TOuNN: Topology Optimization using Neural Networks

Neural networks, and more broadly, machine learning techniques, have been recently exploited to accelerate topology optimization through data-driven training and image processing. In this paper, we demonstrate that one can directly execute topology optimization (TO) using neural networks (NN). The p...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 63; no. 3; pp. 1135 - 1149
Main Authors Chandrasekhar, Aaditya, Suresh, Krishnan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-147X
1615-1488
DOI10.1007/s00158-020-02748-4

Cover

Loading…
Abstract Neural networks, and more broadly, machine learning techniques, have been recently exploited to accelerate topology optimization through data-driven training and image processing. In this paper, we demonstrate that one can directly execute topology optimization (TO) using neural networks (NN). The primary concept is to use the NN’s activation functions to represent the popular Solid Isotropic Material with Penalization (SIMP) density field. In other words, the density function is parameterized by the weights and bias associated with the NN, and spanned by NN’s activation functions; the density representation is thus independent of the finite element mesh. Then, by relying on the NN’s built-in backpropogation, and a conventional finite element solver, the density field is optimized. Methods to impose design and manufacturing constraints within the proposed framework are described and illustrated. A byproduct of representing the density field via activation functions is that it leads to a crisp and differentiable boundary. The proposed framework is simple to implement and is illustrated through 2D and 3D examples. Some of the unresolved challenges with the proposed framework are also summarized.
AbstractList Neural networks, and more broadly, machine learning techniques, have been recently exploited to accelerate topology optimization through data-driven training and image processing. In this paper, we demonstrate that one can directly execute topology optimization (TO) using neural networks (NN). The primary concept is to use the NN’s activation functions to represent the popular Solid Isotropic Material with Penalization (SIMP) density field. In other words, the density function is parameterized by the weights and bias associated with the NN, and spanned by NN’s activation functions; the density representation is thus independent of the finite element mesh. Then, by relying on the NN’s built-in backpropogation, and a conventional finite element solver, the density field is optimized. Methods to impose design and manufacturing constraints within the proposed framework are described and illustrated. A byproduct of representing the density field via activation functions is that it leads to a crisp and differentiable boundary. The proposed framework is simple to implement and is illustrated through 2D and 3D examples. Some of the unresolved challenges with the proposed framework are also summarized.
Neural networks, and more broadly, machine learning techniques, have been recently exploited to accelerate topology optimization through data-driven training and image processing. In this paper, we demonstrate that one can directly execute topology optimization (TO) using neural networks (NN). The primary concept is to use the NN’s activation functions to represent the popular Solid Isotropic Material with Penalization (SIMP) density field. In other words, the density function is parameterized by the weights and bias associated with the NN, and spanned by NN’s activation functions; the density representation is thus independent of the finite element mesh. Then, by relying on the NN’s built-in backpropogation, and a conventional finite element solver, the density field is optimized. Methods to impose design and manufacturing constraints within the proposed framework are described and illustrated. A byproduct of representing the density field via activation functions is that it leads to a crisp and differentiable boundary. The proposed framework is simple to implement and is illustrated through 2D and 3D examples. Some of the unresolved challenges with the proposed framework are also summarized.
Author Suresh, Krishnan
Chandrasekhar, Aaditya
Author_xml – sequence: 1
  givenname: Aaditya
  surname: Chandrasekhar
  fullname: Chandrasekhar, Aaditya
  organization: Department of Mechanical Engineering, University of Wisconsin-Madison
– sequence: 2
  givenname: Krishnan
  surname: Suresh
  fullname: Suresh, Krishnan
  email: ksuresh@wisc.edu
  organization: Department of Mechanical Engineering, University of Wisconsin-Madison
BookMark eNp9kEtPwzAQhC0EEm3hD3CKxDmwThw_uKGKl1S1lyJxs1zHqVzSONiJUPn1uA0CiUMPq9nDfLujGaPTxjUGoSsMNxiA3QYAXPAUMojDCE_JCRphiosUE85Pf3f2do7GIWwAgAMRI5QtF_18fpcsXetqt94li7azW_ulOuuapA-2WSdz03tVR-k-nX8PF-isUnUwlz86Qa-PD8vpczpbPL1M72epzrHoUpoZbAQVQECxsiq4YrQkmnFGMlHhQq8MEUSsCBWYaFJyBcoAIyovKdWM5hN0PdxtvfvoTejkxvW-iS9lVkD8wXK8d_HBpb0LwZtKatsd0nde2VpikPuG5NCQjA3JQ0OSRDT7h7bebpXfHYfyAQrR3KyN_0t1hPoGU3x48w
CitedBy_id crossref_primary_10_1016_j_matdes_2022_110885
crossref_primary_10_1016_j_cma_2021_114197
crossref_primary_10_1007_s00158_022_03170_8
crossref_primary_10_1007_s10845_024_02490_4
crossref_primary_10_32604_cmes_2023_027603
crossref_primary_10_1016_j_energy_2022_124053
crossref_primary_10_1364_AO_470494
crossref_primary_10_1109_TITS_2023_3271313
crossref_primary_10_1016_j_finel_2022_103893
crossref_primary_10_1007_s00158_022_03347_1
crossref_primary_10_1142_S0219876221420135
crossref_primary_10_1155_2021_5058791
crossref_primary_10_1016_j_compbiomed_2022_106475
crossref_primary_10_1002_adts_202400589
crossref_primary_10_1177_09544062251324422
crossref_primary_10_1007_s00366_022_01760_0
crossref_primary_10_1007_s00158_024_03835_6
crossref_primary_10_1016_j_cma_2024_117698
crossref_primary_10_1007_s00158_022_03433_4
crossref_primary_10_1007_s00158_023_03686_7
crossref_primary_10_1093_pnasnexus_pgae186
crossref_primary_10_1007_s00158_021_03050_7
crossref_primary_10_1007_s10845_025_02568_7
crossref_primary_10_1016_j_ast_2023_108836
crossref_primary_10_1115_1_4062663
crossref_primary_10_1016_j_engappai_2024_109991
crossref_primary_10_1016_j_aei_2024_102763
crossref_primary_10_1016_j_compstruc_2023_107232
crossref_primary_10_1007_s00158_024_03888_7
crossref_primary_10_1007_s00366_024_02077_w
crossref_primary_10_1007_s00366_022_01636_3
crossref_primary_10_1109_ACCESS_2021_3125014
crossref_primary_10_1007_s00466_023_02358_z
crossref_primary_10_1016_j_engappai_2024_107916
crossref_primary_10_1016_j_probengmech_2022_103356
crossref_primary_10_1016_j_cma_2023_116278
crossref_primary_10_1016_j_ast_2023_108405
crossref_primary_10_3390_a15070241
crossref_primary_10_1007_s00366_023_01904_w
crossref_primary_10_1080_15376494_2023_2253018
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_3390_app11052400
crossref_primary_10_1016_j_jcp_2024_113506
crossref_primary_10_1007_s11433_024_2576_7
crossref_primary_10_3390_a16080380
crossref_primary_10_1007_s13160_023_00563_0
crossref_primary_10_1016_j_cma_2023_116704
crossref_primary_10_1115_1_4055377
crossref_primary_10_1016_j_aei_2024_102869
crossref_primary_10_1002_aisy_202200333
crossref_primary_10_1007_s11081_023_09806_y
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1007_s00707_022_03449_3
crossref_primary_10_1007_s00366_023_01827_6
crossref_primary_10_1115_1_4062969
crossref_primary_10_1007_s00366_023_01846_3
crossref_primary_10_1016_j_cad_2023_103639
crossref_primary_10_1007_s00466_024_02565_2
crossref_primary_10_1016_j_cad_2023_103665
crossref_primary_10_1007_s10999_023_09676_3
crossref_primary_10_1007_s00521_024_10132_2
crossref_primary_10_1016_j_cad_2024_103707
crossref_primary_10_1007_s12008_024_01905_z
crossref_primary_10_1007_s00158_024_03908_6
crossref_primary_10_1080_0305215X_2024_2340062
crossref_primary_10_1109_TCI_2023_3347916
crossref_primary_10_1016_j_cma_2023_116052
crossref_primary_10_1038_s41598_024_57137_4
crossref_primary_10_1007_s00158_024_03818_7
crossref_primary_10_3389_fenrg_2023_1294531
crossref_primary_10_2139_ssrn_4010395
crossref_primary_10_1080_0305215X_2021_1902998
crossref_primary_10_1016_j_engstruct_2024_119194
crossref_primary_10_1038_s41598_022_26312_w
crossref_primary_10_1093_jcde_qwad072
crossref_primary_10_3390_math12152350
crossref_primary_10_1007_s00158_024_03851_6
crossref_primary_10_1002_nme_7428
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_euromechsol_2022_104869
crossref_primary_10_1007_s00366_022_01736_0
crossref_primary_10_1115_1_4055505
crossref_primary_10_1098_rsta_2022_0405
crossref_primary_10_1016_j_engappai_2023_107033
crossref_primary_10_1016_j_tws_2024_112595
crossref_primary_10_1016_j_matdes_2022_110672
crossref_primary_10_1017_S0890060423000100
crossref_primary_10_3390_app11199041
crossref_primary_10_1002_advs_202405835
crossref_primary_10_1115_1_4062352
crossref_primary_10_1007_s10409_024_24207_x
crossref_primary_10_1115_1_4064131
crossref_primary_10_1115_1_4067528
crossref_primary_10_1016_j_cma_2024_117004
crossref_primary_10_3390_buildings14123825
crossref_primary_10_1007_s00158_022_03461_0
crossref_primary_10_1111_mice_12933
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1155_2021_7171816
crossref_primary_10_1016_j_finel_2022_103904
crossref_primary_10_1016_j_procir_2023_02_143
crossref_primary_10_1080_01430750_2023_2284263
crossref_primary_10_1016_j_neunet_2024_106957
crossref_primary_10_1007_s00158_024_03877_w
crossref_primary_10_1016_j_cma_2023_116108
crossref_primary_10_1080_0951192X_2025_2478007
crossref_primary_10_1002_nme_7221
crossref_primary_10_3390_app15052753
crossref_primary_10_1007_s00158_022_03181_5
crossref_primary_10_1007_s00158_024_03856_1
crossref_primary_10_1016_j_cma_2023_116401
crossref_primary_10_1016_j_engstruct_2023_117103
crossref_primary_10_1016_j_matdes_2024_113086
crossref_primary_10_1007_s00366_024_02010_1
crossref_primary_10_1007_s41060_024_00688_6
crossref_primary_10_32604_cmes_2024_048118
crossref_primary_10_1016_j_advengsoft_2024_103717
crossref_primary_10_1016_j_advengsoft_2022_103359
crossref_primary_10_1016_j_compstruc_2023_107218
crossref_primary_10_1080_0305215X_2021_1974015
Cites_doi 10.1002/nme.5432
10.1007/s00158-013-0978-6
10.1115/1.4041319
10.1016/j.advengsoft.2016.07.002
10.1038/323533a0
10.1007/BF02551274
10.1016/0045-7949(93)90035-C
10.1115/1.2901581
10.1115/1.4028591
10.1016/S0045-7825(02)00559-5
10.1007/BF01214002
10.1007/s00158-019-02346-z
10.1007/s00158-014-1107-x
10.1007/s00158-014-1188-6
10.1007/s00158-010-0594-7
10.1515/rnam-2019-0018
10.1115/1.4031088
10.1007/s00158-009-0443-8
10.1007/s00158-018-2101-5
10.1016/j.addma.2017.11.007
10.4324/9780203451519
10.1007/s00158-015-1277-1
10.1007/978-3-662-05086-6_2
10.1007/978-3-662-03115-5
10.1115/1.4029110
10.1016/j.icheatmasstransfer.2018.07.001
10.1007/s001580050176
10.1002/nme.1620240207
10.1007/s00158-012-0807-3
10.1080/21681163.2015.1030775
10.1007/BF01743693
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-020-02748-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 1149
ExternalDocumentID 10_1007_s00158_020_02748_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-62e1e969040a7df58a76d4c787429f15cbe4949b46914c4d8a0ae074a3d66c763
IEDL.DBID U2A
ISSN 1615-147X
IngestDate Fri Jul 25 11:16:12 EDT 2025
Tue Jul 01 01:31:45 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Fri Feb 21 02:49:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Topology optimization
Neural networks
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-62e1e969040a7df58a76d4c787429f15cbe4949b46914c4d8a0ae074a3d66c763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2503197316
PQPubID 2043658
PageCount 15
ParticipantIDs proquest_journals_2503197316
crossref_citationtrail_10_1007_s00158_020_02748_4
crossref_primary_10_1007_s00158_020_02748_4
springer_journals_10_1007_s00158_020_02748_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AndreassenEEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscipl Optim201143111610.1007/s00158-010-0594-7
Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp 249–256
Paszke A, et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8026–8037
Bendsøe MP, Sigmund O (1995) Optimization of structural topology, shape, and material, volume 414 Springer
GroenJPHigher-order multi-resolution topology optimization using the finite cell methodInt J Numer Methods Eng201711010903920367045410.1002/nme.5432
Lei X, et al (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework, journal of applied mechanics, 86, 1
UluEA data-driven investigation and estimation of optimal topologies under variable loading configurationsComput Methods Biomech Biomed Eng Imaging Vis2016426172349872910.1080/21681163.2015.1030775
VatanabeSLTopology optimization with manufacturing constraints: a unified projection-based approachAdv Eng Softw20161009711210.1016/j.advengsoft.2016.07.002
Goodfellow I, et al (2016) Deep learning MIT Press
Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, Springer Berlin Heidelberg 2 edition
SigmundOA 99 line topology optimization code written in matlabStruct Multidiscipl Optim200121212012710.1007/s001580050176
SvanbergKThe method of moving asymptotes—a new method for structural optimizationInt J Numer Methods Eng198724235937387530710.1002/nme.1620240207
MirzendehdelAMSureshKA deflated assembly free approach to large-scale implicit structural dynamicsJ Comput Nonlinear Dyn201510606101510.1115/1.4029110
NguyenTHA computational paradigm for multiresolution topology optimization (MTOP)Struct Multidiscipl Optim2010414525539260147110.1007/s00158-009-0443-8
Pascanu R, et al (2012) Understanding the exploding gradient problem. arXiv:1211.5063
Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Dec
CybenkoGApproximation by superpositions of a sigmoidal functionMath Control Signals, Syst198924303314101567010.1007/BF02551274
BaydinAGAutomatic differentiation in machine learning: a surveyJ Mach Learn Res2017181559556373800512
Kingma DP , Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR
YuYDeep learning for determining a near-optimal topological design without any iterationStruct Multidiscipl Optim201959378779910.1007/s00158-018-2101-5
Smith LN (2018) A disciplined approach to neural network hyper-parameters: part 1–learning rate, batch size, momentum, and weight decay. arXiv:1803.09820
SosnovikIOseledetsINeural networks for topology optimizationRuss J Numer Anal Math Model2019344215223398503310.1515/rnam-2019-0018
Nocedal J, Wright S (2006) Numerical optimization Springer Science & Business Media
Rojas-LabandaSStolpeMAutomatic penalty continuation in structural topology optimizationStruct Multidiscipl Optim201552612051221343332910.1007/s00158-015-1277-1
YadavPSureshKLarge scale finite element analysis via assembly-free deflated conjugate gradientJ Comput Inf Sci Eng201414404100810.1115/1.4028591
SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Optim1998161687510.1007/BF01214002
Abadi M, et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467
DíazASigmundOCheckerboard patterns in layout optimizationStruct Optim1995101404510.1007/BF01743693
BendsoeMPAn analytical model to predict optimal material properties in the context of optimal structural designJ Appl Mech2008614930132748310.1115/1.2901581
ChandrasekharABuild optimization of fiber-reinforced additively manufactured componentsStruct Multidiscipl Optim2020611779010.1007/s00158-019-02346-z
Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. preprint arXiv:1502.03167
SontagEDVc dimension of neural networksNATO ASI Ser F Comput S Sci199816869960928.68091
DengSSureshKMulti-constrained topology optimization via the topological sensitivityStruct Multidiscipl Optim20155159871001335385610.1007/s00158-014-1188-6
MirzendehdelAMSureshKA pareto-optimal approach to multimaterial topology optimizationJ Mech Des20151371010170110.1115/1.4031088
Márquez-Neila P, et al (2017) Imposing hard constraints on deep networks: promises and limitations. arXiv:1706.02025
Arora R, et al (2016) Understanding deep neural networks with rectified linear units. arXiv:1611.01491
Mirzendehdel AM, et al (2018) Strength-based topology optimization for anisotropic parts, vol 19
Bishop CM (2006) Pattern recognition and machine learning Springer
XieYMStevenGPA simple evolutionary procedure for structural optimizationComput Struct199349588589610.1016/0045-7949(93)90035-C
LiuKTovarAAn efficient 3D topology optimization code written in MatlabStruct Multidiscipl Optim201450611751196331242510.1007/s00158-014-1107-x
WangMYA level set method for structural topology optimizationComput Methods in Appl Mech Eng20031921-2227246195140810.1016/S0045-7825(02)00559-5
Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv:1609.04747
Hoyer S, et al (2019) Neural reparameterization improves structural optimization. arXiv:1909.04240
Banga S, et al (2018) 3D topology optimization using convolutional neural networks. arXiv:1808.07440
Gurney K (1997) An introduction to neural networks CRC press
RumelhartDELearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0
Lu L, et al (2019) Dying relu and initialization:, Theory and numerical examples. arXiv:1903.06733
Zhang Y, et al (2019) A deep convolutional neural network for topology optimization with strong generalization ability. arXiv:1901.07761
SureshKEfficient generation of large-scale pareto-optimal topologiesStruct Multidiscipl Optim20134714961303892710.1007/s00158-012-0807-3
Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications Springer Science & Business Media
Kervadec H, et al (2019) Constrained deep networks: Lagrangian optimization via log-barrier extensions. arXiv:1904.04205
Nie Z, et al (2020) Topology GAN: topology optimization using generative adversarial networks based on physical fields over the initial domain. arXiv:2003.04685
Lin Q, et al (2018) Investigation into the topology optimization for conductive heat transfer based on deep learning approach, vol 97
2748_CR3
2748_CR4
2748_CR1
E Ulu (2748_CR47) 2016; 4
2748_CR25
2748_CR26
2748_CR27
2748_CR21
2748_CR22
2748_CR23
2748_CR20
K Suresh (2748_CR45) 2013; 47
K Svanberg (2748_CR46) 1987; 24
2748_CR7
2748_CR8
2748_CR6
2748_CR18
2748_CR19
Y Yu (2748_CR52) 2019; 59
MY Wang (2748_CR49) 2003; 192
2748_CR15
2748_CR16
2748_CR10
YM Xie (2748_CR50) 1993; 49
2748_CR53
O Sigmund (2748_CR39) 2001; 21
MP Bendsoe (2748_CR9) 2008; 61
S Deng (2748_CR13) 2015; 51
K Liu (2748_CR24) 2014; 50
AG Baydin (2748_CR5) 2017; 18
A Chandrasekhar (2748_CR11) 2020; 61
DE Rumelhart (2748_CR38) 1986; 323
P Yadav (2748_CR51) 2014; 14
AM Mirzendehdel (2748_CR28) 2015; 137
S Rojas-Labanda (2748_CR36) 2015; 52
2748_CR41
2748_CR42
G Cybenko (2748_CR12) 1989; 2
TH Nguyen (2748_CR32) 2010; 41
ED Sontag (2748_CR43) 1998; 168
E Andreassen (2748_CR2) 2011; 43
2748_CR37
I Sosnovik (2748_CR44) 2019; 34
A Díaz (2748_CR14) 1995; 10
2748_CR33
2748_CR34
O Sigmund (2748_CR40) 1998; 16
2748_CR35
2748_CR30
SL Vatanabe (2748_CR48) 2016; 100
2748_CR31
JP Groen (2748_CR17) 2017; 110
AM Mirzendehdel (2748_CR29) 2015; 10
References_xml – reference: Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp 249–256
– reference: SureshKEfficient generation of large-scale pareto-optimal topologiesStruct Multidiscipl Optim20134714961303892710.1007/s00158-012-0807-3
– reference: Márquez-Neila P, et al (2017) Imposing hard constraints on deep networks: promises and limitations. arXiv:1706.02025
– reference: MirzendehdelAMSureshKA pareto-optimal approach to multimaterial topology optimizationJ Mech Des20151371010170110.1115/1.4031088
– reference: Gurney K (1997) An introduction to neural networks CRC press
– reference: SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Optim1998161687510.1007/BF01214002
– reference: Rojas-LabandaSStolpeMAutomatic penalty continuation in structural topology optimizationStruct Multidiscipl Optim201552612051221343332910.1007/s00158-015-1277-1
– reference: VatanabeSLTopology optimization with manufacturing constraints: a unified projection-based approachAdv Eng Softw20161009711210.1016/j.advengsoft.2016.07.002
– reference: Arora R, et al (2016) Understanding deep neural networks with rectified linear units. arXiv:1611.01491
– reference: Abadi M, et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467
– reference: Goodfellow I, et al (2016) Deep learning MIT Press
– reference: WangMYA level set method for structural topology optimizationComput Methods in Appl Mech Eng20031921-2227246195140810.1016/S0045-7825(02)00559-5
– reference: SvanbergKThe method of moving asymptotes—a new method for structural optimizationInt J Numer Methods Eng198724235937387530710.1002/nme.1620240207
– reference: Banga S, et al (2018) 3D topology optimization using convolutional neural networks. arXiv:1808.07440
– reference: Lin Q, et al (2018) Investigation into the topology optimization for conductive heat transfer based on deep learning approach, vol 97
– reference: Paszke A, et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8026–8037
– reference: Bishop CM (2006) Pattern recognition and machine learning Springer
– reference: DíazASigmundOCheckerboard patterns in layout optimizationStruct Optim1995101404510.1007/BF01743693
– reference: Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, Springer Berlin Heidelberg 2 edition
– reference: LiuKTovarAAn efficient 3D topology optimization code written in MatlabStruct Multidiscipl Optim201450611751196331242510.1007/s00158-014-1107-x
– reference: Bendsøe MP, Sigmund O (1995) Optimization of structural topology, shape, and material, volume 414 Springer
– reference: Nocedal J, Wright S (2006) Numerical optimization Springer Science & Business Media
– reference: YadavPSureshKLarge scale finite element analysis via assembly-free deflated conjugate gradientJ Comput Inf Sci Eng201414404100810.1115/1.4028591
– reference: AndreassenEEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscipl Optim201143111610.1007/s00158-010-0594-7
– reference: Pascanu R, et al (2012) Understanding the exploding gradient problem. arXiv:1211.5063
– reference: XieYMStevenGPA simple evolutionary procedure for structural optimizationComput Struct199349588589610.1016/0045-7949(93)90035-C
– reference: SosnovikIOseledetsINeural networks for topology optimizationRuss J Numer Anal Math Model2019344215223398503310.1515/rnam-2019-0018
– reference: Mirzendehdel AM, et al (2018) Strength-based topology optimization for anisotropic parts, vol 19
– reference: YuYDeep learning for determining a near-optimal topological design without any iterationStruct Multidiscipl Optim201959378779910.1007/s00158-018-2101-5
– reference: Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. preprint arXiv:1502.03167
– reference: SigmundOA 99 line topology optimization code written in matlabStruct Multidiscipl Optim200121212012710.1007/s001580050176
– reference: Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications Springer Science & Business Media
– reference: Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv:1609.04747
– reference: BendsoeMPAn analytical model to predict optimal material properties in the context of optimal structural designJ Appl Mech2008614930132748310.1115/1.2901581
– reference: Zhang Y, et al (2019) A deep convolutional neural network for topology optimization with strong generalization ability. arXiv:1901.07761
– reference: Kingma DP , Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR
– reference: CybenkoGApproximation by superpositions of a sigmoidal functionMath Control Signals, Syst198924303314101567010.1007/BF02551274
– reference: NguyenTHA computational paradigm for multiresolution topology optimization (MTOP)Struct Multidiscipl Optim2010414525539260147110.1007/s00158-009-0443-8
– reference: SontagEDVc dimension of neural networksNATO ASI Ser F Comput S Sci199816869960928.68091
– reference: MirzendehdelAMSureshKA deflated assembly free approach to large-scale implicit structural dynamicsJ Comput Nonlinear Dyn201510606101510.1115/1.4029110
– reference: Hoyer S, et al (2019) Neural reparameterization improves structural optimization. arXiv:1909.04240
– reference: GroenJPHigher-order multi-resolution topology optimization using the finite cell methodInt J Numer Methods Eng201711010903920367045410.1002/nme.5432
– reference: Nie Z, et al (2020) Topology GAN: topology optimization using generative adversarial networks based on physical fields over the initial domain. arXiv:2003.04685
– reference: Lu L, et al (2019) Dying relu and initialization:, Theory and numerical examples. arXiv:1903.06733
– reference: Smith LN (2018) A disciplined approach to neural network hyper-parameters: part 1–learning rate, batch size, momentum, and weight decay. arXiv:1803.09820
– reference: RumelhartDELearning representations by back-propagating errorsNature1986323608853353610.1038/323533a0
– reference: BaydinAGAutomatic differentiation in machine learning: a surveyJ Mach Learn Res2017181559556373800512
– reference: ChandrasekharABuild optimization of fiber-reinforced additively manufactured componentsStruct Multidiscipl Optim2020611779010.1007/s00158-019-02346-z
– reference: Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Dec
– reference: Lei X, et al (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework, journal of applied mechanics, 86, 1
– reference: UluEA data-driven investigation and estimation of optimal topologies under variable loading configurationsComput Methods Biomech Biomed Eng Imaging Vis2016426172349872910.1080/21681163.2015.1030775
– reference: Kervadec H, et al (2019) Constrained deep networks: Lagrangian optimization via log-barrier extensions. arXiv:1904.04205
– reference: DengSSureshKMulti-constrained topology optimization via the topological sensitivityStruct Multidiscipl Optim20155159871001335385610.1007/s00158-014-1188-6
– ident: 2748_CR1
– volume: 110
  start-page: 903
  issue: 10
  year: 2017
  ident: 2748_CR17
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5432
– ident: 2748_CR41
  doi: 10.1007/s00158-013-0978-6
– ident: 2748_CR23
  doi: 10.1115/1.4041319
– ident: 2748_CR4
– ident: 2748_CR8
– ident: 2748_CR42
– ident: 2748_CR27
– volume: 100
  start-page: 97
  year: 2016
  ident: 2748_CR48
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.07.002
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 2748_CR38
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 2748_CR22
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 2748_CR12
  publication-title: Math Control Signals, Syst
  doi: 10.1007/BF02551274
– volume: 49
  start-page: 885
  issue: 5
  year: 1993
  ident: 2748_CR50
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(93)90035-C
– volume: 61
  start-page: 930
  issue: 4
  year: 2008
  ident: 2748_CR9
  publication-title: J Appl Mech
  doi: 10.1115/1.2901581
– volume: 14
  start-page: 041008
  issue: 4
  year: 2014
  ident: 2748_CR51
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4028591
– volume: 192
  start-page: 227
  issue: 1-2
  year: 2003
  ident: 2748_CR49
  publication-title: Comput Methods in Appl Mech Eng
  doi: 10.1016/S0045-7825(02)00559-5
– ident: 2748_CR16
– ident: 2748_CR53
– ident: 2748_CR37
– ident: 2748_CR33
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  ident: 2748_CR40
  publication-title: Struct Optim
  doi: 10.1007/BF01214002
– volume: 61
  start-page: 77
  issue: 1
  year: 2020
  ident: 2748_CR11
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-019-02346-z
– volume: 50
  start-page: 1175
  issue: 6
  year: 2014
  ident: 2748_CR24
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-014-1107-x
– volume: 51
  start-page: 987
  issue: 5
  year: 2015
  ident: 2748_CR13
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-014-1188-6
– ident: 2748_CR26
– ident: 2748_CR3
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: 2748_CR2
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-010-0594-7
– volume: 34
  start-page: 215
  issue: 4
  year: 2019
  ident: 2748_CR44
  publication-title: Russ J Numer Anal Math Model
  doi: 10.1515/rnam-2019-0018
– ident: 2748_CR19
– ident: 2748_CR21
– ident: 2748_CR15
– ident: 2748_CR34
– volume: 137
  start-page: 101701
  issue: 10
  year: 2015
  ident: 2748_CR28
  publication-title: J Mech Des
  doi: 10.1115/1.4031088
– volume: 41
  start-page: 525
  issue: 4
  year: 2010
  ident: 2748_CR32
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-009-0443-8
– volume: 59
  start-page: 787
  issue: 3
  year: 2019
  ident: 2748_CR52
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-018-2101-5
– ident: 2748_CR30
  doi: 10.1016/j.addma.2017.11.007
– ident: 2748_CR18
  doi: 10.4324/9780203451519
– ident: 2748_CR20
– volume: 52
  start-page: 1205
  issue: 6
  year: 2015
  ident: 2748_CR36
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-015-1277-1
– ident: 2748_CR7
  doi: 10.1007/978-3-662-05086-6_2
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  ident: 2748_CR5
  publication-title: J Mach Learn Res
– volume: 168
  start-page: 69
  year: 1998
  ident: 2748_CR43
  publication-title: NATO ASI Ser F Comput S Sci
– ident: 2748_CR35
– ident: 2748_CR6
  doi: 10.1007/978-3-662-03115-5
– volume: 10
  start-page: 061015
  issue: 6
  year: 2015
  ident: 2748_CR29
  publication-title: J Comput Nonlinear Dyn
  doi: 10.1115/1.4029110
– ident: 2748_CR31
– ident: 2748_CR25
  doi: 10.1016/j.icheatmasstransfer.2018.07.001
– ident: 2748_CR10
– volume: 21
  start-page: 120
  issue: 2
  year: 2001
  ident: 2748_CR39
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s001580050176
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 2748_CR46
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620240207
– volume: 47
  start-page: 49
  issue: 1
  year: 2013
  ident: 2748_CR45
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-012-0807-3
– volume: 4
  start-page: 61
  issue: 2
  year: 2016
  ident: 2748_CR47
  publication-title: Comput Methods Biomech Biomed Eng Imaging Vis
  doi: 10.1080/21681163.2015.1030775
– volume: 10
  start-page: 40
  issue: 1
  year: 1995
  ident: 2748_CR14
  publication-title: Struct Optim
  doi: 10.1007/BF01743693
SSID ssj0008049
Score 2.6403666
Snippet Neural networks, and more broadly, machine learning techniques, have been recently exploited to accelerate topology optimization through data-driven training...
Neural networks, and more broadly, machine learning techniques, have been recently exploited to accelerate topology optimization through data-driven training...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1135
SubjectTerms Computational Mathematics and Numerical Analysis
Density
Design optimization
Engineering
Engineering Design
Image processing
Isotropic material
Machine learning
Neural networks
Optimization
Research Paper
Theoretical and Applied Mechanics
Topology optimization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIpCQRnYwCIOtpOwIEBUFRIpQq3ULfIrLNAW2g78e86J0wISnZ2c5M_23Xf2PQDOuOJFyKOCMGMUYVIWRIrIkFQVQoSpEZK5fOenTHQH7HHIh_7CberDKmudWCpqM9bujvwSTTXuFtdn6WbyQVzXKPe66ltorEMTVXCCzlfz7iF7flno4qQiwI7WEMrioU-bKZPnHF1IiHOfnGuWEPbbNC355p8n0tLydLZhy1PG4LZa4x1Ys6Nd2PxRSHAPon5vnmXXQb9qefAV9FATvPsUy8DFtr8GrgwHismquO_pPgw6D_37LvHdEIjGic-IiCy1KTqzLJSxKXgiY2GYxgOHJqWgXCvrKs0o9Hcp08wkMpQWCYK8MkJoVCMH0BiNR_YQAl5Emmpq4pQqHLepsjLRVEZcIyPTpgW0BiLXvlS461jxli-KHJfg5QheXoKXsxacL_6ZVIUyVn7drvHN_aGZ5sslbsFFjfly-H9pR6ulHcNG5CJRysixNjRmn3N7glRipk79fvkGYZ7DLQ
  priority: 102
  providerName: ProQuest
Title TOuNN: Topology Optimization using Neural Networks
URI https://link.springer.com/article/10.1007/s00158-020-02748-4
https://www.proquest.com/docview/2503197316
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoEB8RSFUmVgA0txsJ2ErUVNEYgUoVYqU-TYDgsURNuBf885rwICJCYPdizl7Lv7Tr77DuCEpzxzuZcRpnVKmJQZkcLTJEwzIdxQC8lsvfNtLK4m7HrKp2VR2LzKdq-eJHNLXRe7WfceEBvu2FAqIKwBLW5jd7zFE69X29-gAL0WyhDK_GlZKvPzHl_d0QpjfnsWzb1NtAWbJUx0esW5bsOame3AxifywF3wxqNlHF8446LNwbszQu1_LssqHZvP_uhY6g3cJi5yved7MIkG48srUnZAIApVY0GEZ6gJMYBlrvR1xgPpC80UKhm6kYxylRrLLpNijEuZYjqQrjQICuS5FkKh6diH5uxlZg7A4ZmnqKLaD2mK8yZMjQwUlR5XiMKUbgOtBJGokh7cdql4Smpi41x4CQovyYWXsDac1t-8FuQYf67uVPJNSkWZJ4jA8E9t-6w2nFUyX03_vtvh_5Yfwbpns1Hy7LEONBdvS3OMcGKRdqERRMMutHpRvx_bcfhwM8CxP4jv7rv53foA5LTERA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH6CMgAD4hTlzAATWNSu4yRICCGgFFrCEqRuwbEdFmgLbYX4U_xGnnO0gAQbs5M3fPneFb8DYM9N3LTmspRwrRPCpUyJFEyTIEmFqAVaSG77nW9D0bznNx23MwUfZS-MLassbWJmqHVP2X_kR-iqkS12z9Jp_4XYrVH2drVcoZHTomXe3zBlG5xcX-D33WescRmdN0mxVYAoFDAkghlqAkwKeU16OnV96QnNFRIXTXNKXZUYO7ElwbyRcsW1L2vSoKOVdS2EQnVEudMww-v1wGqU37gaW34_D7dtEEUo9zpFk07WqmeDE5_YZM0mgj7h3x3hJLr9cSGb-bnGIiwUAapzljNqCaZMdxnmv4wtXAEW3Y3C8NiJ8gUL784d2p3noqHTsZX0j44d-oFiwrzKfLAK9_-C0hpUur2uWQfHTZmiimovoAmemyAx0ldUMldh_Kd0FWgJRKyKweR2P8ZTPB6pnIEXI3hxBl7Mq3Awfqefj-X48-mtEt-4UNFBPCFUFQ5LzCfHv0vb-FvaLsw2o9t23L4OW5swx2wNTFaztgWV4evIbGMQM0x2MuY48PDfVP0EXN79iQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCmRgA6u1sZ2ErQKq8koZWqmb5ScLhIqmA_8eO68WBEjMdiz5Yt99J9_3HQCnVFLbodhCorWERAgLBcMaxtIy1ok1E8TznR8T1h-RuzEdL7D482r36kmy4DR4laY0a0-0bdfENx_qI-hTH59WRZAsgxXnjpE_1yPcrX1xVABgD2sgIuG4pM38vMbX0DTHm9-eSPPI09sEGyVkDLrFP94CSybdBusLQoI7AA8HsyS5DIZFy4OPYOA8wWtJsQx8bftz4GU43DJJUfc93QWj3s3wqg_LbghQuX1lkGGDTOySWdIRobY0EiHTRLkL50KKRVRJ45VmpMt3EVFER6IjjAMI4kIzppwb2QON9C01-yCgFiukkA5jJN24iaURkUICU-UQmdJNgCpDcFVKhfuOFS-8FjnOjced8XhuPE6a4Kz-ZlIIZfw5u1XZl5eXZsodGnM79a20muC8svl8-PfVDv43_QSsPl33-MNtcn8I1rAvUsmLylqgkb3PzJFDGZk8zg_SJwg0xeM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TOuNN%3A+Topology+Optimization+using+Neural+Networks&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Chandrasekhar%2C+Aaditya&rft.au=Suresh%2C+Krishnan&rft.date=2021-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=63&rft.issue=3&rft.spage=1135&rft.epage=1149&rft_id=info:doi/10.1007%2Fs00158-020-02748-4&rft.externalDocID=10_1007_s00158_020_02748_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon