Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging
Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physic...
Saved in:
Published in | IEEE transactions on image processing Vol. 27; no. 5; pp. 2160 - 2175 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms. |
---|---|
AbstractList | Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms. Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms. |
Author | Bin Gao Xiaoqing Li Wai Lok Woo Gui Yun Tian |
Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0003-3377-6895 surname: Gao fullname: Gao, Bin – sequence: 2 givenname: Xiaoqing surname: Li fullname: Li, Xiaoqing – sequence: 3 givenname: Wai Lok surname: Woo fullname: Woo, Wai Lok – sequence: 4 givenname: Gui yun surname: Tian fullname: Tian, Gui yun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29432098$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1vGyEUxFGVqvlo75UqVRx7WRfYXViOadSkliLFUpwzYtnHmmoXXMCVfO1fHhw7PfTQE0jvN8Nj5hKd-eABoY-ULCgl8ut6uVowQsWCia7mTLxBF1Q2tCKkYWflTlpRCdrIc3SZ0k9CaNNS_g6dM9nUjMjuAv1ZbfbJmVR90wkGvJz1CPgRxhl81tkFj5-S8yO-dTFl_BAHiPjxMEnZGT3hVQxbiNlBwtoP-A48lAG-nsYQXd7M2IaIl37Ymex-A15vIM5hjHq72b88Vrzfo7dWTwk-nM4r9HT7fX3zo7p_uFveXN9XpqYyV5xYANrbjhDbM0l5TToYJLG8bkT5pNBcHEKRTWutNrptWd-2hHZGs17qpr5CX46-2xh-7SBlNbtkYJq0h7BLipV8JO14Kwr6-YTu-hkGtY1u1nGvXnMrAD8CJoaUIlhl3DGvHLWbFCXqsIsqBalDQepUUBGSf4Sv3v-RfDpKHAD8xTtGRNvx-hloTJvv |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1108_AA_12_2018_0264 crossref_primary_10_1109_TII_2018_2866413 crossref_primary_10_3390_electronics10243116 crossref_primary_10_1007_s11042_019_08133_8 crossref_primary_10_1109_TCYB_2019_2940276 crossref_primary_10_3390_app12126006 crossref_primary_10_1007_s00779_020_01419_x crossref_primary_10_1007_s11042_022_14041_1 crossref_primary_10_1109_TII_2023_3298469 crossref_primary_10_1109_TII_2018_2870670 crossref_primary_10_1364_AO_57_000D74 crossref_primary_10_1007_s13369_018_3400_2 crossref_primary_10_1080_17686733_2023_2225246 crossref_primary_10_1109_TIM_2021_3096277 crossref_primary_10_1155_2019_9278725 crossref_primary_10_1109_TIP_2021_3052359 crossref_primary_10_1016_j_ndteint_2019_102164 crossref_primary_10_1109_TSMC_2019_2963072 crossref_primary_10_3390_machines9030066 crossref_primary_10_1109_MIM_2022_9756437 crossref_primary_10_1016_j_sna_2021_112566 crossref_primary_10_1080_24725854_2022_2125602 crossref_primary_10_1109_TII_2020_2994227 crossref_primary_10_1109_TII_2021_3101492 crossref_primary_10_1109_TII_2023_3282312 crossref_primary_10_1016_j_ndteint_2020_102361 crossref_primary_10_1109_TIP_2023_3258739 crossref_primary_10_1007_s13369_020_04872_1 crossref_primary_10_1016_j_measurement_2018_07_048 crossref_primary_10_1109_TIE_2023_3239862 crossref_primary_10_1109_TSMC_2019_2901277 crossref_primary_10_1016_j_infrared_2023_104878 crossref_primary_10_1109_TIM_2023_3317481 crossref_primary_10_3390_s21020603 crossref_primary_10_1109_JSEN_2022_3144827 crossref_primary_10_1117_1_OE_58_4_041602 crossref_primary_10_3934_mbe_2021353 crossref_primary_10_1016_j_surfcoat_2022_129048 crossref_primary_10_1016_j_jmsy_2020_09_005 crossref_primary_10_1109_TCYB_2019_2963138 crossref_primary_10_1016_j_infrared_2019_06_009 crossref_primary_10_1002_eem2_12049 crossref_primary_10_1109_TII_2019_2922680 crossref_primary_10_1109_JSEN_2021_3123294 crossref_primary_10_1109_TIP_2019_2928134 crossref_primary_10_3390_a13090207 crossref_primary_10_3390_met8080612 crossref_primary_10_1109_JSEN_2021_3056957 |
Cites_doi | 10.1016/j.ndteint.2012.08.007 10.1016/j.jfoodeng.2004.04.001 10.1364/JOSA.62.000055 10.1109/TIP.2016.2545244 10.1080/10589750903242533 10.1109/JSTARS.2016.2518403 10.1016/j.infrared.2012.01.001 10.1109/TIP.2016.2541924 10.1023/A:1022602019183 10.1016/j.ndteint.2013.10.006 10.1109/JSEN.2011.2157492 10.1016/j.ndteint.2011.05.004 10.1007/s10765-014-1688-z 10.1109/TIP.2015.2419078 10.1016/j.ndteint.2015.03.003 10.21611/qirt.2010.050 10.1109/TIM.2013.2287126 10.1016/j.ndteint.2006.03.006 10.1109/TLA.2015.7069113 10.1109/TIP.2015.2505184 10.1784/insi.2010.52.2.87 10.1016/j.ndteint.2009.08.001 10.1016/j.ndteint.2010.05.010 10.1016/j.infrared.2012.11.009 10.1109/JSEN.2015.2416394 10.1109/TIP.2013.2297027 10.1016/j.neunet.2014.09.003 10.1049/el.2013.3042 10.1109/TIP.2015.2397313 10.1109/TIP.2016.2518480 10.1109/TIM.2013.2285789 10.1016/S0963-8695(03)00052-5 10.1109/TIP.2015.2456505 10.1016/j.compositesb.2011.12.013 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TIP.2017.2783627 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 2175 |
ExternalDocumentID | 29432098 10_1109_TIP_2017_2783627 8207586 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: EPSRC IAA Phase 2 through the 3D Super-Fast and Portable Eddy Current Pulsed Thermography for Railway Inspection Project grantid: EP/K503885/1 – fundername: National Natural Science Foundation of China grantid: 61401071; 61527803 funderid: 10.13039/501100001809 – fundername: NSAF grantid: U1430115 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN Z5M 7X8 |
ID | FETCH-LOGICAL-c319t-60fee1bf800fb2916308ed90f63477147a671109945ffaca552b55018ca2b9a43 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 09:40:53 EDT 2025 Wed Feb 19 02:40:54 EST 2025 Tue Jul 01 02:03:16 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Wed Aug 27 02:50:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-60fee1bf800fb2916308ed90f63477147a671109945ffaca552b55018ca2b9a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3377-6895 |
PMID | 29432098 |
PQID | 2001918657 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmed_primary_29432098 ieee_primary_8207586 crossref_citationtrail_10_1109_TIP_2017_2783627 crossref_primary_10_1109_TIP_2017_2783627 proquest_miscellaneous_2001918657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May 2018-5-00 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref34 ref12 ref37 ref15 ref14 ref30 ref11 ref32 ref10 gonzalez (ref18) 2011 chitade (ref36) 2010; 2 ref2 ref39 suszy?ski (ref31) 2014; 35 ref38 ref16 ref19 plotnikov (ref17) 1999; 3361 davies (ref40) 1998; 3 otsu (ref33) 1975; 11 betz (ref1) 1985 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 hamadani (ref35) 1981 ref6 ref5 |
References_xml | – ident: ref15 doi: 10.1016/j.ndteint.2012.08.007 – start-page: 234 year: 1985 ident: ref1 publication-title: Principles of Magnetic Particle Testing – ident: ref39 doi: 10.1016/j.jfoodeng.2004.04.001 – ident: ref34 doi: 10.1364/JOSA.62.000055 – ident: ref27 doi: 10.1109/TIP.2016.2545244 – ident: ref37 doi: 10.1080/10589750903242533 – ident: ref19 doi: 10.1109/JSTARS.2016.2518403 – ident: ref8 doi: 10.1016/j.infrared.2012.01.001 – ident: ref23 doi: 10.1109/TIP.2016.2541924 – ident: ref38 doi: 10.1023/A:1022602019183 – ident: ref29 doi: 10.1016/j.ndteint.2013.10.006 – start-page: 443 year: 2011 ident: ref18 publication-title: Digital Image Processing – ident: ref12 doi: 10.1109/JSEN.2011.2157492 – ident: ref13 doi: 10.1016/j.ndteint.2011.05.004 – volume: 35 start-page: 2374 year: 2014 ident: ref31 article-title: Cluster segmentation of thermal image sequences using kd-tree structure publication-title: Int J Thermophys doi: 10.1007/s10765-014-1688-z – volume: 2 start-page: 5319 year: 2010 ident: ref36 article-title: Colour based image segmentation using K-means clustering publication-title: Int J Eng Sci Technol – ident: ref24 doi: 10.1109/TIP.2015.2419078 – ident: ref7 doi: 10.1016/j.ndteint.2015.03.003 – ident: ref11 doi: 10.21611/qirt.2010.050 – ident: ref4 doi: 10.1109/TIM.2013.2287126 – ident: ref2 doi: 10.1016/j.ndteint.2006.03.006 – ident: ref20 doi: 10.1109/TLA.2015.7069113 – ident: ref28 doi: 10.1109/TIP.2015.2505184 – ident: ref9 doi: 10.1784/insi.2010.52.2.87 – ident: ref32 doi: 10.1016/j.ndteint.2009.08.001 – year: 1981 ident: ref35 article-title: Automatic target cueing in IR imagery – ident: ref10 doi: 10.1016/j.ndteint.2010.05.010 – volume: 11 start-page: 23 year: 1975 ident: ref33 article-title: A threshold selection method from gray-level histograms publication-title: Automatica – ident: ref5 doi: 10.1016/j.infrared.2012.11.009 – ident: ref16 doi: 10.1109/JSEN.2015.2416394 – ident: ref21 doi: 10.1109/TIP.2013.2297027 – ident: ref41 doi: 10.1016/j.neunet.2014.09.003 – ident: ref30 doi: 10.1049/el.2013.3042 – ident: ref25 doi: 10.1109/TIP.2015.2397313 – ident: ref22 doi: 10.1109/TIP.2016.2518480 – volume: 3 start-page: 1 year: 1998 ident: ref40 article-title: Robust tracker of small, fast-moving low-contrast targets publication-title: Proc Eur Signal Process Conf – ident: ref14 doi: 10.1109/TIM.2013.2285789 – volume: 3361 year: 1999 ident: ref17 article-title: Advanced image processing for defect visualization in infrared thermography publication-title: Proc SPIE – ident: ref6 doi: 10.1016/S0963-8695(03)00052-5 – ident: ref26 doi: 10.1109/TIP.2015.2456505 – ident: ref3 doi: 10.1016/j.compositesb.2011.12.013 |
SSID | ssj0014516 |
Score | 2.5141602 |
Snippet | Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2160 |
SubjectTerms | Eddy currents F-score Feature extraction genetic functionality Heating systems Histograms Image segmentation non-destructive testing and evaluation Surface cracks Testing Thermography |
Title | Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging |
URI | https://ieeexplore.ieee.org/document/8207586 https://www.ncbi.nlm.nih.gov/pubmed/29432098 https://www.proquest.com/docview/2001918657 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB0Bp_ZQKNCy0CJX6qUS2Q2J7cRHWnUFlWiRAIlbZDs2INgs2s1eOPbLO-N4I4Tailuk2HGiN7bfZMZvAD5r6XVtfJ7IWsiEa8UTzXExTE0thUV-XdZ0dvj0pzy-5D-uxNUKHPRnYZxzIfnMDekyxPLrqV3Qr7IR7lZIb-UqrKLj1p3V6iMGVHA2RDZFkRRI-5chyVSNLk7OKIerGFJVCUn1Y55sQaGmyr_pZdhmxutwunzBLrvkbrhozdA-PtNufOkXbMCbyDfZUWcgb2HFNZuwHrknizN7vgmvnwgTbsHvkBhq58lX3ORqdjLBVYedu-tJPKnUsJBqwMa3SB7ZL5LvZERbg-ozDndGv_hnpNXKdFMz0rbGG-zo_no6u21vJgypMqOqIWG1ZWirs0nUzg6D4bO34XL8_eLbcRKrNSQWp3GbyNQ7d2g8MlBvMmSdeVq6WqVe5rxARAotC4JDceG9tlqIzAiSE7Q6M0rz_B2sNdPG7QDLFVfeYTd0ELlFrFOOjUpuSof-kPEDGC0BrGyUMqeKGvdVcGlSVSHkFUFeRcgH8KXv8dDJePyn7RYB17eLmA3g09JGKpyCFFfRjZsu5lTJE73eUgrs-r4znr5zpnieparc_ftD9-AVDl12GZQfYK2dLdxHZDmt2Q_m_Qe0fPkC |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoey9NIXJDIbprYTnwsiNUudEsltlJvke3YpaKbRbvZC0d-OTOON6oQIG6R4keiGXu-8Yy_AXitpde18XkiayETrhVPNMfNMDW1FBbxdVnT3eHZiZyc8Y_n4nwH3vZ3YZxzIfnMDekxxPLrpd3QUdkIrRXCW3kDbqLdF4fdba0-ZkAlZ0NsUxRJgcB_G5RM1Wg-PaUsrmJIdSUkVZC5ZoRCVZW_A8xgaMZ7MNt-Ypdf8m24ac3Q_viNvfF__-Ee3I2Ikx11KnIfdlyzD3sRfbK4ttf7cOcaNeEB_AypoXadvEMzV7PpAvcd9sVdLOJdpYaFZAM2vkT4yD4TgScj4Bp4n3G6UzrkXxFbK9NNzYjdGl-wo6uL5eqy_bpgCJYZ1Q0J-y1DbV0tInt2mAzHfgBn4w_z95Mk1mtILC7kNpGpd-7QeMSg3mSIO_O0dLVKvcx5gRIptCxIHIoL77XVQmRGEKGg1ZlRmucPYbdZNu4xsFxx5R12QxeRW3TTU46NSm5Khx6R8QMYbQVY2UhmTjU1rqrg1KSqQpFXJPIqinwAb_oe3zsij3-0PSDB9e2izAbwaqsjFS5Ciqzoxi03a6rliX5vKQV2fdQpT985UzzPUlU--fOgL-HWZD47ro6nJ5-ewm38jLLLp3wGu-1q454j5mnNi6DqvwDUIvxL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Based+Image+Segmentation+Using+First+Order+Statistical+Properties+and+Genetic+Algorithm+for+Inductive+Thermography+Imaging&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Gao%2C+Bin&rft.au=Li%2C+Xiaoqing&rft.au=Woo%2C+Wai+Lok&rft.au=Tian%2C+Gui+yun&rft.date=2018-05-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=5&rft.spage=2160&rft.epage=2175&rft_id=info:doi/10.1109%2FTIP.2017.2783627&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2017_2783627 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |