Machine Learning-Based Automated Method for Effective De-noising of Magnetocardiography Signals Using Independent Component Analysis

This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography (MCG) system. The traditional approach of applying ICA involves manual visual inspection to determine the retention or removal of independent c...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 43; no. 8; pp. 4968 - 4990
Main Authors Kesavaraja, C., Sengottuvel, S., Patel, Rajesh, Mani, Awadhesh
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0278-081X
1531-5878
DOI10.1007/s00034-024-02655-9

Cover

Abstract This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography (MCG) system. The traditional approach of applying ICA involves manual visual inspection to determine the retention or removal of independent component (IC) related to signal or noise, which is time-consuming and lacks assurance in preserving essential attributes of signal components during the de-noising process. To address these challenges, we propose a novel approach. A feature set comprising spectral, statistical, and nonlinear time series properties is computed from the ICs of thirty subjects. These features are then evaluated by a few machine learning (ML) models to optimally select ICs for de-noising cardiac time series. It is found that ICs evaluated by a gradient boosting decision tree (GBDT) classifier could accomplish the task of efficiently selecting components to de-noise MCG with an accuracy of 93%. The performance of the proposed method is qualitatively and quantitatively compared against conventional methods for noise elimination and preserving signal features. The proposed method has extensive application in de-noising multichannel MCG signals where the characteristics of the noise are not clearly known and for routine diagnostic assessments of subjects with cardiac anomalies in hospital settings.
AbstractList This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography (MCG) system. The traditional approach of applying ICA involves manual visual inspection to determine the retention or removal of independent component (IC) related to signal or noise, which is time-consuming and lacks assurance in preserving essential attributes of signal components during the de-noising process. To address these challenges, we propose a novel approach. A feature set comprising spectral, statistical, and nonlinear time series properties is computed from the ICs of thirty subjects. These features are then evaluated by a few machine learning (ML) models to optimally select ICs for de-noising cardiac time series. It is found that ICs evaluated by a gradient boosting decision tree (GBDT) classifier could accomplish the task of efficiently selecting components to de-noise MCG with an accuracy of 93%. The performance of the proposed method is qualitatively and quantitatively compared against conventional methods for noise elimination and preserving signal features. The proposed method has extensive application in de-noising multichannel MCG signals where the characteristics of the noise are not clearly known and for routine diagnostic assessments of subjects with cardiac anomalies in hospital settings.
Author Kesavaraja, C.
Patel, Rajesh
Mani, Awadhesh
Sengottuvel, S.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0002-2843-7963
  surname: Kesavaraja
  fullname: Kesavaraja, C.
  email: mailtokesavaraja@gmail.com
  organization: Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute
– sequence: 2
  givenname: S.
  surname: Sengottuvel
  fullname: Sengottuvel, S.
  organization: SQUIDs Applications Section, SQUID & Detector Technology Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR)
– sequence: 3
  givenname: Rajesh
  surname: Patel
  fullname: Patel, Rajesh
  organization: SQUIDs Applications Section, SQUID & Detector Technology Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR)
– sequence: 4
  givenname: Awadhesh
  surname: Mani
  fullname: Mani, Awadhesh
  email: mani@igcar.gov.in
  organization: Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute, Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR)
BookMark eNp9kMFuGyEURVGVSnXS_kBXSF3TPIZhBpaumzaRbHXRRuoO4eHNmCiGKeBI3vfDi-NKlbrIAniLc3hX95JchBiQkPccPnKA_joDgGgZNKfTScn0K7LgUnAmVa8uyAKaXjFQ_OcbcpnzAwDXrW4W5PfGDjsfkK7RpuDDxD7ZjI4uDyXubanTBssuOjrGRG_GEYfin5B-Rhaiz5WncaQbOwUscbDJ-TglO--O9Lufgn3M9P4ZugsOZ6xXKHQV93NNX6dlJY7Z57fk9VhZfPf3vSL3X25-rG7Z-tvXu9VyzQbBdWFd2_SyRdV3jXbQKZBicL0EIaDbblvdyu0ITjrVW2yGXm4byfkJR1ROyFFckQ_nf-cUfx0wF_MQD-kU0whQHW9brVWlmjM1pJhzwtHMye9tOhoO5tS2ObdtatvmuW2jq6T-kwZfbPExlGT948uqOKu57gkTpn-pXrD-APJ-lyo
CitedBy_id crossref_primary_10_1016_j_nucengdes_2025_113955
Cites_doi 10.1109/72.761722
10.1109/TMAG.2005.854851
10.1007/s11517-006-0055-z
10.1109/TBME.2018.2837647
10.1016/j.bspc.2011.07.007
10.1016/j.jelectrocard.2010.07.007
10.1152/ajpheart.2000.278.6.H2039
10.3379/msjmag.1702R001
10.1007/978-0-387-84858-7
10.1111/j.1540-8167.2005.00332.x
10.1080/03091900500520379
10.1109/TMAG.2018.2845903
10.7551/mitpress/7558.001.0001
10.1016/j.cmpb.2019.105304
10.1093/acprof:oso/9780195058239.001.0001
10.1088/0031-9155/46/4/305
10.1016/j.compbiomed.2007.06.003
10.1016/j.bspc.2014.12.012
10.1002/9781119068129
10.1016/S0893-6080(00)00026-5
10.1109/TMAG.2004.828990
10.1007/s40846-017-0274-9
10.1162/neco.1995.7.6.1129
10.1016/j.sigpro.2007.01.011
10.1109/TBME.2010.2051440
10.3389/fpsyg.2018.01679
10.1063/5.0167372
10.1016/S0893-6080(00)00071-X
10.1201/9781315139470
10.1121/1.1907229
10.1063/1.4710279
10.1007/s11517-006-0119-0
10.1088/0031-9155/52/5/N02
10.1016/j.bspc.2019.101664
10.3389/fcvm.2023.1232882
10.1063/1.166141
10.1161/circ.130.suppl_2.17191
10.1109/IEMBS.2005.1615516
10.1109/IEMBS.2002.1106637
10.1016/S0925-2312(98)00056-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00034-024-02655-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 4990
ExternalDocumentID 10_1007_s00034_024_02655_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7SP
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-642754e87629d068053cd7503306bb4945bf0d5d87ae2c75b2511e876ee8d35f3
IEDL.DBID AGYKE
ISSN 0278-081X
IngestDate Sat Aug 16 21:31:29 EDT 2025
Tue Jul 01 00:50:54 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Fri Feb 21 02:39:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords De-noising
Independent component analysis
Classification
Machine learning
Feature extraction
Magnetocardiography
Automatic identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-642754e87629d068053cd7503306bb4945bf0d5d87ae2c75b2511e876ee8d35f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2843-7963
PQID 3086144998
PQPubID 30136
PageCount 23
ParticipantIDs proquest_journals_3086144998
crossref_primary_10_1007_s00034_024_02655_9
crossref_citationtrail_10_1007_s00034_024_02655_9
springer_journals_10_1007_s00034_024_02655_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Pedregosa, Varoquaux, Gramfort (CR36) 2011; 12
Gulrajani (CR16) 1998
Davies, James (CR11) 2007; 87
Kobayashi, Iwai (CR24) 2018; 54
Acharya, Molinari, Sree (CR1) 2012; 7
Iwai, Kobayashi, Yoshizawa (CR21) 2017; 41
CR38
Takala, Hänninen, Montonen (CR44) 2001; 46
CR15
CR37
CR13
Mariyappa, Sengottuvel, Rajesh (CR29) 2015; 18
Kobayashi, Uchikawa, Simizu (CR23) 2005; 41
CR34
CR33
CR10
Müller, Nolte, Paolo (CR32) 2006; 30
Hyvärinen, Oja (CR19) 2000; 13
Korhonen, Husa, Tierala (CR26) 2006; 17
Mukhopadhyay, Krishnan (CR31) 2020; 188
Kobayashi, Uchikawa, Nakai (CR25) 2004; 40
Luo, Johnston (CR27) 2010; 43
Theis, Meyer-Bäse (CR46) 2010
Hyvarinen (CR18) 1999; 10
Duda, Hart (CR14) 2006
CR2
Rangayyan (CR39) 2015
CR3
CR6
CR8
CR7
CR9
Hastie, Tibshirani, Friedman (CR17) 2009
Somarajan, Muszynski, Hawrami (CR42) 2019; 66
CR45
CR22
Malmivuo, Plonsey (CR28) 1995
CR43
CR20
DiPietroPaolo, Mueller, Nolte (CR12) 2006; 44
Mijović, De Vos, Gligorijević (CR30) 2010; 57
CR40
Wallot, Mønster (CR47) 2018; 9
Patel, Gireesan, Sengottuvel (CR35) 2017; 37
Blanco-Velasco, Weng, Barner (CR5) 2008; 38
Bell, Sejnowski (CR4) 1995; 7
Richman, Moorman (CR41) 2000; 278
SK Mukhopadhyay (2655_CR31) 2020; 188
AJ Bell (2655_CR4) 1995; 7
K Kobayashi (2655_CR24) 2018; 54
ME Davies (2655_CR11) 2007; 87
FJ Theis (2655_CR46) 2010
HP Müller (2655_CR32) 2006; 30
S Wallot (2655_CR47) 2018; 9
D DiPietroPaolo (2655_CR12) 2006; 44
RM Gulrajani (2655_CR16) 1998
P Korhonen (2655_CR26) 2006; 17
2655_CR33
B Mijović (2655_CR30) 2010; 57
2655_CR34
2655_CR3
2655_CR2
2655_CR10
K Kobayashi (2655_CR25) 2004; 40
2655_CR9
2655_CR15
2655_CR37
2655_CR8
2655_CR38
2655_CR7
2655_CR13
T Hastie (2655_CR17) 2009
K Kobayashi (2655_CR23) 2005; 41
2655_CR6
M Blanco-Velasco (2655_CR5) 2008; 38
A Hyvarinen (2655_CR18) 1999; 10
S Luo (2655_CR27) 2010; 43
S Somarajan (2655_CR42) 2019; 66
P Takala (2655_CR44) 2001; 46
2655_CR40
A Hyvärinen (2655_CR19) 2000; 13
UR Acharya (2655_CR1) 2012; 7
M Iwai (2655_CR21) 2017; 41
J Malmivuo (2655_CR28) 1995
N Mariyappa (2655_CR29) 2015; 18
JS Richman (2655_CR41) 2000; 278
2655_CR22
R Patel (2655_CR35) 2017; 37
2655_CR45
2655_CR20
RM Rangayyan (2655_CR39) 2015
RO Duda (2655_CR14) 2006
F Pedregosa (2655_CR36) 2011; 12
2655_CR43
References_xml – ident: CR45
– ident: CR22
– ident: CR43
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  end-page: 634
  ident: CR18
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 41
  start-page: 4152
  issue: 10
  year: 2005
  end-page: 4154
  ident: CR23
  article-title: The rejection of magnetic noise from the wire using independent component analysis for magnetocardiogram
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2005.854851
– volume: 44
  start-page: 489
  issue: 6
  year: 2006
  end-page: 499
  ident: CR12
  article-title: Noise reduction in magnetocardiography by singular value decomposition and independent component analysis
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-006-0055-z
– volume: 66
  start-page: 327
  issue: 2
  year: 2019
  end-page: 334
  ident: CR42
  article-title: Noninvasive magnetogastrography detects erythromycin-induced effects on the gastric slow wave
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2837647
– ident: CR2
– ident: CR37
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  end-page: 408
  ident: CR1
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
– ident: CR10
– volume: 43
  start-page: 486
  issue: 6
  year: 2010
  end-page: 496
  ident: CR27
  article-title: A review of electrocardiogram filtering
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2010.07.007
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  end-page: H2049
  ident: CR41
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol.-Heart Circulatory Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– ident: CR33
– volume: 41
  start-page: 41
  issue: 2
  year: 2017
  end-page: 45
  ident: CR21
  article-title: Automatic component selection for noise reduction in magnetocardiograph based on independent component analysis
  publication-title: J. Magn. Soc. Japan.
  doi: 10.3379/msjmag.1702R001
– year: 2009
  ident: CR17
  publication-title: The elements of statistical learning: data mining, inference, and prediction
  doi: 10.1007/978-0-387-84858-7
– volume: 17
  start-page: 396
  issue: 4
  year: 2006
  end-page: 401
  ident: CR26
  article-title: Increased intra-QRS fragmentation in magnetocardiography as a predictor of arrhythmic events and mortality in patients with cardiac dysfunction after myocardial infarction
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.2005.00332.x
– ident: CR6
– volume: 30
  start-page: 158
  issue: 3
  year: 2006
  end-page: 165
  ident: CR32
  article-title: Using independent component analysis for noise reduction of magnetocardiographic data in case of exercise with an ergometer
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900500520379
– ident: CR8
– volume: 54
  start-page: 1
  issue: 11
  year: 2018
  end-page: 4
  ident: CR24
  article-title: Quantitative independent component selection using attractor analysis for noise reduction in magnetocardiogram signals
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2018.2845903
– ident: CR40
– year: 2010
  ident: CR46
  publication-title: Biomedical signal analysis: Contemporary methods and applications
  doi: 10.7551/mitpress/7558.001.0001
– volume: 188
  year: 2020
  ident: CR31
  article-title: A singular spectrum analysis-based model-free electrocardiogram denoising technique
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105304
– year: 1995
  ident: CR28
  publication-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields
  doi: 10.1093/acprof:oso/9780195058239.001.0001
– volume: 46
  start-page: 975
  issue: 4
  year: 2001
  ident: CR44
  article-title: Beat-to-beat analysis method for magnetocardiographic recordings during interventions
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/4/305
– year: 2006
  ident: CR14
  publication-title: Pattern classification
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR36
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 1
  issue: 1
  year: 2008
  end-page: 13
  ident: CR5
  article-title: ECG signal denoising and baseline wander correction based on the empirical mode decomposition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.06.003
– volume: 18
  start-page: 204
  year: 2015
  end-page: 213
  ident: CR29
  article-title: Denoising of multichannel MCG data by the combination of EEMD and ICA and its effect on the pseudo current density maps
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.12.012
– ident: CR3
– ident: CR15
– ident: CR38
– year: 2015
  ident: CR39
  publication-title: Biomedical signal analysis
  doi: 10.1002/9781119068129
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  end-page: 430
  ident: CR19
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 40
  start-page: 2970
  issue: 4
  year: 2004
  end-page: 2972
  ident: CR25
  article-title: Visualization of the current-density distribution for MCG with WPW syndrome patients using independent component analysis
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2004.828990
– ident: CR13
– ident: CR9
– volume: 37
  start-page: 554
  issue: 4
  year: 2017
  end-page: 560
  ident: CR35
  article-title: Suppression of baseline wander artifact in Magnetocardiogram using breathing sensor
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0274-9
– ident: CR34
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  end-page: 1159
  ident: CR4
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– year: 1998
  ident: CR16
  publication-title: Bioelectricity and biomagnetism
– ident: CR7
– volume: 87
  start-page: 1819
  issue: 8
  year: 2007
  end-page: 1832
  ident: CR11
  article-title: Source separation using single channel ICA
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2007.01.011
– volume: 57
  start-page: 2188
  issue: 9
  year: 2010
  end-page: 2196
  ident: CR30
  article-title: Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2051440
– volume: 9
  start-page: 1679
  year: 2018
  ident: CR47
  article-title: Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01679
– ident: CR20
– volume: 40
  start-page: 2970
  issue: 4
  year: 2004
  ident: 2655_CR25
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2004.828990
– ident: 2655_CR8
– volume: 9
  start-page: 1679
  year: 2018
  ident: 2655_CR47
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01679
– ident: 2655_CR33
  doi: 10.1063/5.0167372
– ident: 2655_CR20
  doi: 10.1016/S0893-6080(00)00071-X
– volume-title: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields
  year: 1995
  ident: 2655_CR28
  doi: 10.1093/acprof:oso/9780195058239.001.0001
– volume-title: Biomedical signal analysis
  year: 2015
  ident: 2655_CR39
  doi: 10.1002/9781119068129
– ident: 2655_CR6
  doi: 10.1201/9781315139470
– volume: 46
  start-page: 975
  issue: 4
  year: 2001
  ident: 2655_CR44
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/4/305
– volume: 43
  start-page: 486
  issue: 6
  year: 2010
  ident: 2655_CR27
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2010.07.007
– volume: 18
  start-page: 204
  year: 2015
  ident: 2655_CR29
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.12.012
– ident: 2655_CR9
  doi: 10.1121/1.1907229
– ident: 2655_CR34
  doi: 10.1063/1.4710279
– volume-title: Bioelectricity and biomagnetism
  year: 1998
  ident: 2655_CR16
– volume: 188
  year: 2020
  ident: 2655_CR31
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105304
– ident: 2655_CR2
  doi: 10.1007/s11517-006-0119-0
– volume: 57
  start-page: 2188
  issue: 9
  year: 2010
  ident: 2655_CR30
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2051440
– ident: 2655_CR10
  doi: 10.1088/0031-9155/52/5/N02
– ident: 2655_CR43
  doi: 10.1016/j.bspc.2019.101664
– volume: 44
  start-page: 489
  issue: 6
  year: 2006
  ident: 2655_CR12
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-006-0055-z
– volume: 41
  start-page: 4152
  issue: 10
  year: 2005
  ident: 2655_CR23
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2005.854851
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  ident: 2655_CR1
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
– volume: 30
  start-page: 158
  issue: 3
  year: 2006
  ident: 2655_CR32
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900500520379
– ident: 2655_CR7
  doi: 10.3389/fcvm.2023.1232882
– volume: 87
  start-page: 1819
  issue: 8
  year: 2007
  ident: 2655_CR11
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2007.01.011
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  ident: 2655_CR18
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 37
  start-page: 554
  issue: 4
  year: 2017
  ident: 2655_CR35
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0274-9
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 2655_CR17
  doi: 10.1007/978-0-387-84858-7
– ident: 2655_CR45
– ident: 2655_CR37
  doi: 10.1063/1.166141
– volume: 41
  start-page: 41
  issue: 2
  year: 2017
  ident: 2655_CR21
  publication-title: J. Magn. Soc. Japan.
  doi: 10.3379/msjmag.1702R001
– ident: 2655_CR22
  doi: 10.1161/circ.130.suppl_2.17191
– volume-title: Biomedical signal analysis: Contemporary methods and applications
  year: 2010
  ident: 2655_CR46
  doi: 10.7551/mitpress/7558.001.0001
– volume-title: Pattern classification
  year: 2006
  ident: 2655_CR14
– volume: 17
  start-page: 396
  issue: 4
  year: 2006
  ident: 2655_CR26
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/j.1540-8167.2005.00332.x
– volume: 66
  start-page: 327
  issue: 2
  year: 2019
  ident: 2655_CR42
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2837647
– ident: 2655_CR13
  doi: 10.1109/IEMBS.2005.1615516
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2655_CR36
  publication-title: J. Mach. Learn. Res.
– ident: 2655_CR40
  doi: 10.1109/IEMBS.2002.1106637
– ident: 2655_CR3
  doi: 10.1016/S0925-2312(98)00056-3
– volume: 38
  start-page: 1
  issue: 1
  year: 2008
  ident: 2655_CR5
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.06.003
– volume: 54
  start-page: 1
  issue: 11
  year: 2018
  ident: 2655_CR24
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2018.2845903
– ident: 2655_CR15
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 2655_CR4
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  ident: 2655_CR19
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– ident: 2655_CR38
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  ident: 2655_CR41
  publication-title: Am. J. Physiol.-Heart Circulatory Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
SSID ssj0019492
Score 2.369302
Snippet This study aims to develop an automated method for de-noising cardiac signals using independent component analysis (ICA) on a 37-channel magnetocardiography...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4968
SubjectTerms Automation
Circuits and Systems
Decision trees
Electrical Engineering
Electronics and Microelectronics
Engineering
Independent component analysis
Instrumentation
Machine learning
Magnetocardiography
Signal classification
Signal,Image and Speech Processing
Time series
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBQDlwg4h1adb0hMZjDKRygUm7VX24ExJqB-v-AT8cO007QGKHSpWaplLt2I7tfB9j51L34ziJpEgVZavA0SJ2QApPaohk1vM0UEI_eO6Pxu7TRE1swm1u2yprm2gMdVoklCO_khh7Y_CPu4Pr2Ycg1iiqrloKjXW24aCnIT3Xw4emiuC7hhSZimsCXd_EHpoxR-cMMotAD4VXXynh_3ZMy2jzT4HU-J3hDtu2ASMfVBLeZWuQ77GtHzCC--wrMB2RwC1Y6lTcoG9K-WBRFhiQ4l1geKI5Bqi8gitGG8fvQOTFG-UKeJHxIJrmUKJno_7UCsaav7xNCV6Zm74C_tgw5paczEiR012NanLAxsP719uRsOwKIsFlVwrceHjKBbKGfkoMHEomqalqdlF8ru-qOOumKtVeBL3EUzFtRmg4gE6lyuQha-X4pSPGcQrcFsks8XxFCH_a9UFlEUQob50BtJlT_9owsdDjxIDxHjagyUYcIYojNOII_Ta7aN6ZVcAbK0d3aomFdhHOw6XKtNllLcXl4_9nO1492wnb7BnFoTbADmuVnws4xdCkjM-M_n0DpBLe-A
  priority: 102
  providerName: ProQuest
Title Machine Learning-Based Automated Method for Effective De-noising of Magnetocardiography Signals Using Independent Component Analysis
URI https://link.springer.com/article/10.1007/s00034-024-02655-9
https://www.proquest.com/docview/3086144998
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiUygMbGNE6bpyxhZaXWiGgUpmiPC5VBUoRTRdmfjhn51GoAKlDFCtxnMQ-38N3_g7gWKiG7wee4KHUq1VYU9yvoeC2UOiJqG4r1Av63V7jum_dDuQg2xQ2yaPdc5ek4dTFZjeDpcJJptDRkJI7y7Aia8pRJVhpXj3ftQvvgWOZZMjaqcZJ5A2yzTK_t_JTIM20zDnHqJE3nQ3o51-ahpm8nE0T_yz4mANxXPRXNmE9U0BZM6WYLVjCeBvWvsES7sBn10RYIsvAV4e8RbIuZM1pMiYFl0pdk3eakcLLUvhj4pnsEnk8Hum1BzaOWNcbxpiQpNTxriksNnscDTVcMzNxCuymyMCbMM2WxrEu5Sgpu9DvtJ8urnmWrYEHNI0TToaMLS3U3NUJdUYPKYLQeEnPiRwsx5J-dB7KUNke1gNb-tq40dURVShkJPagFNOb9oFRE2RmiSiwHakRA5XloIw89Ih-VIRYhlo-ZG6QQZnrjBqvbgHCbHrYpR52TQ-7ThlOimfeUiCPf2tXckpws0k9cQWZf2R_koFahtN8YGe3_27tYLHqh7BaN7ShwwwrUErep3hEqk_iV2FZda6qGb3TudXu3T_Q1X69-QXk6Pwy
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOSwcVrALoiwPH5YTWNA4bpIDQjzVAqkQD6m3kMekqoQSdglC3Pk9_EZmnKQFJLhxiGQpjhN5JjOfPeNvAP4qtx1Fcahkonm3CluujFqopKNcDFVqOS7yhr7fa3eu7ZO-7k_AS30WhtMqa5toDHWSx7xHvqUIexP4p9XB7t0_yVWjOLpal9Ao1eIUnx5pyXa_0z0k-a5b1vHR1UFHVlUFZEzqVkgC3I62ka2Al3DlCa3ixETztumzbc_WUbqd6MR1QrRiR0cMwrk7opsonSoadxKmbD7R2oCp_aPe-cUobuHZpgwzh_MkOdt-dUzHHNYzXDCSfCJdba2l994VjvHth5Cs8XTHs_Czgqhir9SpOZjA7BfMvCEu_A3PvsnBRFHRsw7kPnnDROw9FDlBYGr5pjK1IEgsSoJksqriEGWWD3l3QuSp8MNBhgX5Us6ILYmzxeVwwITOwmQyiO6oRm8h2HDlGbdqHpV5uP6WmV-ARkZvWgRBQ9BCTKWx42nmFHRtD3UaYkga5qaITWjVUxvEFdk519y4DUY0zUYcAYkjMOIIvCZsjJ65K6k-vuy9XEssqH77-2CspE3YrKU4vv35aEtfj7YGPzpX_llw1u2d_oFpyygRJyEuQ6P4_4ArBIyKaLXSRgE33_0DvALktBto
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB7SBEp7CE3TUufR7KE5JYttrdZaHUpI67hxE4VAa_BN1WNkAkHKQyHk3l_VX9eZ1cNNIb7lIBBIWiHNx8y3O7PfAHxSZhDHSaRkqnm1CvtGxn1U0lMGI5U5nkFe0A_OBscT9_tUT5fgT7MXhssqG59oHXVaJLxG3lXEvYn80-ygm9VlEefD0cHVteQOUpxpbdppVBA5wYd7mr7dfh4Pyda7jjM6-vn1WNYdBmRC0CslkW9Pu8gewU-5C4VWSWozez36BNd3dZz1Up0aL0In8XTMhJxvRzSp0pmicV_Aiqc8nyd-ZvStzWD4rm3IzIk9SWF3Wm_Ysdv2rCqMpOhIx0Br6T8OinOm-19y1sa80RtYrcmqOKzQtQZLmL-F1_9IGK7D78BWY6KohVpn8gvFxVQc3pUFkWE6C2yPakHkWFRSyeRfxRBlXlzwOoUoMhFEsxxLiqpcG1tJaIsfFzOWdha2pkGM2269pWAXVuR81iiqvIPJs_z397Cc05s-gKAhaEqmssTzNasLGtdHnUUYEdZMhtiBfvNrw6SWPefuG5dhK9hszRGSOUJrjtDvwF77zFUl-rHw7q3GYmHtAG7DOVw7sN9YcX756dE2Fo-2Ay8J9uHp-OxkE145FkNcjbgFy-XNHW4TQyrjjxaKAn49N_b_AkRRHjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Automated+Method+for+Effective+De-noising+of+Magnetocardiography+Signals+Using+Independent+Component+Analysis&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Kesavaraja%2C+C.&rft.au=Sengottuvel%2C+S.&rft.au=Patel%2C+Rajesh&rft.au=Mani%2C+Awadhesh&rft.date=2024-08-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=43&rft.issue=8&rft.spage=4968&rft.epage=4990&rft_id=info:doi/10.1007%2Fs00034-024-02655-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_024_02655_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon