Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces

This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD ( K , N ) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 29; no. 4; pp. 949 - 1001
Main Authors Ambrosio, Luigi, Brué, Elia, Semola, Daniele
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1016-443X
1420-8970
DOI10.1007/s00039-019-00504-5

Cover

Loading…
Abstract This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD ( K , N ) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and uniqueness statement when the ambient is non collapsed . As an intermediate tool, we provide a complete characterization of the class of RCD ( 0 , N ) spaces for which there exists a nontrivial function satisfying the equality in the 1-Bakry–Émery inequality. This result is of independent interest and it is new, up to our knowledge, even in the smooth framework.
AbstractList This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD(K,N) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and uniqueness statement when the ambient is non collapsed. As an intermediate tool, we provide a complete characterization of the class of RCD(0,N) spaces for which there exists a nontrivial function satisfying the equality in the 1-Bakry–Émery inequality. This result is of independent interest and it is new, up to our knowledge, even in the smooth framework.
This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD ( K , N ) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and uniqueness statement when the ambient is non collapsed . As an intermediate tool, we provide a complete characterization of the class of RCD ( 0 , N ) spaces for which there exists a nontrivial function satisfying the equality in the 1-Bakry–Émery inequality. This result is of independent interest and it is new, up to our knowledge, even in the smooth framework.
Author Brué, Elia
Semola, Daniele
Ambrosio, Luigi
Author_xml – sequence: 1
  givenname: Luigi
  surname: Ambrosio
  fullname: Ambrosio, Luigi
  email: luigi.ambrosio@sns.it
  organization: Scuola Normale Superiore
– sequence: 2
  givenname: Elia
  surname: Brué
  fullname: Brué, Elia
  organization: Scuola Normale Superiore
– sequence: 3
  givenname: Daniele
  surname: Semola
  fullname: Semola, Daniele
  organization: Scuola Normale Superiore
BookMark eNp9kDtOAzEQhi0UJELgAlSWqBfGa3sfJQQCkSKBeInO8m4mwSHxBtsptqOl5kjchJPgECQkCgprXHzfPP5d0rGNRUIOGBwxgPzYAwAvE2DxgQSRyC3SZSKFpChz6MQ_sCwRgj_ukF3vZxGXUsguebgxUzM2oaXNhIYnpCw51c-u_Xx9_3hboGvp0OLLSs_XiLZjeovBr9mBsSYgvUZnFhjQUWPpTf-M3i51jX6PbE_03OP-T-2R-8H5Xf8yGV1dDPsno6TmrAxJBlBJnQJHrGpZaVlDxscAohL5ROocmChQSFFoELyWWCNjGkoYy6KoJAreI4ebvkvXvKzQBzVrVs7GkSpNs1KkIst5pIoNVbvGe4cTVZugg2lscNrMFQO1TlFtUlQxRfWdopJRTf-oy3iwdu3_Et9IPsJ2iu53q3-sLzxchlg
CitedBy_id crossref_primary_10_1016_j_matpur_2020_07_004
crossref_primary_10_1142_S0219199722500687
crossref_primary_10_1007_s10455_024_09945_0
crossref_primary_10_1515_crelle_2024_0032
crossref_primary_10_1007_s12220_024_01784_6
crossref_primary_10_1007_s00208_023_02674_y
crossref_primary_10_1007_s12220_022_01131_7
crossref_primary_10_1007_s00222_022_01136_7
crossref_primary_10_1007_s00039_023_00626_x
crossref_primary_10_1016_j_na_2024_113738
crossref_primary_10_2140_apde_2024_17_2797
crossref_primary_10_1090_suga_493
crossref_primary_10_1007_s00526_020_1725_7
crossref_primary_10_1007_s12220_023_01434_3
crossref_primary_10_1007_s10883_022_09592_3
crossref_primary_10_1007_s00222_021_01092_8
crossref_primary_10_1007_s00526_022_02193_9
crossref_primary_10_1016_j_aim_2021_107919
crossref_primary_10_1016_j_jfa_2025_110940
crossref_primary_10_1051_cocv_2022052
crossref_primary_10_1007_s00526_020_01750_4
crossref_primary_10_1016_j_jfa_2021_109022
crossref_primary_10_1007_s10473_023_0501_0
Cites_doi 10.1215/00127094-2681605
10.1007/s00039-015-0334-7
10.1214/14-AOP907
10.1016/j.jfa.2016.04.014
10.1007/s10455-017-9569-x
10.4007/annals.2009.169.903
10.1007/s00039-016-0391-6
10.5802/jep.80
10.1017/S030821051500013X
10.1007/s00526-015-0917-z
10.1016/j.jfa.2014.02.002
10.1007/s11511-006-0002-8
10.5186/aasfm.2011.3636
10.1007/s12220-009-9068-9
10.1515/9783110550832-001
10.1007/s11118-015-9521-2
10.1016/S0021-7824(03)00036-9
10.2307/1970227
10.2307/1971410
10.1007/s00222-014-0563-7
10.2140/apde.2014.7.1179
10.1007/BF02564671
10.1090/S0002-9947-1966-0185084-5
10.1007/s00209-007-0206-4
10.1142/9789813272880_0015
10.1090/S0002-9947-2015-06111-X
10.1007/BF02412838
10.1515/crelle-2013-0052
10.1023/A:1016548402502
10.1007/s000390050094
10.1006/aima.2000.1963
10.1016/j.jde.2013.12.018
10.1007/PL00001667
10.1007/s11511-006-0003-7
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s00039-019-00504-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 1001
ExternalDocumentID 10_1007_s00039_019_00504_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
2P1
2VQ
5QI
5VS
692
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
ADKPE
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
BDATZ
CAG
CITATION
COF
FINBP
FSGXE
IHE
KOW
KQ8
LO0
N2Q
NDZJH
OK1
R4E
REI
RNI
RZK
S1Z
S26
S28
SCLPG
T16
UZXMN
VFIZW
VH1
ZWQNP
ABRTQ
ID FETCH-LOGICAL-c319t-600b5a203eebc5ba5c063d004b47f5a70148e4548a043c5ece11a090d588b5e43
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri Jul 25 11:16:24 EDT 2025
Tue Jul 01 02:31:06 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:33:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-600b5a203eebc5ba5c063d004b47f5a70148e4548a043c5ece11a090d588b5e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2269424673
PQPubID 2044207
PageCount 53
ParticipantIDs proquest_journals_2269424673
crossref_citationtrail_10_1007_s00039_019_00504_5
crossref_primary_10_1007_s00039_019_00504_5
springer_journals_10_1007_s00039_019_00504_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References AzzamJTolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: Part IIGeometric and Functional Analysis20152513711412342605710.1007/s00039-015-0334-71334.28010
AmbrosioLFine properties of sets of finite perimeter in doubling metric measure spacesSet-Valued Anal.200210111128192637610.1023/A:10165484025021037.28002
GigliNAn overview of the proof of the splitting theorem in spaces with non-negative Ricci curvatureAnal. Geom. Metr. Spaces2014216921332108951310.53031
GigliNHanB-XIndependence on p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} of weak upper gradients on RCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD$$\end{document} spacesJ. Funct. Anal.2016271111349423910.1016/j.jfa.2016.04.0141339.53041
L. Ambrosio. Calculus, heat flow and curvature-dimension bounds in metric measure spaces. Proceedings of the ICM 2018 (2018)
JiangRLiHZhangHHeat Kernel Bounds on Metric Measure Spaces and Some ApplicationsPotential Anal.201644601627348985710.1007/s11118-015-9521-21339.53043
FlemingH-WFlat chains over a finite coefficient groupTrans. Amer. Math. Soc.196612116018618508410.1090/S0002-9947-1966-0185084-50136.03602
AmbrosioLGigliNMondinoARajalaTRiemannian Ricci curvature lower bounds in metric measure spaces with σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite measureTrans. Amer. Math. Soc.201536746614701333539710.1090/S0002-9947-2015-06111-X1317.53060
N. Gigli and E. Pasqualetto. Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, Preprint arXiv:1611.09645 (2016)
LottJVillaniCRicci curvature for metric-measure spaces via optimal transportAnn. of Math.20091692903991248061910.4007/annals.2009.169.9031178.53038
MenguyXExamples of strictly weakly regular pointsGeom. Funct. Anal.200111124131182964410.1007/PL000016670990.53025
N. Gigli. The splitting theorem in non-smooth context. Preprint arXiv:1302.5555 (2013)
GigliNNonsmooth differential geometry: an approach tailored for spaces with Ricci curvature bounded from belowMem. Amer. Math. Soc.2018251v16137569201404.53056
MagnaniVOn a measure theoretic area formulaProc. Roy. Soc. Edinburgh Sect. A2015145885891341553310.1017/S030821051500013X1327.28004
GigliNMondinoARajalaTEuclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded belowJ. Reine Angew. Math.201570523324433773941323.53038
De PhilippisGGigliNNon-collapsed spaces with Ricci curvature bounded from belowJ. Éc. polytech. Math.20185613650385226310.5802/jep.801409.53038
GigliNMondinoASavaréGConvergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flowsProc. Lond. Math. Soc.201511131071112934772301398.53044
AmbrosioLKleinerBLe DonneERectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplaneJ. Geom. Anal.200919509540249656410.1007/s12220-009-9068-91187.28008
PreissDGeometry of measures in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}: distributions, rectifiability and densitiesAnn. of Math.198712553764389016210.2307/19714100627.28008
AmbrosioLFengJOn a class of first order Hamilton–Jacobi equations in metric spacesJ. Differential Equations201425621942245316044110.1016/j.jde.2013.12.0181283.49027
AmbrosioLDi MarinoSEquivalent definitions of BV space and of total variation on metric measure spacesJ. Funct. Anal.201426641504188317020610.1016/j.jfa.2014.02.0021302.26012
A. Mondino and A. Naber. Structure theory of metric measure spaces with lower Ricci curvature bounds. ArXiv preprint arXiv:1405.2222 (2014), to appear on J. Eur. Math Soc
TolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: part ICalc. Var., & PDE20155436433665342609010.1007/s00526-015-0917-z06544048
AmbrosioLTrevisanDWell posedness of Lagrangian flows and continuity equations in metric measure spacesAnal. PDE2014711791234326596310.2140/apde.2014.7.11791357.49058
N. Gigli and E. Pasqualetto. Behaviour of the reference measure on RCD spaces under charts, preprint, arXiv:1607.05188 (2016)
L. Ambrosio and S. Honda. New Stability Results for Sequences of Metric Measure Spaces with Uniform Ricci Bounds From Below. In: Measure Theory in Non-Smooth Spaces. De Gruyter Open, Warsaw (2017), pp. 1–51.
MirandaMJrFunctions of bounded variation on “good” metric spacesJ. Math. Pures Appl.2003829751004200520210.1016/S0021-7824(03)00036-91109.46030
WeaverNLipschitz algebras and derivationsII. Exterior differentiation. J. Funct. Anal.2000178641120979.46035
WhiteBA new proof of the compactness theorem for integral currentsComm. Math. Helvetici19896420722099736210.1007/BF025646710706.49028
AmbrosioLGigliNSavaréGBakry–Émery curvature-dimension condition and Riemannian Ricci curvature boundsAnn. Probab.201543339404329847510.1214/14-AOP9071307.49044
FedererHFlemingH.-WNormal and integral currentsAnn. of Math.196072245852012326010.2307/19702270187.31301
L. Ambrosio. Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School]. Scuola Normale Superiore, Pisa (1997), ii+144.
SturmK.-TAnalysis on local Dirichlet spaces. III. The parabolic Harnack inequalityJ. Math. Pures Appl199675927329713875220854.35016
L. Ambrosio, A. Mondino and G. Savaré. Nonlinear diffusion equations and curvature conditions in metric measure spaces. ArXiv preprint: arxiv:1509.07273 (2015). to appear in Memoirs Amer. Math. Soc.
L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich. Birkhäuser (2005).
AmbrosioLHondaSTewodroseDShort-time behavior of the heat kernel and Weyl’s law on RCD∗(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm RCD}}^*(K,N)$$\end{document}-spacesAnn. Global Anal. Geom.20185397119374651710.1007/s10455-017-9569-x1390.58015
G. De Philippis, A. Marchese and F. Rindler. On a conjecture of Cheeger. In: Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory. De Gruyter Open, Warsaw (2017), pp. 145–155.
PetruninAAlexandrov meets Lott–Villani–SturmMünster J. Math.20114536428692531247.53038
Von RenesseM-KOn local Poincaré via transportationMath. Z.20082592131237561210.1007/s00209-007-0206-41141.53076
De GiorgiENuovi teoremi relativi alle misure (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionali in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniRicerche Mat.1955495113744990066.29903
VillaniCOptimal transport. Old and New. Grundlehren der Mathematischen Wissenschaften2009BerlinSpringer-Verlag338
ErbarMKuwadaKSturmK-TOn the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spacesInvent. Math.20152019931071338563910.1007/s00222-014-0563-71329.53059
SturmK-TOn the geometry of metric measure spaces IIActa Math.2006196133177223720710.1007/s11511-006-0003-71106.53032
GigliNOn the differential structure of metric measure spaces and applicationsMem. Amer. Math. Soc.2015236vi91d33811311325.53054
F. Cavalletti and E. Milman. The Globalization Theorem for the Curvature Dimension Condition, preprint on arXiv: 1612.07623 (2016)
De GiorgiESu una teoria generale della misura (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionale in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniAnn. Mat. Pura Appl.19543641912136221410.1007/BF024128380055.28504
E. Brué and D. Semola. Constancy of the dimension for RCD(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin
N Gigli (504_CR31) 2018; 251
R Jiang (504_CR37) 2016; 44
504_CR18
504_CR16
504_CR14
L Ambrosio (504_CR6) 2014; 266
E Le Donne (504_CR39) 2011; 36
504_CR11
K-T Sturm (504_CR49) 2006; 196
L Ambrosio (504_CR3) 2002; 10
X Tolsa (504_CR51) 2015; 54
L Ambrosio (504_CR15) 2014; 7
G De Philippis (504_CR22) 2018; 5
A Petrunin (504_CR46) 2011; 4
A Nakayasu (504_CR45) 2014; 24
J Lott (504_CR40) 2009; 169
H-W Fleming (504_CR27) 1966; 121
504_CR28
504_CR25
504_CR23
H Federer (504_CR26) 1960; 72
D Preiss (504_CR47) 1987; 125
E De Giorgi (504_CR19) 1954; 36
N Gigli (504_CR34) 2015; 111
N Gigli (504_CR29) 2014; 2
M Kell (504_CR38) 2018; 18
G De Philippis (504_CR21) 2016; 26
E De Giorgi (504_CR20) 1955; 4
504_CR4
504_CR1
504_CR36
504_CR35
X Menguy (504_CR42) 2001; 11
L Ambrosio (504_CR2) 2001; 159
L Ambrosio (504_CR7) 2015; 367
B White (504_CR56) 1989; 64
N Gigli (504_CR33) 2015; 705
L Ambrosio (504_CR9) 2014; 163
N Weaver (504_CR55) 2000; 178
L Ambrosio (504_CR12) 2018; 53
J Cheeger (504_CR17) 1999; 9
M-K Von Renesse (504_CR54) 2008; 259
N Gigli (504_CR32) 2016; 271
504_CR44
M Erbar (504_CR24) 2015; 201
L Ambrosio (504_CR10) 2015; 43
K-T Sturm (504_CR50) 2006; 196
C Villani (504_CR53) 2009
L Ambrosio (504_CR5) 2014; 256
L Ambrosio (504_CR13) 2009; 19
504_CR8
M Miranda Jr (504_CR43) 2003; 82
K.-T Sturm (504_CR48) 1996; 75
N Gigli (504_CR30) 2015; 236
J Azzam (504_CR52) 2015; 25
V Magnani (504_CR41) 2015; 145
References_xml – reference: NakayasuAMetric viscosity solutions for Hamilton–Jacobi equations of evolution typeAdv. Math. Sci. Appl.20142433335133627721327.35059
– reference: AmbrosioLGigliNSavaréGBakry–Émery curvature-dimension condition and Riemannian Ricci curvature boundsAnn. Probab.201543339404329847510.1214/14-AOP9071307.49044
– reference: L. Ambrosio and S. Honda. New Stability Results for Sequences of Metric Measure Spaces with Uniform Ricci Bounds From Below. In: Measure Theory in Non-Smooth Spaces. De Gruyter Open, Warsaw (2017), pp. 1–51.
– reference: De PhilippisGGigliNFrom volume cone to metric cone in the nonsmooth settingGeom. Funct. Anal.20162615261587357970510.1007/s00039-016-0391-61356.53049
– reference: KellMMondinoAOn the volume measure of non-smooth spaces with Ricci curvature bounded belowAnn. Sc. Norm. Super. Pisa Cl. Sci.201818559361038012911393.53034no. 2
– reference: WeaverNLipschitz algebras and derivationsII. Exterior differentiation. J. Funct. Anal.2000178641120979.46035
– reference: AzzamJTolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: Part IIGeometric and Functional Analysis20152513711412342605710.1007/s00039-015-0334-71334.28010
– reference: F. Cavalletti and E. Milman. The Globalization Theorem for the Curvature Dimension Condition, preprint on arXiv: 1612.07623 (2016)
– reference: L. Ambrosio, A. Mondino and G. Savaré. Nonlinear diffusion equations and curvature conditions in metric measure spaces. ArXiv preprint: arxiv:1509.07273 (2015). to appear in Memoirs Amer. Math. Soc.
– reference: De GiorgiESu una teoria generale della misura (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionale in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniAnn. Mat. Pura Appl.19543641912136221410.1007/BF024128380055.28504
– reference: VillaniCOptimal transport. Old and New. Grundlehren der Mathematischen Wissenschaften2009BerlinSpringer-Verlag338
– reference: E. Brué and D. Semola. Constancy of the dimension for RCD(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD(K,N)$$\end{document} spaces via regularity of Lagrangian flows. To appear in Comm. Pure Appl. Math., ArXiv:1804.07128 (2018)
– reference: PreissDGeometry of measures in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}: distributions, rectifiability and densitiesAnn. of Math.198712553764389016210.2307/19714100627.28008
– reference: SturmK-TOn the geometry of metric measure spaces IActa Math.200619665131223720610.1007/s11511-006-0002-81105.53035
– reference: AmbrosioLFine properties of sets of finite perimeter in doubling metric measure spacesSet-Valued Anal.200210111128192637610.1023/A:10165484025021037.28002
– reference: SturmK.-TAnalysis on local Dirichlet spaces. III. The parabolic Harnack inequalityJ. Math. Pures Appl199675927329713875220854.35016
– reference: N. Gigli and E. Pasqualetto. Behaviour of the reference measure on RCD spaces under charts, preprint, arXiv:1607.05188 (2016)
– reference: AmbrosioLDi MarinoSEquivalent definitions of BV space and of total variation on metric measure spacesJ. Funct. Anal.201426641504188317020610.1016/j.jfa.2014.02.0021302.26012
– reference: WhiteBA new proof of the compactness theorem for integral currentsComm. Math. Helvetici19896420722099736210.1007/BF025646710706.49028
– reference: Von RenesseM-KOn local Poincaré via transportationMath. Z.20082592131237561210.1007/s00209-007-0206-41141.53076
– reference: AmbrosioLHondaSTewodroseDShort-time behavior of the heat kernel and Weyl’s law on RCD∗(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm RCD}}^*(K,N)$$\end{document}-spacesAnn. Global Anal. Geom.20185397119374651710.1007/s10455-017-9569-x1390.58015
– reference: FlemingH-WFlat chains over a finite coefficient groupTrans. Amer. Math. Soc.196612116018618508410.1090/S0002-9947-1966-0185084-50136.03602
– reference: E.-B. Sylvester, T.-G. James, P. Lahti and N. Shanmugalingam. Asymptotic behavior of BV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BV$$\end{document} functions and sets of finite perimeter in metric measure spaces, Preprint arXiv:1810.05310 (2018)
– reference: GigliNMondinoARajalaTEuclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded belowJ. Reine Angew. Math.201570523324433773941323.53038
– reference: AmbrosioLSome fine properties of sets of finite perimeter in Ahlfors regular metric measure spacesAdv. Math.20011595167182384010.1006/aima.2000.19631002.28004
– reference: JiangRLiHZhangHHeat Kernel Bounds on Metric Measure Spaces and Some ApplicationsPotential Anal.201644601627348985710.1007/s11118-015-9521-21339.53043
– reference: De PhilippisGGigliNNon-collapsed spaces with Ricci curvature bounded from belowJ. Éc. polytech. Math.20185613650385226310.5802/jep.801409.53038
– reference: AmbrosioLGigliNMondinoARajalaTRiemannian Ricci curvature lower bounds in metric measure spaces with σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite measureTrans. Amer. Math. Soc.201536746614701333539710.1090/S0002-9947-2015-06111-X1317.53060
– reference: CheegerJDifferentiability of Lipschitz functions on metric measure spacesGeom. Funct. Anal.19999428517170844810.1007/s0003900500940942.58018
– reference: G. De Philippis, A. Marchese and F. Rindler. On a conjecture of Cheeger. In: Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory. De Gruyter Open, Warsaw (2017), pp. 145–155.
– reference: L. Ambrosio. Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School]. Scuola Normale Superiore, Pisa (1997), ii+144.
– reference: AmbrosioLFengJOn a class of first order Hamilton–Jacobi equations in metric spacesJ. Differential Equations201425621942245316044110.1016/j.jde.2013.12.0181283.49027
– reference: GigliNMondinoASavaréGConvergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flowsProc. Lond. Math. Soc.201511131071112934772301398.53044
– reference: ErbarMKuwadaKSturmK-TOn the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spacesInvent. Math.20152019931071338563910.1007/s00222-014-0563-71329.53059
– reference: SturmK-TOn the geometry of metric measure spaces IIActa Math.2006196133177223720710.1007/s11511-006-0003-71106.53032
– reference: GigliNAn overview of the proof of the splitting theorem in spaces with non-negative Ricci curvatureAnal. Geom. Metr. Spaces2014216921332108951310.53031
– reference: L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich. Birkhäuser (2005).
– reference: L. Ambrosio. Calculus, heat flow and curvature-dimension bounds in metric measure spaces. Proceedings of the ICM 2018 (2018)
– reference: N. Gigli. The splitting theorem in non-smooth context. Preprint arXiv:1302.5555 (2013)
– reference: AmbrosioLGigliNSavaréGMetric measure spaces with Riemannian Ricci curvature bounded from belowDuke Math. J.201416314051490320572910.1215/00127094-26816051304.35310
– reference: MenguyXExamples of strictly weakly regular pointsGeom. Funct. Anal.200111124131182964410.1007/PL000016670990.53025
– reference: TolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: part ICalc. Var., & PDE20155436433665342609010.1007/s00526-015-0917-z06544048
– reference: LottJVillaniCRicci curvature for metric-measure spaces via optimal transportAnn. of Math.20091692903991248061910.4007/annals.2009.169.9031178.53038
– reference: FedererHFlemingH.-WNormal and integral currentsAnn. of Math.196072245852012326010.2307/19702270187.31301
– reference: A. Mondino and A. Naber. Structure theory of metric measure spaces with lower Ricci curvature bounds. ArXiv preprint arXiv:1405.2222 (2014), to appear on J. Eur. Math Soc
– reference: AmbrosioLKleinerBLe DonneERectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplaneJ. Geom. Anal.200919509540249656410.1007/s12220-009-9068-91187.28008
– reference: AmbrosioLTrevisanDWell posedness of Lagrangian flows and continuity equations in metric measure spacesAnal. PDE2014711791234326596310.2140/apde.2014.7.11791357.49058
– reference: GigliNHanB-XIndependence on p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} of weak upper gradients on RCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD$$\end{document} spacesJ. Funct. Anal.2016271111349423910.1016/j.jfa.2016.04.0141339.53041
– reference: MirandaMJrFunctions of bounded variation on “good” metric spacesJ. Math. Pures Appl.2003829751004200520210.1016/S0021-7824(03)00036-91109.46030
– reference: PetruninAAlexandrov meets Lott–Villani–SturmMünster J. Math.20114536428692531247.53038
– reference: GigliNOn the differential structure of metric measure spaces and applicationsMem. Amer. Math. Soc.2015236vi91d33811311325.53054
– reference: GigliNNonsmooth differential geometry: an approach tailored for spaces with Ricci curvature bounded from belowMem. Amer. Math. Soc.2018251v16137569201404.53056
– reference: De GiorgiENuovi teoremi relativi alle misure (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionali in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniRicerche Mat.1955495113744990066.29903
– reference: MagnaniVOn a measure theoretic area formulaProc. Roy. Soc. Edinburgh Sect. A2015145885891341553310.1017/S030821051500013X1327.28004
– reference: N. Gigli and E. Pasqualetto. Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, Preprint arXiv:1611.09645 (2016)
– reference: Le DonneEMetric spaces with unique tangentsAnn. Acad. Sci. Fenn. Math.201136683694286553810.5186/aasfm.2011.36361242.54013
– volume: 163
  start-page: 1405
  year: 2014
  ident: 504_CR9
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2681605
– volume: 25
  start-page: 1371
  year: 2015
  ident: 504_CR52
  publication-title: Geometric and Functional Analysis
  doi: 10.1007/s00039-015-0334-7
– volume: 43
  start-page: 339
  year: 2015
  ident: 504_CR10
  publication-title: Ann. Probab.
  doi: 10.1214/14-AOP907
– volume: 271
  start-page: 1
  year: 2016
  ident: 504_CR32
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2016.04.014
– volume: 53
  start-page: 97
  year: 2018
  ident: 504_CR12
  publication-title: Ann. Global Anal. Geom.
  doi: 10.1007/s10455-017-9569-x
– volume: 178
  start-page: 64
  year: 2000
  ident: 504_CR55
  publication-title: II. Exterior differentiation. J. Funct. Anal.
– start-page: 338
  volume-title: Optimal transport. Old and New. Grundlehren der Mathematischen Wissenschaften
  year: 2009
  ident: 504_CR53
– ident: 504_CR18
– ident: 504_CR14
– volume: 111
  start-page: 1071
  issue: 3
  year: 2015
  ident: 504_CR34
  publication-title: Proc. Lond. Math. Soc.
– volume: 169
  start-page: 903
  issue: 2
  year: 2009
  ident: 504_CR40
  publication-title: Ann. of Math.
  doi: 10.4007/annals.2009.169.903
– ident: 504_CR23
– ident: 504_CR1
– volume: 26
  start-page: 1526
  year: 2016
  ident: 504_CR21
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-016-0391-6
– volume: 75
  start-page: 273
  issue: 9
  year: 1996
  ident: 504_CR48
  publication-title: J. Math. Pures Appl
– volume: 4
  start-page: 53
  year: 2011
  ident: 504_CR46
  publication-title: Münster J. Math.
– volume: 5
  start-page: 613
  year: 2018
  ident: 504_CR22
  publication-title: J. Éc. polytech. Math.
  doi: 10.5802/jep.80
– volume: 145
  start-page: 885
  year: 2015
  ident: 504_CR41
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S030821051500013X
– volume: 54
  start-page: 3643
  year: 2015
  ident: 504_CR51
  publication-title: Calc. Var., & PDE
  doi: 10.1007/s00526-015-0917-z
– volume: 266
  start-page: 4150
  year: 2014
  ident: 504_CR6
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.02.002
– volume: 196
  start-page: 65
  year: 2006
  ident: 504_CR49
  publication-title: Acta Math.
  doi: 10.1007/s11511-006-0002-8
– volume: 36
  start-page: 683
  year: 2011
  ident: 504_CR39
  publication-title: Ann. Acad. Sci. Fenn. Math.
  doi: 10.5186/aasfm.2011.3636
– volume: 24
  start-page: 333
  year: 2014
  ident: 504_CR45
  publication-title: Adv. Math. Sci. Appl.
– volume: 19
  start-page: 509
  year: 2009
  ident: 504_CR13
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-009-9068-9
– volume: 2
  start-page: 169
  year: 2014
  ident: 504_CR29
  publication-title: Anal. Geom. Metr. Spaces
– ident: 504_CR11
  doi: 10.1515/9783110550832-001
– ident: 504_CR28
– ident: 504_CR8
– volume: 44
  start-page: 601
  year: 2016
  ident: 504_CR37
  publication-title: Potential Anal.
  doi: 10.1007/s11118-015-9521-2
– volume: 82
  start-page: 975
  year: 2003
  ident: 504_CR43
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/S0021-7824(03)00036-9
– volume: 72
  start-page: 458
  issue: 2
  year: 1960
  ident: 504_CR26
  publication-title: Ann. of Math.
  doi: 10.2307/1970227
– ident: 504_CR35
– volume: 125
  start-page: 537
  year: 1987
  ident: 504_CR47
  publication-title: Ann. of Math.
  doi: 10.2307/1971410
– volume: 4
  start-page: 95
  year: 1955
  ident: 504_CR20
  publication-title: Ricerche Mat.
– ident: 504_CR16
– ident: 504_CR25
– volume: 201
  start-page: 993
  year: 2015
  ident: 504_CR24
  publication-title: Invent. Math.
  doi: 10.1007/s00222-014-0563-7
– volume: 7
  start-page: 1179
  year: 2014
  ident: 504_CR15
  publication-title: Anal. PDE
  doi: 10.2140/apde.2014.7.1179
– volume: 64
  start-page: 207
  year: 1989
  ident: 504_CR56
  publication-title: Comm. Math. Helvetici
  doi: 10.1007/BF02564671
– ident: 504_CR44
– volume: 121
  start-page: 160
  year: 1966
  ident: 504_CR27
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1966-0185084-5
– volume: 259
  start-page: 21
  year: 2008
  ident: 504_CR54
  publication-title: Math. Z.
  doi: 10.1007/s00209-007-0206-4
– ident: 504_CR36
– ident: 504_CR4
  doi: 10.1142/9789813272880_0015
– volume: 367
  start-page: 4661
  year: 2015
  ident: 504_CR7
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-2015-06111-X
– volume: 251
  start-page: v
  year: 2018
  ident: 504_CR31
  publication-title: Mem. Amer. Math. Soc.
– volume: 36
  start-page: 191
  issue: 4
  year: 1954
  ident: 504_CR19
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF02412838
– volume: 705
  start-page: 233
  year: 2015
  ident: 504_CR33
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crelle-2013-0052
– volume: 18
  start-page: 593
  issue: 5
  year: 2018
  ident: 504_CR38
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci.
– volume: 10
  start-page: 111
  year: 2002
  ident: 504_CR3
  publication-title: Set-Valued Anal.
  doi: 10.1023/A:1016548402502
– volume: 9
  start-page: 428
  year: 1999
  ident: 504_CR17
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s000390050094
– volume: 159
  start-page: 51
  year: 2001
  ident: 504_CR2
  publication-title: Adv. Math.
  doi: 10.1006/aima.2000.1963
– volume: 256
  start-page: 2194
  year: 2014
  ident: 504_CR5
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2013.12.018
– volume: 11
  start-page: 124
  year: 2001
  ident: 504_CR42
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/PL00001667
– volume: 196
  start-page: 133
  year: 2006
  ident: 504_CR50
  publication-title: Acta Math.
  doi: 10.1007/s11511-006-0003-7
– volume: 236
  start-page: vi
  year: 2015
  ident: 504_CR30
  publication-title: Mem. Amer. Math. Soc.
SSID ssj0005545
Score 2.4294832
Snippet This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD ( K , N ) metric measure spaces. Our main result asserts...
This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD(K,N) metric measure spaces. Our main result asserts...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 949
SubjectTerms Analysis
Asymptotic properties
Euclidean geometry
Half spaces
Mathematics
Mathematics and Statistics
Title Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces
URI https://link.springer.com/article/10.1007/s00039-019-00504-5
https://www.proquest.com/docview/2269424673
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xuJQDBQpqKKA9cKMrede7cXxMKOElEKKkSk_W2jtGUVuD4vSQW6-c-Un8E35JZzd2IhAgcbAs2eM9zGP3G88LYDdEkZnIai6ksVxpGfHY2iYXVrV0FhiUuYvonp03j3rqpK_7VVFYWWe71yFJv1NPi918HSm5vnQFOlBcz8Oidr47aXFPtmeJHdqPJnZuKVcq7FelMi-v8fQ4mmHMZ2FRf9p0V2C5gomsPZHrKsxhsQYfK8jIKoMs12DpbNp2tfwEPy4H1wNLuJrd5IyeM8E75tdw_Pjv_uHuDw7H7LjASRnlmJmCFsJR6Wi7Awc92YVv9k-cZoOCXe5_Y99vXcbWOvS6B1f7R7wanMAzsqgRJxCTaiODEDHNdGqI6c3QkjmkKsq1idxfRFTkq5hAhZnGDIUwQRxY3WqlGlW4AQvFTYGfgUUixZbIBTZTqyKDMdHEObkh0qKNMW6AqPmXZFVXcTfc4ncy7YfseZ4QzxPP80Q3YG_6ze2kp8ab1Fu1WJLKvspEugJcSZt82ICvtahmr19fbfN95F_gg_Ta4jL-tmBhNPyL24RCRukOLLa7nc65ux_-PD3Y8Ur4HwSD1NA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOFAOfQAVodDugRus5F3vxvaR0kahJQgBQblZa-8YRW0dFIdDbr323J_Uf9Jf0tmNnQgElTj4Ys_OYWZn9xvPC2A_RJGbyGoupLFcaRnxxNo2F1bFOg8MysJFdHtn7W5ffRnoQV0UVjXZ7k1I0p_U82I3X0dKri89gQ4U18uwSmAgdolcfXm0SOzQfjSxc0u5UuGgLpV5nMf962iBMR-ERf1t03kNL2uYyI5men0DS1huwKsaMrLaIKsNWO_N265Wm3B9MbwZWsLVbFQwes8E_2i-jad_f_7-8-sHjqfspMRZGeWUmZIY4aRytJ2hg57s3Df7J0mzYckujj-xy1uXsbUF_c7nq-Murwcn8JwsasIJxGTayCBEzHKdGRJ6O7RkDpmKCm0i9xcRFfkqJlBhrjFHIUyQBFbHcaZRhW9hpRyVuA0sEhnGohDYzqyKDCZEkxTkhkiLNsGkBaKRX5rXXcXdcIvv6bwfspd5SjJPvcxT3YKD-ZrbWU-N_1LvNmpJa_uqUukKcCUd8mELDhtVLT4_zW3neeQfYK171TtNT0_Ovr6DF9LvHJf9twsrk_Ed7hEimWTv_Qb8B9uV1LM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkCp6AEqpujx94EYtYsfebI68VjwKQpSt9hY58aRaQcNqNz3sjStnfhL_hF_C2JvdBVSQesglGfswM7a_ycw3BtgMUWQmspoLaSxXWkY8trbOhVUNnQUGZe4yuqdn9cOWOm7r9jMWv692H6Ukh5wG16WpKLe7Nt8eE988p5TCYHoCHSiuP8AMbcfC-XVL7kyKPLS_ptiFqFypsF3RZv49x8ujaYI3X6VI_cnTXIC5CjKynaGNP8MUFoswX8FHVi3O_iJ8Oh23YO1_gV8Xnd8dSxib3eSM3jPBd81Vb_B4e_9w9wd7A3ZU4JBSOWCmoImw7DvZZsfBUHbuG_-T1lmnYBd7--xn11VvLUGreXC5d8irSxR4RuooOQGaVBsZhIhpplNDBqiHlpZGqqJcm8j9UURFcYsJVJhpzFAIE8SB1Y1GqlGFX2G6uCnwG7BIpNgQucB6alVkMCaZOKeQRFq0McY1ECP9JVnVYdxddHGdjHsje50npPPE6zzRNdgaj-kO-2u8K706MktSrbV-Ih0ZV9KGH9bg-8hUk89vz7b8f-Ib8PF8v5n8ODo7WYFZ6R3HFQKuwnTZ-4trBE7KdN373xNmRdjv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rigidity+of+the+1-Bakry%E2%80%93%C3%89mery+Inequality+and+Sets+of+Finite+Perimeter+in+RCD+Spaces&rft.jtitle=Geometric+and+functional+analysis&rft.au=Ambrosio%2C+Luigi&rft.au=Bru%C3%A9%2C+Elia&rft.au=Semola%2C+Daniele&rft.date=2019-08-01&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=29&rft.issue=4&rft.spage=949&rft.epage=1001&rft_id=info:doi/10.1007%2Fs00039-019-00504-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00039_019_00504_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon