Biochar in climate change mitigation
Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO 2 ) from the atmosphere. Here we review the relationship between emissions reductions and CO 2 removal by biochar systems, which are based on pyrolysing biomass to produce bi...
Saved in:
Published in | Nature geoscience Vol. 14; no. 12; pp. 883 - 892 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO
2
) from the atmosphere. Here we review the relationship between emissions reductions and CO
2
removal by biochar systems, which are based on pyrolysing biomass to produce biochar, used for soil application, and renewable bioenergy. Half of the emission reductions and the majority of CO
2
removal result from the one to two orders of magnitude longer persistence of biochar than the biomass it is made from. Globally, biochar systems could deliver emission reductions of 3.4–6.3 PgCO
2
e, half of which constitutes CO
2
removal. Relevant trade-offs exist between making and sequestering biochar in soil or producing more energy. Importantly, these trade-offs depend on what type of energy is replaced: relative to producing bioenergy, emissions of biochar systems increase by 3% when biochar replaces coal, whereas emissions decrease by 95% when biochar replaces renewable energy. The lack of a clear relationship between crop yield increases in response to fertilizer and to biochar additions suggests opportunities for biochar to increase crop yields where fertilizer alone is not effective, but also questions blanket recommendations based on known fertilizer responses. Locally specific decision support must recognize these relationships and trade-offs to establish carbon-trading mechanisms that facilitate a judicious implementation commensurate with climate change mitigation needs.
Climate change mitigation strategies based on biochar generation—and its application to agricultural soils—can effectively sequester carbon, although biogeochemical and economic trade-offs must be considered. |
---|---|
AbstractList | Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO
2
) from the atmosphere. Here we review the relationship between emissions reductions and CO
2
removal by biochar systems, which are based on pyrolysing biomass to produce biochar, used for soil application, and renewable bioenergy. Half of the emission reductions and the majority of CO
2
removal result from the one to two orders of magnitude longer persistence of biochar than the biomass it is made from. Globally, biochar systems could deliver emission reductions of 3.4–6.3 PgCO
2
e, half of which constitutes CO
2
removal. Relevant trade-offs exist between making and sequestering biochar in soil or producing more energy. Importantly, these trade-offs depend on what type of energy is replaced: relative to producing bioenergy, emissions of biochar systems increase by 3% when biochar replaces coal, whereas emissions decrease by 95% when biochar replaces renewable energy. The lack of a clear relationship between crop yield increases in response to fertilizer and to biochar additions suggests opportunities for biochar to increase crop yields where fertilizer alone is not effective, but also questions blanket recommendations based on known fertilizer responses. Locally specific decision support must recognize these relationships and trade-offs to establish carbon-trading mechanisms that facilitate a judicious implementation commensurate with climate change mitigation needs.
Climate change mitigation strategies based on biochar generation—and its application to agricultural soils—can effectively sequester carbon, although biogeochemical and economic trade-offs must be considered. Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO2) from the atmosphere. Here we review the relationship between emissions reductions and CO2 removal by biochar systems, which are based on pyrolysing biomass to produce biochar, used for soil application, and renewable bioenergy. Half of the emission reductions and the majority of CO2 removal result from the one to two orders of magnitude longer persistence of biochar than the biomass it is made from. Globally, biochar systems could deliver emission reductions of 3.4–6.3 PgCO2e, half of which constitutes CO2 removal. Relevant trade-offs exist between making and sequestering biochar in soil or producing more energy. Importantly, these trade-offs depend on what type of energy is replaced: relative to producing bioenergy, emissions of biochar systems increase by 3% when biochar replaces coal, whereas emissions decrease by 95% when biochar replaces renewable energy. The lack of a clear relationship between crop yield increases in response to fertilizer and to biochar additions suggests opportunities for biochar to increase crop yields where fertilizer alone is not effective, but also questions blanket recommendations based on known fertilizer responses. Locally specific decision support must recognize these relationships and trade-offs to establish carbon-trading mechanisms that facilitate a judicious implementation commensurate with climate change mitigation needs.Climate change mitigation strategies based on biochar generation—and its application to agricultural soils—can effectively sequester carbon, although biogeochemical and economic trade-offs must be considered. |
Author | Cowie, Annette Camps-Arbestain, Marta Lehmann, Johannes Amonette, James E. Cayuela, Maria L. Whitman, Thea Woolf, Dominic Masiello, Caroline A. Kammann, Claudia |
Author_xml | – sequence: 1 givenname: Johannes orcidid: 0000-0002-4701-2936 surname: Lehmann fullname: Lehmann, Johannes email: CL273@cornell.edu organization: Soil and Crop Science, School of Integrative Plant Science, Cornell University, Cornell Atkinson Center for Sustainability, Cornell University – sequence: 2 givenname: Annette orcidid: 0000-0002-3858-959X surname: Cowie fullname: Cowie, Annette organization: NSW Department of Primary Industries/University of New England – sequence: 3 givenname: Caroline A. surname: Masiello fullname: Masiello, Caroline A. organization: Department of Earth, Environmental and Planetary Science, Rice University – sequence: 4 givenname: Claudia surname: Kammann fullname: Kammann, Claudia organization: Department of Applied Ecology, Geisenheim University – sequence: 5 givenname: Dominic surname: Woolf fullname: Woolf, Dominic organization: Soil and Crop Science, School of Integrative Plant Science, Cornell University, Cornell Atkinson Center for Sustainability, Cornell University – sequence: 6 givenname: James E. orcidid: 0000-0003-1480-4280 surname: Amonette fullname: Amonette, James E. organization: Geochemistry, Physical Sciences Division, Pacific Northwest National Laboratory, Center for Sustaining Agriculture & Natural Resources, Washington State University – sequence: 7 givenname: Maria L. orcidid: 0000-0003-0929-4204 surname: Cayuela fullname: Cayuela, Maria L. organization: Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo – sequence: 8 givenname: Marta orcidid: 0000-0002-5354-2087 surname: Camps-Arbestain fullname: Camps-Arbestain, Marta organization: School of Agriculture and Environment, Massey University – sequence: 9 givenname: Thea orcidid: 0000-0003-2269-5598 surname: Whitman fullname: Whitman, Thea organization: Department of Soil Science, University of Wisconsin-Madison |
BookMark | eNp9kEtLAzEQgINUsK3-AU8Lel2dvLNHLVaFghc9hzSb1JR2tybpwX9v7CqCh0IeE5hvZvJN0KjrO4fQJYYbDFTdJoa5wDWQskFxUqsTNMayBNCAGv3GqmFnaJLSGkAAk3yMru9Db99NrEJX2U3Ymuyq8u5WrtqGHFYmh747R6febJK7-Lmn6G3-8Dp7qhcvj8-zu0VtKW5yLSj2YIwk3pTVtJxa0hLBBFHKGLdkpJzEca-8FMxT3xjhLOHL1mEjG0Gn6Gqou4v9x96lrNf9PnalpSYCJCjCJS5ZZMiysU8pOq93sQwePzUG_W1DDzZ0saEPNrQqkPoH2ZAPn8vRhM1xlA5oKn2KmPg31RHqCz3gdPM |
CitedBy_id | crossref_primary_10_1007_s44246_024_00132_1 crossref_primary_10_1016_j_scitotenv_2024_175240 crossref_primary_10_12677_AEP_2023_134107 crossref_primary_10_1007_s42773_023_00290_2 crossref_primary_10_1007_s11104_023_06448_y crossref_primary_10_1016_j_soilad_2025_100041 crossref_primary_10_3390_rs15194645 crossref_primary_10_1007_s11783_023_1672_6 crossref_primary_10_1016_j_fcr_2025_109765 crossref_primary_10_1016_j_chemosphere_2022_135264 crossref_primary_10_1126_sciadv_adh8499 crossref_primary_10_1007_s42729_023_01456_4 crossref_primary_10_1016_j_jenvman_2023_118115 crossref_primary_10_1021_acssuschemeng_4c07181 crossref_primary_10_1016_j_nexus_2024_100335 crossref_primary_10_1007_s42768_024_00211_4 crossref_primary_10_1007_s42773_024_00376_5 crossref_primary_10_1007_s42729_024_01629_9 crossref_primary_10_1016_j_envpol_2024_123969 crossref_primary_10_1007_s42250_024_01107_w crossref_primary_10_1016_j_scitotenv_2023_164185 crossref_primary_10_1016_j_coal_2024_104498 crossref_primary_10_1007_s42773_023_00204_2 crossref_primary_10_1007_s13280_024_02037_0 crossref_primary_10_1016_j_jenvman_2024_122801 crossref_primary_10_1002_bte2_20240055 crossref_primary_10_3389_ffgc_2022_878217 crossref_primary_10_1016_j_jclepro_2024_143133 crossref_primary_10_32604_phyton_2023_046877 crossref_primary_10_1007_s11368_022_03402_w crossref_primary_10_1021_acs_est_3c02620 crossref_primary_10_1007_s42773_023_00291_1 crossref_primary_10_1016_j_eja_2024_127371 crossref_primary_10_3389_fenvs_2023_1059449 crossref_primary_10_17474_artvinofd_1256742 crossref_primary_10_1016_j_scitotenv_2023_166115 crossref_primary_10_3390_chemosensors11070394 crossref_primary_10_1007_s12613_023_2683_9 crossref_primary_10_1016_j_scitotenv_2023_167442 crossref_primary_10_1016_j_fcr_2025_109743 crossref_primary_10_1111_ejss_13428 crossref_primary_10_1016_j_chemosphere_2022_136572 crossref_primary_10_3390_polym15051196 crossref_primary_10_1016_j_pedsph_2023_07_023 crossref_primary_10_1007_s42114_023_00682_9 crossref_primary_10_1007_s42773_024_00386_3 crossref_primary_10_1016_j_spc_2024_03_026 crossref_primary_10_1016_j_geoderma_2022_115971 crossref_primary_10_1590_1983_40632024v5480082 crossref_primary_10_2166_wcc_2022_293 crossref_primary_10_1007_s42773_022_00166_x crossref_primary_10_1016_j_jwpe_2023_104640 crossref_primary_10_3390_su15086729 crossref_primary_10_1038_s41598_025_86636_1 crossref_primary_10_1021_acssuschemeng_4c03831 crossref_primary_10_3390_ijms231810376 crossref_primary_10_1016_j_tifs_2024_104644 crossref_primary_10_1016_j_jclepro_2023_138606 crossref_primary_10_3389_fpls_2024_1515584 crossref_primary_10_1016_j_scitotenv_2023_166171 crossref_primary_10_1016_j_enconman_2024_118450 crossref_primary_10_3390_ijerph191811205 crossref_primary_10_1016_j_scitotenv_2022_160623 crossref_primary_10_1002_imt2_134 crossref_primary_10_1038_s43247_022_00394_w crossref_primary_10_1007_s12649_023_02406_y crossref_primary_10_1016_j_resconrec_2024_107939 crossref_primary_10_3390_agronomy13092361 crossref_primary_10_3390_su152215889 crossref_primary_10_1016_j_jhazmat_2023_131632 crossref_primary_10_1088_2753_3751_ad81fb crossref_primary_10_1007_s42773_022_00142_5 crossref_primary_10_1039_D4EW00160E crossref_primary_10_1016_j_agwat_2024_109134 crossref_primary_10_3390_c10020054 crossref_primary_10_1016_j_jhazmat_2024_134290 crossref_primary_10_1007_s11104_023_06313_y crossref_primary_10_1007_s10532_025_10116_6 crossref_primary_10_1016_j_techfore_2023_122704 crossref_primary_10_3390_app15063207 crossref_primary_10_3389_fmicb_2025_1547979 crossref_primary_10_1038_s44284_024_00069_x crossref_primary_10_1007_s12649_023_02250_0 crossref_primary_10_1016_j_scitotenv_2022_158562 crossref_primary_10_1016_j_envpol_2022_120937 crossref_primary_10_1016_j_jece_2025_116062 crossref_primary_10_1016_j_envres_2023_117916 crossref_primary_10_1021_acs_est_3c02309 crossref_primary_10_1016_j_scitotenv_2023_169420 crossref_primary_10_1016_j_jaap_2024_106681 crossref_primary_10_1038_s43017_024_00586_2 crossref_primary_10_1002_saj2_20647 crossref_primary_10_1007_s42773_024_00366_7 crossref_primary_10_3390_agronomy14091951 crossref_primary_10_2139_ssrn_4075452 crossref_primary_10_1021_acsomega_3c07804 crossref_primary_10_1016_j_rser_2023_113145 crossref_primary_10_1021_acsomega_3c07921 crossref_primary_10_1016_j_orggeochem_2024_104897 crossref_primary_10_1016_j_biortech_2022_127601 crossref_primary_10_1016_j_est_2024_112540 crossref_primary_10_2208_jscejj_23_25025 crossref_primary_10_1186_s12870_023_04468_5 crossref_primary_10_1007_s00128_022_03463_0 crossref_primary_10_1016_j_psep_2025_106931 crossref_primary_10_1007_s11771_025_5861_2 crossref_primary_10_1080_17583004_2024_2436872 crossref_primary_10_1016_j_scitotenv_2023_165176 crossref_primary_10_1007_s42773_023_00247_5 crossref_primary_10_2139_ssrn_4144164 crossref_primary_10_3390_agronomy13061532 crossref_primary_10_1016_j_scitotenv_2022_152922 crossref_primary_10_1021_acs_chemrev_2c00399 crossref_primary_10_1016_j_gee_2022_12_002 crossref_primary_10_1071_CP21790 crossref_primary_10_1016_j_scitotenv_2023_167749 crossref_primary_10_1080_17583004_2023_2244456 crossref_primary_10_3390_agronomy13041097 crossref_primary_10_1016_j_jclepro_2022_131323 crossref_primary_10_1016_j_jhazmat_2022_130582 crossref_primary_10_1007_s42773_023_00219_9 crossref_primary_10_1016_j_scitotenv_2022_156333 crossref_primary_10_1007_s42773_023_00271_5 crossref_primary_10_1039_D4GC04616A crossref_primary_10_3390_en17020397 crossref_primary_10_1016_j_oneear_2024_08_008 crossref_primary_10_1016_j_indcrop_2023_117496 crossref_primary_10_1016_j_rcradv_2023_200173 crossref_primary_10_1039_D4RA03778B crossref_primary_10_1007_s13399_024_06198_6 crossref_primary_10_1016_j_jenvman_2023_118872 crossref_primary_10_1007_s42729_023_01201_x crossref_primary_10_1016_j_jclepro_2024_143660 crossref_primary_10_1016_j_jenvman_2025_124535 crossref_primary_10_1016_j_wasman_2022_10_037 crossref_primary_10_1016_j_scitotenv_2022_160957 crossref_primary_10_3390_su16208945 crossref_primary_10_1016_j_geosus_2022_11_004 crossref_primary_10_17221_121_2023_PSE crossref_primary_10_1016_j_cemconcomp_2025_106013 crossref_primary_10_1016_j_heliyon_2024_e27055 crossref_primary_10_3390_land12081630 crossref_primary_10_1016_j_jenvman_2024_123034 crossref_primary_10_1016_j_cej_2024_155507 crossref_primary_10_1016_j_renene_2024_122282 crossref_primary_10_1016_j_scitotenv_2024_173326 crossref_primary_10_1016_j_scitotenv_2024_174415 crossref_primary_10_1016_j_matchemphys_2024_129919 crossref_primary_10_1016_j_scitotenv_2022_155571 crossref_primary_10_1016_j_scitotenv_2024_170293 crossref_primary_10_1038_s41558_023_01604_9 crossref_primary_10_1016_j_oneear_2024_12_008 crossref_primary_10_1016_j_still_2023_105978 crossref_primary_10_3390_cli12100151 crossref_primary_10_1186_s13717_024_00571_z crossref_primary_10_1007_s42773_022_00160_3 crossref_primary_10_1016_j_indcrop_2023_118002 crossref_primary_10_1016_j_scitotenv_2022_159628 crossref_primary_10_1016_j_scitotenv_2024_176708 crossref_primary_10_1111_sum_12848 crossref_primary_10_1007_s11104_024_06506_z crossref_primary_10_1007_s00374_025_01899_0 crossref_primary_10_1038_s43016_023_00821_x crossref_primary_10_1007_s42729_024_01893_9 crossref_primary_10_1016_j_agee_2024_108910 crossref_primary_10_1007_s00374_023_01723_7 crossref_primary_10_1016_j_apsoil_2024_105752 crossref_primary_10_1016_j_rser_2022_113042 crossref_primary_10_1016_j_biombioe_2025_107755 crossref_primary_10_3390_agronomy12071661 crossref_primary_10_3390_su162310157 crossref_primary_10_1016_j_jenvman_2023_119979 crossref_primary_10_1016_j_scitotenv_2022_157219 crossref_primary_10_1073_pnas_2221840120 crossref_primary_10_1186_s13765_024_00911_9 crossref_primary_10_1016_j_scitotenv_2024_175448 crossref_primary_10_1007_s10973_025_14065_3 crossref_primary_10_1016_j_jclepro_2023_140008 crossref_primary_10_3389_fclim_2025_1505472 crossref_primary_10_1021_acs_est_4c02015 crossref_primary_10_1016_j_cesys_2024_100243 crossref_primary_10_1007_s10098_024_02863_6 crossref_primary_10_1016_j_matlet_2023_134368 crossref_primary_10_1007_s11157_024_09712_4 crossref_primary_10_1016_j_wasman_2023_05_038 crossref_primary_10_1016_j_inoche_2024_112931 crossref_primary_10_3390_atmos15010068 crossref_primary_10_1016_j_jclepro_2022_131241 crossref_primary_10_1016_j_biortech_2023_130211 crossref_primary_10_1371_journal_pone_0284092 crossref_primary_10_1371_journal_pone_0289300 crossref_primary_10_3390_agronomy14122907 crossref_primary_10_1016_j_jenvman_2025_124336 crossref_primary_10_1007_s13399_025_06624_3 crossref_primary_10_1016_j_ijhydene_2023_11_335 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1038_s43247_024_01771_3 crossref_primary_10_1007_s10661_024_13278_7 crossref_primary_10_1021_acssusresmgt_4c00263 crossref_primary_10_1021_acssusresmgt_4c00148 crossref_primary_10_1016_j_rset_2024_100087 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_1016_j_rser_2023_113890 crossref_primary_10_1021_acs_est_2c06419 crossref_primary_10_1007_s42729_024_01903_w crossref_primary_10_1007_s44246_024_00110_7 crossref_primary_10_1016_j_biortech_2024_131953 crossref_primary_10_1016_j_biortech_2023_129478 crossref_primary_10_1007_s00374_024_01866_1 crossref_primary_10_1002_smll_202406669 crossref_primary_10_1016_j_jhazmat_2024_134242 crossref_primary_10_3389_fceng_2023_1186878 crossref_primary_10_3390_agronomy13071845 crossref_primary_10_1016_j_jclepro_2022_131269 crossref_primary_10_1111_brv_12949 crossref_primary_10_1038_s41561_023_01142_1 crossref_primary_10_1016_j_gca_2024_11_015 crossref_primary_10_3390_agronomy14081861 crossref_primary_10_1007_s42773_023_00294_y crossref_primary_10_1016_j_jclepro_2023_139066 crossref_primary_10_1016_j_biortech_2023_129241 crossref_primary_10_1016_j_biombioe_2024_107531 crossref_primary_10_1016_j_rineng_2024_102433 crossref_primary_10_1139_er_2023_0092 crossref_primary_10_3390_su16041530 crossref_primary_10_1016_j_crsust_2023_100229 crossref_primary_10_1039_D4EE03166K crossref_primary_10_1016_j_biombioe_2024_107416 crossref_primary_10_1016_j_oneear_2023_12_016 crossref_primary_10_1016_j_envpol_2024_125575 crossref_primary_10_1007_s11356_024_31936_8 crossref_primary_10_1016_j_scitotenv_2023_166549 crossref_primary_10_3389_fenvs_2022_914766 crossref_primary_10_3846_jeelm_2023_20042 crossref_primary_10_1016_j_enconman_2022_115691 crossref_primary_10_1038_s44264_024_00019_z crossref_primary_10_1016_j_tibtech_2022_12_016 crossref_primary_10_1007_s42773_023_00288_w crossref_primary_10_1016_j_biortech_2023_129773 crossref_primary_10_1016_j_jenvman_2024_123317 crossref_primary_10_1016_j_scitotenv_2022_153576 crossref_primary_10_1088_1748_9326_ad52ab crossref_primary_10_3390_su152115396 crossref_primary_10_1016_j_envpol_2023_121810 crossref_primary_10_1016_j_resconrec_2022_106769 crossref_primary_10_1016_j_jenvman_2024_122233 crossref_primary_10_1007_s42773_024_00424_0 crossref_primary_10_1016_j_scitotenv_2022_155746 crossref_primary_10_3390_agriengineering6020089 crossref_primary_10_3390_app12084051 crossref_primary_10_1016_j_scitotenv_2024_174962 crossref_primary_10_3389_frsus_2023_1148001 crossref_primary_10_1016_j_talanta_2025_127572 crossref_primary_10_3390_su151813421 crossref_primary_10_1016_j_eng_2024_12_021 crossref_primary_10_3390_su16072629 crossref_primary_10_1088_1748_9326_aced18 crossref_primary_10_1016_j_epsl_2022_117739 crossref_primary_10_1360_SSTe_2023_0229 crossref_primary_10_3389_fmicb_2024_1470930 crossref_primary_10_3389_fenvs_2023_1123897 crossref_primary_10_1016_j_biortech_2023_129793 crossref_primary_10_1016_j_biortech_2024_130946 crossref_primary_10_1021_acssynbio_4c00077 crossref_primary_10_3390_agronomy14071583 crossref_primary_10_1016_j_cej_2024_152189 crossref_primary_10_1007_s44246_022_00012_6 crossref_primary_10_1111_gcbb_70021 crossref_primary_10_1016_j_jclepro_2022_134451 crossref_primary_10_1016_j_jenvman_2024_122134 crossref_primary_10_3390_agronomy15030565 crossref_primary_10_1038_s41598_024_81232_1 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_3390_plants13131736 crossref_primary_10_1186_s12302_024_00908_7 crossref_primary_10_1016_j_jrmge_2024_05_058 crossref_primary_10_1016_j_agrformet_2024_109940 crossref_primary_10_3390_app142210246 crossref_primary_10_1007_s11367_023_02144_2 crossref_primary_10_1016_j_scitotenv_2025_178597 crossref_primary_10_1007_s42773_025_00455_1 crossref_primary_10_3389_fmicb_2023_1292959 crossref_primary_10_1016_j_trgeo_2024_101370 crossref_primary_10_1590_1983_21252024v3711792rc crossref_primary_10_1016_j_scitotenv_2024_175725 crossref_primary_10_1007_s00374_024_01861_6 crossref_primary_10_1016_j_envadv_2023_100395 crossref_primary_10_3390_f15060917 crossref_primary_10_1016_j_cesys_2023_100128 crossref_primary_10_1016_j_cej_2023_146542 crossref_primary_10_1016_j_jenvman_2024_122139 crossref_primary_10_1007_s11027_024_10130_8 crossref_primary_10_1007_s42773_025_00445_3 crossref_primary_10_1016_j_jece_2024_114264 crossref_primary_10_1186_s12870_024_05202_5 crossref_primary_10_1080_17583004_2023_2217785 crossref_primary_10_1016_j_jclepro_2025_145150 crossref_primary_10_1007_s10311_023_01662_7 crossref_primary_10_1007_s00128_023_03699_4 crossref_primary_10_1016_j_biombioe_2024_107484 crossref_primary_10_3934_energy_2024014 crossref_primary_10_1038_s41467_024_45314_y crossref_primary_10_1371_journal_pone_0305385 crossref_primary_10_1007_s10533_022_00942_8 crossref_primary_10_1016_j_envres_2023_115383 crossref_primary_10_1016_j_soilbio_2024_109689 crossref_primary_10_5194_gmd_17_4871_2024 crossref_primary_10_1038_s43016_023_00694_0 crossref_primary_10_1007_s42773_022_00182_x crossref_primary_10_1016_j_conbuildmat_2024_138644 crossref_primary_10_1016_j_jenvman_2024_123265 crossref_primary_10_3390_catal13091287 crossref_primary_10_1016_j_geoderma_2023_116761 crossref_primary_10_1016_j_agee_2023_108535 crossref_primary_10_1007_s44246_023_00035_7 crossref_primary_10_1016_j_cej_2024_152496 crossref_primary_10_1007_s11056_024_10074_6 crossref_primary_10_1016_j_jenvman_2023_117757 crossref_primary_10_1007_s42832_024_0267_x crossref_primary_10_1016_j_geoderma_2023_116528 crossref_primary_10_1016_j_jclepro_2024_140859 crossref_primary_10_1016_j_geoderma_2023_116529 crossref_primary_10_1016_j_jenvman_2024_120448 crossref_primary_10_1016_j_jclepro_2023_136186 crossref_primary_10_1016_j_scitotenv_2023_168035 crossref_primary_10_1007_s11104_023_05968_x crossref_primary_10_1038_s41578_023_00634_1 crossref_primary_10_1007_s11027_024_10170_0 crossref_primary_10_1038_s41561_025_01638_y crossref_primary_10_1016_j_pedsph_2025_01_009 crossref_primary_10_1007_s11430_023_1347_8 crossref_primary_10_1016_j_jenvman_2024_120571 crossref_primary_10_1021_acsestengg_3c00027 crossref_primary_10_1016_j_scitotenv_2024_172942 crossref_primary_10_1021_acs_est_2c01978 crossref_primary_10_1007_s10705_023_10281_1 crossref_primary_10_1016_j_envres_2022_114543 crossref_primary_10_1016_j_jece_2024_112726 crossref_primary_10_3389_fenvs_2024_1393327 crossref_primary_10_1007_s42773_022_00168_9 crossref_primary_10_1016_j_crsust_2025_100279 crossref_primary_10_1086_733661 crossref_primary_10_3390_agriculture12081244 crossref_primary_10_1089_ees_2024_0132 crossref_primary_10_1016_j_coal_2023_104233 crossref_primary_10_1038_s41467_023_39338_z crossref_primary_10_1038_s41561_023_01302_3 crossref_primary_10_1108_IJOPM_06_2024_0487 crossref_primary_10_1038_s43247_024_01985_5 crossref_primary_10_1029_2021EF002583 crossref_primary_10_3390_agronomy14112693 crossref_primary_10_1111_ejss_13396 crossref_primary_10_1038_s41467_024_49502_8 crossref_primary_10_1016_j_fcr_2024_109547 crossref_primary_10_1016_j_cej_2025_160920 crossref_primary_10_1016_j_seh_2023_100033 crossref_primary_10_1007_s10668_024_05841_6 crossref_primary_10_1016_j_ccst_2024_100317 crossref_primary_10_1080_01904167_2024_2408419 crossref_primary_10_1016_j_ccst_2024_100315 crossref_primary_10_3390_resources13020031 crossref_primary_10_3390_plants12051002 crossref_primary_10_1016_j_biombioe_2024_107178 crossref_primary_10_1016_j_envres_2024_120444 crossref_primary_10_1080_17583004_2023_2268071 crossref_primary_10_1016_j_jenvman_2024_122519 crossref_primary_10_3390_su141911985 crossref_primary_10_1111_ejss_70074 crossref_primary_10_3390_polym15122741 crossref_primary_10_1016_j_jwpe_2024_105071 crossref_primary_10_3390_su142315648 crossref_primary_10_1016_j_xinn_2023_100423 crossref_primary_10_1016_j_jclepro_2023_136021 crossref_primary_10_1016_j_uclim_2023_101592 crossref_primary_10_1007_s11356_023_27586_x crossref_primary_10_1007_s42773_024_00397_0 crossref_primary_10_3390_agriculture15010077 crossref_primary_10_1016_j_fcr_2024_109603 crossref_primary_10_1038_s43017_022_00306_8 crossref_primary_10_1016_j_resconrec_2022_106847 crossref_primary_10_1016_j_eti_2023_103264 crossref_primary_10_1016_j_scitotenv_2023_162652 crossref_primary_10_1016_j_soilad_2024_100001 crossref_primary_10_1016_j_chemosphere_2023_138333 crossref_primary_10_1016_j_joule_2023_12_018 crossref_primary_10_1016_j_coal_2024_104565 crossref_primary_10_1007_s42773_024_00408_0 crossref_primary_10_1016_j_geoderma_2025_117237 crossref_primary_10_3390_pr11072095 crossref_primary_10_1016_j_geoderma_2024_117093 crossref_primary_10_3390_agronomy14092176 crossref_primary_10_1038_s43247_023_01155_z crossref_primary_10_1016_j_scitotenv_2023_163968 crossref_primary_10_1007_s42773_024_00352_z crossref_primary_10_1016_j_jafr_2025_101719 crossref_primary_10_1021_acs_est_3c09003 crossref_primary_10_1016_j_ejsobi_2024_103658 crossref_primary_10_3389_frans_2023_1205583 crossref_primary_10_1007_s42773_023_00244_8 crossref_primary_10_1071_WF24006 crossref_primary_10_1016_j_envres_2022_113539 crossref_primary_10_1016_j_sajb_2025_03_025 crossref_primary_10_1016_j_scitotenv_2022_154845 crossref_primary_10_3390_su151310487 crossref_primary_10_1021_acsestengg_2c00266 crossref_primary_10_1016_j_agee_2023_108366 crossref_primary_10_1016_j_biortech_2022_127694 crossref_primary_10_1016_j_resconrec_2025_108248 crossref_primary_10_1039_D3VA00296A crossref_primary_10_1038_s43246_024_00700_3 crossref_primary_10_1016_j_rser_2022_112963 crossref_primary_10_1016_j_renene_2024_121549 crossref_primary_10_1007_s44246_022_00010_8 crossref_primary_10_1016_j_resconrec_2022_106501 crossref_primary_10_1016_j_scitotenv_2022_159029 crossref_primary_10_1016_j_jclepro_2023_138777 crossref_primary_10_1016_j_susmat_2025_e01327 crossref_primary_10_1007_s42773_023_00232_y crossref_primary_10_3390_agronomy13102518 crossref_primary_10_1016_j_jenvman_2024_122318 crossref_primary_10_1016_j_envres_2023_118026 crossref_primary_10_1016_j_eti_2023_103109 crossref_primary_10_1016_j_scitotenv_2022_153743 crossref_primary_10_1016_j_sajb_2024_02_039 crossref_primary_10_1016_j_scitotenv_2023_168046 crossref_primary_10_1007_s42773_023_00279_x crossref_primary_10_1016_j_resconrec_2025_108237 crossref_primary_10_1016_j_jafr_2023_100498 crossref_primary_10_1111_ejss_70035 crossref_primary_10_1016_j_fcr_2025_109807 crossref_primary_10_1088_1748_9326_acffdc crossref_primary_10_1016_j_fcr_2024_109518 crossref_primary_10_1016_j_cej_2022_139899 crossref_primary_10_1016_j_indcrop_2024_119148 crossref_primary_10_1016_j_nanoso_2024_101307 |
Cites_doi | 10.1016/j.scitotenv.2020.142455 10.1023/A:1016125726789 10.1021/acssuschemeng.0c05355 10.1016/j.scienta.2020.109329 10.1002/bbb.2092 10.1016/j.geoderma.2014.05.007 10.1126/science.aam9726 10.1016/j.biortech.2012.03.022 10.1016/j.scitotenv.2020.137390 10.1016/j.jpowsour.2020.228183 10.2489/jswc.73.6.145A 10.1016/j.biortech.2020.123614 10.1021/acssuschemeng.0c04336 10.1002/jpln.201600451 10.1016/j.scitotenv.2020.136635 10.1016/j.orggeochem.2009.09.007 10.1007/s11368-017-1899-6 10.1016/j.egypro.2019.01.185 10.1021/es902266r 10.1038/s41467-021-24350-y 10.1016/j.jclepro.2020.120684 10.1093/reep/rew018 10.1016/j.geoderma.2020.114179 10.1016/j.soilbio.2016.12.006 10.1007/s10533-007-9104-4 10.1016/j.enpol.2011.02.033 10.1007/s10533-012-9764-6 10.1029/1999GB001208 10.1080/10643389.2020.1721980 10.1007/s11104-012-1412-3 10.1038/s41586-020-2448-9 10.1007/s42773-019-00002-9 10.1016/j.biombioe.2014.12.022 10.1111/gcbb.12132 10.1016/j.biombioe.2017.04.001 10.3389/feart.2018.00026 10.1038/ncomms1053 10.1021/es5060786 10.1021/es902555a 10.1111/sum.12546 10.3390/land8120179 10.1021/es302302g 10.1016/j.scitotenv.2018.07.402 10.1016/j.agee.2010.12.005 10.1080/17583004.2014.912866 10.1038/ncomms14873 10.1007/s00374-016-1116-6 10.1016/j.scitotenv.2018.10.060 10.1002/esp.4925 10.1111/gcbb.12266 10.1021/acssuschemeng.0c00704 10.1007/s00374-018-01338-3 10.1002/ldr.696 10.1016/j.egypro.2019.01.890 10.1016/j.soilbio.2013.12.026 10.1021/es302545b 10.1016/j.apsoil.2020.103531 10.1371/journal.pone.0141560 10.1016/j.still.2019.104525 10.1038/ncomms9708 10.1128/JB.182.8.2059-2067.2000 10.1021/es9031419 10.1038/nclimate3276 10.1038/s41467-020-18887-7 10.1111/gcbb.12665 10.1038/nature17174 10.1002/ehs2.1202 10.1093/oxfclm/kgab006 10.1016/j.enconman.2020.113258 10.1111/gcbb.12250 10.1016/j.jclepro.2020.120998 10.1016/j.scitotenv.2021.145953 10.1146/annurev-environ-101718-033129 10.1007/s13157-020-01380-8 10.1007/s40095-014-0106-4 10.1111/ejss.12338 10.1021/es500474q 10.1039/C8EM00278A 10.4155/cmt.10.32 10.1021/es500906d 10.1088/1748-9326/aa67bd 10.1111/sum.12655 10.1111/gcbb.12213 10.1016/j.orggeochem.2013.09.006 10.1002/ldr.2761 10.1038/s41598-020-76470-y 10.1088/1748-9326/aabb0e 10.1016/j.soilbio.2016.07.021 10.1021/acs.est.9b01615 10.1038/ncomms13160 10.1111/ejss.12808 10.21513/0207-2564-2019-2-05-13 10.4324/9780203762264 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2021 Springer Nature Limited 2021. |
Copyright_xml | – notice: Springer Nature Limited 2021 – notice: Springer Nature Limited 2021. |
DBID | AAYXX CITATION 7SN 7TG 7TN 7UA 8FE 8FH AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G LK8 M7P PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/s41561-021-00852-8 |
DatabaseName | CrossRef Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Biological Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Economics |
EISSN | 1752-0908 |
EndPage | 892 |
ExternalDocumentID | 10_1038_s41561_021_00852_8 |
GrantInformation_xml | – fundername: National Institute of Food and Agriculture 2014-67003-22069 Atkinson Center for Sustainability – fundername: United States Department of Agriculture | National Institute of Food and Agriculture (NIFA) grantid: 2014-67003-22069 funderid: https://doi.org/10.13039/100005825 – fundername: Fondation des Fondateurs (Foundation of the Founders) funderid: https://doi.org/10.13039/501100005896 – fundername: EU FEDER RTI2018-099417-B-I00 |
GroupedDBID | 0R~ 123 29M 39C 5BI 5S5 70F 8FE 8FH AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ACBWK ACGFS ACPRK ACUHS ADBBV AENEX AEUYN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BKSAR CCPQU CS3 DB5 EBS EE. EJD EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ LK5 M7P M7R N9A NNMJJ O9- ODYON P2P PCBAR RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG Y6R ~02 AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7SN 7TG 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H96 KL. L.G LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-631f0aa72fa2fa9d53c2d2646288aaeb42aae2e5f8f764f3f9a6ec25bde1a7963 |
IEDL.DBID | BENPR |
ISSN | 1752-0894 |
IngestDate | Sat Aug 23 13:42:00 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 01:37:44 EDT 2025 Fri Feb 21 02:39:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-631f0aa72fa2fa9d53c2d2646288aaeb42aae2e5f8f764f3f9a6ec25bde1a7963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1480-4280 0000-0002-4701-2936 0000-0002-5354-2087 0000-0002-3858-959X 0000-0003-2269-5598 0000-0003-0929-4204 |
PQID | 2607082571 |
PQPubID | 546301 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2607082571 crossref_primary_10_1038_s41561_021_00852_8 crossref_citationtrail_10_1038_s41561_021_00852_8 springer_journals_10_1038_s41561_021_00852_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature geoscience |
PublicationTitleAbbrev | Nat. Geosci |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ding (CR44) 2018; 18 Klüpfel, Keiluweit, Kleber, Sander (CR40) 2014; 48 Matuštík, Hnátková, Kočí (CR6) 2020; 259 Kerré, Bravo, Leifeld, Cornelissen, Smolders (CR49) 2016; 67 Cheng, Luo, Colosi (CR76) 2020; 223 Papageorgiou, Azzi, Enell, Sundberg (CR8) 2021; 776 Smith (CR58) 2019; 44 Cong, Meng, Ying (CR36) 2018; 20 Werner (CR17) 2018; 13 Weng (CR45) 2017; 7 Whitman, Hanley, Enders, Lehmann (CR13) 2013; 64 Keiluweit, Nico, Johnson, Kleber (CR21) 2010; 44 Luo (CR55) 2017; 106 Shi (CR56) 2020; 37 Budai, Rasse, Lagomarsino, Lerch, Paruch (CR95) 2016; 52 Zhang (CR67) 2010; 44 Peters, Iribarren, Dufour (CR28) 2015; 49 Hernandez-Soriano (CR50) 2016; 8 Liang (CR47) 2010; 41 Borchard (CR39) 2019; 651 Garcia-Ibañez, Sanchez-Garcia, Sánchez-Monedero, Cayuela, Moreno (CR64) 2020; 267 Woolf, Lehmann, Fisher, Angenent (CR78) 2014; 48 Nelissen, Saha, Ruysschaert, Boeckx (CR43) 2014; 70 Blanco-Canqui, Laird, Heaton, Rathke, Acharya (CR46) 2019; 12 Azzi, Karltun, Sundberg (CR4) 2019; 53 Man, Chow, Man, Mo, Wong (CR85) 2021; 51 Whitman, Lehmann (CR54) 2015; 6 Smebye, Sparrevik, Schmidt, Cornelissen (CR70) 2017; 101 Frank, Brown, Malmsheimer, Volk, Ha (CR77) 2020; 14 Owsianiak (CR80) 2020; 755 Nguyen, Trinh, Bach (CR33) 2020; 152 Yang (CR5) 2019; 158 Sun (CR32) 2021; 12 Li, You, Wang (CR69) 2019; 158 Lal (CR97) 2018; 73 Schmidt, Noack (CR3) 2000; 14 Li, Xing, Ding, Han, Wang (CR87) 2020; 312 Field, Mach (CR1) 2017; 356 Dutta, Raghavan (CR75) 2014; 5 Jeffery (CR71) 2015; 7 Singh, Cowie, Smernik (CR22) 2012; 46 Kanaly, Harayama (CR20) 2000; 182 Spokas (CR25) 2010; 1 Beerling (CR83) 2020; 583 Masiello, Berhe (CR31) 2020; 45 Crombie, Mašek, Cross, Sohi (CR68) 2015; 7 Dumortier (CR57) 2020; 258 Meyer, Bright, Fischer, Schulz, Glaser (CR11) 2012; 46 Tisserant, Cherubini (CR12) 2019; 8 CR74 CR73 Ye (CR61) 2020; 36 Rubin, Anderson, Ballantine (CR65) 2020; 40 CR72 Lefebvre (CR14) 2020; 10 Knicker (CR24) 2007; 85 Qian (CR10) 2014; 5 Jeffery (CR59) 2017; 12 Woolf, Lehmann, Lee (CR79) 2016; 7 Zhao, Lehmann, You (CR15) 2020; 8 Schmidt, Pandit, Cornelissen, Kammann (CR62) 2017; 28 Dai, Zheng, Jiang, Xing (CR60) 2020; 713 McBeath, Wurster, Bird (CR23) 2015; 73 Leng, Huang, Li, Li, Zhou (CR27) 2019; 647 Enders, Hanley, Whitman, Joseph, Lehmann (CR90) 2012; 114 Six, Conant, Paul, Paustian (CR52) 2002; 241 Jeffery, Verheijen, Kammann, Abalos (CR34) 2016; 101 Karhu, Mattila, Bergström, Regina (CR38) 2011; 140 Paustian (CR51) 2016; 532 Fang (CR94) 2019; 70 Pascual (CR37) 2020; 363 CR81 Wang, Xiong, Kuzyakov (CR18) 2016; 8 Woolf, Lehmann (CR89) 2012; 111 Hammond, Shackley, Sohi, Brownsort (CR29) 2011; 39 Roberts, Gloy, Joseph, Scott, Lehmann (CR7) 2010; 44 Lal (CR98) 2006; 17 Abney, Berhe (CR30) 2018; 6 CR19 Totsche (CR53) 2018; 181 Slavich (CR92) 2013; 366 Zhou (CR86) 2020; 8 Borchard (CR48) 2014; 232–234 Woolf (CR16) 2010; 1 Sciarria (CR88) 2020; 462 CR91 Wu (CR2) 2019; 1 Amelung (CR63) 2020; 11 Weyant (CR66) 2020; 11 Singh (CR93) 2015; 10 Phillips (CR9) 2020; 198 Fungo (CR42) 2019; 55 Liu (CR96) 2020; 718 CR26 Buss, Yeates, Rohling, Borevitz (CR84) 2021; 1 Sun (CR41) 2017; 8 Song (CR35) 2016; 2 Buss, Bogush, Ignatyev, Masek (CR82) 2020; 8 JR Frank (852_CR77) 2020; 14 RB Abney (852_CR30) 2018; 6 N Zhao (852_CR15) 2020; 8 W Buss (852_CR82) 2020; 8 N Borchard (852_CR48) 2014; 232–234 D Lefebvre (852_CR14) 2020; 10 J Wang (852_CR18) 2016; 8 J Matuštík (852_CR6) 2020; 259 J Weyant (852_CR66) 2020; 11 L Qian (852_CR10) 2014; 5 S Jeffery (852_CR34) 2016; 101 PG Slavich (852_CR92) 2013; 366 P Garcia-Ibañez (852_CR64) 2020; 267 A Tisserant (852_CR12) 2019; 8 BP Singh (852_CR93) 2015; 10 T Whitman (852_CR54) 2015; 6 T Sun (852_CR32) 2021; 12 S Meyer (852_CR11) 2012; 46 B Liang (852_CR47) 2010; 41 J Six (852_CR52) 2002; 241 N Borchard (852_CR39) 2019; 651 KU Totsche (852_CR53) 2018; 181 L Leng (852_CR27) 2019; 647 852_CR72 852_CR73 852_CR74 DJ Beerling (852_CR83) 2020; 583 A Enders (852_CR90) 2012; 114 K Karhu (852_CR38) 2011; 140 A Papageorgiou (852_CR8) 2021; 776 JF Peters (852_CR28) 2015; 49 K Paustian (852_CR51) 2016; 532 Q Shi (852_CR56) 2020; 37 852_CR81 J Hammond (852_CR29) 2011; 39 R Lal (852_CR98) 2006; 17 MB Pascual (852_CR37) 2020; 363 AV McBeath (852_CR23) 2015; 73 F Ding (852_CR44) 2018; 18 K Crombie (852_CR68) 2015; 7 852_CR91 J Dumortier (852_CR57) 2020; 258 KA Spokas (852_CR25) 2010; 1 M Keiluweit (852_CR21) 2010; 44 V Nelissen (852_CR43) 2014; 70 BT Nguyen (852_CR33) 2020; 152 Y Luo (852_CR55) 2017; 106 S Jeffery (852_CR71) 2015; 7 P Smith (852_CR58) 2019; 44 D Woolf (852_CR16) 2010; 1 ZH Weng (852_CR45) 2017; 7 H Knicker (852_CR24) 2007; 85 B Kerré (852_CR49) 2016; 67 L Klüpfel (852_CR40) 2014; 48 852_CR26 S Jeffery (852_CR59) 2017; 12 RA Kanaly (852_CR20) 2000; 182 B Dutta (852_CR75) 2014; 5 T Whitman (852_CR13) 2013; 64 AB Smebye (852_CR70) 2017; 101 CA Masiello (852_CR31) 2020; 45 Y Fang (852_CR94) 2019; 70 P Wu (852_CR2) 2019; 1 K Roberts (852_CR7) 2010; 44 852_CR19 W Amelung (852_CR63) 2020; 11 M Owsianiak (852_CR80) 2020; 755 L Li (852_CR69) 2019; 158 TP Sciarria (852_CR88) 2020; 462 T Sun (852_CR41) 2017; 8 B Liu (852_CR96) 2020; 718 B Fungo (852_CR42) 2019; 55 L Ye (852_CR61) 2020; 36 CL Phillips (852_CR9) 2020; 198 RL Rubin (852_CR65) 2020; 40 KY Man (852_CR85) 2021; 51 Q Yang (852_CR5) 2019; 158 BP Singh (852_CR22) 2012; 46 ES Azzi (852_CR4) 2019; 53 MW Schmidt (852_CR3) 2000; 14 F Cheng (852_CR76) 2020; 223 P Lal (852_CR97) 2018; 73 Y Li (852_CR87) 2020; 312 MC Hernandez-Soriano (852_CR50) 2016; 8 Y Dai (852_CR60) 2020; 713 D Woolf (852_CR89) 2012; 111 C Werner (852_CR17) 2018; 13 D Woolf (852_CR78) 2014; 48 X Zhou (852_CR86) 2020; 8 D Woolf (852_CR79) 2016; 7 X Song (852_CR35) 2016; 2 W Cong (852_CR36) 2018; 20 CB Field (852_CR1) 2017; 356 Y Zhang (852_CR67) 2010; 44 A Budai (852_CR95) 2016; 52 HP Schmidt (852_CR62) 2017; 28 H Blanco-Canqui (852_CR46) 2019; 12 W Buss (852_CR84) 2021; 1 |
References_xml | – volume: 755 start-page: 142455 year: 2020 ident: CR80 article-title: Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142455 – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: CR52 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – ident: CR74 – volume: 8 start-page: 14568 year: 2020 end-page: 14575 ident: CR86 article-title: Life cycle assessment of biochar modified bioasphalt derived from biomass publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c05355 – volume: 267 start-page: 109329 year: 2020 ident: CR64 article-title: Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2020.109329 – volume: 14 start-page: 594 year: 2020 end-page: 604 ident: CR77 article-title: The financial trade‐off between the production of biochar and biofuel via pyrolysis under uncertainty publication-title: Biofuel Bioprod. Bioref. doi: 10.1002/bbb.2092 – volume: 232–234 start-page: 236 year: 2014 end-page: 242 ident: CR48 article-title: Black carbon and soil properties at historical charcoal production sites in Germany publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.007 – volume: 356 start-page: 706 year: 2017 end-page: 707 ident: CR1 article-title: Rightsizing carbon dioxide removal publication-title: Science doi: 10.1126/science.aam9726 – volume: 114 start-page: 644 year: 2012 end-page: 653 ident: CR90 article-title: Characterization of biochars to evaluate recalcitrance and agronomic performance publication-title: Biores. Technol. doi: 10.1016/j.biortech.2012.03.022 – volume: 718 start-page: 137390 year: 2020 ident: CR96 article-title: A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137390 – volume: 462 start-page: 228183 year: 2020 ident: CR88 article-title: Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells publication-title: J. Power Source doi: 10.1016/j.jpowsour.2020.228183 – volume: 73 start-page: 145A year: 2018 end-page: 152A ident: CR97 article-title: The carbon sequestration potential of terrestrial ecosystems publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.73.6.145A – volume: 312 start-page: 123614 year: 2020 ident: CR87 article-title: A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass publication-title: Biores. Technol. doi: 10.1016/j.biortech.2020.123614 – volume: 8 start-page: 12295 year: 2020 end-page: 12303 ident: CR82 article-title: Unlocking the fertilizer potential of waste-derived biochar publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c04336 – ident: CR19 – volume: 181 start-page: 104 year: 2018 end-page: 136 ident: CR53 article-title: Microaggregates in soils publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201600451 – volume: 713 start-page: 136635 year: 2020 ident: CR60 article-title: Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136635 – volume: 41 start-page: 206 year: 2010 end-page: 213 ident: CR47 article-title: Black carbon affects the cycling of non-black carbon in soil publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.09.007 – volume: 18 start-page: 1507 year: 2018 end-page: 1517 ident: CR44 article-title: A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1899-6 – volume: 158 start-page: 688 year: 2019 end-page: 693 ident: CR69 article-title: Optimal design of standalone hybrid renewable energy systems with biochar production in remote rural areas: a case study publication-title: Energy Proc. doi: 10.1016/j.egypro.2019.01.185 – volume: 44 start-page: 827 year: 2010 end-page: 833 ident: CR7 article-title: Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential publication-title: Environ. Sci. Technol. doi: 10.1021/es902266r – volume: 12 year: 2021 ident: CR32 article-title: Suppressing peatland methane production by electron snorkeling through pyrogenic carbon publication-title: Nat. Commun. doi: 10.1038/s41467-021-24350-y – volume: 258 start-page: 120684 year: 2020 ident: CR57 article-title: Global land-use and carbon emission implications from biochar application to cropland in the United States publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120684 – volume: 11 start-page: 115 year: 2020 end-page: 137 ident: CR66 article-title: Some contributions of integrated assessment models of global climate change publication-title: Rev. Environ. Econ. Policy doi: 10.1093/reep/rew018 – volume: 363 start-page: 114179 year: 2020 ident: CR37 article-title: Linking biochars properties to their capacity to modify aerobic CH oxidation in an upland agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114179 – volume: 106 start-page: 28 year: 2017 end-page: 35 ident: CR55 article-title: Priming effects in biochar enriched soils using a three-source-partitioning approach: C labelling and C natural abundance publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.006 – volume: 85 start-page: 91 year: 2007 end-page: 118 ident: CR24 article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review publication-title: Biogeochemistry doi: 10.1007/s10533-007-9104-4 – volume: 39 start-page: 2646 year: 2011 end-page: 2655 ident: CR29 article-title: Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK publication-title: Energy Policy doi: 10.1016/j.enpol.2011.02.033 – volume: 111 start-page: 83 year: 2012 end-page: 95 ident: CR89 article-title: Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon publication-title: Biogeochemistry doi: 10.1007/s10533-012-9764-6 – volume: 14 start-page: 777 year: 2000 end-page: 793 ident: CR3 article-title: Black carbon in soils and sediments: analysis, distribution, implications, and current challenges publication-title: Glob. Biogeochem. Cycles doi: 10.1029/1999GB001208 – volume: 51 start-page: 187 year: 2021 end-page: 217 ident: CR85 article-title: Use of biochar as feed supplements for animal farming publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1721980 – ident: CR91 – ident: CR72 – volume: 70 start-page: 960 year: 2019 end-page: 974 ident: CR94 article-title: Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter publication-title: Eur. J. Soil Sci. – volume: 366 start-page: 213 year: 2013 end-page: 227 ident: CR92 article-title: Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture publication-title: Plant Soil doi: 10.1007/s11104-012-1412-3 – volume: 583 start-page: 242 year: 2020 end-page: 248 ident: CR83 article-title: Potential for large-scale CO removal via enhanced rock weathering with croplands publication-title: Nature doi: 10.1038/s41586-020-2448-9 – volume: 1 start-page: 23 year: 2019 end-page: 43 ident: CR2 article-title: A scientometric review of biochar research in the past 20 years (1998–2018) publication-title: Biochar doi: 10.1007/s42773-019-00002-9 – volume: 73 start-page: 155 year: 2015 end-page: 173 ident: CR23 article-title: Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.12.022 – volume: 7 start-page: 1 year: 2015 end-page: 13 ident: CR71 article-title: The way forward in biochar research: targeting trade-offs between the potential wins publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12132 – volume: 101 start-page: 35 year: 2017 end-page: 43 ident: CR70 article-title: Life-cycle assessment of biochar production systems in tropical rural areas: comparing flame curtain kilns to other production methods publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.04.001 – volume: 6 start-page: 26 year: 2018 ident: CR30 article-title: Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil publication-title: Front. Earth Sci. doi: 10.3389/feart.2018.00026 – volume: 1 year: 2010 ident: CR16 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 49 start-page: 5195 year: 2015 end-page: 5202 ident: CR28 article-title: Biomass pyrolysis for biochar or energy applications? A life cycle assessment publication-title: Environ. Sci. Technol. doi: 10.1021/es5060786 – volume: 44 start-page: 538 year: 2010 end-page: 544 ident: CR67 article-title: Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada publication-title: Environ. Sci. Technol. doi: 10.1021/es902555a – volume: 36 start-page: 2 year: 2020 end-page: 18 ident: CR61 article-title: Biochar effects on crop yields with and without fertilizer: a meta‐analysis of field studies using separate controls publication-title: Soil Use Manage. doi: 10.1111/sum.12546 – volume: 8 start-page: 179 year: 2019 ident: CR12 article-title: Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation publication-title: Land doi: 10.3390/land8120179 – volume: 46 start-page: 12726 year: 2012 end-page: 12734 ident: CR11 article-title: Albedo impact on the suitability of biochar systems to mitigate global warming publication-title: Environ. Sci. Technol. doi: 10.1021/es302302g – volume: 647 start-page: 210 year: 2019 end-page: 222 ident: CR27 article-title: Biochar stability assessment methods: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.402 – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: CR38 article-title: Biochar addition to agricultural soil increased CH uptake and water holding capacity—results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – volume: 5 start-page: 145 year: 2014 end-page: 154 ident: CR10 article-title: Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China publication-title: Carbon Manage. doi: 10.1080/17583004.2014.912866 – volume: 8 year: 2017 ident: CR41 article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon publication-title: Nat. Commun. doi: 10.1038/ncomms14873 – volume: 52 start-page: 749 year: 2016 end-page: 761 ident: CR95 article-title: Biochar persistence, priming and microbial responses to pyrolysis temperature series publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-016-1116-6 – volume: 651 start-page: 2354 year: 2019 end-page: 2364 ident: CR39 article-title: Biochar, soil and land-use interactions that reduce nitrate leaching and N O emissions: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.060 – volume: 45 start-page: 2394 year: 2020 end-page: 2398 ident: CR31 article-title: First interactions with the hydrologic cycle determine pyrogenic carbon’s fate in the Earth system publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.4925 – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: CR18 article-title: Biochar stability in soil: meta‐analysis of decomposition and priming effects publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12266 – volume: 8 start-page: 4633 year: 2020 end-page: 4646 ident: CR15 article-title: Poultry waste valorization via pyrolysis technologies: economic and environmental life cycle optimization for sustainable bioenergy systems. publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00704 – volume: 55 start-page: 135 year: 2019 end-page: 148 ident: CR42 article-title: Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-018-01338-3 – volume: 17 start-page: 197 year: 2006 end-page: 209 ident: CR98 article-title: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands publication-title: Land Degrad. Dev. doi: 10.1002/ldr.696 – volume: 158 start-page: 3690 year: 2019 end-page: 3695 ident: CR5 article-title: Greenhouse gas emission analysis of biomass moving-bed pyrolytic polygeneration systems based on Aspen Plus and hybrid LCA in China publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.890 – volume: 70 start-page: 244 year: 2014 end-page: 255 ident: CR43 article-title: Effect of different biochar and fertilizer types on N O and NO emissions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.026 – volume: 46 start-page: 11770 year: 2012 end-page: 11778 ident: CR22 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environ. Sci. Technol. doi: 10.1021/es302545b – volume: 152 start-page: 103531 year: 2020 ident: CR33 article-title: Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2020.103531 – volume: 10 start-page: e0141560 year: 2015 ident: CR93 article-title: In situ persistence and migration of biochar carbon and its impact on native carbon emission in contrasting soils under managed temperate pastures publication-title: PLoS ONE doi: 10.1371/journal.pone.0141560 – volume: 198 start-page: 104525 year: 2020 ident: CR9 article-title: Can biochar conserve water in Oregon agricultural soils? publication-title: Soil Till. Res. doi: 10.1016/j.still.2019.104525 – ident: CR81 – volume: 6 year: 2015 ident: CR54 article-title: A dual-isotope approach to allow conclusive partitioning between three sources publication-title: Nat. Commun. doi: 10.1038/ncomms9708 – volume: 182 start-page: 2059 year: 2000 end-page: 2067 ident: CR20 article-title: Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria publication-title: J. Bacteriol. doi: 10.1128/JB.182.8.2059-2067.2000 – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: CR21 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 7 start-page: 371 year: 2017 end-page: 376 ident: CR45 article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits publication-title: Nat. Clim. Change doi: 10.1038/nclimate3276 – volume: 11 year: 2020 ident: CR63 article-title: Towards implementing a global-scale soil climate mitigation strategy publication-title: Nat. Commun. doi: 10.1038/s41467-020-18887-7 – ident: CR26 – volume: 12 start-page: 240 year: 2019 end-page: 251 ident: CR46 article-title: Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12665 – volume: 532 start-page: 49 year: 2016 end-page: 57 ident: CR51 article-title: Climate-smart soils publication-title: Nature doi: 10.1038/nature17174 – volume: 2 start-page: e01202 year: 2016 ident: CR35 article-title: Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis publication-title: Ecosyst. Health Sustain. doi: 10.1002/ehs2.1202 – volume: 1 start-page: kgab006 year: 2021 ident: CR84 article-title: Enhancing natural cycles in agro-ecosystems to boost plant carbon capture and soil storage publication-title: Oxford Open Clim. Change doi: 10.1093/oxfclm/kgab006 – volume: 223 start-page: 113258 year: 2020 ident: CR76 article-title: Slow pyrolysis as a platform for negative emissions technology: an integration of machine learning models, life cycle assessment, and economic analysis publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113258 – volume: 8 start-page: 371 year: 2016 end-page: 381 ident: CR50 article-title: Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12250 – volume: 259 start-page: 120998 year: 2020 ident: CR6 article-title: Life cycle assessment of biochar-to-soil systems: a review publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.120998 – volume: 776 start-page: 145953 year: 2021 ident: CR8 article-title: Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145953 – volume: 44 start-page: 255 year: 2019 end-page: 286 ident: CR58 article-title: Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-101718-033129 – volume: 40 start-page: 1981 year: 2020 end-page: 1991 ident: CR65 article-title: Biochar simultaneously reduces nutrient leaching and greenhouse gas emissions in restored wetland soils publication-title: Wetlands doi: 10.1007/s13157-020-01380-8 – volume: 5 start-page: 106 year: 2014 ident: CR75 article-title: A life cycle assessment of environmental and economic balance of biochar systems in Quebec publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-014-0106-4 – volume: 67 start-page: 324 year: 2016 end-page: 331 ident: CR49 article-title: Historical soil amendment with charcoal increases sequestration of non-charcoal carbon: a comparison among methods of black carbon quantification publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12338 – volume: 48 start-page: 6492 year: 2014 end-page: 6499 ident: CR78 article-title: Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions publication-title: Environ. Sci. Technol. doi: 10.1021/es500474q – volume: 20 start-page: 1202 year: 2018 end-page: 1209 ident: CR36 article-title: Impact of soil properties on the soil methane flux response to biochar addition: a meta-analysis. publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C8EM00278A – volume: 1 start-page: 289 year: 2010 end-page: 303 ident: CR25 article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios publication-title: Carbon Manage. doi: 10.4155/cmt.10.32 – volume: 48 start-page: 5601 year: 2014 end-page: 5611 ident: CR40 article-title: Redox properties of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es500906d – volume: 12 start-page: 053001 year: 2017 ident: CR59 article-title: Biochar boosts tropical but not temperate crop yields publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa67bd – ident: CR73 – volume: 37 start-page: 95 year: 2020 end-page: 103 ident: CR56 article-title: Soil organic and inorganic carbon sequestration by consecutive biochar application: results from a decade field experiment publication-title: Soil Use Manage. doi: 10.1111/sum.12655 – volume: 7 start-page: 1161 year: 2015 end-page: 1175 ident: CR68 article-title: Biochar—synergies and trade‐offs between soil enhancing properties and C sequestration potential publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12213 – volume: 64 start-page: 76 year: 2013 end-page: 83 ident: CR13 article-title: Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2013.09.006 – volume: 28 start-page: 2324 year: 2017 end-page: 2342 ident: CR62 article-title: Biochar‐based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2761 – volume: 10 start-page: 19479 year: 2020 ident: CR14 article-title: Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil publication-title: Sci. Rep. doi: 10.1038/s41598-020-76470-y – volume: 13 start-page: 044036 year: 2018 ident: CR17 article-title: Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabb0e – volume: 101 start-page: 251 year: 2016 end-page: 258 ident: CR34 article-title: Biochar effects on methane emissions from soils: a meta-analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.07.021 – volume: 53 start-page: 8466 year: 2019 end-page: 8476 ident: CR4 article-title: Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01615 – volume: 7 year: 2016 ident: CR79 article-title: Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration publication-title: Nat. Commun. doi: 10.1038/ncomms13160 – volume: 583 start-page: 242 year: 2020 ident: 852_CR83 publication-title: Nature doi: 10.1038/s41586-020-2448-9 – volume: 41 start-page: 206 year: 2010 ident: 852_CR47 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.09.007 – volume: 44 start-page: 538 year: 2010 ident: 852_CR67 publication-title: Environ. Sci. Technol. doi: 10.1021/es902555a – volume: 111 start-page: 83 year: 2012 ident: 852_CR89 publication-title: Biogeochemistry doi: 10.1007/s10533-012-9764-6 – volume: 8 start-page: 179 year: 2019 ident: 852_CR12 publication-title: Land doi: 10.3390/land8120179 – volume: 198 start-page: 104525 year: 2020 ident: 852_CR9 publication-title: Soil Till. Res. doi: 10.1016/j.still.2019.104525 – volume: 8 start-page: 14568 year: 2020 ident: 852_CR86 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c05355 – volume: 8 year: 2017 ident: 852_CR41 publication-title: Nat. Commun. doi: 10.1038/ncomms14873 – volume: 312 start-page: 123614 year: 2020 ident: 852_CR87 publication-title: Biores. Technol. doi: 10.1016/j.biortech.2020.123614 – volume: 39 start-page: 2646 year: 2011 ident: 852_CR29 publication-title: Energy Policy doi: 10.1016/j.enpol.2011.02.033 – ident: 852_CR73 – volume: 366 start-page: 213 year: 2013 ident: 852_CR92 publication-title: Plant Soil doi: 10.1007/s11104-012-1412-3 – volume: 46 start-page: 11770 year: 2012 ident: 852_CR22 publication-title: Environ. Sci. Technol. doi: 10.1021/es302545b – volume: 158 start-page: 3690 year: 2019 ident: 852_CR5 publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.890 – volume: 12 start-page: 053001 year: 2017 ident: 852_CR59 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa67bd – volume: 36 start-page: 2 year: 2020 ident: 852_CR61 publication-title: Soil Use Manage. doi: 10.1111/sum.12546 – volume: 241 start-page: 155 year: 2002 ident: 852_CR52 publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 53 start-page: 8466 year: 2019 ident: 852_CR4 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01615 – volume: 8 start-page: 512 year: 2016 ident: 852_CR18 publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12266 – volume: 40 start-page: 1981 year: 2020 ident: 852_CR65 publication-title: Wetlands doi: 10.1007/s13157-020-01380-8 – volume: 140 start-page: 309 year: 2011 ident: 852_CR38 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – volume: 106 start-page: 28 year: 2017 ident: 852_CR55 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.006 – volume: 8 start-page: 4633 year: 2020 ident: 852_CR15 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00704 – volume: 232–234 start-page: 236 year: 2014 ident: 852_CR48 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.007 – volume: 48 start-page: 6492 year: 2014 ident: 852_CR78 publication-title: Environ. Sci. Technol. doi: 10.1021/es500474q – volume: 45 start-page: 2394 year: 2020 ident: 852_CR31 publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.4925 – volume: 52 start-page: 749 year: 2016 ident: 852_CR95 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-016-1116-6 – volume: 6 year: 2015 ident: 852_CR54 publication-title: Nat. Commun. doi: 10.1038/ncomms9708 – volume: 7 start-page: 1 year: 2015 ident: 852_CR71 publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12132 – volume: 48 start-page: 5601 year: 2014 ident: 852_CR40 publication-title: Environ. Sci. Technol. doi: 10.1021/es500906d – ident: 852_CR81 – volume: 5 start-page: 145 year: 2014 ident: 852_CR10 publication-title: Carbon Manage. doi: 10.1080/17583004.2014.912866 – volume: 1 year: 2010 ident: 852_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 18 start-page: 1507 year: 2018 ident: 852_CR44 publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1899-6 – volume: 14 start-page: 594 year: 2020 ident: 852_CR77 publication-title: Biofuel Bioprod. Bioref. doi: 10.1002/bbb.2092 – volume: 1 start-page: kgab006 year: 2021 ident: 852_CR84 publication-title: Oxford Open Clim. Change doi: 10.1093/oxfclm/kgab006 – volume: 5 start-page: 106 year: 2014 ident: 852_CR75 publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-014-0106-4 – volume: 70 start-page: 960 year: 2019 ident: 852_CR94 publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12808 – volume: 356 start-page: 706 year: 2017 ident: 852_CR1 publication-title: Science doi: 10.1126/science.aam9726 – volume: 182 start-page: 2059 year: 2000 ident: 852_CR20 publication-title: J. Bacteriol. doi: 10.1128/JB.182.8.2059-2067.2000 – volume: 85 start-page: 91 year: 2007 ident: 852_CR24 publication-title: Biogeochemistry doi: 10.1007/s10533-007-9104-4 – volume: 158 start-page: 688 year: 2019 ident: 852_CR69 publication-title: Energy Proc. doi: 10.1016/j.egypro.2019.01.185 – volume: 51 start-page: 187 year: 2021 ident: 852_CR85 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1721980 – ident: 852_CR19 – volume: 7 start-page: 371 year: 2017 ident: 852_CR45 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3276 – volume: 12 start-page: 240 year: 2019 ident: 852_CR46 publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12665 – volume: 114 start-page: 644 year: 2012 ident: 852_CR90 publication-title: Biores. Technol. doi: 10.1016/j.biortech.2012.03.022 – volume: 44 start-page: 255 year: 2019 ident: 852_CR58 publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-101718-033129 – volume: 55 start-page: 135 year: 2019 ident: 852_CR42 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-018-01338-3 – volume: 258 start-page: 120684 year: 2020 ident: 852_CR57 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120684 – volume: 10 start-page: 19479 year: 2020 ident: 852_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-020-76470-y – volume: 647 start-page: 210 year: 2019 ident: 852_CR27 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.402 – volume: 8 start-page: 371 year: 2016 ident: 852_CR50 publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12250 – volume: 1 start-page: 289 year: 2010 ident: 852_CR25 publication-title: Carbon Manage. doi: 10.4155/cmt.10.32 – volume: 363 start-page: 114179 year: 2020 ident: 852_CR37 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114179 – volume: 44 start-page: 1247 year: 2010 ident: 852_CR21 publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 46 start-page: 12726 year: 2012 ident: 852_CR11 publication-title: Environ. Sci. Technol. doi: 10.1021/es302302g – volume: 64 start-page: 76 year: 2013 ident: 852_CR13 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2013.09.006 – volume: 37 start-page: 95 year: 2020 ident: 852_CR56 publication-title: Soil Use Manage. doi: 10.1111/sum.12655 – volume: 259 start-page: 120998 year: 2020 ident: 852_CR6 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.120998 – volume: 14 start-page: 777 year: 2000 ident: 852_CR3 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/1999GB001208 – ident: 852_CR72 doi: 10.21513/0207-2564-2019-2-05-13 – volume: 101 start-page: 35 year: 2017 ident: 852_CR70 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.04.001 – volume: 2 start-page: e01202 year: 2016 ident: 852_CR35 publication-title: Ecosyst. Health Sustain. doi: 10.1002/ehs2.1202 – volume: 713 start-page: 136635 year: 2020 ident: 852_CR60 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136635 – volume: 28 start-page: 2324 year: 2017 ident: 852_CR62 publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2761 – volume: 776 start-page: 145953 year: 2021 ident: 852_CR8 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145953 – volume: 1 start-page: 23 year: 2019 ident: 852_CR2 publication-title: Biochar doi: 10.1007/s42773-019-00002-9 – volume: 7 year: 2016 ident: 852_CR79 publication-title: Nat. Commun. doi: 10.1038/ncomms13160 – volume: 532 start-page: 49 year: 2016 ident: 852_CR51 publication-title: Nature doi: 10.1038/nature17174 – volume: 7 start-page: 1161 year: 2015 ident: 852_CR68 publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12213 – volume: 73 start-page: 155 year: 2015 ident: 852_CR23 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.12.022 – volume: 181 start-page: 104 year: 2018 ident: 852_CR53 publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201600451 – volume: 8 start-page: 12295 year: 2020 ident: 852_CR82 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c04336 – volume: 11 year: 2020 ident: 852_CR63 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18887-7 – volume: 223 start-page: 113258 year: 2020 ident: 852_CR76 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113258 – volume: 20 start-page: 1202 year: 2018 ident: 852_CR36 publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C8EM00278A – ident: 852_CR91 – volume: 267 start-page: 109329 year: 2020 ident: 852_CR64 publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2020.109329 – volume: 67 start-page: 324 year: 2016 ident: 852_CR49 publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12338 – volume: 10 start-page: e0141560 year: 2015 ident: 852_CR93 publication-title: PLoS ONE doi: 10.1371/journal.pone.0141560 – ident: 852_CR26 doi: 10.4324/9780203762264 – volume: 6 start-page: 26 year: 2018 ident: 852_CR30 publication-title: Front. Earth Sci. doi: 10.3389/feart.2018.00026 – volume: 101 start-page: 251 year: 2016 ident: 852_CR34 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.07.021 – volume: 73 start-page: 145A year: 2018 ident: 852_CR97 publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.73.6.145A – volume: 49 start-page: 5195 year: 2015 ident: 852_CR28 publication-title: Environ. Sci. Technol. doi: 10.1021/es5060786 – volume: 17 start-page: 197 year: 2006 ident: 852_CR98 publication-title: Land Degrad. Dev. doi: 10.1002/ldr.696 – volume: 70 start-page: 244 year: 2014 ident: 852_CR43 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.026 – volume: 12 year: 2021 ident: 852_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24350-y – volume: 462 start-page: 228183 year: 2020 ident: 852_CR88 publication-title: J. Power Source doi: 10.1016/j.jpowsour.2020.228183 – volume: 152 start-page: 103531 year: 2020 ident: 852_CR33 publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2020.103531 – volume: 13 start-page: 044036 year: 2018 ident: 852_CR17 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabb0e – volume: 755 start-page: 142455 year: 2020 ident: 852_CR80 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142455 – volume: 718 start-page: 137390 year: 2020 ident: 852_CR96 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137390 – volume: 651 start-page: 2354 year: 2019 ident: 852_CR39 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.060 – ident: 852_CR74 – volume: 44 start-page: 827 year: 2010 ident: 852_CR7 publication-title: Environ. Sci. Technol. doi: 10.1021/es902266r – volume: 11 start-page: 115 year: 2020 ident: 852_CR66 publication-title: Rev. Environ. Econ. Policy doi: 10.1093/reep/rew018 |
SSID | ssj0060475 |
Score | 2.720652 |
SecondaryResourceType | review_article |
Snippet | Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO
2
) from the atmosphere. Here we... Climate change mitigation not only requires reductions of greenhouse gas emissions, but also withdrawal of carbon dioxide (CO2) from the atmosphere. Here we... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 883 |
SubjectTerms | 704/106/47/4113 704/47/4113 Agricultural land Alternative energy sources Biomass Carbon dioxide Carbon dioxide atmospheric concentrations Carbon dioxide emissions Carbon dioxide removal Carbon sequestration Charcoal Climate change Climate change mitigation Coal Crop yield Earth and Environmental Science Earth Sciences Earth System Sciences Economics Emissions Emissions control Energy Environmental management Fertilizers Geochemistry Geology Geophysics/Geodesy Greenhouse gases Mitigation Removal Renewable energy Renewable resources Resource management Review Article Sequestering Soil Soils Tradeoffs |
Title | Biochar in climate change mitigation |
URI | https://link.springer.com/article/10.1038/s41561-021-00852-8 https://www.proquest.com/docview/2607082571 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_RFdCpOp_RhbxrWph9Jn8TJ5hAcIg72VtImgYG2084H_3svbepQcND2JW0e7np3v7vL3QH0BYJukTFJYqUDEijfI7FUnLCMuxIROQqniUM-TqPJLHiYh3MbcCvtscpGJ1aKWhaZiZEPEHcz484w72b5TszUKJNdtSM0tqGNKpjzFrSHo-nTc6OLIzeoWu2ijaTE5XFgy2Zcnw9K47qgK03xRtyBeuG3aVrjzT8p0sryjA9g30JG57bm8SFsqbwDu01FcdmBnftqPO_XEfSHi8LUUTmL3MleF4hGlVOX9jpvi7qbRpEfw2w8ermbEDsHgWQoICsS-Z52hWBUC7xiGfoZlQhkzKRgIVQaUHxSFWquWRRoX8ciUhkNU6k8wVDCTqCVF7k6BYdJptEip6lC6KTTMPa5khGV3NWKpZp1wWtIkGS2SbiZVfGaVMlqnyc12RIkW1KRLeFduPr5Zlm3yNj4dq-hbGLFpUzWzO3CdUPt9fL_u51t3u0c9qhhcHX8pAet1cenukAQsUov7Z_yDdMuwG4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEYILYhVlzQFOYJE4i50DQuyFlgohkLgZJ7alSiUttAj1p_hGxlmoQIIbUpJLEh-en8dvbM8MwI5E0S1TpkisTUAC7XskVpoTlnJXoSLHwWnXIW_aUeMhuH4MHyfgo4qFsccqK5uYG2rVS-0a-QHqbmbdGeYd9V-IrRpld1erEhoFLZp69I4u2-Dw6gz7d5fSi_P70wYpqwqQFOk2JJHvGVdKRo3EK1ahn1KFssDW3ZVSJwHFJ9Wh4YZFgfFNLCOd0jBR2pMM-YrtTsJU4EcurcHUyXn79q6y_ZEb5Kl9cU6mxOVxUIbpuD4_GFhXCV13ijfqHLRD36fCsb79sSWbz3QX8zBXSlTnuODUAkzobBFmqgjmwSJMX-blgEdLsHPS6dm4LaeTOWm3g-pXO0UosfPcKbJ39LJlePgXhFaglvUyvQoOU8ygAkgSjVLNJGHsc60iqrhrNEsMq4NXQSDSMim5rY3RFfnmuM9FAZtA2EQOm-B12Pv6p1-k5Pjz640KWVEOz4EYk6kO-xXa49e_t7b2d2vbMNO4v2mJ1lW7uQ6z1HZ2fvRlA2rD1ze9iQJmmGyVrHHg6b-J-gnxsv7z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEcsFsYpCgRzgBFYTZ7FzQIgCZa8QAombcWJbqlRSoEWIX-PrGGehAgluSEkuSXx4fva8sT0zAFsSRbdMmSKxNgEJtO-RWGlOWMpdhYocB6ddh7zqRKd3wfl9eD8GH1UsjD1WWc2J-USt-qldI2-i7mbWnWFe05THIq6P2vtPz8RWkLI7rVU5jYIiF_r9Dd23wd7ZEfb1NqXt49vDU1JWGCApUm9IIt8zrpSMGolXrEI_pQolgq3BK6VOAopPqkPDDYsC45tYRjqlYaK0JxlyF9sdhwlmvaIaTLSOO9c3lR2I3CBP84v2mRKXx0EZsuP6vDmwbhO68RRv1Dw4J303iyOt-2N7Nrd67TmYLeWqc1Dwax7GdLYA01U082ABJk_y0sDvi7DV6vZtDJfTzZy010UlrJ0irNh57BaZPPrZEtz9C0LLUMv6mV4BhylmUA0kiUbZZpIw9rlWEVXcNZolhtXBqyAQaZmg3NbJ6Il8o9znooBNIGwih03wOux8_fNUpOf48-tGhawoh-pAjIhVh90K7dHr31tb_bu1TZhCgorLs87FGsxQ29f5KZgG1IYvr3odtcww2ShJ48DDf_P0E8bgAzc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+in+climate+change+mitigation&rft.jtitle=Nature+geoscience&rft.au=Lehmann%2C+Johannes&rft.au=Cowie%2C+Annette&rft.au=Masiello%2C+Caroline+A&rft.au=Kammann+Claudia&rft.date=2021-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1752-0894&rft.eissn=1752-0908&rft.volume=14&rft.issue=12&rft.spage=883&rft.epage=892&rft_id=info:doi/10.1038%2Fs41561-021-00852-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0894&client=summon |