Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces
This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD ( K , N ) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and...
Saved in:
Published in | Geometric and functional analysis Vol. 29; no. 4; pp. 949 - 1001 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1016-443X 1420-8970 |
DOI | 10.1007/s00039-019-00504-5 |
Cover
Loading…
Abstract | This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over
RCD
(
K
,
N
)
metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and uniqueness statement when the ambient is
non collapsed
. As an intermediate tool, we provide a complete characterization of the class of
RCD
(
0
,
N
)
spaces for which there exists a nontrivial function satisfying the equality in the 1-Bakry–Émery inequality. This result is of independent interest and it is new, up to our knowledge, even in the smooth framework. |
---|---|
AbstractList | This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD(K,N) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and uniqueness statement when the ambient is non collapsed. As an intermediate tool, we provide a complete characterization of the class of RCD(0,N) spaces for which there exists a nontrivial function satisfying the equality in the 1-Bakry–Émery inequality. This result is of independent interest and it is new, up to our knowledge, even in the smooth framework. This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD ( K , N ) metric measure spaces. Our main result asserts existence of a Euclidean tangent half-space almost everywhere with respect to the perimeter measure and it can be improved to an existence and uniqueness statement when the ambient is non collapsed . As an intermediate tool, we provide a complete characterization of the class of RCD ( 0 , N ) spaces for which there exists a nontrivial function satisfying the equality in the 1-Bakry–Émery inequality. This result is of independent interest and it is new, up to our knowledge, even in the smooth framework. |
Author | Brué, Elia Semola, Daniele Ambrosio, Luigi |
Author_xml | – sequence: 1 givenname: Luigi surname: Ambrosio fullname: Ambrosio, Luigi email: luigi.ambrosio@sns.it organization: Scuola Normale Superiore – sequence: 2 givenname: Elia surname: Brué fullname: Brué, Elia organization: Scuola Normale Superiore – sequence: 3 givenname: Daniele surname: Semola fullname: Semola, Daniele organization: Scuola Normale Superiore |
BookMark | eNp9kDtOAzEQhi0UJELgAlSWqBfGa3sfJQQCkSKBeInO8m4mwSHxBtsptqOl5kjchJPgECQkCgprXHzfPP5d0rGNRUIOGBwxgPzYAwAvE2DxgQSRyC3SZSKFpChz6MQ_sCwRgj_ukF3vZxGXUsguebgxUzM2oaXNhIYnpCw51c-u_Xx9_3hboGvp0OLLSs_XiLZjeovBr9mBsSYgvUZnFhjQUWPpTf-M3i51jX6PbE_03OP-T-2R-8H5Xf8yGV1dDPsno6TmrAxJBlBJnQJHrGpZaVlDxscAohL5ROocmChQSFFoELyWWCNjGkoYy6KoJAreI4ebvkvXvKzQBzVrVs7GkSpNs1KkIst5pIoNVbvGe4cTVZugg2lscNrMFQO1TlFtUlQxRfWdopJRTf-oy3iwdu3_Et9IPsJ2iu53q3-sLzxchlg |
CitedBy_id | crossref_primary_10_1016_j_matpur_2020_07_004 crossref_primary_10_1142_S0219199722500687 crossref_primary_10_1007_s10455_024_09945_0 crossref_primary_10_1515_crelle_2024_0032 crossref_primary_10_1007_s12220_024_01784_6 crossref_primary_10_1007_s00208_023_02674_y crossref_primary_10_1007_s12220_022_01131_7 crossref_primary_10_1007_s00222_022_01136_7 crossref_primary_10_1007_s00039_023_00626_x crossref_primary_10_1016_j_na_2024_113738 crossref_primary_10_2140_apde_2024_17_2797 crossref_primary_10_1090_suga_493 crossref_primary_10_1007_s00526_020_1725_7 crossref_primary_10_1007_s12220_023_01434_3 crossref_primary_10_1007_s10883_022_09592_3 crossref_primary_10_1007_s00222_021_01092_8 crossref_primary_10_1007_s00526_022_02193_9 crossref_primary_10_1016_j_aim_2021_107919 crossref_primary_10_1016_j_jfa_2025_110940 crossref_primary_10_1051_cocv_2022052 crossref_primary_10_1007_s00526_020_01750_4 crossref_primary_10_1016_j_jfa_2021_109022 crossref_primary_10_1007_s10473_023_0501_0 |
Cites_doi | 10.1215/00127094-2681605 10.1007/s00039-015-0334-7 10.1214/14-AOP907 10.1016/j.jfa.2016.04.014 10.1007/s10455-017-9569-x 10.4007/annals.2009.169.903 10.1007/s00039-016-0391-6 10.5802/jep.80 10.1017/S030821051500013X 10.1007/s00526-015-0917-z 10.1016/j.jfa.2014.02.002 10.1007/s11511-006-0002-8 10.5186/aasfm.2011.3636 10.1007/s12220-009-9068-9 10.1515/9783110550832-001 10.1007/s11118-015-9521-2 10.1016/S0021-7824(03)00036-9 10.2307/1970227 10.2307/1971410 10.1007/s00222-014-0563-7 10.2140/apde.2014.7.1179 10.1007/BF02564671 10.1090/S0002-9947-1966-0185084-5 10.1007/s00209-007-0206-4 10.1142/9789813272880_0015 10.1090/S0002-9947-2015-06111-X 10.1007/BF02412838 10.1515/crelle-2013-0052 10.1023/A:1016548402502 10.1007/s000390050094 10.1006/aima.2000.1963 10.1016/j.jde.2013.12.018 10.1007/PL00001667 10.1007/s11511-006-0003-7 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00039-019-00504-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 1001 |
ExternalDocumentID | 10_1007_s00039_019_00504_5 |
GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 2P1 2VQ 5QI 5VS 692 AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG ADKPE AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA BBWZM BDATZ CAG CITATION COF FINBP FSGXE IHE KOW KQ8 LO0 N2Q NDZJH OK1 R4E REI RNI RZK S1Z S26 S28 SCLPG T16 UZXMN VFIZW VH1 ZWQNP ABRTQ |
ID | FETCH-LOGICAL-c319t-600b5a203eebc5ba5c063d004b47f5a70148e4548a043c5ece11a090d588b5e43 |
IEDL.DBID | U2A |
ISSN | 1016-443X |
IngestDate | Fri Jul 25 11:16:24 EDT 2025 Tue Jul 01 02:31:06 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:33:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-600b5a203eebc5ba5c063d004b47f5a70148e4548a043c5ece11a090d588b5e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2269424673 |
PQPubID | 2044207 |
PageCount | 53 |
ParticipantIDs | proquest_journals_2269424673 crossref_citationtrail_10_1007_s00039_019_00504_5 crossref_primary_10_1007_s00039_019_00504_5 springer_journals_10_1007_s00039_019_00504_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | AzzamJTolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: Part IIGeometric and Functional Analysis20152513711412342605710.1007/s00039-015-0334-71334.28010 AmbrosioLFine properties of sets of finite perimeter in doubling metric measure spacesSet-Valued Anal.200210111128192637610.1023/A:10165484025021037.28002 GigliNAn overview of the proof of the splitting theorem in spaces with non-negative Ricci curvatureAnal. Geom. Metr. Spaces2014216921332108951310.53031 GigliNHanB-XIndependence on p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} of weak upper gradients on RCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD$$\end{document} spacesJ. Funct. Anal.2016271111349423910.1016/j.jfa.2016.04.0141339.53041 L. Ambrosio. Calculus, heat flow and curvature-dimension bounds in metric measure spaces. Proceedings of the ICM 2018 (2018) JiangRLiHZhangHHeat Kernel Bounds on Metric Measure Spaces and Some ApplicationsPotential Anal.201644601627348985710.1007/s11118-015-9521-21339.53043 FlemingH-WFlat chains over a finite coefficient groupTrans. Amer. Math. Soc.196612116018618508410.1090/S0002-9947-1966-0185084-50136.03602 AmbrosioLGigliNMondinoARajalaTRiemannian Ricci curvature lower bounds in metric measure spaces with σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite measureTrans. Amer. Math. Soc.201536746614701333539710.1090/S0002-9947-2015-06111-X1317.53060 N. Gigli and E. Pasqualetto. Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, Preprint arXiv:1611.09645 (2016) LottJVillaniCRicci curvature for metric-measure spaces via optimal transportAnn. of Math.20091692903991248061910.4007/annals.2009.169.9031178.53038 MenguyXExamples of strictly weakly regular pointsGeom. Funct. Anal.200111124131182964410.1007/PL000016670990.53025 N. Gigli. The splitting theorem in non-smooth context. Preprint arXiv:1302.5555 (2013) GigliNNonsmooth differential geometry: an approach tailored for spaces with Ricci curvature bounded from belowMem. Amer. Math. Soc.2018251v16137569201404.53056 MagnaniVOn a measure theoretic area formulaProc. Roy. Soc. Edinburgh Sect. A2015145885891341553310.1017/S030821051500013X1327.28004 GigliNMondinoARajalaTEuclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded belowJ. Reine Angew. Math.201570523324433773941323.53038 De PhilippisGGigliNNon-collapsed spaces with Ricci curvature bounded from belowJ. Éc. polytech. Math.20185613650385226310.5802/jep.801409.53038 GigliNMondinoASavaréGConvergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flowsProc. Lond. Math. Soc.201511131071112934772301398.53044 AmbrosioLKleinerBLe DonneERectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplaneJ. Geom. Anal.200919509540249656410.1007/s12220-009-9068-91187.28008 PreissDGeometry of measures in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}: distributions, rectifiability and densitiesAnn. of Math.198712553764389016210.2307/19714100627.28008 AmbrosioLFengJOn a class of first order Hamilton–Jacobi equations in metric spacesJ. Differential Equations201425621942245316044110.1016/j.jde.2013.12.0181283.49027 AmbrosioLDi MarinoSEquivalent definitions of BV space and of total variation on metric measure spacesJ. Funct. Anal.201426641504188317020610.1016/j.jfa.2014.02.0021302.26012 A. Mondino and A. Naber. Structure theory of metric measure spaces with lower Ricci curvature bounds. ArXiv preprint arXiv:1405.2222 (2014), to appear on J. Eur. Math Soc TolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: part ICalc. Var., & PDE20155436433665342609010.1007/s00526-015-0917-z06544048 AmbrosioLTrevisanDWell posedness of Lagrangian flows and continuity equations in metric measure spacesAnal. PDE2014711791234326596310.2140/apde.2014.7.11791357.49058 N. Gigli and E. Pasqualetto. Behaviour of the reference measure on RCD spaces under charts, preprint, arXiv:1607.05188 (2016) L. Ambrosio and S. Honda. New Stability Results for Sequences of Metric Measure Spaces with Uniform Ricci Bounds From Below. In: Measure Theory in Non-Smooth Spaces. De Gruyter Open, Warsaw (2017), pp. 1–51. MirandaMJrFunctions of bounded variation on “good” metric spacesJ. Math. Pures Appl.2003829751004200520210.1016/S0021-7824(03)00036-91109.46030 WeaverNLipschitz algebras and derivationsII. Exterior differentiation. J. Funct. Anal.2000178641120979.46035 WhiteBA new proof of the compactness theorem for integral currentsComm. Math. Helvetici19896420722099736210.1007/BF025646710706.49028 AmbrosioLGigliNSavaréGBakry–Émery curvature-dimension condition and Riemannian Ricci curvature boundsAnn. Probab.201543339404329847510.1214/14-AOP9071307.49044 FedererHFlemingH.-WNormal and integral currentsAnn. of Math.196072245852012326010.2307/19702270187.31301 L. Ambrosio. Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School]. Scuola Normale Superiore, Pisa (1997), ii+144. SturmK.-TAnalysis on local Dirichlet spaces. III. The parabolic Harnack inequalityJ. Math. Pures Appl199675927329713875220854.35016 L. Ambrosio, A. Mondino and G. Savaré. Nonlinear diffusion equations and curvature conditions in metric measure spaces. ArXiv preprint: arxiv:1509.07273 (2015). to appear in Memoirs Amer. Math. Soc. L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich. Birkhäuser (2005). AmbrosioLHondaSTewodroseDShort-time behavior of the heat kernel and Weyl’s law on RCD∗(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm RCD}}^*(K,N)$$\end{document}-spacesAnn. Global Anal. Geom.20185397119374651710.1007/s10455-017-9569-x1390.58015 G. De Philippis, A. Marchese and F. Rindler. On a conjecture of Cheeger. In: Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory. De Gruyter Open, Warsaw (2017), pp. 145–155. PetruninAAlexandrov meets Lott–Villani–SturmMünster J. Math.20114536428692531247.53038 Von RenesseM-KOn local Poincaré via transportationMath. Z.20082592131237561210.1007/s00209-007-0206-41141.53076 De GiorgiENuovi teoremi relativi alle misure (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionali in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniRicerche Mat.1955495113744990066.29903 VillaniCOptimal transport. Old and New. Grundlehren der Mathematischen Wissenschaften2009BerlinSpringer-Verlag338 ErbarMKuwadaKSturmK-TOn the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spacesInvent. Math.20152019931071338563910.1007/s00222-014-0563-71329.53059 SturmK-TOn the geometry of metric measure spaces IIActa Math.2006196133177223720710.1007/s11511-006-0003-71106.53032 GigliNOn the differential structure of metric measure spaces and applicationsMem. Amer. Math. Soc.2015236vi91d33811311325.53054 F. Cavalletti and E. Milman. The Globalization Theorem for the Curvature Dimension Condition, preprint on arXiv: 1612.07623 (2016) De GiorgiESu una teoria generale della misura (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionale in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniAnn. Mat. Pura Appl.19543641912136221410.1007/BF024128380055.28504 E. Brué and D. Semola. Constancy of the dimension for RCD(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin N Gigli (504_CR31) 2018; 251 R Jiang (504_CR37) 2016; 44 504_CR18 504_CR16 504_CR14 L Ambrosio (504_CR6) 2014; 266 E Le Donne (504_CR39) 2011; 36 504_CR11 K-T Sturm (504_CR49) 2006; 196 L Ambrosio (504_CR3) 2002; 10 X Tolsa (504_CR51) 2015; 54 L Ambrosio (504_CR15) 2014; 7 G De Philippis (504_CR22) 2018; 5 A Petrunin (504_CR46) 2011; 4 A Nakayasu (504_CR45) 2014; 24 J Lott (504_CR40) 2009; 169 H-W Fleming (504_CR27) 1966; 121 504_CR28 504_CR25 504_CR23 H Federer (504_CR26) 1960; 72 D Preiss (504_CR47) 1987; 125 E De Giorgi (504_CR19) 1954; 36 N Gigli (504_CR34) 2015; 111 N Gigli (504_CR29) 2014; 2 M Kell (504_CR38) 2018; 18 G De Philippis (504_CR21) 2016; 26 E De Giorgi (504_CR20) 1955; 4 504_CR4 504_CR1 504_CR36 504_CR35 X Menguy (504_CR42) 2001; 11 L Ambrosio (504_CR2) 2001; 159 L Ambrosio (504_CR7) 2015; 367 B White (504_CR56) 1989; 64 N Gigli (504_CR33) 2015; 705 L Ambrosio (504_CR9) 2014; 163 N Weaver (504_CR55) 2000; 178 L Ambrosio (504_CR12) 2018; 53 J Cheeger (504_CR17) 1999; 9 M-K Von Renesse (504_CR54) 2008; 259 N Gigli (504_CR32) 2016; 271 504_CR44 M Erbar (504_CR24) 2015; 201 L Ambrosio (504_CR10) 2015; 43 K-T Sturm (504_CR50) 2006; 196 C Villani (504_CR53) 2009 L Ambrosio (504_CR5) 2014; 256 L Ambrosio (504_CR13) 2009; 19 504_CR8 M Miranda Jr (504_CR43) 2003; 82 K.-T Sturm (504_CR48) 1996; 75 N Gigli (504_CR30) 2015; 236 J Azzam (504_CR52) 2015; 25 V Magnani (504_CR41) 2015; 145 |
References_xml | – reference: NakayasuAMetric viscosity solutions for Hamilton–Jacobi equations of evolution typeAdv. Math. Sci. Appl.20142433335133627721327.35059 – reference: AmbrosioLGigliNSavaréGBakry–Émery curvature-dimension condition and Riemannian Ricci curvature boundsAnn. Probab.201543339404329847510.1214/14-AOP9071307.49044 – reference: L. Ambrosio and S. Honda. New Stability Results for Sequences of Metric Measure Spaces with Uniform Ricci Bounds From Below. In: Measure Theory in Non-Smooth Spaces. De Gruyter Open, Warsaw (2017), pp. 1–51. – reference: De PhilippisGGigliNFrom volume cone to metric cone in the nonsmooth settingGeom. Funct. Anal.20162615261587357970510.1007/s00039-016-0391-61356.53049 – reference: KellMMondinoAOn the volume measure of non-smooth spaces with Ricci curvature bounded belowAnn. Sc. Norm. Super. Pisa Cl. Sci.201818559361038012911393.53034no. 2 – reference: WeaverNLipschitz algebras and derivationsII. Exterior differentiation. J. Funct. Anal.2000178641120979.46035 – reference: AzzamJTolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: Part IIGeometric and Functional Analysis20152513711412342605710.1007/s00039-015-0334-71334.28010 – reference: F. Cavalletti and E. Milman. The Globalization Theorem for the Curvature Dimension Condition, preprint on arXiv: 1612.07623 (2016) – reference: L. Ambrosio, A. Mondino and G. Savaré. Nonlinear diffusion equations and curvature conditions in metric measure spaces. ArXiv preprint: arxiv:1509.07273 (2015). to appear in Memoirs Amer. Math. Soc. – reference: De GiorgiESu una teoria generale della misura (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionale in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniAnn. Mat. Pura Appl.19543641912136221410.1007/BF024128380055.28504 – reference: VillaniCOptimal transport. Old and New. Grundlehren der Mathematischen Wissenschaften2009BerlinSpringer-Verlag338 – reference: E. Brué and D. Semola. Constancy of the dimension for RCD(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD(K,N)$$\end{document} spaces via regularity of Lagrangian flows. To appear in Comm. Pure Appl. Math., ArXiv:1804.07128 (2018) – reference: PreissDGeometry of measures in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document}: distributions, rectifiability and densitiesAnn. of Math.198712553764389016210.2307/19714100627.28008 – reference: SturmK-TOn the geometry of metric measure spaces IActa Math.200619665131223720610.1007/s11511-006-0002-81105.53035 – reference: AmbrosioLFine properties of sets of finite perimeter in doubling metric measure spacesSet-Valued Anal.200210111128192637610.1023/A:10165484025021037.28002 – reference: SturmK.-TAnalysis on local Dirichlet spaces. III. The parabolic Harnack inequalityJ. Math. Pures Appl199675927329713875220854.35016 – reference: N. Gigli and E. Pasqualetto. Behaviour of the reference measure on RCD spaces under charts, preprint, arXiv:1607.05188 (2016) – reference: AmbrosioLDi MarinoSEquivalent definitions of BV space and of total variation on metric measure spacesJ. Funct. Anal.201426641504188317020610.1016/j.jfa.2014.02.0021302.26012 – reference: WhiteBA new proof of the compactness theorem for integral currentsComm. Math. Helvetici19896420722099736210.1007/BF025646710706.49028 – reference: Von RenesseM-KOn local Poincaré via transportationMath. Z.20082592131237561210.1007/s00209-007-0206-41141.53076 – reference: AmbrosioLHondaSTewodroseDShort-time behavior of the heat kernel and Weyl’s law on RCD∗(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm RCD}}^*(K,N)$$\end{document}-spacesAnn. Global Anal. Geom.20185397119374651710.1007/s10455-017-9569-x1390.58015 – reference: FlemingH-WFlat chains over a finite coefficient groupTrans. Amer. Math. Soc.196612116018618508410.1090/S0002-9947-1966-0185084-50136.03602 – reference: E.-B. Sylvester, T.-G. James, P. Lahti and N. Shanmugalingam. Asymptotic behavior of BV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BV$$\end{document} functions and sets of finite perimeter in metric measure spaces, Preprint arXiv:1810.05310 (2018) – reference: GigliNMondinoARajalaTEuclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded belowJ. Reine Angew. Math.201570523324433773941323.53038 – reference: AmbrosioLSome fine properties of sets of finite perimeter in Ahlfors regular metric measure spacesAdv. Math.20011595167182384010.1006/aima.2000.19631002.28004 – reference: JiangRLiHZhangHHeat Kernel Bounds on Metric Measure Spaces and Some ApplicationsPotential Anal.201644601627348985710.1007/s11118-015-9521-21339.53043 – reference: De PhilippisGGigliNNon-collapsed spaces with Ricci curvature bounded from belowJ. Éc. polytech. Math.20185613650385226310.5802/jep.801409.53038 – reference: AmbrosioLGigliNMondinoARajalaTRiemannian Ricci curvature lower bounds in metric measure spaces with σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite measureTrans. Amer. Math. Soc.201536746614701333539710.1090/S0002-9947-2015-06111-X1317.53060 – reference: CheegerJDifferentiability of Lipschitz functions on metric measure spacesGeom. Funct. Anal.19999428517170844810.1007/s0003900500940942.58018 – reference: G. De Philippis, A. Marchese and F. Rindler. On a conjecture of Cheeger. In: Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory. De Gruyter Open, Warsaw (2017), pp. 145–155. – reference: L. Ambrosio. Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School]. Scuola Normale Superiore, Pisa (1997), ii+144. – reference: AmbrosioLFengJOn a class of first order Hamilton–Jacobi equations in metric spacesJ. Differential Equations201425621942245316044110.1016/j.jde.2013.12.0181283.49027 – reference: GigliNMondinoASavaréGConvergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flowsProc. Lond. Math. Soc.201511131071112934772301398.53044 – reference: ErbarMKuwadaKSturmK-TOn the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spacesInvent. Math.20152019931071338563910.1007/s00222-014-0563-71329.53059 – reference: SturmK-TOn the geometry of metric measure spaces IIActa Math.2006196133177223720710.1007/s11511-006-0003-71106.53032 – reference: GigliNAn overview of the proof of the splitting theorem in spaces with non-negative Ricci curvatureAnal. Geom. Metr. Spaces2014216921332108951310.53031 – reference: L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich. Birkhäuser (2005). – reference: L. Ambrosio. Calculus, heat flow and curvature-dimension bounds in metric measure spaces. Proceedings of the ICM 2018 (2018) – reference: N. Gigli. The splitting theorem in non-smooth context. Preprint arXiv:1302.5555 (2013) – reference: AmbrosioLGigliNSavaréGMetric measure spaces with Riemannian Ricci curvature bounded from belowDuke Math. J.201416314051490320572910.1215/00127094-26816051304.35310 – reference: MenguyXExamples of strictly weakly regular pointsGeom. Funct. Anal.200111124131182964410.1007/PL000016670990.53025 – reference: TolsaXCharacterization of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-rectifiability in terms of Jones’ square function: part ICalc. Var., & PDE20155436433665342609010.1007/s00526-015-0917-z06544048 – reference: LottJVillaniCRicci curvature for metric-measure spaces via optimal transportAnn. of Math.20091692903991248061910.4007/annals.2009.169.9031178.53038 – reference: FedererHFlemingH.-WNormal and integral currentsAnn. of Math.196072245852012326010.2307/19702270187.31301 – reference: A. Mondino and A. Naber. Structure theory of metric measure spaces with lower Ricci curvature bounds. ArXiv preprint arXiv:1405.2222 (2014), to appear on J. Eur. Math Soc – reference: AmbrosioLKleinerBLe DonneERectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplaneJ. Geom. Anal.200919509540249656410.1007/s12220-009-9068-91187.28008 – reference: AmbrosioLTrevisanDWell posedness of Lagrangian flows and continuity equations in metric measure spacesAnal. PDE2014711791234326596310.2140/apde.2014.7.11791357.49058 – reference: GigliNHanB-XIndependence on p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} of weak upper gradients on RCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RCD$$\end{document} spacesJ. Funct. Anal.2016271111349423910.1016/j.jfa.2016.04.0141339.53041 – reference: MirandaMJrFunctions of bounded variation on “good” metric spacesJ. Math. Pures Appl.2003829751004200520210.1016/S0021-7824(03)00036-91109.46030 – reference: PetruninAAlexandrov meets Lott–Villani–SturmMünster J. Math.20114536428692531247.53038 – reference: GigliNOn the differential structure of metric measure spaces and applicationsMem. Amer. Math. Soc.2015236vi91d33811311325.53054 – reference: GigliNNonsmooth differential geometry: an approach tailored for spaces with Ricci curvature bounded from belowMem. Amer. Math. Soc.2018251v16137569201404.53056 – reference: De GiorgiENuovi teoremi relativi alle misure (r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r-1)$$\end{document}-dimensionali in uno spazio ad r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} dimensioniRicerche Mat.1955495113744990066.29903 – reference: MagnaniVOn a measure theoretic area formulaProc. Roy. Soc. Edinburgh Sect. A2015145885891341553310.1017/S030821051500013X1327.28004 – reference: N. Gigli and E. Pasqualetto. Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, Preprint arXiv:1611.09645 (2016) – reference: Le DonneEMetric spaces with unique tangentsAnn. Acad. Sci. Fenn. Math.201136683694286553810.5186/aasfm.2011.36361242.54013 – volume: 163 start-page: 1405 year: 2014 ident: 504_CR9 publication-title: Duke Math. J. doi: 10.1215/00127094-2681605 – volume: 25 start-page: 1371 year: 2015 ident: 504_CR52 publication-title: Geometric and Functional Analysis doi: 10.1007/s00039-015-0334-7 – volume: 43 start-page: 339 year: 2015 ident: 504_CR10 publication-title: Ann. Probab. doi: 10.1214/14-AOP907 – volume: 271 start-page: 1 year: 2016 ident: 504_CR32 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2016.04.014 – volume: 53 start-page: 97 year: 2018 ident: 504_CR12 publication-title: Ann. Global Anal. Geom. doi: 10.1007/s10455-017-9569-x – volume: 178 start-page: 64 year: 2000 ident: 504_CR55 publication-title: II. Exterior differentiation. J. Funct. Anal. – start-page: 338 volume-title: Optimal transport. Old and New. Grundlehren der Mathematischen Wissenschaften year: 2009 ident: 504_CR53 – ident: 504_CR18 – ident: 504_CR14 – volume: 111 start-page: 1071 issue: 3 year: 2015 ident: 504_CR34 publication-title: Proc. Lond. Math. Soc. – volume: 169 start-page: 903 issue: 2 year: 2009 ident: 504_CR40 publication-title: Ann. of Math. doi: 10.4007/annals.2009.169.903 – ident: 504_CR23 – ident: 504_CR1 – volume: 26 start-page: 1526 year: 2016 ident: 504_CR21 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-016-0391-6 – volume: 75 start-page: 273 issue: 9 year: 1996 ident: 504_CR48 publication-title: J. Math. Pures Appl – volume: 4 start-page: 53 year: 2011 ident: 504_CR46 publication-title: Münster J. Math. – volume: 5 start-page: 613 year: 2018 ident: 504_CR22 publication-title: J. Éc. polytech. Math. doi: 10.5802/jep.80 – volume: 145 start-page: 885 year: 2015 ident: 504_CR41 publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S030821051500013X – volume: 54 start-page: 3643 year: 2015 ident: 504_CR51 publication-title: Calc. Var., & PDE doi: 10.1007/s00526-015-0917-z – volume: 266 start-page: 4150 year: 2014 ident: 504_CR6 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2014.02.002 – volume: 196 start-page: 65 year: 2006 ident: 504_CR49 publication-title: Acta Math. doi: 10.1007/s11511-006-0002-8 – volume: 36 start-page: 683 year: 2011 ident: 504_CR39 publication-title: Ann. Acad. Sci. Fenn. Math. doi: 10.5186/aasfm.2011.3636 – volume: 24 start-page: 333 year: 2014 ident: 504_CR45 publication-title: Adv. Math. Sci. Appl. – volume: 19 start-page: 509 year: 2009 ident: 504_CR13 publication-title: J. Geom. Anal. doi: 10.1007/s12220-009-9068-9 – volume: 2 start-page: 169 year: 2014 ident: 504_CR29 publication-title: Anal. Geom. Metr. Spaces – ident: 504_CR11 doi: 10.1515/9783110550832-001 – ident: 504_CR28 – ident: 504_CR8 – volume: 44 start-page: 601 year: 2016 ident: 504_CR37 publication-title: Potential Anal. doi: 10.1007/s11118-015-9521-2 – volume: 82 start-page: 975 year: 2003 ident: 504_CR43 publication-title: J. Math. Pures Appl. doi: 10.1016/S0021-7824(03)00036-9 – volume: 72 start-page: 458 issue: 2 year: 1960 ident: 504_CR26 publication-title: Ann. of Math. doi: 10.2307/1970227 – ident: 504_CR35 – volume: 125 start-page: 537 year: 1987 ident: 504_CR47 publication-title: Ann. of Math. doi: 10.2307/1971410 – volume: 4 start-page: 95 year: 1955 ident: 504_CR20 publication-title: Ricerche Mat. – ident: 504_CR16 – ident: 504_CR25 – volume: 201 start-page: 993 year: 2015 ident: 504_CR24 publication-title: Invent. Math. doi: 10.1007/s00222-014-0563-7 – volume: 7 start-page: 1179 year: 2014 ident: 504_CR15 publication-title: Anal. PDE doi: 10.2140/apde.2014.7.1179 – volume: 64 start-page: 207 year: 1989 ident: 504_CR56 publication-title: Comm. Math. Helvetici doi: 10.1007/BF02564671 – ident: 504_CR44 – volume: 121 start-page: 160 year: 1966 ident: 504_CR27 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1966-0185084-5 – volume: 259 start-page: 21 year: 2008 ident: 504_CR54 publication-title: Math. Z. doi: 10.1007/s00209-007-0206-4 – ident: 504_CR36 – ident: 504_CR4 doi: 10.1142/9789813272880_0015 – volume: 367 start-page: 4661 year: 2015 ident: 504_CR7 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-2015-06111-X – volume: 251 start-page: v year: 2018 ident: 504_CR31 publication-title: Mem. Amer. Math. Soc. – volume: 36 start-page: 191 issue: 4 year: 1954 ident: 504_CR19 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/BF02412838 – volume: 705 start-page: 233 year: 2015 ident: 504_CR33 publication-title: J. Reine Angew. Math. doi: 10.1515/crelle-2013-0052 – volume: 18 start-page: 593 issue: 5 year: 2018 ident: 504_CR38 publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. – volume: 10 start-page: 111 year: 2002 ident: 504_CR3 publication-title: Set-Valued Anal. doi: 10.1023/A:1016548402502 – volume: 9 start-page: 428 year: 1999 ident: 504_CR17 publication-title: Geom. Funct. Anal. doi: 10.1007/s000390050094 – volume: 159 start-page: 51 year: 2001 ident: 504_CR2 publication-title: Adv. Math. doi: 10.1006/aima.2000.1963 – volume: 256 start-page: 2194 year: 2014 ident: 504_CR5 publication-title: J. Differential Equations doi: 10.1016/j.jde.2013.12.018 – volume: 11 start-page: 124 year: 2001 ident: 504_CR42 publication-title: Geom. Funct. Anal. doi: 10.1007/PL00001667 – volume: 196 start-page: 133 year: 2006 ident: 504_CR50 publication-title: Acta Math. doi: 10.1007/s11511-006-0003-7 – volume: 236 start-page: vi year: 2015 ident: 504_CR30 publication-title: Mem. Amer. Math. Soc. |
SSID | ssj0005545 |
Score | 2.4294832 |
Snippet | This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over
RCD
(
K
,
N
)
metric measure spaces. Our main result asserts... This note is dedicated to the study of the asymptotic behaviour of sets of finite perimeter over RCD(K,N) metric measure spaces. Our main result asserts... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 949 |
SubjectTerms | Analysis Asymptotic properties Euclidean geometry Half spaces Mathematics Mathematics and Statistics |
Title | Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces |
URI | https://link.springer.com/article/10.1007/s00039-019-00504-5 https://www.proquest.com/docview/2269424673 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xuJQDBQpqKKA9cKMrede7cXxMKOElEKKkSk_W2jtGUVuD4vSQW6-c-Un8E35JZzd2IhAgcbAs2eM9zGP3G88LYDdEkZnIai6ksVxpGfHY2iYXVrV0FhiUuYvonp03j3rqpK_7VVFYWWe71yFJv1NPi918HSm5vnQFOlBcz8Oidr47aXFPtmeJHdqPJnZuKVcq7FelMi-v8fQ4mmHMZ2FRf9p0V2C5gomsPZHrKsxhsQYfK8jIKoMs12DpbNp2tfwEPy4H1wNLuJrd5IyeM8E75tdw_Pjv_uHuDw7H7LjASRnlmJmCFsJR6Wi7Awc92YVv9k-cZoOCXe5_Y99vXcbWOvS6B1f7R7wanMAzsqgRJxCTaiODEDHNdGqI6c3QkjmkKsq1idxfRFTkq5hAhZnGDIUwQRxY3WqlGlW4AQvFTYGfgUUixZbIBTZTqyKDMdHEObkh0qKNMW6AqPmXZFVXcTfc4ncy7YfseZ4QzxPP80Q3YG_6ze2kp8ab1Fu1WJLKvspEugJcSZt82ICvtahmr19fbfN95F_gg_Ta4jL-tmBhNPyL24RCRukOLLa7nc65ux_-PD3Y8Ur4HwSD1NA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOFAOfQAVodDugRus5F3vxvaR0kahJQgBQblZa-8YRW0dFIdDbr323J_Uf9Jf0tmNnQgElTj4Ys_OYWZn9xvPC2A_RJGbyGoupLFcaRnxxNo2F1bFOg8MysJFdHtn7W5ffRnoQV0UVjXZ7k1I0p_U82I3X0dKri89gQ4U18uwSmAgdolcfXm0SOzQfjSxc0u5UuGgLpV5nMf962iBMR-ERf1t03kNL2uYyI5men0DS1huwKsaMrLaIKsNWO_N265Wm3B9MbwZWsLVbFQwes8E_2i-jad_f_7-8-sHjqfspMRZGeWUmZIY4aRytJ2hg57s3Df7J0mzYckujj-xy1uXsbUF_c7nq-Murwcn8JwsasIJxGTayCBEzHKdGRJ6O7RkDpmKCm0i9xcRFfkqJlBhrjFHIUyQBFbHcaZRhW9hpRyVuA0sEhnGohDYzqyKDCZEkxTkhkiLNsGkBaKRX5rXXcXdcIvv6bwfspd5SjJPvcxT3YKD-ZrbWU-N_1LvNmpJa_uqUukKcCUd8mELDhtVLT4_zW3neeQfYK171TtNT0_Ovr6DF9LvHJf9twsrk_Ed7hEimWTv_Qb8B9uV1LM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkCp6AEqpujx94EYtYsfebI68VjwKQpSt9hY58aRaQcNqNz3sjStnfhL_hF_C2JvdBVSQesglGfswM7a_ycw3BtgMUWQmspoLaSxXWkY8trbOhVUNnQUGZe4yuqdn9cOWOm7r9jMWv692H6Ukh5wG16WpKLe7Nt8eE988p5TCYHoCHSiuP8AMbcfC-XVL7kyKPLS_ptiFqFypsF3RZv49x8ujaYI3X6VI_cnTXIC5CjKynaGNP8MUFoswX8FHVi3O_iJ8Oh23YO1_gV8Xnd8dSxib3eSM3jPBd81Vb_B4e_9w9wd7A3ZU4JBSOWCmoImw7DvZZsfBUHbuG_-T1lmnYBd7--xn11VvLUGreXC5d8irSxR4RuooOQGaVBsZhIhpplNDBqiHlpZGqqJcm8j9UURFcYsJVJhpzFAIE8SB1Y1GqlGFX2G6uCnwG7BIpNgQucB6alVkMCaZOKeQRFq0McY1ECP9JVnVYdxddHGdjHsje50npPPE6zzRNdgaj-kO-2u8K706MktSrbV-Ih0ZV9KGH9bg-8hUk89vz7b8f-Ib8PF8v5n8ODo7WYFZ6R3HFQKuwnTZ-4trBE7KdN373xNmRdjv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rigidity+of+the+1-Bakry%E2%80%93%C3%89mery+Inequality+and+Sets+of+Finite+Perimeter+in+RCD+Spaces&rft.jtitle=Geometric+and+functional+analysis&rft.au=Ambrosio%2C+Luigi&rft.au=Bru%C3%A9%2C+Elia&rft.au=Semola%2C+Daniele&rft.date=2019-08-01&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=29&rft.issue=4&rft.spage=949&rft.epage=1001&rft_id=info:doi/10.1007%2Fs00039-019-00504-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00039_019_00504_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |