Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging

Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 27; no. 5; pp. 2160 - 2175
Main Authors Gao, Bin, Li, Xiaoqing, Woo, Wai Lok, Tian, Gui yun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
AbstractList Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
Author Bin Gao
Xiaoqing Li
Wai Lok Woo
Gui Yun Tian
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0003-3377-6895
  surname: Gao
  fullname: Gao, Bin
– sequence: 2
  givenname: Xiaoqing
  surname: Li
  fullname: Li, Xiaoqing
– sequence: 3
  givenname: Wai Lok
  surname: Woo
  fullname: Woo, Wai Lok
– sequence: 4
  givenname: Gui yun
  surname: Tian
  fullname: Tian, Gui yun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29432098$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vGyEUxFGVqvlo75UqVRx7WRfYXViOadSkliLFUpwzYtnHmmoXXMCVfO1fHhw7PfTQE0jvN8Nj5hKd-eABoY-ULCgl8ut6uVowQsWCia7mTLxBF1Q2tCKkYWflTlpRCdrIc3SZ0k9CaNNS_g6dM9nUjMjuAv1ZbfbJmVR90wkGvJz1CPgRxhl81tkFj5-S8yO-dTFl_BAHiPjxMEnZGT3hVQxbiNlBwtoP-A48lAG-nsYQXd7M2IaIl37Ymex-A15vIM5hjHq72b88Vrzfo7dWTwk-nM4r9HT7fX3zo7p_uFveXN9XpqYyV5xYANrbjhDbM0l5TToYJLG8bkT5pNBcHEKRTWutNrptWd-2hHZGs17qpr5CX46-2xh-7SBlNbtkYJq0h7BLipV8JO14Kwr6-YTu-hkGtY1u1nGvXnMrAD8CJoaUIlhl3DGvHLWbFCXqsIsqBalDQepUUBGSf4Sv3v-RfDpKHAD8xTtGRNvx-hloTJvv
CODEN IIPRE4
CitedBy_id crossref_primary_10_1108_AA_12_2018_0264
crossref_primary_10_1109_TII_2018_2866413
crossref_primary_10_3390_electronics10243116
crossref_primary_10_1007_s11042_019_08133_8
crossref_primary_10_1109_TCYB_2019_2940276
crossref_primary_10_3390_app12126006
crossref_primary_10_1007_s00779_020_01419_x
crossref_primary_10_1007_s11042_022_14041_1
crossref_primary_10_1109_TII_2023_3298469
crossref_primary_10_1109_TII_2018_2870670
crossref_primary_10_1364_AO_57_000D74
crossref_primary_10_1007_s13369_018_3400_2
crossref_primary_10_1080_17686733_2023_2225246
crossref_primary_10_1109_TIM_2021_3096277
crossref_primary_10_1155_2019_9278725
crossref_primary_10_1109_TIP_2021_3052359
crossref_primary_10_1016_j_ndteint_2019_102164
crossref_primary_10_1109_TSMC_2019_2963072
crossref_primary_10_3390_machines9030066
crossref_primary_10_1109_MIM_2022_9756437
crossref_primary_10_1016_j_sna_2021_112566
crossref_primary_10_1080_24725854_2022_2125602
crossref_primary_10_1109_TII_2020_2994227
crossref_primary_10_1109_TII_2021_3101492
crossref_primary_10_1109_TII_2023_3282312
crossref_primary_10_1016_j_ndteint_2020_102361
crossref_primary_10_1109_TIP_2023_3258739
crossref_primary_10_1007_s13369_020_04872_1
crossref_primary_10_1016_j_measurement_2018_07_048
crossref_primary_10_1109_TIE_2023_3239862
crossref_primary_10_1109_TSMC_2019_2901277
crossref_primary_10_1016_j_infrared_2023_104878
crossref_primary_10_1109_TIM_2023_3317481
crossref_primary_10_3390_s21020603
crossref_primary_10_1109_JSEN_2022_3144827
crossref_primary_10_1117_1_OE_58_4_041602
crossref_primary_10_3934_mbe_2021353
crossref_primary_10_1016_j_surfcoat_2022_129048
crossref_primary_10_1016_j_jmsy_2020_09_005
crossref_primary_10_1109_TCYB_2019_2963138
crossref_primary_10_1016_j_infrared_2019_06_009
crossref_primary_10_1002_eem2_12049
crossref_primary_10_1109_TII_2019_2922680
crossref_primary_10_1109_JSEN_2021_3123294
crossref_primary_10_1109_TIP_2019_2928134
crossref_primary_10_3390_a13090207
crossref_primary_10_3390_met8080612
crossref_primary_10_1109_JSEN_2021_3056957
Cites_doi 10.1016/j.ndteint.2012.08.007
10.1016/j.jfoodeng.2004.04.001
10.1364/JOSA.62.000055
10.1109/TIP.2016.2545244
10.1080/10589750903242533
10.1109/JSTARS.2016.2518403
10.1016/j.infrared.2012.01.001
10.1109/TIP.2016.2541924
10.1023/A:1022602019183
10.1016/j.ndteint.2013.10.006
10.1109/JSEN.2011.2157492
10.1016/j.ndteint.2011.05.004
10.1007/s10765-014-1688-z
10.1109/TIP.2015.2419078
10.1016/j.ndteint.2015.03.003
10.21611/qirt.2010.050
10.1109/TIM.2013.2287126
10.1016/j.ndteint.2006.03.006
10.1109/TLA.2015.7069113
10.1109/TIP.2015.2505184
10.1784/insi.2010.52.2.87
10.1016/j.ndteint.2009.08.001
10.1016/j.ndteint.2010.05.010
10.1016/j.infrared.2012.11.009
10.1109/JSEN.2015.2416394
10.1109/TIP.2013.2297027
10.1016/j.neunet.2014.09.003
10.1049/el.2013.3042
10.1109/TIP.2015.2397313
10.1109/TIP.2016.2518480
10.1109/TIM.2013.2285789
10.1016/S0963-8695(03)00052-5
10.1109/TIP.2015.2456505
10.1016/j.compositesb.2011.12.013
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2017.2783627
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2175
ExternalDocumentID 29432098
10_1109_TIP_2017_2783627
8207586
Genre orig-research
Journal Article
GrantInformation_xml – fundername: EPSRC IAA Phase 2 through the 3D Super-Fast and Portable Eddy Current Pulsed Thermography for Railway Inspection Project
  grantid: EP/K503885/1
– fundername: National Natural Science Foundation of China
  grantid: 61401071; 61527803
  funderid: 10.13039/501100001809
– fundername: NSAF
  grantid: U1430115
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7X8
ID FETCH-LOGICAL-c319t-60fee1bf800fb2916308ed90f63477147a671109945ffaca552b55018ca2b9a43
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 09:40:53 EDT 2025
Wed Feb 19 02:40:54 EST 2025
Tue Jul 01 02:03:16 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Aug 27 02:50:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-60fee1bf800fb2916308ed90f63477147a671109945ffaca552b55018ca2b9a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3377-6895
PMID 29432098
PQID 2001918657
PQPubID 23479
PageCount 16
ParticipantIDs pubmed_primary_29432098
ieee_primary_8207586
crossref_citationtrail_10_1109_TIP_2017_2783627
crossref_primary_10_1109_TIP_2017_2783627
proquest_miscellaneous_2001918657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
2018-5-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref34
ref12
ref37
ref15
ref14
ref30
ref11
ref32
ref10
gonzalez (ref18) 2011
chitade (ref36) 2010; 2
ref2
ref39
suszy?ski (ref31) 2014; 35
ref38
ref16
ref19
plotnikov (ref17) 1999; 3361
davies (ref40) 1998; 3
otsu (ref33) 1975; 11
betz (ref1) 1985
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
hamadani (ref35) 1981
ref6
ref5
References_xml – ident: ref15
  doi: 10.1016/j.ndteint.2012.08.007
– start-page: 234
  year: 1985
  ident: ref1
  publication-title: Principles of Magnetic Particle Testing
– ident: ref39
  doi: 10.1016/j.jfoodeng.2004.04.001
– ident: ref34
  doi: 10.1364/JOSA.62.000055
– ident: ref27
  doi: 10.1109/TIP.2016.2545244
– ident: ref37
  doi: 10.1080/10589750903242533
– ident: ref19
  doi: 10.1109/JSTARS.2016.2518403
– ident: ref8
  doi: 10.1016/j.infrared.2012.01.001
– ident: ref23
  doi: 10.1109/TIP.2016.2541924
– ident: ref38
  doi: 10.1023/A:1022602019183
– ident: ref29
  doi: 10.1016/j.ndteint.2013.10.006
– start-page: 443
  year: 2011
  ident: ref18
  publication-title: Digital Image Processing
– ident: ref12
  doi: 10.1109/JSEN.2011.2157492
– ident: ref13
  doi: 10.1016/j.ndteint.2011.05.004
– volume: 35
  start-page: 2374
  year: 2014
  ident: ref31
  article-title: Cluster segmentation of thermal image sequences using kd-tree structure
  publication-title: Int J Thermophys
  doi: 10.1007/s10765-014-1688-z
– volume: 2
  start-page: 5319
  year: 2010
  ident: ref36
  article-title: Colour based image segmentation using K-means clustering
  publication-title: Int J Eng Sci Technol
– ident: ref24
  doi: 10.1109/TIP.2015.2419078
– ident: ref7
  doi: 10.1016/j.ndteint.2015.03.003
– ident: ref11
  doi: 10.21611/qirt.2010.050
– ident: ref4
  doi: 10.1109/TIM.2013.2287126
– ident: ref2
  doi: 10.1016/j.ndteint.2006.03.006
– ident: ref20
  doi: 10.1109/TLA.2015.7069113
– ident: ref28
  doi: 10.1109/TIP.2015.2505184
– ident: ref9
  doi: 10.1784/insi.2010.52.2.87
– ident: ref32
  doi: 10.1016/j.ndteint.2009.08.001
– year: 1981
  ident: ref35
  article-title: Automatic target cueing in IR imagery
– ident: ref10
  doi: 10.1016/j.ndteint.2010.05.010
– volume: 11
  start-page: 23
  year: 1975
  ident: ref33
  article-title: A threshold selection method from gray-level histograms
  publication-title: Automatica
– ident: ref5
  doi: 10.1016/j.infrared.2012.11.009
– ident: ref16
  doi: 10.1109/JSEN.2015.2416394
– ident: ref21
  doi: 10.1109/TIP.2013.2297027
– ident: ref41
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref30
  doi: 10.1049/el.2013.3042
– ident: ref25
  doi: 10.1109/TIP.2015.2397313
– ident: ref22
  doi: 10.1109/TIP.2016.2518480
– volume: 3
  start-page: 1
  year: 1998
  ident: ref40
  article-title: Robust tracker of small, fast-moving low-contrast targets
  publication-title: Proc Eur Signal Process Conf
– ident: ref14
  doi: 10.1109/TIM.2013.2285789
– volume: 3361
  year: 1999
  ident: ref17
  article-title: Advanced image processing for defect visualization in infrared thermography
  publication-title: Proc SPIE
– ident: ref6
  doi: 10.1016/S0963-8695(03)00052-5
– ident: ref26
  doi: 10.1109/TIP.2015.2456505
– ident: ref3
  doi: 10.1016/j.compositesb.2011.12.013
SSID ssj0014516
Score 2.5141602
Snippet Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2160
SubjectTerms Eddy currents
F-score
Feature extraction
genetic functionality
Heating systems
Histograms
Image segmentation
non-destructive testing and evaluation
Surface cracks
Testing
Thermography
Title Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging
URI https://ieeexplore.ieee.org/document/8207586
https://www.ncbi.nlm.nih.gov/pubmed/29432098
https://www.proquest.com/docview/2001918657
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB0Bp_ZQKNCy0CJX6qUS2Q2J7cRHWnUFlWiRAIlbZDs2INgs2s1eOPbLO-N4I4Tailuk2HGiN7bfZMZvAD5r6XVtfJ7IWsiEa8UTzXExTE0thUV-XdZ0dvj0pzy-5D-uxNUKHPRnYZxzIfnMDekyxPLrqV3Qr7IR7lZIb-UqrKLj1p3V6iMGVHA2RDZFkRRI-5chyVSNLk7OKIerGFJVCUn1Y55sQaGmyr_pZdhmxutwunzBLrvkbrhozdA-PtNufOkXbMCbyDfZUWcgb2HFNZuwHrknizN7vgmvnwgTbsHvkBhq58lX3ORqdjLBVYedu-tJPKnUsJBqwMa3SB7ZL5LvZERbg-ozDndGv_hnpNXKdFMz0rbGG-zo_no6u21vJgypMqOqIWG1ZWirs0nUzg6D4bO34XL8_eLbcRKrNSQWp3GbyNQ7d2g8MlBvMmSdeVq6WqVe5rxARAotC4JDceG9tlqIzAiSE7Q6M0rz_B2sNdPG7QDLFVfeYTd0ELlFrFOOjUpuSof-kPEDGC0BrGyUMqeKGvdVcGlSVSHkFUFeRcgH8KXv8dDJePyn7RYB17eLmA3g09JGKpyCFFfRjZsu5lTJE73eUgrs-r4znr5zpnieparc_ftD9-AVDl12GZQfYK2dLdxHZDmt2Q_m_Qe0fPkC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoey9NIXJDIbprYTnwsiNUudEsltlJvke3YpaKbRbvZC0d-OTOON6oQIG6R4keiGXu-8Yy_AXitpde18XkiayETrhVPNMfNMDW1FBbxdVnT3eHZiZyc8Y_n4nwH3vZ3YZxzIfnMDekxxPLrpd3QUdkIrRXCW3kDbqLdF4fdba0-ZkAlZ0NsUxRJgcB_G5RM1Wg-PaUsrmJIdSUkVZC5ZoRCVZW_A8xgaMZ7MNt-Ypdf8m24ac3Q_viNvfF__-Ee3I2Ikx11KnIfdlyzD3sRfbK4ttf7cOcaNeEB_AypoXadvEMzV7PpAvcd9sVdLOJdpYaFZAM2vkT4yD4TgScj4Bp4n3G6UzrkXxFbK9NNzYjdGl-wo6uL5eqy_bpgCJYZ1Q0J-y1DbV0tInt2mAzHfgBn4w_z95Mk1mtILC7kNpGpd-7QeMSg3mSIO_O0dLVKvcx5gRIptCxIHIoL77XVQmRGEKGg1ZlRmucPYbdZNu4xsFxx5R12QxeRW3TTU46NSm5Khx6R8QMYbQVY2UhmTjU1rqrg1KSqQpFXJPIqinwAb_oe3zsij3-0PSDB9e2izAbwaqsjFS5Ciqzoxi03a6rliX5vKQV2fdQpT985UzzPUlU--fOgL-HWZD47ro6nJ5-ewm38jLLLp3wGu-1q454j5mnNi6DqvwDUIvxL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Based+Image+Segmentation+Using+First+Order+Statistical+Properties+and+Genetic+Algorithm+for+Inductive+Thermography+Imaging&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Gao%2C+Bin&rft.au=Li%2C+Xiaoqing&rft.au=Woo%2C+Wai+Lok&rft.au=Tian%2C+Gui+yun&rft.date=2018-05-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=5&rft.spage=2160&rft.epage=2175&rft_id=info:doi/10.1109%2FTIP.2017.2783627&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2017_2783627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon