb4945bf0d5d87ae2c75b2511e876ee8d35f3 |
IEDL.DBID | AGYKE |
ISSN | 0278-081X |
IngestDate | Sat Aug 16 21:31:29 EDT 2025 Tue Jul 01 00:50:54 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Fri Feb 21 02:39:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | De-noising Independent component analysis Classification Machine learning Feature extraction Magnetocardiography Automatic identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-642754e87629d068053cd7503306bb4945bf0d5d87ae2c75b2511e876ee8d35f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2843-7963 |
PQID | 3086144998 |
PQPubID | 30136 |
PageCount | 23 |
ParticipantIDs | proquest_journals_3086144998 crossref_primary_10_1007_s00034_024_02655_9 crossref_citationtrail_10_1007_s00034_024_02655_9 springer_journals_10_1007_s00034_024_02655_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Cambridge |
PublicationSubtitle | CSSP |
PublicationTitle | Circuits, systems, and signal processing |
PublicationTitleAbbrev | Circuits Syst Signal Process |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Pedregosa, Varoquaux, Gramfort (CR36) 2011; 12 Gulrajani (CR16) 1998 Davies, James (CR11) 2007; 87 Kobayashi, Iwai (CR24) 2018; 54 Acharya, Molinari, Sree (CR1) 2012; 7 Iwai, Kobayashi, Yoshizawa (CR21) 2017; 41 CR38 Takala, Hänninen, Montonen (CR44) 2001; 46 CR15 CR37 CR13 Mariyappa, Sengottuvel, Rajesh (CR29) 2015; 18 Kobayashi, Uchikawa, Simizu (CR23) 2005; 41 CR34 CR33 CR10 Müller, Nolte, Paolo (CR32) 2006; 30 Hyvärinen, Oja (CR19) 2000; 13 Korhonen, Husa, Tierala (CR26) 2006; 17 Mukhopadhyay, Krishnan (CR31) 2020; 188 Kobayashi, Uchikawa, Nakai (CR25) 2004; 40 Luo, Johnston (CR27) 2010; 43 Theis, Meyer-Bäse (CR46) 2010 Hyvarinen (CR18) 1999; 10 Duda, Hart (CR14) 2006 CR2 Rangayyan (CR39) 2015 CR3 CR6 CR8 CR7 CR9 Hastie, Tibshirani, Friedman (CR17) 2009 Somarajan, Muszynski, Hawrami (CR42) 2019; 66 CR45 CR22 Malmivuo, Plonsey (CR28) 1995 CR43 CR20 DiPietroPaolo, Mueller, Nolte (CR12) 2006; 44 Mijović, De Vos, Gligorijević (CR30) 2010; 57 CR40 Wallot, Mønster (CR47) 2018; 9 Patel, Gireesan, Sengottuvel (CR35) 2017; 37 Blanco-Velasco, Weng, Barner (CR5) 2008; 38 Bell, Sejnowski (CR4) 1995; 7 Richman, Moorman (CR41) 2000; 278 SK Mukhopadhyay (2655_CR31) 2020; 188 AJ Bell (2655_CR4) 1995; 7 K Kobayashi (2655_CR24) 2018; 54 ME Davies (2655_CR11) 2007; 87 FJ Theis (2655_CR46) 2010 HP Müller (2655_CR32) 2006; 30 S Wallot (2655_CR47) 2018; 9 D DiPietroPaolo (2655_CR12) 2006; 44 RM Gulrajani (2655_CR16) 1998 P Korhonen (2655_CR26) 2006; 17 2655_CR33 B Mijović (2655_CR30) 2010; 57 2655_CR34 2655_CR3 2655_CR2 2655_CR10 K Kobayashi (2655_CR25) 2004; 40 2655_CR9 2655_CR15 2655_CR37 2655_CR8 2655_CR38 2655_CR7 2655_CR13 T Hastie (2655_CR17) 2009 K Kobayashi (2655_CR23) 2005; 41 2655_CR6 M Blanco-Velasco (2655_CR5) 2008; 38 A Hyvarinen (2655_CR18) 1999; 10 S Luo (2655_CR27) 2010; 43 S Somarajan (2655_CR42) 2019; 66 P Takala (2655_CR44) 2001; 46 2655_CR40 A Hyvärinen (2655_CR19) 2000; 13 UR Acharya (2655_CR1) 2012; 7 M Iwai (2655_CR21) 2017; 41 J Malmivuo (2655_CR28) 1995 N Mariyappa (2655_CR29) 2015; 18 JS Richman (2655_CR41) 2000; 278 2655_CR22 R Patel (2655_CR35) 2017; 37 2655_CR45 2655_CR20 RM Rangayyan (2655_CR39) 2015 RO Duda (2655_CR14) 2006 F Pedregosa (2655_CR36) 2011; 12 2655_CR43 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR43 – volume: 10 start-page: 626 issue: 3 year: 1999 end-page: 634 ident: CR18 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 41 start-page: 4152 issue: 10 year: 2005 end-page: 4154 ident: CR23 article-title: The rejection of magnetic noise from the wire using independent component analysis for magnetocardiogram publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2005.854851 – volume: 44 start-page: 489 issue: 6 year: 2006 end-page: 499 ident: CR12 article-title: Noise reduction in magnetocardiography by singular value decomposition and independent component analysis publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-006-0055-z – volume: 66 start-page: 327 issue: 2 year: 2019 end-page: 334 ident: CR42 article-title: Noninvasive magnetogastrography detects erythromycin-induced effects on the gastric slow wave publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2837647 – ident: CR2 – ident: CR37 – volume: 7 start-page: 401 issue: 4 year: 2012 end-page: 408 ident: CR1 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.07.007 – ident: CR10 – volume: 43 start-page: 486 issue: 6 year: 2010 end-page: 496 ident: CR27 article-title: A review of electrocardiogram filtering publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2010.07.007 – volume: 278 start-page: H2039 issue: 6 year: 2000 end-page: H2049 ident: CR41 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol.-Heart Circulatory Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – ident: CR33 – volume: 41 start-page: 41 issue: 2 year: 2017 end-page: 45 ident: CR21 article-title: Automatic component selection for noise reduction in magnetocardiograph based on independent component analysis publication-title: J. Magn. Soc. Japan. doi: 10.3379/msjmag.1702R001 – year: 2009 ident: CR17 publication-title: The elements of statistical learning: data mining, inference, and prediction doi: 10.1007/978-0-387-84858-7 – volume: 17 start-page: 396 issue: 4 year: 2006 end-page: 401 ident: CR26 article-title: Increased intra-QRS fragmentation in magnetocardiography as a predictor of arrhythmic events and mortality in patients with cardiac dysfunction after myocardial infarction publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.2005.00332.x – ident: CR6 – volume: 30 start-page: 158 issue: 3 year: 2006 end-page: 165 ident: CR32 article-title: Using independent component analysis for noise reduction of magnetocardiographic data in case of exercise with an ergometer publication-title: J. Med. Eng. Technol. doi: 10.1080/03091900500520379 – ident: CR8 – volume: 54 start-page: 1 issue: 11 year: 2018 end-page: 4 ident: CR24 article-title: Quantitative independent component selection using attractor analysis for noise reduction in magnetocardiogram signals publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2018.2845903 – ident: CR40 – year: 2010 ident: CR46 publication-title: Biomedical signal analysis: Contemporary methods and applications doi: 10.7551/mitpress/7558.001.0001 – volume: 188 year: 2020 ident: CR31 article-title: A singular spectrum analysis-based model-free electrocardiogram denoising technique publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105304 – year: 1995 ident: CR28 publication-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields doi: 10.1093/acprof:oso/9780195058239.001.0001 – volume: 46 start-page: 975 issue: 4 year: 2001 ident: CR44 article-title: Beat-to-beat analysis method for magnetocardiographic recordings during interventions publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/46/4/305 – year: 2006 ident: CR14 publication-title: Pattern classification – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR36 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 1 issue: 1 year: 2008 end-page: 13 ident: CR5 article-title: ECG signal denoising and baseline wander correction based on the empirical mode decomposition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.06.003 – volume: 18 start-page: 204 year: 2015 end-page: 213 ident: CR29 article-title: Denoising of multichannel MCG data by the combination of EEMD and ICA and its effect on the pseudo current density maps publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.12.012 – ident: CR3 – ident: CR15 – ident: CR38 – year: 2015 ident: CR39 publication-title: Biomedical signal analysis doi: 10.1002/9781119068129 – volume: 13 start-page: 411 issue: 4–5 year: 2000 end-page: 430 ident: CR19 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 40 start-page: 2970 issue: 4 year: 2004 end-page: 2972 ident: CR25 article-title: Visualization of the current-density distribution for MCG with WPW syndrome patients using independent component analysis publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2004.828990 – ident: CR13 – ident: CR9 – volume: 37 start-page: 554 issue: 4 year: 2017 end-page: 560 ident: CR35 article-title: Suppression of baseline wander artifact in Magnetocardiogram using breathing sensor publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0274-9 – ident: CR34 – volume: 7 start-page: 1129 issue: 6 year: 1995 end-page: 1159 ident: CR4 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – year: 1998 ident: CR16 publication-title: Bioelectricity and biomagnetism – ident: CR7 – volume: 87 start-page: 1819 issue: 8 year: 2007 end-page: 1832 ident: CR11 article-title: Source separation using single channel ICA publication-title: Signal Process. doi: 10.1016/j.sigpro.2007.01.011 – volume: 57 start-page: 2188 issue: 9 year: 2010 end-page: 2196 ident: CR30 article-title: Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2051440 – volume: 9 start-page: 1679 year: 2018 ident: CR47 article-title: Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01679 – ident: CR20 – volume: 40 start-page: 2970 issue: 4 year: 2004 ident: 2655_CR25 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2004.828990 – ident: 2655_CR8 – volume: 9 start-page: 1679 year: 2018 ident: 2655_CR47 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01679 – ident: 2655_CR33 doi: 10.1063/5.0167372 – ident: 2655_CR20 doi: 10.1016/S0893-6080(00)00071-X – volume-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields year: 1995 ident: 2655_CR28 doi: 10.1093/acprof:oso/9780195058239.001.0001 – volume-title: Biomedical signal analysis year: 2015 ident: 2655_CR39 doi: 10.1002/9781119068129 – ident: 2655_CR6 doi: 10.1201/9781315139470 – volume: 46 start-page: 975 issue: 4 year: 2001 ident: 2655_CR44 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/46/4/305 – volume: 43 start-page: 486 issue: 6 year: 2010 ident: 2655_CR27 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2010.07.007 – volume: 18 start-page: 204 year: 2015 ident: 2655_CR29 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.12.012 – ident: 2655_CR9 doi: 10.1121/1.1907229 – ident: 2655_CR34 doi: 10.1063/1.4710279 – volume-title: Bioelectricity and biomagnetism year: 1998 ident: 2655_CR16 – volume: 188 year: 2020 ident: 2655_CR31 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105304 – ident: 2655_CR2 doi: 10.1007/s11517-006-0119-0 – volume: 57 start-page: 2188 issue: 9 year: 2010 ident: 2655_CR30 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2051440 – ident: 2655_CR10 doi: 10.1088/0031-9155/52/5/N02 – ident: 2655_CR43 doi: 10.1016/j.bspc.2019.101664 – volume: 44 start-page: 489 issue: 6 year: 2006 ident: 2655_CR12 publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-006-0055-z – volume: 41 start-page: 4152 issue: 10 year: 2005 ident: 2655_CR23 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2005.854851 – volume: 7 start-page: 401 issue: 4 year: 2012 ident: 2655_CR1 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.07.007 – volume: 30 start-page: 158 issue: 3 year: 2006 ident: 2655_CR32 publication-title: J. Med. Eng. Technol. doi: 10.1080/03091900500520379 – ident: 2655_CR7 doi: 10.3389/fcvm.2023.1232882 – volume: 87 start-page: 1819 issue: 8 year: 2007 ident: 2655_CR11 publication-title: Signal Process. doi: 10.1016/j.sigpro.2007.01.011 – volume: 10 start-page: 626 issue: 3 year: 1999 ident: 2655_CR18 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 37 start-page: 554 issue: 4 year: 2017 ident: 2655_CR35 publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0274-9 – volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2009 ident: 2655_CR17 doi: 10.1007/978-0-387-84858-7 – ident: 2655_CR45 – ident: 2655_CR37 doi: 10.1063/1.166141 – volume: 41 start-page: 41 issue: 2 year: 2017 ident: 2655_CR21 publication-title: J. Magn. Soc. Japan. doi: 10.3379/msjmag.1702R001 – ident: 2655_CR22 doi: 10.1161/circ.130.suppl_2.17191 – volume-title: Biomedical signal analysis: Contemporary methods and applications year: 2010 ident: 2655_CR46 doi: 10.7551/mitpress/7558.001.0001 – volume-title: Pattern classification year: 2006 ident: 2655_CR14 – volume: 17 start-page: 396 issue: 4 year: 2006 ident: 2655_CR26 publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/j.1540-8167.2005.00332.x – volume: 66 start-page: 327 issue: 2 year: 2019 ident: 2655_CR42 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2837647 – ident: 2655_CR13 doi: 10.1109/IEMBS.2005.1615516 – volume: 12 start-page: 2825 year: 2011 ident: 2655_CR36 publication-title: J. Mach. Learn. Res. – ident: 2655_CR40 doi: 10.1109/IEMBS.2002.1106637 – ident: 2655_CR3 doi: 10.1016/S0925-2312(98)00056-3 – volume: 38 start-page: 1 issue: 1 year: 2008 ident: 2655_CR5 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.06.003 – volume: 54 start-page: 1 issue: 11 year: 2018 ident: 2655_CR24 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2018.2845903 – ident: 2655_CR15 – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 2655_CR4 publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 13 start-page: 411 issue: 4–5 year: 2000 ident: 2655_CR19 publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – ident: 2655_CR38 – volume: 278 start-page: H2039 issue: 6 year: 2000 ident: 2655_CR41 publication-title: Am. J. Physiol.-Heart Circulatory Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 |
SSID | ssj0019492 |
Score | 2.369302 |
Snippet | This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4968 |
SubjectTerms | Automation Circuits and Systems Decision trees Electrical Engineering Electronics and Microelectronics Engineering Independent component analysis Instrumentation Machine learning Magnetocardiography Signal classification Signal,Image and Speech Processing Time series |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBQDlwg4h1adb0hMZjDKRygUm7VX24ExJqB-v-AT8cO007QGKHSpWaplLt2I7tfB9j51L34ziJpEgVZavA0SJ2QApPaohk1vM0UEI_eO6Pxu7TRE1swm1u2yprm2gMdVoklCO_khh7Y_CPu4Pr2Ycg1iiqrloKjXW24aCnIT3Xw4emiuC7hhSZimsCXd_EHpoxR-cMMotAD4VXXynh_3ZMy2jzT4HU-J3hDtu2ASMfVBLeZWuQ77GtHzCC--wrMB2RwC1Y6lTcoG9K-WBRFhiQ4l1geKI5Bqi8gitGG8fvQOTFG-UKeJHxIJrmUKJno_7UCsaav7xNCV6Zm74C_tgw5paczEiR012NanLAxsP719uRsOwKIsFlVwrceHjKBbKGfkoMHEomqalqdlF8ru-qOOumKtVeBL3EUzFtRmg4gE6lyuQha-X4pSPGcQrcFsks8XxFCH_a9UFlEUQob50BtJlT_9owsdDjxIDxHjagyUYcIYojNOII_Ta7aN6ZVcAbK0d3aomFdhHOw6XKtNllLcXl4_9nO1492wnb7BnFoTbADmuVnws4xdCkjM-M_n0DpBLe-A priority: 102 providerName: ProQuest |
Title | Machine Learning-Based Automated Method for Effective De-noising of Magnetocardiography Signals Using Independent Component Analysis |
URI | https://link.springer.com/article/10.1007/s00034-024-02655-9 https://www.proquest.com/docview/3086144998 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiUygMbGNE6bpyxhZaXWiGgUpmiPC5VBUoRTRdmfjhn51GoAKlDFCtxnMQ-38N3_g7gWKiG7wee4KHUq1VYU9yvoeC2UOiJqG4r1Av63V7jum_dDuQg2xQ2yaPdc5ek4dTFZjeDpcJJptDRkJI7y7Aia8pRJVhpXj3ftQvvgWOZZMjaqcZJ5A2yzTK_t_JTIM20zDnHqJE3nQ3o51-ahpm8nE0T_yz4mANxXPRXNmE9U0BZM6WYLVjCeBvWvsES7sBn10RYIsvAV4e8RbIuZM1pMiYFl0pdk3eakcLLUvhj4pnsEnk8Hum1BzaOWNcbxpiQpNTxriksNnscDTVcMzNxCuymyMCbMM2WxrEu5Sgpu9DvtJ8urnmWrYEHNI0TToaMLS3U3NUJdUYPKYLQeEnPiRwsx5J-dB7KUNke1gNb-tq40dURVShkJPagFNOb9oFRE2RmiSiwHakRA5XloIw89Ih-VIRYhlo-ZG6QQZnrjBqvbgHCbHrYpR52TQ-7ThlOimfeUiCPf2tXckpws0k9cQWZf2R_koFahtN8YGe3_27tYLHqh7BaN7ShwwwrUErep3hEqk_iV2FZda6qGb3TudXu3T_Q1X69-QXk6Pwy |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOSwcVrALoiwPH5YTWNA4bpIDQjzVAqkQD6m3kMekqoQSdglC3Pk9_EZmnKQFJLhxiGQpjhN5JjOfPeNvAP4qtx1Fcahkonm3CluujFqopKNcDFVqOS7yhr7fa3eu7ZO-7k_AS30WhtMqa5toDHWSx7xHvqUIexP4p9XB7t0_yVWjOLpal9Ao1eIUnx5pyXa_0z0k-a5b1vHR1UFHVlUFZEzqVkgC3I62ka2Al3DlCa3ixETztumzbc_WUbqd6MR1QrRiR0cMwrk7opsonSoadxKmbD7R2oCp_aPe-cUobuHZpgwzh_MkOdt-dUzHHNYzXDCSfCJdba2l994VjvHth5Cs8XTHs_Czgqhir9SpOZjA7BfMvCEu_A3PvsnBRFHRsw7kPnnDROw9FDlBYGr5pjK1IEgsSoJksqriEGWWD3l3QuSp8MNBhgX5Us6ILYmzxeVwwITOwmQyiO6oRm8h2HDlGbdqHpV5uP6WmV-ARkZvWgRBQ9BCTKWx42nmFHRtD3UaYkga5qaITWjVUxvEFdk519y4DUY0zUYcAYkjMOIIvCZsjJ65K6k-vuy9XEssqH77-2CspE3YrKU4vv35aEtfj7YGPzpX_llw1u2d_oFpyygRJyEuQ6P4_4ArBIyKaLXSRgE33_0DvALktBto |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB7SBEp7CE3TUufR7KE5JYttrdZaHUpI67hxE4VAa_BN1WNkAkHKQyHk3l_VX9eZ1cNNIb7lIBBIWiHNx8y3O7PfAHxSZhDHSaRkqnm1CvtGxn1U0lMGI5U5nkFe0A_OBscT9_tUT5fgT7MXhssqG59oHXVaJLxG3lXEvYn80-ygm9VlEefD0cHVteQOUpxpbdppVBA5wYd7mr7dfh4Pyda7jjM6-vn1WNYdBmRC0CslkW9Pu8gewU-5C4VWSWozez36BNd3dZz1Up0aL0In8XTMhJxvRzSp0pmicV_Aiqc8nyd-ZvStzWD4rm3IzIk9SWF3Wm_Ysdv2rCqMpOhIx0Br6T8OinOm-19y1sa80RtYrcmqOKzQtQZLmL-F1_9IGK7D78BWY6KohVpn8gvFxVQc3pUFkWE6C2yPakHkWFRSyeRfxRBlXlzwOoUoMhFEsxxLiqpcG1tJaIsfFzOWdha2pkGM2269pWAXVuR81iiqvIPJs_z397Cc05s-gKAhaEqmssTzNasLGtdHnUUYEdZMhtiBfvNrw6SWPefuG5dhK9hszRGSOUJrjtDvwF77zFUl-rHw7q3GYmHtAG7DOVw7sN9YcX756dE2Fo-2Ay8J9uHp-OxkE145FkNcjbgFy-XNHW4TQyrjjxaKAn49N_b_AkRRHjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Automated+Method+for+Effective+De-noising+of+Magnetocardiography+Signals+Using+Independent+Component+Analysis&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Kesavaraja%2C+C.&rft.au=Sengottuvel%2C+S.&rft.au=Patel%2C+Rajesh&rft.au=Mani%2C+Awadhesh&rft.date=2024-08-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=43&rft.issue=8&rft.spage=4968&rft.epage=4990&rft_id=info:doi/10.1007%2Fs00034-024-02655-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_024_02655_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |