Biochar in climate change mitigation

Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO 2 ) from the atmosphere. Here we review the relationship between emissions reductions and CO 2 removal by biochar systems, which are based on pyrolysing biomass to produce bi...

Full description

Saved in:
Bibliographic Details
Published inNature geoscience Vol. 14; no. 12; pp. 883 - 892
Main Authors Lehmann, Johannes, Cowie, Annette, Masiello, Caroline A., Kammann, Claudia, Woolf, Dominic, Amonette, James E., Cayuela, Maria L., Camps-Arbestain, Marta, Whitman, Thea
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO 2 ) from the atmosphere. Here we review the relationship between emissions reductions and CO 2 removal by biochar systems, which are based on pyrolysing biomass to produce biochar, used for soil application, and renewable bioenergy. Half of the emission reductions and the majority of CO 2 removal result from the one to two orders of magnitude longer persistence of biochar than the biomass it is made from. Globally, biochar systems could deliver emission reductions of 3.4–6.3 PgCO 2 e, half of which constitutes CO 2 removal. Relevant trade-offs exist between making and sequestering biochar in soil or producing more energy. Importantly, these trade-offs depend on what type of energy is replaced: relative to producing bioenergy, emissions of biochar systems increase by 3% when biochar replaces coal, whereas emissions decrease by 95% when biochar replaces renewable energy. The lack of a clear relationship between crop yield increases in response to fertilizer and to biochar additions suggests opportunities for biochar to increase crop yields where fertilizer alone is not effective, but also questions blanket recommendations based on known fertilizer responses. Locally specific decision support must recognize these relationships and trade-offs to establish carbon-trading mechanisms that facilitate a judicious implementation commensurate with climate change mitigation needs. Climate change mitigation strategies based on biochar generation—and its application to agricultural soils—can effectively sequester carbon, although biogeochemical and economic trade-offs must be considered.
AbstractList Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO 2 ) from the atmosphere. Here we review the relationship between emissions reductions and CO 2 removal by biochar systems, which are based on pyrolysing biomass to produce biochar, used for soil application, and renewable bioenergy. Half of the emission reductions and the majority of CO 2 removal result from the one to two orders of magnitude longer persistence of biochar than the biomass it is made from. Globally, biochar systems could deliver emission reductions of 3.4–6.3 PgCO 2 e, half of which constitutes CO 2 removal. Relevant trade-offs exist between making and sequestering biochar in soil or producing more energy. Importantly, these trade-offs depend on what type of energy is replaced: relative to producing bioenergy, emissions of biochar systems increase by 3% when biochar replaces coal, whereas emissions decrease by 95% when biochar replaces renewable energy. The lack of a clear relationship between crop yield increases in response to fertilizer and to biochar additions suggests opportunities for biochar to increase crop yields where fertilizer alone is not effective, but also questions blanket recommendations based on known fertilizer responses. Locally specific decision support must recognize these relationships and trade-offs to establish carbon-trading mechanisms that facilitate a judicious implementation commensurate with climate change mitigation needs. Climate change mitigation strategies based on biochar generation—and its application to agricultural soils—can effectively sequester carbon, although biogeochemical and economic trade-offs must be considered.
Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO2) from the atmosphere. Here we review the relationship between emissions reductions and CO2 removal by biochar systems, which are based on pyrolysing biomass to produce biochar, used for soil application, and renewable bioenergy. Half of the emission reductions and the majority of CO2 removal result from the one to two orders of magnitude longer persistence of biochar than the biomass it is made from. Globally, biochar systems could deliver emission reductions of 3.4–6.3 PgCO2e, half of which constitutes CO2 removal. Relevant trade-offs exist between making and sequestering biochar in soil or producing more energy. Importantly, these trade-offs depend on what type of energy is replaced: relative to producing bioenergy, emissions of biochar systems increase by 3% when biochar replaces coal, whereas emissions decrease by 95% when biochar replaces renewable energy. The lack of a clear relationship between crop yield increases in response to fertilizer and to biochar additions suggests opportunities for biochar to increase crop yields where fertilizer alone is not effective, but also questions blanket recommendations based on known fertilizer responses. Locally specific decision support must recognize these relationships and trade-offs to establish carbon-trading mechanisms that facilitate a judicious implementation commensurate with climate change mitigation needs.Climate change mitigation strategies based on biochar generation—and its application to agricultural soils—can effectively sequester carbon, although biogeochemical and economic trade-offs must be considered.
Author Cowie, Annette
Camps-Arbestain, Marta
Lehmann, Johannes
Amonette, James E.
Cayuela, Maria L.
Whitman, Thea
Woolf, Dominic
Masiello, Caroline A.
Kammann, Claudia
Author_xml – sequence: 1
  givenname: Johannes
  orcidid: 0000-0002-4701-2936
  surname: Lehmann
  fullname: Lehmann, Johannes
  email: CL273@cornell.edu
  organization: Soil and Crop Science, School of Integrative Plant Science, Cornell University, Cornell Atkinson Center for Sustainability, Cornell University
– sequence: 2
  givenname: Annette
  orcidid: 0000-0002-3858-959X
  surname: Cowie
  fullname: Cowie, Annette
  organization: NSW Department of Primary Industries/University of New England
– sequence: 3
  givenname: Caroline A.
  surname: Masiello
  fullname: Masiello, Caroline A.
  organization: Department of Earth, Environmental and Planetary Science, Rice University
– sequence: 4
  givenname: Claudia
  surname: Kammann
  fullname: Kammann, Claudia
  organization: Department of Applied Ecology, Geisenheim University
– sequence: 5
  givenname: Dominic
  surname: Woolf
  fullname: Woolf, Dominic
  organization: Soil and Crop Science, School of Integrative Plant Science, Cornell University, Cornell Atkinson Center for Sustainability, Cornell University
– sequence: 6
  givenname: James E.
  orcidid: 0000-0003-1480-4280
  surname: Amonette
  fullname: Amonette, James E.
  organization: Geochemistry, Physical Sciences Division, Pacific Northwest National Laboratory, Center for Sustaining Agriculture & Natural Resources, Washington State University
– sequence: 7
  givenname: Maria L.
  orcidid: 0000-0003-0929-4204
  surname: Cayuela
  fullname: Cayuela, Maria L.
  organization: Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo
– sequence: 8
  givenname: Marta
  orcidid: 0000-0002-5354-2087
  surname: Camps-Arbestain
  fullname: Camps-Arbestain, Marta
  organization: School of Agriculture and Environment, Massey University
– sequence: 9
  givenname: Thea
  orcidid: 0000-0003-2269-5598
  surname: Whitman
  fullname: Whitman, Thea
  organization: Department of Soil Science, University of Wisconsin-Madison
BookMark eNp9kEtLAzEQgINUsK3-AU8Lel2dvLNHLVaFghc9hzSb1JR2tybpwX9v7CqCh0IeE5hvZvJN0KjrO4fQJYYbDFTdJoa5wDWQskFxUqsTNMayBNCAGv3GqmFnaJLSGkAAk3yMru9Db99NrEJX2U3Ymuyq8u5WrtqGHFYmh747R6febJK7-Lmn6G3-8Dp7qhcvj8-zu0VtKW5yLSj2YIwk3pTVtJxa0hLBBFHKGLdkpJzEca-8FMxT3xjhLOHL1mEjG0Gn6Gqou4v9x96lrNf9PnalpSYCJCjCJS5ZZMiysU8pOq93sQwePzUG_W1DDzZ0saEPNrQqkPoH2ZAPn8vRhM1xlA5oKn2KmPg31RHqCz3gdPM
CitedBy_id crossref_primary_10_1007_s44246_024_00132_1
crossref_primary_10_1016_j_scitotenv_2024_175240
crossref_primary_10_12677_AEP_2023_134107
crossref_primary_10_1007_s42773_023_00290_2
crossref_primary_10_1007_s11104_023_06448_y
crossref_primary_10_1016_j_soilad_2025_100041
crossref_primary_10_3390_rs15194645
crossref_primary_10_1007_s11783_023_1672_6
crossref_primary_10_1016_j_fcr_2025_109765
crossref_primary_10_1016_j_chemosphere_2022_135264
crossref_primary_10_1126_sciadv_adh8499
crossref_primary_10_1007_s42729_023_01456_4
crossref_primary_10_1016_j_jenvman_2023_118115
crossref_primary_10_1021_acssuschemeng_4c07181
crossref_primary_10_1016_j_nexus_2024_100335
crossref_primary_10_1007_s42768_024_00211_4
crossref_primary_10_1007_s42773_024_00376_5
crossref_primary_10_1007_s42729_024_01629_9
crossref_primary_10_1016_j_envpol_2024_123969
crossref_primary_10_1007_s42250_024_01107_w
crossref_primary_10_1016_j_scitotenv_2023_164185
crossref_primary_10_1016_j_coal_2024_104498
crossref_primary_10_1007_s42773_023_00204_2
crossref_primary_10_1007_s13280_024_02037_0
crossref_primary_10_1016_j_jenvman_2024_122801
crossref_primary_10_1002_bte2_20240055
crossref_primary_10_3389_ffgc_2022_878217
crossref_primary_10_1016_j_jclepro_2024_143133
crossref_primary_10_32604_phyton_2023_046877
crossref_primary_10_1007_s11368_022_03402_w
crossref_primary_10_1021_acs_est_3c02620
crossref_primary_10_1007_s42773_023_00291_1
crossref_primary_10_1016_j_eja_2024_127371
crossref_primary_10_3389_fenvs_2023_1059449
crossref_primary_10_17474_artvinofd_1256742
crossref_primary_10_1016_j_scitotenv_2023_166115
crossref_primary_10_3390_chemosensors11070394
crossref_primary_10_1007_s12613_023_2683_9
crossref_primary_10_1016_j_scitotenv_2023_167442
crossref_primary_10_1016_j_fcr_2025_109743
crossref_primary_10_1111_ejss_13428
crossref_primary_10_1016_j_chemosphere_2022_136572
crossref_primary_10_3390_polym15051196
crossref_primary_10_1016_j_pedsph_2023_07_023
crossref_primary_10_1007_s42114_023_00682_9
crossref_primary_10_1007_s42773_024_00386_3
crossref_primary_10_1016_j_spc_2024_03_026
crossref_primary_10_1016_j_geoderma_2022_115971
crossref_primary_10_1590_1983_40632024v5480082
crossref_primary_10_2166_wcc_2022_293
crossref_primary_10_1007_s42773_022_00166_x
crossref_primary_10_1016_j_jwpe_2023_104640
crossref_primary_10_3390_su15086729
crossref_primary_10_1038_s41598_025_86636_1
crossref_primary_10_1021_acssuschemeng_4c03831
crossref_primary_10_3390_ijms231810376
crossref_primary_10_1016_j_tifs_2024_104644
crossref_primary_10_1016_j_jclepro_2023_138606
crossref_primary_10_3389_fpls_2024_1515584
crossref_primary_10_1016_j_scitotenv_2023_166171
crossref_primary_10_1016_j_enconman_2024_118450
crossref_primary_10_3390_ijerph191811205
crossref_primary_10_1016_j_scitotenv_2022_160623
crossref_primary_10_1002_imt2_134
crossref_primary_10_1038_s43247_022_00394_w
crossref_primary_10_1007_s12649_023_02406_y
crossref_primary_10_1016_j_resconrec_2024_107939
crossref_primary_10_3390_agronomy13092361
crossref_primary_10_3390_su152215889
crossref_primary_10_1016_j_jhazmat_2023_131632
crossref_primary_10_1088_2753_3751_ad81fb
crossref_primary_10_1007_s42773_022_00142_5
crossref_primary_10_1039_D4EW00160E
crossref_primary_10_1016_j_agwat_2024_109134
crossref_primary_10_3390_c10020054
crossref_primary_10_1016_j_jhazmat_2024_134290
crossref_primary_10_1007_s11104_023_06313_y
crossref_primary_10_1007_s10532_025_10116_6
crossref_primary_10_1016_j_techfore_2023_122704
crossref_primary_10_3390_app15063207
crossref_primary_10_3389_fmicb_2025_1547979
crossref_primary_10_1038_s44284_024_00069_x
crossref_primary_10_1007_s12649_023_02250_0
crossref_primary_10_1016_j_scitotenv_2022_158562
crossref_primary_10_1016_j_envpol_2022_120937
crossref_primary_10_1016_j_jece_2025_116062
crossref_primary_10_1016_j_envres_2023_117916
crossref_primary_10_1021_acs_est_3c02309
crossref_primary_10_1016_j_scitotenv_2023_169420
crossref_primary_10_1016_j_jaap_2024_106681
crossref_primary_10_1038_s43017_024_00586_2
crossref_primary_10_1002_saj2_20647
crossref_primary_10_1007_s42773_024_00366_7
crossref_primary_10_3390_agronomy14091951
crossref_primary_10_2139_ssrn_4075452
crossref_primary_10_1021_acsomega_3c07804
crossref_primary_10_1016_j_rser_2023_113145
crossref_primary_10_1021_acsomega_3c07921
crossref_primary_10_1016_j_orggeochem_2024_104897
crossref_primary_10_1016_j_biortech_2022_127601
crossref_primary_10_1016_j_est_2024_112540
crossref_primary_10_2208_jscejj_23_25025
crossref_primary_10_1186_s12870_023_04468_5
crossref_primary_10_1007_s00128_022_03463_0
crossref_primary_10_1016_j_psep_2025_106931
crossref_primary_10_1007_s11771_025_5861_2
crossref_primary_10_1080_17583004_2024_2436872
crossref_primary_10_1016_j_scitotenv_2023_165176
crossref_primary_10_1007_s42773_023_00247_5
crossref_primary_10_2139_ssrn_4144164
crossref_primary_10_3390_agronomy13061532
crossref_primary_10_1016_j_scitotenv_2022_152922
crossref_primary_10_1021_acs_chemrev_2c00399
crossref_primary_10_1016_j_gee_2022_12_002
crossref_primary_10_1071_CP21790
crossref_primary_10_1016_j_scitotenv_2023_167749
crossref_primary_10_1080_17583004_2023_2244456
crossref_primary_10_3390_agronomy13041097
crossref_primary_10_1016_j_jclepro_2022_131323
crossref_primary_10_1016_j_jhazmat_2022_130582
crossref_primary_10_1007_s42773_023_00219_9
crossref_primary_10_1016_j_scitotenv_2022_156333
crossref_primary_10_1007_s42773_023_00271_5
crossref_primary_10_1039_D4GC04616A
crossref_primary_10_3390_en17020397
crossref_primary_10_1016_j_oneear_2024_08_008
crossref_primary_10_1016_j_indcrop_2023_117496
crossref_primary_10_1016_j_rcradv_2023_200173
crossref_primary_10_1039_D4RA03778B
crossref_primary_10_1007_s13399_024_06198_6
crossref_primary_10_1016_j_jenvman_2023_118872
crossref_primary_10_1007_s42729_023_01201_x
crossref_primary_10_1016_j_jclepro_2024_143660
crossref_primary_10_1016_j_jenvman_2025_124535
crossref_primary_10_1016_j_wasman_2022_10_037
crossref_primary_10_1016_j_scitotenv_2022_160957
crossref_primary_10_3390_su16208945
crossref_primary_10_1016_j_geosus_2022_11_004
crossref_primary_10_17221_121_2023_PSE
crossref_primary_10_1016_j_cemconcomp_2025_106013
crossref_primary_10_1016_j_heliyon_2024_e27055
crossref_primary_10_3390_land12081630
crossref_primary_10_1016_j_jenvman_2024_123034
crossref_primary_10_1016_j_cej_2024_155507
crossref_primary_10_1016_j_renene_2024_122282
crossref_primary_10_1016_j_scitotenv_2024_173326
crossref_primary_10_1016_j_scitotenv_2024_174415
crossref_primary_10_1016_j_matchemphys_2024_129919
crossref_primary_10_1016_j_scitotenv_2022_155571
crossref_primary_10_1016_j_scitotenv_2024_170293
crossref_primary_10_1038_s41558_023_01604_9
crossref_primary_10_1016_j_oneear_2024_12_008
crossref_primary_10_1016_j_still_2023_105978
crossref_primary_10_3390_cli12100151
crossref_primary_10_1186_s13717_024_00571_z
crossref_primary_10_1007_s42773_022_00160_3
crossref_primary_10_1016_j_indcrop_2023_118002
crossref_primary_10_1016_j_scitotenv_2022_159628
crossref_primary_10_1016_j_scitotenv_2024_176708
crossref_primary_10_1111_sum_12848
crossref_primary_10_1007_s11104_024_06506_z
crossref_primary_10_1007_s00374_025_01899_0
crossref_primary_10_1038_s43016_023_00821_x
crossref_primary_10_1007_s42729_024_01893_9
crossref_primary_10_1016_j_agee_2024_108910
crossref_primary_10_1007_s00374_023_01723_7
crossref_primary_10_1016_j_apsoil_2024_105752
crossref_primary_10_1016_j_rser_2022_113042
crossref_primary_10_1016_j_biombioe_2025_107755
crossref_primary_10_3390_agronomy12071661
crossref_primary_10_3390_su162310157
crossref_primary_10_1016_j_jenvman_2023_119979
crossref_primary_10_1016_j_scitotenv_2022_157219
crossref_primary_10_1073_pnas_2221840120
crossref_primary_10_1186_s13765_024_00911_9
crossref_primary_10_1016_j_scitotenv_2024_175448
crossref_primary_10_1007_s10973_025_14065_3
crossref_primary_10_1016_j_jclepro_2023_140008
crossref_primary_10_3389_fclim_2025_1505472
crossref_primary_10_1021_acs_est_4c02015
crossref_primary_10_1016_j_cesys_2024_100243
crossref_primary_10_1007_s10098_024_02863_6
crossref_primary_10_1016_j_matlet_2023_134368
crossref_primary_10_1007_s11157_024_09712_4
crossref_primary_10_1016_j_wasman_2023_05_038
crossref_primary_10_1016_j_inoche_2024_112931
crossref_primary_10_3390_atmos15010068
crossref_primary_10_1016_j_jclepro_2022_131241
crossref_primary_10_1016_j_biortech_2023_130211
crossref_primary_10_1371_journal_pone_0284092
crossref_primary_10_1371_journal_pone_0289300
crossref_primary_10_3390_agronomy14122907
crossref_primary_10_1016_j_jenvman_2025_124336
crossref_primary_10_1007_s13399_025_06624_3
crossref_primary_10_1016_j_ijhydene_2023_11_335
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1038_s43247_024_01771_3
crossref_primary_10_1007_s10661_024_13278_7
crossref_primary_10_1021_acssusresmgt_4c00263
crossref_primary_10_1021_acssusresmgt_4c00148
crossref_primary_10_1016_j_rset_2024_100087
crossref_primary_10_1007_s42773_024_00411_5
crossref_primary_10_1016_j_rser_2023_113890
crossref_primary_10_1021_acs_est_2c06419
crossref_primary_10_1007_s42729_024_01903_w
crossref_primary_10_1007_s44246_024_00110_7
crossref_primary_10_1016_j_biortech_2024_131953
crossref_primary_10_1016_j_biortech_2023_129478
crossref_primary_10_1007_s00374_024_01866_1
crossref_primary_10_1002_smll_202406669
crossref_primary_10_1016_j_jhazmat_2024_134242
crossref_primary_10_3389_fceng_2023_1186878
crossref_primary_10_3390_agronomy13071845
crossref_primary_10_1016_j_jclepro_2022_131269
crossref_primary_10_1111_brv_12949
crossref_primary_10_1038_s41561_023_01142_1
crossref_primary_10_1016_j_gca_2024_11_015
crossref_primary_10_3390_agronomy14081861
crossref_primary_10_1007_s42773_023_00294_y
crossref_primary_10_1016_j_jclepro_2023_139066
crossref_primary_10_1016_j_biortech_2023_129241
crossref_primary_10_1016_j_biombioe_2024_107531
crossref_primary_10_1016_j_rineng_2024_102433
crossref_primary_10_1139_er_2023_0092
crossref_primary_10_3390_su16041530
crossref_primary_10_1016_j_crsust_2023_100229
crossref_primary_10_1039_D4EE03166K
crossref_primary_10_1016_j_biombioe_2024_107416
crossref_primary_10_1016_j_oneear_2023_12_016
crossref_primary_10_1016_j_envpol_2024_125575
crossref_primary_10_1007_s11356_024_31936_8
crossref_primary_10_1016_j_scitotenv_2023_166549
crossref_primary_10_3389_fenvs_2022_914766
crossref_primary_10_3846_jeelm_2023_20042
crossref_primary_10_1016_j_enconman_2022_115691
crossref_primary_10_1038_s44264_024_00019_z
crossref_primary_10_1016_j_tibtech_2022_12_016
crossref_primary_10_1007_s42773_023_00288_w
crossref_primary_10_1016_j_biortech_2023_129773
crossref_primary_10_1016_j_jenvman_2024_123317
crossref_primary_10_1016_j_scitotenv_2022_153576
crossref_primary_10_1088_1748_9326_ad52ab
crossref_primary_10_3390_su152115396
crossref_primary_10_1016_j_envpol_2023_121810
crossref_primary_10_1016_j_resconrec_2022_106769
crossref_primary_10_1016_j_jenvman_2024_122233
crossref_primary_10_1007_s42773_024_00424_0
crossref_primary_10_1016_j_scitotenv_2022_155746
crossref_primary_10_3390_agriengineering6020089
crossref_primary_10_3390_app12084051
crossref_primary_10_1016_j_scitotenv_2024_174962
crossref_primary_10_3389_frsus_2023_1148001
crossref_primary_10_1016_j_talanta_2025_127572
crossref_primary_10_3390_su151813421
crossref_primary_10_1016_j_eng_2024_12_021
crossref_primary_10_3390_su16072629
crossref_primary_10_1088_1748_9326_aced18
crossref_primary_10_1016_j_epsl_2022_117739
crossref_primary_10_1360_SSTe_2023_0229
crossref_primary_10_3389_fmicb_2024_1470930
crossref_primary_10_3389_fenvs_2023_1123897
crossref_primary_10_1016_j_biortech_2023_129793
crossref_primary_10_1016_j_biortech_2024_130946
crossref_primary_10_1021_acssynbio_4c00077
crossref_primary_10_3390_agronomy14071583
crossref_primary_10_1016_j_cej_2024_152189
crossref_primary_10_1007_s44246_022_00012_6
crossref_primary_10_1111_gcbb_70021
crossref_primary_10_1016_j_jclepro_2022_134451
crossref_primary_10_1016_j_jenvman_2024_122134
crossref_primary_10_3390_agronomy15030565
crossref_primary_10_1038_s41598_024_81232_1
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_3390_plants13131736
crossref_primary_10_1186_s12302_024_00908_7
crossref_primary_10_1016_j_jrmge_2024_05_058
crossref_primary_10_1016_j_agrformet_2024_109940
crossref_primary_10_3390_app142210246
crossref_primary_10_1007_s11367_023_02144_2
crossref_primary_10_1016_j_scitotenv_2025_178597
crossref_primary_10_1007_s42773_025_00455_1
crossref_primary_10_3389_fmicb_2023_1292959
crossref_primary_10_1016_j_trgeo_2024_101370
crossref_primary_10_1590_1983_21252024v3711792rc
crossref_primary_10_1016_j_scitotenv_2024_175725
crossref_primary_10_1007_s00374_024_01861_6
crossref_primary_10_1016_j_envadv_2023_100395
crossref_primary_10_3390_f15060917
crossref_primary_10_1016_j_cesys_2023_100128
crossref_primary_10_1016_j_cej_2023_146542
crossref_primary_10_1016_j_jenvman_2024_122139
crossref_primary_10_1007_s11027_024_10130_8
crossref_primary_10_1007_s42773_025_00445_3
crossref_primary_10_1016_j_jece_2024_114264
crossref_primary_10_1186_s12870_024_05202_5
crossref_primary_10_1080_17583004_2023_2217785
crossref_primary_10_1016_j_jclepro_2025_145150
crossref_primary_10_1007_s10311_023_01662_7
crossref_primary_10_1007_s00128_023_03699_4
crossref_primary_10_1016_j_biombioe_2024_107484
crossref_primary_10_3934_energy_2024014
crossref_primary_10_1038_s41467_024_45314_y
crossref_primary_10_1371_journal_pone_0305385
crossref_primary_10_1007_s10533_022_00942_8
crossref_primary_10_1016_j_envres_2023_115383
crossref_primary_10_1016_j_soilbio_2024_109689
crossref_primary_10_5194_gmd_17_4871_2024
crossref_primary_10_1038_s43016_023_00694_0
crossref_primary_10_1007_s42773_022_00182_x
crossref_primary_10_1016_j_conbuildmat_2024_138644
crossref_primary_10_1016_j_jenvman_2024_123265
crossref_primary_10_3390_catal13091287
crossref_primary_10_1016_j_geoderma_2023_116761
crossref_primary_10_1016_j_agee_2023_108535
crossref_primary_10_1007_s44246_023_00035_7
crossref_primary_10_1016_j_cej_2024_152496
crossref_primary_10_1007_s11056_024_10074_6
crossref_primary_10_1016_j_jenvman_2023_117757
crossref_primary_10_1007_s42832_024_0267_x
crossref_primary_10_1016_j_geoderma_2023_116528
crossref_primary_10_1016_j_jclepro_2024_140859
crossref_primary_10_1016_j_geoderma_2023_116529
crossref_primary_10_1016_j_jenvman_2024_120448
crossref_primary_10_1016_j_jclepro_2023_136186
crossref_primary_10_1016_j_scitotenv_2023_168035
crossref_primary_10_1007_s11104_023_05968_x
crossref_primary_10_1038_s41578_023_00634_1
crossref_primary_10_1007_s11027_024_10170_0
crossref_primary_10_1038_s41561_025_01638_y
crossref_primary_10_1016_j_pedsph_2025_01_009
crossref_primary_10_1007_s11430_023_1347_8
crossref_primary_10_1016_j_jenvman_2024_120571
crossref_primary_10_1021_acsestengg_3c00027
crossref_primary_10_1016_j_scitotenv_2024_172942
crossref_primary_10_1021_acs_est_2c01978
crossref_primary_10_1007_s10705_023_10281_1
crossref_primary_10_1016_j_envres_2022_114543
crossref_primary_10_1016_j_jece_2024_112726
crossref_primary_10_3389_fenvs_2024_1393327
crossref_primary_10_1007_s42773_022_00168_9
crossref_primary_10_1016_j_crsust_2025_100279
crossref_primary_10_1086_733661
crossref_primary_10_3390_agriculture12081244
crossref_primary_10_1089_ees_2024_0132
crossref_primary_10_1016_j_coal_2023_104233
crossref_primary_10_1038_s41467_023_39338_z
crossref_primary_10_1038_s41561_023_01302_3
crossref_primary_10_1108_IJOPM_06_2024_0487
crossref_primary_10_1038_s43247_024_01985_5
crossref_primary_10_1029_2021EF002583
crossref_primary_10_3390_agronomy14112693
crossref_primary_10_1111_ejss_13396
crossref_primary_10_1038_s41467_024_49502_8
crossref_primary_10_1016_j_fcr_2024_109547
crossref_primary_10_1016_j_cej_2025_160920
crossref_primary_10_1016_j_seh_2023_100033
crossref_primary_10_1007_s10668_024_05841_6
crossref_primary_10_1016_j_ccst_2024_100317
crossref_primary_10_1080_01904167_2024_2408419
crossref_primary_10_1016_j_ccst_2024_100315
crossref_primary_10_3390_resources13020031
crossref_primary_10_3390_plants12051002
crossref_primary_10_1016_j_biombioe_2024_107178
crossref_primary_10_1016_j_envres_2024_120444
crossref_primary_10_1080_17583004_2023_2268071
crossref_primary_10_1016_j_jenvman_2024_122519
crossref_primary_10_3390_su141911985
crossref_primary_10_1111_ejss_70074
crossref_primary_10_3390_polym15122741
crossref_primary_10_1016_j_jwpe_2024_105071
crossref_primary_10_3390_su142315648
crossref_primary_10_1016_j_xinn_2023_100423
crossref_primary_10_1016_j_jclepro_2023_136021
crossref_primary_10_1016_j_uclim_2023_101592
crossref_primary_10_1007_s11356_023_27586_x
crossref_primary_10_1007_s42773_024_00397_0
crossref_primary_10_3390_agriculture15010077
crossref_primary_10_1016_j_fcr_2024_109603
crossref_primary_10_1038_s43017_022_00306_8
crossref_primary_10_1016_j_resconrec_2022_106847
crossref_primary_10_1016_j_eti_2023_103264
crossref_primary_10_1016_j_scitotenv_2023_162652
crossref_primary_10_1016_j_soilad_2024_100001
crossref_primary_10_1016_j_chemosphere_2023_138333
crossref_primary_10_1016_j_joule_2023_12_018
crossref_primary_10_1016_j_coal_2024_104565
crossref_primary_10_1007_s42773_024_00408_0
crossref_primary_10_1016_j_geoderma_2025_117237
crossref_primary_10_3390_pr11072095
crossref_primary_10_1016_j_geoderma_2024_117093
crossref_primary_10_3390_agronomy14092176
crossref_primary_10_1038_s43247_023_01155_z
crossref_primary_10_1016_j_scitotenv_2023_163968
crossref_primary_10_1007_s42773_024_00352_z
crossref_primary_10_1016_j_jafr_2025_101719
crossref_primary_10_1021_acs_est_3c09003
crossref_primary_10_1016_j_ejsobi_2024_103658
crossref_primary_10_3389_frans_2023_1205583
crossref_primary_10_1007_s42773_023_00244_8
crossref_primary_10_1071_WF24006
crossref_primary_10_1016_j_envres_2022_113539
crossref_primary_10_1016_j_sajb_2025_03_025
crossref_primary_10_1016_j_scitotenv_2022_154845
crossref_primary_10_3390_su151310487
crossref_primary_10_1021_acsestengg_2c00266
crossref_primary_10_1016_j_agee_2023_108366
crossref_primary_10_1016_j_biortech_2022_127694
crossref_primary_10_1016_j_resconrec_2025_108248
crossref_primary_10_1039_D3VA00296A
crossref_primary_10_1038_s43246_024_00700_3
crossref_primary_10_1016_j_rser_2022_112963
crossref_primary_10_1016_j_renene_2024_121549
crossref_primary_10_1007_s44246_022_00010_8
crossref_primary_10_1016_j_resconrec_2022_106501
crossref_primary_10_1016_j_scitotenv_2022_159029
crossref_primary_10_1016_j_jclepro_2023_138777
crossref_primary_10_1016_j_susmat_2025_e01327
crossref_primary_10_1007_s42773_023_00232_y
crossref_primary_10_3390_agronomy13102518
crossref_primary_10_1016_j_jenvman_2024_122318
crossref_primary_10_1016_j_envres_2023_118026
crossref_primary_10_1016_j_eti_2023_103109
crossref_primary_10_1016_j_scitotenv_2022_153743
crossref_primary_10_1016_j_sajb_2024_02_039
crossref_primary_10_1016_j_scitotenv_2023_168046
crossref_primary_10_1007_s42773_023_00279_x
crossref_primary_10_1016_j_resconrec_2025_108237
crossref_primary_10_1016_j_jafr_2023_100498
crossref_primary_10_1111_ejss_70035
crossref_primary_10_1016_j_fcr_2025_109807
crossref_primary_10_1088_1748_9326_acffdc
crossref_primary_10_1016_j_fcr_2024_109518
crossref_primary_10_1016_j_cej_2022_139899
crossref_primary_10_1016_j_indcrop_2024_119148
crossref_primary_10_1016_j_nanoso_2024_101307
Cites_doi 10.1016/j.scitotenv.2020.142455
10.1023/A:1016125726789
10.1021/acssuschemeng.0c05355
10.1016/j.scienta.2020.109329
10.1002/bbb.2092
10.1016/j.geoderma.2014.05.007
10.1126/science.aam9726
10.1016/j.biortech.2012.03.022
10.1016/j.scitotenv.2020.137390
10.1016/j.jpowsour.2020.228183
10.2489/jswc.73.6.145A
10.1016/j.biortech.2020.123614
10.1021/acssuschemeng.0c04336
10.1002/jpln.201600451
10.1016/j.scitotenv.2020.136635
10.1016/j.orggeochem.2009.09.007
10.1007/s11368-017-1899-6
10.1016/j.egypro.2019.01.185
10.1021/es902266r
10.1038/s41467-021-24350-y
10.1016/j.jclepro.2020.120684
10.1093/reep/rew018
10.1016/j.geoderma.2020.114179
10.1016/j.soilbio.2016.12.006
10.1007/s10533-007-9104-4
10.1016/j.enpol.2011.02.033
10.1007/s10533-012-9764-6
10.1029/1999GB001208
10.1080/10643389.2020.1721980
10.1007/s11104-012-1412-3
10.1038/s41586-020-2448-9
10.1007/s42773-019-00002-9
10.1016/j.biombioe.2014.12.022
10.1111/gcbb.12132
10.1016/j.biombioe.2017.04.001
10.3389/feart.2018.00026
10.1038/ncomms1053
10.1021/es5060786
10.1021/es902555a
10.1111/sum.12546
10.3390/land8120179
10.1021/es302302g
10.1016/j.scitotenv.2018.07.402
10.1016/j.agee.2010.12.005
10.1080/17583004.2014.912866
10.1038/ncomms14873
10.1007/s00374-016-1116-6
10.1016/j.scitotenv.2018.10.060
10.1002/esp.4925
10.1111/gcbb.12266
10.1021/acssuschemeng.0c00704
10.1007/s00374-018-01338-3
10.1002/ldr.696
10.1016/j.egypro.2019.01.890
10.1016/j.soilbio.2013.12.026
10.1021/es302545b
10.1016/j.apsoil.2020.103531
10.1371/journal.pone.0141560
10.1016/j.still.2019.104525
10.1038/ncomms9708
10.1128/JB.182.8.2059-2067.2000
10.1021/es9031419
10.1038/nclimate3276
10.1038/s41467-020-18887-7
10.1111/gcbb.12665
10.1038/nature17174
10.1002/ehs2.1202
10.1093/oxfclm/kgab006
10.1016/j.enconman.2020.113258
10.1111/gcbb.12250
10.1016/j.jclepro.2020.120998
10.1016/j.scitotenv.2021.145953
10.1146/annurev-environ-101718-033129
10.1007/s13157-020-01380-8
10.1007/s40095-014-0106-4
10.1111/ejss.12338
10.1021/es500474q
10.1039/C8EM00278A
10.4155/cmt.10.32
10.1021/es500906d
10.1088/1748-9326/aa67bd
10.1111/sum.12655
10.1111/gcbb.12213
10.1016/j.orggeochem.2013.09.006
10.1002/ldr.2761
10.1038/s41598-020-76470-y
10.1088/1748-9326/aabb0e
10.1016/j.soilbio.2016.07.021
10.1021/acs.est.9b01615
10.1038/ncomms13160
10.1111/ejss.12808
10.21513/0207-2564-2019-2-05-13
10.4324/9780203762264
ContentType Journal Article
Copyright Springer Nature Limited 2021
Springer Nature Limited 2021.
Copyright_xml – notice: Springer Nature Limited 2021
– notice: Springer Nature Limited 2021.
DBID AAYXX
CITATION
7SN
7TG
7TN
7UA
8FE
8FH
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
LK8
M7P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41561-021-00852-8
DatabaseName CrossRef
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Biological Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Economics
EISSN 1752-0908
EndPage 892
ExternalDocumentID 10_1038_s41561_021_00852_8
GrantInformation_xml – fundername: National Institute of Food and Agriculture 2014-67003-22069 Atkinson Center for Sustainability
– fundername: United States Department of Agriculture | National Institute of Food and Agriculture (NIFA)
  grantid: 2014-67003-22069
  funderid: https://doi.org/10.13039/100005825
– fundername: Fondation des Fondateurs (Foundation of the Founders)
  funderid: https://doi.org/10.13039/501100005896
– fundername: EU FEDER RTI2018-099417-B-I00
GroupedDBID 0R~
123
29M
39C
5BI
5S5
70F
8FE
8FH
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ACBWK
ACGFS
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
CS3
DB5
EBS
EE.
EJD
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
LK5
M7P
M7R
N9A
NNMJJ
O9-
ODYON
P2P
PCBAR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
Y6R
~02
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7SN
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
KL.
L.G
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-631f0aa72fa2fa9d53c2d2646288aaeb42aae2e5f8f764f3f9a6ec25bde1a7963
IEDL.DBID BENPR
ISSN 1752-0894
IngestDate Sat Aug 23 13:42:00 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Jul 01 01:37:44 EDT 2025
Fri Feb 21 02:39:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-631f0aa72fa2fa9d53c2d2646288aaeb42aae2e5f8f764f3f9a6ec25bde1a7963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1480-4280
0000-0002-4701-2936
0000-0002-5354-2087
0000-0002-3858-959X
0000-0003-2269-5598
0000-0003-0929-4204
PQID 2607082571
PQPubID 546301
PageCount 10
ParticipantIDs proquest_journals_2607082571
crossref_primary_10_1038_s41561_021_00852_8
crossref_citationtrail_10_1038_s41561_021_00852_8
springer_journals_10_1038_s41561_021_00852_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature geoscience
PublicationTitleAbbrev Nat. Geosci
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ding (CR44) 2018; 18
Klüpfel, Keiluweit, Kleber, Sander (CR40) 2014; 48
Matuštík, Hnátková, Kočí (CR6) 2020; 259
Kerré, Bravo, Leifeld, Cornelissen, Smolders (CR49) 2016; 67
Cheng, Luo, Colosi (CR76) 2020; 223
Papageorgiou, Azzi, Enell, Sundberg (CR8) 2021; 776
Smith (CR58) 2019; 44
Cong, Meng, Ying (CR36) 2018; 20
Werner (CR17) 2018; 13
Weng (CR45) 2017; 7
Whitman, Hanley, Enders, Lehmann (CR13) 2013; 64
Keiluweit, Nico, Johnson, Kleber (CR21) 2010; 44
Luo (CR55) 2017; 106
Shi (CR56) 2020; 37
Budai, Rasse, Lagomarsino, Lerch, Paruch (CR95) 2016; 52
Zhang (CR67) 2010; 44
Peters, Iribarren, Dufour (CR28) 2015; 49
Hernandez-Soriano (CR50) 2016; 8
Liang (CR47) 2010; 41
Borchard (CR39) 2019; 651
Garcia-Ibañez, Sanchez-Garcia, Sánchez-Monedero, Cayuela, Moreno (CR64) 2020; 267
Woolf, Lehmann, Fisher, Angenent (CR78) 2014; 48
Nelissen, Saha, Ruysschaert, Boeckx (CR43) 2014; 70
Blanco-Canqui, Laird, Heaton, Rathke, Acharya (CR46) 2019; 12
Azzi, Karltun, Sundberg (CR4) 2019; 53
Man, Chow, Man, Mo, Wong (CR85) 2021; 51
Whitman, Lehmann (CR54) 2015; 6
Smebye, Sparrevik, Schmidt, Cornelissen (CR70) 2017; 101
Frank, Brown, Malmsheimer, Volk, Ha (CR77) 2020; 14
Owsianiak (CR80) 2020; 755
Nguyen, Trinh, Bach (CR33) 2020; 152
Yang (CR5) 2019; 158
Sun (CR32) 2021; 12
Li, You, Wang (CR69) 2019; 158
Lal (CR97) 2018; 73
Schmidt, Noack (CR3) 2000; 14
Li, Xing, Ding, Han, Wang (CR87) 2020; 312
Field, Mach (CR1) 2017; 356
Dutta, Raghavan (CR75) 2014; 5
Jeffery (CR71) 2015; 7
Singh, Cowie, Smernik (CR22) 2012; 46
Kanaly, Harayama (CR20) 2000; 182
Spokas (CR25) 2010; 1
Beerling (CR83) 2020; 583
Masiello, Berhe (CR31) 2020; 45
Crombie, Mašek, Cross, Sohi (CR68) 2015; 7
Dumortier (CR57) 2020; 258
Meyer, Bright, Fischer, Schulz, Glaser (CR11) 2012; 46
Tisserant, Cherubini (CR12) 2019; 8
CR74
CR73
Ye (CR61) 2020; 36
Rubin, Anderson, Ballantine (CR65) 2020; 40
CR72
Lefebvre (CR14) 2020; 10
Knicker (CR24) 2007; 85
Qian (CR10) 2014; 5
Jeffery (CR59) 2017; 12
Woolf, Lehmann, Lee (CR79) 2016; 7
Zhao, Lehmann, You (CR15) 2020; 8
Schmidt, Pandit, Cornelissen, Kammann (CR62) 2017; 28
Dai, Zheng, Jiang, Xing (CR60) 2020; 713
McBeath, Wurster, Bird (CR23) 2015; 73
Leng, Huang, Li, Li, Zhou (CR27) 2019; 647
Enders, Hanley, Whitman, Joseph, Lehmann (CR90) 2012; 114
Six, Conant, Paul, Paustian (CR52) 2002; 241
Jeffery, Verheijen, Kammann, Abalos (CR34) 2016; 101
Karhu, Mattila, Bergström, Regina (CR38) 2011; 140
Paustian (CR51) 2016; 532
Fang (CR94) 2019; 70
Pascual (CR37) 2020; 363
CR81
Wang, Xiong, Kuzyakov (CR18) 2016; 8
Woolf, Lehmann (CR89) 2012; 111
Hammond, Shackley, Sohi, Brownsort (CR29) 2011; 39
Roberts, Gloy, Joseph, Scott, Lehmann (CR7) 2010; 44
Lal (CR98) 2006; 17
Abney, Berhe (CR30) 2018; 6
CR19
Totsche (CR53) 2018; 181
Slavich (CR92) 2013; 366
Zhou (CR86) 2020; 8
Borchard (CR48) 2014; 232–234
Woolf (CR16) 2010; 1
Sciarria (CR88) 2020; 462
CR91
Wu (CR2) 2019; 1
Amelung (CR63) 2020; 11
Weyant (CR66) 2020; 11
Singh (CR93) 2015; 10
Phillips (CR9) 2020; 198
Fungo (CR42) 2019; 55
Liu (CR96) 2020; 718
CR26
Buss, Yeates, Rohling, Borevitz (CR84) 2021; 1
Sun (CR41) 2017; 8
Song (CR35) 2016; 2
Buss, Bogush, Ignatyev, Masek (CR82) 2020; 8
JR Frank (852_CR77) 2020; 14
RB Abney (852_CR30) 2018; 6
N Zhao (852_CR15) 2020; 8
W Buss (852_CR82) 2020; 8
N Borchard (852_CR48) 2014; 232–234
D Lefebvre (852_CR14) 2020; 10
J Wang (852_CR18) 2016; 8
J Matuštík (852_CR6) 2020; 259
J Weyant (852_CR66) 2020; 11
L Qian (852_CR10) 2014; 5
S Jeffery (852_CR34) 2016; 101
PG Slavich (852_CR92) 2013; 366
P Garcia-Ibañez (852_CR64) 2020; 267
A Tisserant (852_CR12) 2019; 8
BP Singh (852_CR93) 2015; 10
T Whitman (852_CR54) 2015; 6
T Sun (852_CR32) 2021; 12
S Meyer (852_CR11) 2012; 46
B Liang (852_CR47) 2010; 41
J Six (852_CR52) 2002; 241
N Borchard (852_CR39) 2019; 651
KU Totsche (852_CR53) 2018; 181
L Leng (852_CR27) 2019; 647
852_CR72
852_CR73
852_CR74
DJ Beerling (852_CR83) 2020; 583
A Enders (852_CR90) 2012; 114
K Karhu (852_CR38) 2011; 140
A Papageorgiou (852_CR8) 2021; 776
JF Peters (852_CR28) 2015; 49
K Paustian (852_CR51) 2016; 532
Q Shi (852_CR56) 2020; 37
852_CR81
J Hammond (852_CR29) 2011; 39
R Lal (852_CR98) 2006; 17
MB Pascual (852_CR37) 2020; 363
AV McBeath (852_CR23) 2015; 73
F Ding (852_CR44) 2018; 18
K Crombie (852_CR68) 2015; 7
852_CR91
J Dumortier (852_CR57) 2020; 258
KA Spokas (852_CR25) 2010; 1
M Keiluweit (852_CR21) 2010; 44
V Nelissen (852_CR43) 2014; 70
BT Nguyen (852_CR33) 2020; 152
Y Luo (852_CR55) 2017; 106
S Jeffery (852_CR71) 2015; 7
P Smith (852_CR58) 2019; 44
D Woolf (852_CR16) 2010; 1
ZH Weng (852_CR45) 2017; 7
H Knicker (852_CR24) 2007; 85
B Kerré (852_CR49) 2016; 67
L Klüpfel (852_CR40) 2014; 48
852_CR26
S Jeffery (852_CR59) 2017; 12
RA Kanaly (852_CR20) 2000; 182
B Dutta (852_CR75) 2014; 5
T Whitman (852_CR13) 2013; 64
AB Smebye (852_CR70) 2017; 101
CA Masiello (852_CR31) 2020; 45
Y Fang (852_CR94) 2019; 70
P Wu (852_CR2) 2019; 1
K Roberts (852_CR7) 2010; 44
852_CR19
W Amelung (852_CR63) 2020; 11
M Owsianiak (852_CR80) 2020; 755
L Li (852_CR69) 2019; 158
TP Sciarria (852_CR88) 2020; 462
T Sun (852_CR41) 2017; 8
B Liu (852_CR96) 2020; 718
B Fungo (852_CR42) 2019; 55
L Ye (852_CR61) 2020; 36
CL Phillips (852_CR9) 2020; 198
RL Rubin (852_CR65) 2020; 40
KY Man (852_CR85) 2021; 51
Q Yang (852_CR5) 2019; 158
BP Singh (852_CR22) 2012; 46
ES Azzi (852_CR4) 2019; 53
MW Schmidt (852_CR3) 2000; 14
F Cheng (852_CR76) 2020; 223
P Lal (852_CR97) 2018; 73
Y Li (852_CR87) 2020; 312
MC Hernandez-Soriano (852_CR50) 2016; 8
Y Dai (852_CR60) 2020; 713
D Woolf (852_CR89) 2012; 111
C Werner (852_CR17) 2018; 13
D Woolf (852_CR78) 2014; 48
X Zhou (852_CR86) 2020; 8
D Woolf (852_CR79) 2016; 7
X Song (852_CR35) 2016; 2
W Cong (852_CR36) 2018; 20
CB Field (852_CR1) 2017; 356
Y Zhang (852_CR67) 2010; 44
A Budai (852_CR95) 2016; 52
HP Schmidt (852_CR62) 2017; 28
H Blanco-Canqui (852_CR46) 2019; 12
W Buss (852_CR84) 2021; 1
References_xml – volume: 755
  start-page: 142455
  year: 2020
  ident: CR80
  article-title: Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142455
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  ident: CR52
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
– ident: CR74
– volume: 8
  start-page: 14568
  year: 2020
  end-page: 14575
  ident: CR86
  article-title: Life cycle assessment of biochar modified bioasphalt derived from biomass
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c05355
– volume: 267
  start-page: 109329
  year: 2020
  ident: CR64
  article-title: Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2020.109329
– volume: 14
  start-page: 594
  year: 2020
  end-page: 604
  ident: CR77
  article-title: The financial trade‐off between the production of biochar and biofuel via pyrolysis under uncertainty
  publication-title: Biofuel Bioprod. Bioref.
  doi: 10.1002/bbb.2092
– volume: 232–234
  start-page: 236
  year: 2014
  end-page: 242
  ident: CR48
  article-title: Black carbon and soil properties at historical charcoal production sites in Germany
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.007
– volume: 356
  start-page: 706
  year: 2017
  end-page: 707
  ident: CR1
  article-title: Rightsizing carbon dioxide removal
  publication-title: Science
  doi: 10.1126/science.aam9726
– volume: 114
  start-page: 644
  year: 2012
  end-page: 653
  ident: CR90
  article-title: Characterization of biochars to evaluate recalcitrance and agronomic performance
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2012.03.022
– volume: 718
  start-page: 137390
  year: 2020
  ident: CR96
  article-title: A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137390
– volume: 462
  start-page: 228183
  year: 2020
  ident: CR88
  article-title: Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells
  publication-title: J. Power Source
  doi: 10.1016/j.jpowsour.2020.228183
– volume: 73
  start-page: 145A
  year: 2018
  end-page: 152A
  ident: CR97
  article-title: The carbon sequestration potential of terrestrial ecosystems
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.73.6.145A
– volume: 312
  start-page: 123614
  year: 2020
  ident: CR87
  article-title: A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2020.123614
– volume: 8
  start-page: 12295
  year: 2020
  end-page: 12303
  ident: CR82
  article-title: Unlocking the fertilizer potential of waste-derived biochar
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04336
– ident: CR19
– volume: 181
  start-page: 104
  year: 2018
  end-page: 136
  ident: CR53
  article-title: Microaggregates in soils
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201600451
– volume: 713
  start-page: 136635
  year: 2020
  ident: CR60
  article-title: Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136635
– volume: 41
  start-page: 206
  year: 2010
  end-page: 213
  ident: CR47
  article-title: Black carbon affects the cycling of non-black carbon in soil
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.09.007
– volume: 18
  start-page: 1507
  year: 2018
  end-page: 1517
  ident: CR44
  article-title: A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1899-6
– volume: 158
  start-page: 688
  year: 2019
  end-page: 693
  ident: CR69
  article-title: Optimal design of standalone hybrid renewable energy systems with biochar production in remote rural areas: a case study
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2019.01.185
– volume: 44
  start-page: 827
  year: 2010
  end-page: 833
  ident: CR7
  article-title: Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902266r
– volume: 12
  year: 2021
  ident: CR32
  article-title: Suppressing peatland methane production by electron snorkeling through pyrogenic carbon
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24350-y
– volume: 258
  start-page: 120684
  year: 2020
  ident: CR57
  article-title: Global land-use and carbon emission implications from biochar application to cropland in the United States
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120684
– volume: 11
  start-page: 115
  year: 2020
  end-page: 137
  ident: CR66
  article-title: Some contributions of integrated assessment models of global climate change
  publication-title: Rev. Environ. Econ. Policy
  doi: 10.1093/reep/rew018
– volume: 363
  start-page: 114179
  year: 2020
  ident: CR37
  article-title: Linking biochars properties to their capacity to modify aerobic CH oxidation in an upland agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114179
– volume: 106
  start-page: 28
  year: 2017
  end-page: 35
  ident: CR55
  article-title: Priming effects in biochar enriched soils using a three-source-partitioning approach: C labelling and C natural abundance
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.006
– volume: 85
  start-page: 91
  year: 2007
  end-page: 118
  ident: CR24
  article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9104-4
– volume: 39
  start-page: 2646
  year: 2011
  end-page: 2655
  ident: CR29
  article-title: Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.02.033
– volume: 111
  start-page: 83
  year: 2012
  end-page: 95
  ident: CR89
  article-title: Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-012-9764-6
– volume: 14
  start-page: 777
  year: 2000
  end-page: 793
  ident: CR3
  article-title: Black carbon in soils and sediments: analysis, distribution, implications, and current challenges
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/1999GB001208
– volume: 51
  start-page: 187
  year: 2021
  end-page: 217
  ident: CR85
  article-title: Use of biochar as feed supplements for animal farming
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1721980
– ident: CR91
– ident: CR72
– volume: 70
  start-page: 960
  year: 2019
  end-page: 974
  ident: CR94
  article-title: Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter
  publication-title: Eur. J. Soil Sci.
– volume: 366
  start-page: 213
  year: 2013
  end-page: 227
  ident: CR92
  article-title: Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1412-3
– volume: 583
  start-page: 242
  year: 2020
  end-page: 248
  ident: CR83
  article-title: Potential for large-scale CO removal via enhanced rock weathering with croplands
  publication-title: Nature
  doi: 10.1038/s41586-020-2448-9
– volume: 1
  start-page: 23
  year: 2019
  end-page: 43
  ident: CR2
  article-title: A scientometric review of biochar research in the past 20 years (1998–2018)
  publication-title: Biochar
  doi: 10.1007/s42773-019-00002-9
– volume: 73
  start-page: 155
  year: 2015
  end-page: 173
  ident: CR23
  article-title: Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.12.022
– volume: 7
  start-page: 1
  year: 2015
  end-page: 13
  ident: CR71
  article-title: The way forward in biochar research: targeting trade-offs between the potential wins
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12132
– volume: 101
  start-page: 35
  year: 2017
  end-page: 43
  ident: CR70
  article-title: Life-cycle assessment of biochar production systems in tropical rural areas: comparing flame curtain kilns to other production methods
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.04.001
– volume: 6
  start-page: 26
  year: 2018
  ident: CR30
  article-title: Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00026
– volume: 1
  year: 2010
  ident: CR16
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– volume: 49
  start-page: 5195
  year: 2015
  end-page: 5202
  ident: CR28
  article-title: Biomass pyrolysis for biochar or energy applications? A life cycle assessment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5060786
– volume: 44
  start-page: 538
  year: 2010
  end-page: 544
  ident: CR67
  article-title: Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902555a
– volume: 36
  start-page: 2
  year: 2020
  end-page: 18
  ident: CR61
  article-title: Biochar effects on crop yields with and without fertilizer: a meta‐analysis of field studies using separate controls
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12546
– volume: 8
  start-page: 179
  year: 2019
  ident: CR12
  article-title: Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation
  publication-title: Land
  doi: 10.3390/land8120179
– volume: 46
  start-page: 12726
  year: 2012
  end-page: 12734
  ident: CR11
  article-title: Albedo impact on the suitability of biochar systems to mitigate global warming
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302302g
– volume: 647
  start-page: 210
  year: 2019
  end-page: 222
  ident: CR27
  article-title: Biochar stability assessment methods: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.402
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: CR38
  article-title: Biochar addition to agricultural soil increased CH uptake and water holding capacity—results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 5
  start-page: 145
  year: 2014
  end-page: 154
  ident: CR10
  article-title: Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China
  publication-title: Carbon Manage.
  doi: 10.1080/17583004.2014.912866
– volume: 8
  year: 2017
  ident: CR41
  article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14873
– volume: 52
  start-page: 749
  year: 2016
  end-page: 761
  ident: CR95
  article-title: Biochar persistence, priming and microbial responses to pyrolysis temperature series
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-016-1116-6
– volume: 651
  start-page: 2354
  year: 2019
  end-page: 2364
  ident: CR39
  article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N O emissions: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.060
– volume: 45
  start-page: 2394
  year: 2020
  end-page: 2398
  ident: CR31
  article-title: First interactions with the hydrologic cycle determine pyrogenic carbon’s fate in the Earth system
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.4925
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: CR18
  article-title: Biochar stability in soil: meta‐analysis of decomposition and priming effects
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12266
– volume: 8
  start-page: 4633
  year: 2020
  end-page: 4646
  ident: CR15
  article-title: Poultry waste valorization via pyrolysis technologies: economic and environmental life cycle optimization for sustainable bioenergy systems.
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00704
– volume: 55
  start-page: 135
  year: 2019
  end-page: 148
  ident: CR42
  article-title: Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-018-01338-3
– volume: 17
  start-page: 197
  year: 2006
  end-page: 209
  ident: CR98
  article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.696
– volume: 158
  start-page: 3690
  year: 2019
  end-page: 3695
  ident: CR5
  article-title: Greenhouse gas emission analysis of biomass moving-bed pyrolytic polygeneration systems based on Aspen Plus and hybrid LCA in China
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.890
– volume: 70
  start-page: 244
  year: 2014
  end-page: 255
  ident: CR43
  article-title: Effect of different biochar and fertilizer types on N O and NO emissions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.026
– volume: 46
  start-page: 11770
  year: 2012
  end-page: 11778
  ident: CR22
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302545b
– volume: 152
  start-page: 103531
  year: 2020
  ident: CR33
  article-title: Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2020.103531
– volume: 10
  start-page: e0141560
  year: 2015
  ident: CR93
  article-title: In situ persistence and migration of biochar carbon and its impact on native carbon emission in contrasting soils under managed temperate pastures
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141560
– volume: 198
  start-page: 104525
  year: 2020
  ident: CR9
  article-title: Can biochar conserve water in Oregon agricultural soils?
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2019.104525
– ident: CR81
– volume: 6
  year: 2015
  ident: CR54
  article-title: A dual-isotope approach to allow conclusive partitioning between three sources
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9708
– volume: 182
  start-page: 2059
  year: 2000
  end-page: 2067
  ident: CR20
  article-title: Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.8.2059-2067.2000
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: CR21
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 7
  start-page: 371
  year: 2017
  end-page: 376
  ident: CR45
  article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3276
– volume: 11
  year: 2020
  ident: CR63
  article-title: Towards implementing a global-scale soil climate mitigation strategy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18887-7
– ident: CR26
– volume: 12
  start-page: 240
  year: 2019
  end-page: 251
  ident: CR46
  article-title: Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12665
– volume: 532
  start-page: 49
  year: 2016
  end-page: 57
  ident: CR51
  article-title: Climate-smart soils
  publication-title: Nature
  doi: 10.1038/nature17174
– volume: 2
  start-page: e01202
  year: 2016
  ident: CR35
  article-title: Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis
  publication-title: Ecosyst. Health Sustain.
  doi: 10.1002/ehs2.1202
– volume: 1
  start-page: kgab006
  year: 2021
  ident: CR84
  article-title: Enhancing natural cycles in agro-ecosystems to boost plant carbon capture and soil storage
  publication-title: Oxford Open Clim. Change
  doi: 10.1093/oxfclm/kgab006
– volume: 223
  start-page: 113258
  year: 2020
  ident: CR76
  article-title: Slow pyrolysis as a platform for negative emissions technology: an integration of machine learning models, life cycle assessment, and economic analysis
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113258
– volume: 8
  start-page: 371
  year: 2016
  end-page: 381
  ident: CR50
  article-title: Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12250
– volume: 259
  start-page: 120998
  year: 2020
  ident: CR6
  article-title: Life cycle assessment of biochar-to-soil systems: a review
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.120998
– volume: 776
  start-page: 145953
  year: 2021
  ident: CR8
  article-title: Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145953
– volume: 44
  start-page: 255
  year: 2019
  end-page: 286
  ident: CR58
  article-title: Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-101718-033129
– volume: 40
  start-page: 1981
  year: 2020
  end-page: 1991
  ident: CR65
  article-title: Biochar simultaneously reduces nutrient leaching and greenhouse gas emissions in restored wetland soils
  publication-title: Wetlands
  doi: 10.1007/s13157-020-01380-8
– volume: 5
  start-page: 106
  year: 2014
  ident: CR75
  article-title: A life cycle assessment of environmental and economic balance of biochar systems in Quebec
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-014-0106-4
– volume: 67
  start-page: 324
  year: 2016
  end-page: 331
  ident: CR49
  article-title: Historical soil amendment with charcoal increases sequestration of non-charcoal carbon: a comparison among methods of black carbon quantification
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12338
– volume: 48
  start-page: 6492
  year: 2014
  end-page: 6499
  ident: CR78
  article-title: Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500474q
– volume: 20
  start-page: 1202
  year: 2018
  end-page: 1209
  ident: CR36
  article-title: Impact of soil properties on the soil methane flux response to biochar addition: a meta-analysis.
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C8EM00278A
– volume: 1
  start-page: 289
  year: 2010
  end-page: 303
  ident: CR25
  article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios
  publication-title: Carbon Manage.
  doi: 10.4155/cmt.10.32
– volume: 48
  start-page: 5601
  year: 2014
  end-page: 5611
  ident: CR40
  article-title: Redox properties of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500906d
– volume: 12
  start-page: 053001
  year: 2017
  ident: CR59
  article-title: Biochar boosts tropical but not temperate crop yields
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa67bd
– ident: CR73
– volume: 37
  start-page: 95
  year: 2020
  end-page: 103
  ident: CR56
  article-title: Soil organic and inorganic carbon sequestration by consecutive biochar application: results from a decade field experiment
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12655
– volume: 7
  start-page: 1161
  year: 2015
  end-page: 1175
  ident: CR68
  article-title: Biochar—synergies and trade‐offs between soil enhancing properties and C sequestration potential
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12213
– volume: 64
  start-page: 76
  year: 2013
  end-page: 83
  ident: CR13
  article-title: Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2013.09.006
– volume: 28
  start-page: 2324
  year: 2017
  end-page: 2342
  ident: CR62
  article-title: Biochar‐based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2761
– volume: 10
  start-page: 19479
  year: 2020
  ident: CR14
  article-title: Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76470-y
– volume: 13
  start-page: 044036
  year: 2018
  ident: CR17
  article-title: Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabb0e
– volume: 101
  start-page: 251
  year: 2016
  end-page: 258
  ident: CR34
  article-title: Biochar effects on methane emissions from soils: a meta-analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.021
– volume: 53
  start-page: 8466
  year: 2019
  end-page: 8476
  ident: CR4
  article-title: Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01615
– volume: 7
  year: 2016
  ident: CR79
  article-title: Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13160
– volume: 583
  start-page: 242
  year: 2020
  ident: 852_CR83
  publication-title: Nature
  doi: 10.1038/s41586-020-2448-9
– volume: 41
  start-page: 206
  year: 2010
  ident: 852_CR47
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.09.007
– volume: 44
  start-page: 538
  year: 2010
  ident: 852_CR67
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902555a
– volume: 111
  start-page: 83
  year: 2012
  ident: 852_CR89
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-012-9764-6
– volume: 8
  start-page: 179
  year: 2019
  ident: 852_CR12
  publication-title: Land
  doi: 10.3390/land8120179
– volume: 198
  start-page: 104525
  year: 2020
  ident: 852_CR9
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2019.104525
– volume: 8
  start-page: 14568
  year: 2020
  ident: 852_CR86
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c05355
– volume: 8
  year: 2017
  ident: 852_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14873
– volume: 312
  start-page: 123614
  year: 2020
  ident: 852_CR87
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2020.123614
– volume: 39
  start-page: 2646
  year: 2011
  ident: 852_CR29
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.02.033
– ident: 852_CR73
– volume: 366
  start-page: 213
  year: 2013
  ident: 852_CR92
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1412-3
– volume: 46
  start-page: 11770
  year: 2012
  ident: 852_CR22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302545b
– volume: 158
  start-page: 3690
  year: 2019
  ident: 852_CR5
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.890
– volume: 12
  start-page: 053001
  year: 2017
  ident: 852_CR59
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa67bd
– volume: 36
  start-page: 2
  year: 2020
  ident: 852_CR61
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12546
– volume: 241
  start-page: 155
  year: 2002
  ident: 852_CR52
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
– volume: 53
  start-page: 8466
  year: 2019
  ident: 852_CR4
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01615
– volume: 8
  start-page: 512
  year: 2016
  ident: 852_CR18
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12266
– volume: 40
  start-page: 1981
  year: 2020
  ident: 852_CR65
  publication-title: Wetlands
  doi: 10.1007/s13157-020-01380-8
– volume: 140
  start-page: 309
  year: 2011
  ident: 852_CR38
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 106
  start-page: 28
  year: 2017
  ident: 852_CR55
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.006
– volume: 8
  start-page: 4633
  year: 2020
  ident: 852_CR15
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00704
– volume: 232–234
  start-page: 236
  year: 2014
  ident: 852_CR48
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.007
– volume: 48
  start-page: 6492
  year: 2014
  ident: 852_CR78
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500474q
– volume: 45
  start-page: 2394
  year: 2020
  ident: 852_CR31
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.4925
– volume: 52
  start-page: 749
  year: 2016
  ident: 852_CR95
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-016-1116-6
– volume: 6
  year: 2015
  ident: 852_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9708
– volume: 7
  start-page: 1
  year: 2015
  ident: 852_CR71
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12132
– volume: 48
  start-page: 5601
  year: 2014
  ident: 852_CR40
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500906d
– ident: 852_CR81
– volume: 5
  start-page: 145
  year: 2014
  ident: 852_CR10
  publication-title: Carbon Manage.
  doi: 10.1080/17583004.2014.912866
– volume: 1
  year: 2010
  ident: 852_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– volume: 18
  start-page: 1507
  year: 2018
  ident: 852_CR44
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1899-6
– volume: 14
  start-page: 594
  year: 2020
  ident: 852_CR77
  publication-title: Biofuel Bioprod. Bioref.
  doi: 10.1002/bbb.2092
– volume: 1
  start-page: kgab006
  year: 2021
  ident: 852_CR84
  publication-title: Oxford Open Clim. Change
  doi: 10.1093/oxfclm/kgab006
– volume: 5
  start-page: 106
  year: 2014
  ident: 852_CR75
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-014-0106-4
– volume: 70
  start-page: 960
  year: 2019
  ident: 852_CR94
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12808
– volume: 356
  start-page: 706
  year: 2017
  ident: 852_CR1
  publication-title: Science
  doi: 10.1126/science.aam9726
– volume: 182
  start-page: 2059
  year: 2000
  ident: 852_CR20
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.8.2059-2067.2000
– volume: 85
  start-page: 91
  year: 2007
  ident: 852_CR24
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9104-4
– volume: 158
  start-page: 688
  year: 2019
  ident: 852_CR69
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2019.01.185
– volume: 51
  start-page: 187
  year: 2021
  ident: 852_CR85
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1721980
– ident: 852_CR19
– volume: 7
  start-page: 371
  year: 2017
  ident: 852_CR45
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3276
– volume: 12
  start-page: 240
  year: 2019
  ident: 852_CR46
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12665
– volume: 114
  start-page: 644
  year: 2012
  ident: 852_CR90
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2012.03.022
– volume: 44
  start-page: 255
  year: 2019
  ident: 852_CR58
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-101718-033129
– volume: 55
  start-page: 135
  year: 2019
  ident: 852_CR42
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-018-01338-3
– volume: 258
  start-page: 120684
  year: 2020
  ident: 852_CR57
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120684
– volume: 10
  start-page: 19479
  year: 2020
  ident: 852_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76470-y
– volume: 647
  start-page: 210
  year: 2019
  ident: 852_CR27
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.402
– volume: 8
  start-page: 371
  year: 2016
  ident: 852_CR50
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12250
– volume: 1
  start-page: 289
  year: 2010
  ident: 852_CR25
  publication-title: Carbon Manage.
  doi: 10.4155/cmt.10.32
– volume: 363
  start-page: 114179
  year: 2020
  ident: 852_CR37
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114179
– volume: 44
  start-page: 1247
  year: 2010
  ident: 852_CR21
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 46
  start-page: 12726
  year: 2012
  ident: 852_CR11
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302302g
– volume: 64
  start-page: 76
  year: 2013
  ident: 852_CR13
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2013.09.006
– volume: 37
  start-page: 95
  year: 2020
  ident: 852_CR56
  publication-title: Soil Use Manage.
  doi: 10.1111/sum.12655
– volume: 259
  start-page: 120998
  year: 2020
  ident: 852_CR6
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.120998
– volume: 14
  start-page: 777
  year: 2000
  ident: 852_CR3
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/1999GB001208
– ident: 852_CR72
  doi: 10.21513/0207-2564-2019-2-05-13
– volume: 101
  start-page: 35
  year: 2017
  ident: 852_CR70
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.04.001
– volume: 2
  start-page: e01202
  year: 2016
  ident: 852_CR35
  publication-title: Ecosyst. Health Sustain.
  doi: 10.1002/ehs2.1202
– volume: 713
  start-page: 136635
  year: 2020
  ident: 852_CR60
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136635
– volume: 28
  start-page: 2324
  year: 2017
  ident: 852_CR62
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2761
– volume: 776
  start-page: 145953
  year: 2021
  ident: 852_CR8
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145953
– volume: 1
  start-page: 23
  year: 2019
  ident: 852_CR2
  publication-title: Biochar
  doi: 10.1007/s42773-019-00002-9
– volume: 7
  year: 2016
  ident: 852_CR79
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13160
– volume: 532
  start-page: 49
  year: 2016
  ident: 852_CR51
  publication-title: Nature
  doi: 10.1038/nature17174
– volume: 7
  start-page: 1161
  year: 2015
  ident: 852_CR68
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12213
– volume: 73
  start-page: 155
  year: 2015
  ident: 852_CR23
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.12.022
– volume: 181
  start-page: 104
  year: 2018
  ident: 852_CR53
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201600451
– volume: 8
  start-page: 12295
  year: 2020
  ident: 852_CR82
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04336
– volume: 11
  year: 2020
  ident: 852_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18887-7
– volume: 223
  start-page: 113258
  year: 2020
  ident: 852_CR76
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113258
– volume: 20
  start-page: 1202
  year: 2018
  ident: 852_CR36
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C8EM00278A
– ident: 852_CR91
– volume: 267
  start-page: 109329
  year: 2020
  ident: 852_CR64
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2020.109329
– volume: 67
  start-page: 324
  year: 2016
  ident: 852_CR49
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12338
– volume: 10
  start-page: e0141560
  year: 2015
  ident: 852_CR93
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141560
– ident: 852_CR26
  doi: 10.4324/9780203762264
– volume: 6
  start-page: 26
  year: 2018
  ident: 852_CR30
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00026
– volume: 101
  start-page: 251
  year: 2016
  ident: 852_CR34
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.021
– volume: 73
  start-page: 145A
  year: 2018
  ident: 852_CR97
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.73.6.145A
– volume: 49
  start-page: 5195
  year: 2015
  ident: 852_CR28
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5060786
– volume: 17
  start-page: 197
  year: 2006
  ident: 852_CR98
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.696
– volume: 70
  start-page: 244
  year: 2014
  ident: 852_CR43
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.026
– volume: 12
  year: 2021
  ident: 852_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24350-y
– volume: 462
  start-page: 228183
  year: 2020
  ident: 852_CR88
  publication-title: J. Power Source
  doi: 10.1016/j.jpowsour.2020.228183
– volume: 152
  start-page: 103531
  year: 2020
  ident: 852_CR33
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2020.103531
– volume: 13
  start-page: 044036
  year: 2018
  ident: 852_CR17
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabb0e
– volume: 755
  start-page: 142455
  year: 2020
  ident: 852_CR80
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142455
– volume: 718
  start-page: 137390
  year: 2020
  ident: 852_CR96
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137390
– volume: 651
  start-page: 2354
  year: 2019
  ident: 852_CR39
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.060
– ident: 852_CR74
– volume: 44
  start-page: 827
  year: 2010
  ident: 852_CR7
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902266r
– volume: 11
  start-page: 115
  year: 2020
  ident: 852_CR66
  publication-title: Rev. Environ. Econ. Policy
  doi: 10.1093/reep/rew018
SSID ssj0060475
Score 2.720652
SecondaryResourceType review_article
Snippet Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO 2 ) from the atmosphere. Here we...
Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO2) from the atmosphere. Here we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 883
SubjectTerms 704/106/47/4113
704/47/4113
Agricultural land
Alternative energy sources
Biomass
Carbon dioxide
Carbon dioxide atmospheric concentrations
Carbon dioxide emissions
Carbon dioxide removal
Carbon sequestration
Charcoal
Climate change
Climate change mitigation
Coal
Crop yield
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Economics
Emissions
Emissions control
Energy
Environmental management
Fertilizers
Geochemistry
Geology
Geophysics/Geodesy
Greenhouse gases
Mitigation
Removal
Renewable energy
Renewable resources
Resource management
Review Article
Sequestering
Soil
Soils
Tradeoffs
Title Biochar in climate change mitigation
URI https://link.springer.com/article/10.1038/s41561-021-00852-8
https://www.proquest.com/docview/2607082571
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_RFdCpOp_RhbxrWph9Jn8TJ5hAcIg72VtImgYG2084H_3svbepQcND2JW0e7np3v7vL3QH0BYJukTFJYqUDEijfI7FUnLCMuxIROQqniUM-TqPJLHiYh3MbcCvtscpGJ1aKWhaZiZEPEHcz484w72b5TszUKJNdtSM0tqGNKpjzFrSHo-nTc6OLIzeoWu2ijaTE5XFgy2Zcnw9K47qgK03xRtyBeuG3aVrjzT8p0sryjA9g30JG57bm8SFsqbwDu01FcdmBnftqPO_XEfSHi8LUUTmL3MleF4hGlVOX9jpvi7qbRpEfw2w8ermbEDsHgWQoICsS-Z52hWBUC7xiGfoZlQhkzKRgIVQaUHxSFWquWRRoX8ciUhkNU6k8wVDCTqCVF7k6BYdJptEip6lC6KTTMPa5khGV3NWKpZp1wWtIkGS2SbiZVfGaVMlqnyc12RIkW1KRLeFduPr5Zlm3yNj4dq-hbGLFpUzWzO3CdUPt9fL_u51t3u0c9qhhcHX8pAet1cenukAQsUov7Z_yDdMuwG4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEYILYhVlzQFOYJE4i50DQuyFlgohkLgZJ7alSiUttAj1p_hGxlmoQIIbUpJLEh-en8dvbM8MwI5E0S1TpkisTUAC7XskVpoTlnJXoSLHwWnXIW_aUeMhuH4MHyfgo4qFsccqK5uYG2rVS-0a-QHqbmbdGeYd9V-IrRpld1erEhoFLZp69I4u2-Dw6gz7d5fSi_P70wYpqwqQFOk2JJHvGVdKRo3EK1ahn1KFssDW3ZVSJwHFJ9Wh4YZFgfFNLCOd0jBR2pMM-YrtTsJU4EcurcHUyXn79q6y_ZEb5Kl9cU6mxOVxUIbpuD4_GFhXCV13ijfqHLRD36fCsb79sSWbz3QX8zBXSlTnuODUAkzobBFmqgjmwSJMX-blgEdLsHPS6dm4LaeTOWm3g-pXO0UosfPcKbJ39LJlePgXhFaglvUyvQoOU8ygAkgSjVLNJGHsc60iqrhrNEsMq4NXQSDSMim5rY3RFfnmuM9FAZtA2EQOm-B12Pv6p1-k5Pjz640KWVEOz4EYk6kO-xXa49e_t7b2d2vbMNO4v2mJ1lW7uQ6z1HZ2fvRlA2rD1ze9iQJmmGyVrHHg6b-J-gnxsv7z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEcsFsYpCgRzgBFYTZ7FzQIgCZa8QAombcWJbqlRSoEWIX-PrGGehAgluSEkuSXx4fva8sT0zAFsSRbdMmSKxNgEJtO-RWGlOWMpdhYocB6ddh7zqRKd3wfl9eD8GH1UsjD1WWc2J-USt-qldI2-i7mbWnWFe05THIq6P2vtPz8RWkLI7rVU5jYIiF_r9Dd23wd7ZEfb1NqXt49vDU1JWGCApUm9IIt8zrpSMGolXrEI_pQolgq3BK6VOAopPqkPDDYsC45tYRjqlYaK0JxlyF9sdhwlmvaIaTLSOO9c3lR2I3CBP84v2mRKXx0EZsuP6vDmwbhO68RRv1Dw4J303iyOt-2N7Nrd67TmYLeWqc1Dwax7GdLYA01U082ABJk_y0sDvi7DV6vZtDJfTzZy010UlrJ0irNh57BaZPPrZEtz9C0LLUMv6mV4BhylmUA0kiUbZZpIw9rlWEVXcNZolhtXBqyAQaZmg3NbJ6Il8o9znooBNIGwih03wOux8_fNUpOf48-tGhawoh-pAjIhVh90K7dHr31tb_bu1TZhCgorLs87FGsxQ29f5KZgG1IYvr3odtcww2ShJ48DDf_P0E8bgAzc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+in+climate+change+mitigation&rft.jtitle=Nature+geoscience&rft.au=Lehmann%2C+Johannes&rft.au=Cowie%2C+Annette&rft.au=Masiello%2C+Caroline+A&rft.au=Kammann+Claudia&rft.date=2021-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1752-0894&rft.eissn=1752-0908&rft.volume=14&rft.issue=12&rft.spage=883&rft.epage=892&rft_id=info:doi/10.1038%2Fs41561-021-00852-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0894&client=summon