Deformation of flexible fibers in turbulent channel flow

In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber...

Full description

Saved in:
Bibliographic Details
Published inMeccanica (Milan) Vol. 55; no. 2; pp. 343 - 356
Main Authors Dotto, D., Soldati, A., Marchioli, C.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-6455
1572-9648
DOI10.1007/s11012-019-01074-4

Cover

Abstract In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber twisting and bending, when shape effects add to the inertial bias. To these aims, we use an Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in dilute flow conditions. Fibers are modelled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) interconnected by holonomic constraints that enable relative rotation of neighbouring elements. Statistics are computed from simulations at shear Reynolds number Re τ = 150 , based on the channel half height, for fibers with different aspect ratio, λ r (defined as the ratio between the length l r of each element r composing the fiber and its cross-sectional radius, a ), and different inertia, parameterized by the Stokes number of the element, S t r . We show that bending of flexible fibers is in general stronger in the bulk of the flow, where they are subject to turbulent velocity fluctuations only. Near the wall, fibers are more easily stretched by the mean shear, especially for large-enough inertia ( S t r > 5 in our simulations). In spite of this different dynamics, which is connected to the anisotropy of the flow, we find that the fiber end-to-end distance reaches a steady state regardless of fiber location with respect to the wall.
AbstractList In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber twisting and bending, when shape effects add to the inertial bias. To these aims, we use an Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in dilute flow conditions. Fibers are modelled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) interconnected by holonomic constraints that enable relative rotation of neighbouring elements. Statistics are computed from simulations at shear Reynolds number Re τ = 150 , based on the channel half height, for fibers with different aspect ratio, λ r (defined as the ratio between the length l r of each element r composing the fiber and its cross-sectional radius, a ), and different inertia, parameterized by the Stokes number of the element, S t r . We show that bending of flexible fibers is in general stronger in the bulk of the flow, where they are subject to turbulent velocity fluctuations only. Near the wall, fibers are more easily stretched by the mean shear, especially for large-enough inertia ( S t r > 5 in our simulations). In spite of this different dynamics, which is connected to the anisotropy of the flow, we find that the fiber end-to-end distance reaches a steady state regardless of fiber location with respect to the wall.
In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber twisting and bending, when shape effects add to the inertial bias. To these aims, we use an Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in dilute flow conditions. Fibers are modelled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) interconnected by holonomic constraints that enable relative rotation of neighbouring elements. Statistics are computed from simulations at shear Reynolds number Reτ=150, based on the channel half height, for fibers with different aspect ratio, λr (defined as the ratio between the length lr of each element r composing the fiber and its cross-sectional radius, a), and different inertia, parameterized by the Stokes number of the element, Str. We show that bending of flexible fibers is in general stronger in the bulk of the flow, where they are subject to turbulent velocity fluctuations only. Near the wall, fibers are more easily stretched by the mean shear, especially for large-enough inertia (Str>5 in our simulations). In spite of this different dynamics, which is connected to the anisotropy of the flow, we find that the fiber end-to-end distance reaches a steady state regardless of fiber location with respect to the wall.
Author Soldati, A.
Dotto, D.
Marchioli, C.
Author_xml – sequence: 1
  givenname: D.
  surname: Dotto
  fullname: Dotto, D.
  organization: Department of Engineering and Architecture, University of Udine
– sequence: 2
  givenname: A.
  surname: Soldati
  fullname: Soldati, A.
  organization: Department of Engineering and Architecture, University of Udine, Institute of Fluid Mechanics and Heat Transfer, TU Wien
– sequence: 3
  givenname: C.
  orcidid: 0000-0003-0208-460X
  surname: Marchioli
  fullname: Marchioli, C.
  email: marchioli@uniud.it
  organization: Department of Engineering and Architecture, University of Udine, Department of Fluid Mechanics, CISM
BookMark eNp9kMtKAzEUhoNUsK2-gKsB16O5TJKZpVStQsGNrsMkPdGUaVKTGdS3N-0IgosuDmfzfefyz9DEBw8IXRJ8TTCWN4kQTGiJSZMLy6qsTtCUcEnLRlT1BE0xprwUFednaJbSBmcKYz5F9R3YELdt74Ivgi1sB19Od1BYpyGmwvmiH6IeOvB9Yd5b76HLUPg8R6e27RJc_PY5en24f1k8lqvn5dPidlUaRpq-5FYTRgUFqHTDhGWScclqJi23-U6i13ItNONY1y0DTbkEbjA0RhhpGyHZHF2Nc3cxfAyQerUJQ_R5paKMM0H2n2SqHikTQ0oRrDKuPzzVx9Z1imC1z0mNOamckzrkpKqs0n_qLrptG7-PS2yUUob9G8S_q45YP9ebeyU
CitedBy_id crossref_primary_10_1021_acssuschemeng_1c03474
crossref_primary_10_1007_s00707_022_03205_7
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104065
crossref_primary_10_1103_PhysRevFluids_8_024306
crossref_primary_10_1016_j_aej_2021_01_059
crossref_primary_10_1080_19942060_2023_2177350
crossref_primary_10_1007_s11012_019_01112_1
crossref_primary_10_1007_s00707_020_02685_9
crossref_primary_10_1103_PhysRevFluids_8_084303
crossref_primary_10_1016_j_rinp_2020_103341
crossref_primary_10_1177_00405175241231826
crossref_primary_10_3390_fluids7080255
crossref_primary_10_1017_jfm_2022_611
crossref_primary_10_1016_j_compfluid_2023_105870
crossref_primary_10_1002_aic_18024
crossref_primary_10_1007_s00707_023_03723_y
crossref_primary_10_1017_jfm_2021_1145
crossref_primary_10_1017_jfm_2023_420
crossref_primary_10_1103_PhysRevFluids_9_L062501
crossref_primary_10_1017_jfm_2021_185
Cites_doi 10.1017/S002211206300152X
10.1017/jfm.2019.521
10.1103/PhysRevLett.119.254501
10.1103/PhysRevE.88.033003
10.1103/PhysRevLett.121.124502
10.1063/1.5001514
10.1007/s00707-013-0918-y
10.1017/jfm.2018.854
10.1017/jfm.2014.32
10.1103/PhysRevLett.123.138003
10.1016/j.ijheatmasstransfer.2017.04.018
10.1007/s00707-013-0933-z
10.1063/1.2778937
10.1016/0009-2509(64)85084-3
10.1063/1.4913501
10.1016/j.advwatres.2017.09.001
10.1016/j.powtec.2018.01.083
10.1017/S002211207900077X
10.1016/0021-8502(93)90085-N
10.1007/s00348-016-2201-1
10.1016/j.jaerosci.2011.08.001
10.1103/PhysRevLett.121.044501
10.1063/1.4983345
10.1063/1.3570526
10.1016/j.icheatmasstransfer.2008.01.006
10.1017/jfm.2013.608
10.1063/1.4937757
10.1073/pnas.0900040106
10.1017/jfm.2016.619
10.1177/0021998315590266
10.1017/jfm.2015.16
10.1063/1.3328874
10.1063/1.2033573
10.1017/S0022112071000259
10.1016/j.ijengsci.2008.03.008
10.1007/s00707-017-2002-5
10.1209/0295-5075/123/24001
10.1103/PhysRevLett.112.074501
10.1017/jfm.2017.12
10.1016/S0377-0257(01)00113-6
10.1098/rspa.1922.0078
10.1063/1.464607
10.1016/j.jnnfm.2014.08.002
10.1146/annurev-fluid-010816-060135
10.1146/annurev-fluid-122109-160700
10.1007/s00707-018-2355-4
10.1103/PhysRevLett.121.154501
ContentType Journal Article
Copyright Springer Nature B.V. 2019
2019© Springer Nature B.V. 2019
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: 2019© Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s11012-019-01074-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1572-9648
EndPage 356
ExternalDocumentID 10_1007_s11012_019_01074_4
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z86
Z8M
Z8N
Z8P
Z8S
Z8T
ZMTXR
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-5fb13262ee4b936f373573837f5f0741bd7d6b350b8a3eb257e5c0e9c6c7f9673
IEDL.DBID AGYKE
ISSN 0025-6455
IngestDate Fri Jul 25 11:10:30 EDT 2025
Tue Jul 01 03:42:45 EDT 2025
Thu Apr 24 23:13:24 EDT 2025
Fri Feb 21 02:38:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Lagrangian tracking
Wall turbulence
Direct numerical simulation
Deformation statistics
Flexible fibers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5fb13262ee4b936f373573837f5f0741bd7d6b350b8a3eb257e5c0e9c6c7f9673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0208-460X
PQID 2353610100
PQPubID 2043742
PageCount 14
ParticipantIDs proquest_journals_2353610100
crossref_citationtrail_10_1007_s11012_019_01074_4
crossref_primary_10_1007_s11012_019_01074_4
springer_journals_10_1007_s11012_019_01074_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Theoretical and Applied Mechanics AIMETA
PublicationTitle Meccanica (Milan)
PublicationTitleAbbrev Meccanica
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Brenner (CR8) 1964; 19
Kim, Karrila (CR21) 1991
Dotto, Marchioli (CR13) 2019; 230
Lovecchio, Marchioli, Soldati (CR26) 2013; 88
Lindström, Uesaka (CR23) 2008; 46
Mashayekhpour, Marchioli, Lovecchio, Nemati Lay, Soldati (CR32) 2019; 129
Zhao, Andersson (CR51) 2016; 807
Lindström, Uesaka (CR24) 2007; 19
Clift, Grace, Weber (CR11) 1978
Lovecchio, Zonta, Marchioli, Soldati (CR25) 2017; 29
Sabban, van Hout (CR42) 2011; 42
Kunhappan, Harthong, Chareyre, Balarac, Dumont (CR22) 2017; 29
Verhille, Bartoli (CR44) 2016; 57
Zhao, Challabotla, Andersson, Variano (CR52) 2019; 876
Gay, Favier, Verhille (CR15) 2018; 123
Xiang, Kuznetsov (CR46) 2008; 35
CR5
Yamamoto, Matsuoka (CR47) 1993; 98
Brouzet, Verhille, Le Gal (CR9) 2014; 112
Gustavsson, Jucha, Naso, Lévêque, Pumir, Mehlig (CR16) 2017; 119
Andrić, Fredriksson, Lindström, Sasic, Nilsson (CR2) 2013; 224
Fan, Ahmadi (CR14) 1995; 25
Voth, Soldati (CR45) 2017; 49
Jeffery (CR19) 1922; 102
Marchioli, Zhao, Andersson (CR28) 2016; 28
Zhan, Sardina, Lushi, Brandt (CR48) 2014; 739
Ravnik, Marchioli, Soldati (CR39) 2018; 229
Picciotto, Marchioli, Soldati (CR38) 2005; 17
Brenner, Cox (CR7) 1963; 17
Parsa, Guasto, Kishore, Ouellette, Gollub, Voth (CR36) 2011; 23
Niazi Ardekani, Brandt (CR37) 2019; 859
Boer, Buist, Deen, Padding, Kuipers (CR4) 2018; 329
Andrić, Lindström, Sasic, Nilsson (CR3) 2014; 212
CR18
Marchioli, Fantoni, Soldati (CR30) 2010; 22
Byron, Einarsson, Gustavsson, Voth, Mehlig, Variano (CR10) 2015; 27
Hinch, Leal (CR17) 1979; 92
CR50
Ni, Ouellette, Voth (CR34) 2014; 743
Marchioli, Soldati (CR29) 2013; 224
Bounoua, Verhille, Bartoli (CR6) 2018; 121
Ni, Kramel, Ouellette, Voth (CR35) 2016; 766
Cox (CR12) 1971; 45
Martínez, Vernet, Pallares (CR31) 2017; 111
Rosti, Banaei, Brandt, Mazzino (CR40) 2018; 121
Zhang, Smith (CR49) 2016; 50
Moffet, Prater (CR33) 2009; 106
Lundell, Soderberg, Alfredsson (CR27) 2011; 43
Joung, Phan-Thien, Fan (CR20) 2001; 99
Allende, Henry, Bec (CR1) 2018; 121
Shapiro, Goldenberg (CR43) 1993; 24
Sabban, Cohen, van Hout (CR41) 2017; 814
H Brenner (1074_CR7) 1963; 17
1074_CR5
J Andrić (1074_CR3) 2014; 212
C Zhan (1074_CR48) 2014; 739
L Sabban (1074_CR42) 2011; 42
D Kunhappan (1074_CR22) 2017; 29
R Ni (1074_CR34) 2014; 743
M Byron (1074_CR10) 2015; 27
M Shapiro (1074_CR43) 1993; 24
L Zhao (1074_CR51) 2016; 807
S Lovecchio (1074_CR26) 2013; 88
M Martínez (1074_CR31) 2017; 111
1074_CR18
L Sabban (1074_CR41) 2017; 814
R Ni (1074_CR35) 2016; 766
M Mashayekhpour (1074_CR32) 2019; 129
J Ravnik (1074_CR39) 2018; 229
M Picciotto (1074_CR38) 2005; 17
1074_CR50
EJ Hinch (1074_CR17) 1979; 92
RG Cox (1074_CR12) 1971; 45
FG Fan (1074_CR14) 1995; 25
CG Joung (1074_CR20) 2001; 99
K Gustavsson (1074_CR16) 2017; 119
SB Lindström (1074_CR23) 2008; 46
D Zhang (1074_CR49) 2016; 50
RC Moffet (1074_CR33) 2009; 106
GB Jeffery (1074_CR19) 1922; 102
G Verhille (1074_CR44) 2016; 57
S Parsa (1074_CR36) 2011; 23
L Boer (1074_CR4) 2018; 329
SB Lindström (1074_CR24) 2007; 19
F Lundell (1074_CR27) 2011; 43
P Xiang (1074_CR46) 2008; 35
M Niazi Ardekani (1074_CR37) 2019; 859
D Dotto (1074_CR13) 2019; 230
A Gay (1074_CR15) 2018; 123
GA Voth (1074_CR45) 2017; 49
S Yamamoto (1074_CR47) 1993; 98
R Clift (1074_CR11) 1978
S Kim (1074_CR21) 1991
C Marchioli (1074_CR30) 2010; 22
J Andrić (1074_CR2) 2013; 224
S Allende (1074_CR1) 2018; 121
H Brenner (1074_CR8) 1964; 19
ME Rosti (1074_CR40) 2018; 121
S Bounoua (1074_CR6) 2018; 121
C Brouzet (1074_CR9) 2014; 112
C Marchioli (1074_CR28) 2016; 28
L Zhao (1074_CR52) 2019; 876
C Marchioli (1074_CR29) 2013; 224
S Lovecchio (1074_CR25) 2017; 29
References_xml – year: 1978
  ident: CR11
  publication-title: Bubbles, drops and particles
– volume: 98
  start-page: 644
  year: 1993
  ident: CR47
  article-title: A method for dynamic simulation of rigid and flexible fibers in a flow field
  publication-title: J Chem Phys
– volume: 50
  start-page: 1301
  year: 2016
  ident: CR49
  article-title: Dynamic simulation of discrete fiber motion in fiber-reinforced composite materials processing
  publication-title: J Compos Mater
– volume: 229
  start-page: 827
  year: 2018
  ident: CR39
  article-title: Application limits of Jeffery’s theory for elongated particle torques in turbulence: a DNS assessment
  publication-title: Acta Mech
– volume: 49
  start-page: 249
  year: 2017
  ident: CR45
  article-title: Anisotropic particles in turbulence
  publication-title: Annu Rev Fluid Mech
– year: 1991
  ident: CR21
  publication-title: Microhydrodynamics: principles and selected applications
– volume: 28
  start-page: 013301
  year: 2016
  ident: CR28
  article-title: On the relative rotational motion between rigid fibers and fluid in turbulent channel flow
  publication-title: Phys Fluids
– volume: 23
  start-page: 043302
  year: 2011
  ident: CR36
  article-title: Rotation and alignment of rods in two-dimensional chaotic flow
  publication-title: Phys Fluids
– volume: 17
  start-page: 098101
  year: 2005
  ident: CR38
  article-title: Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers
  publication-title: Phys Fluids
– volume: 57
  start-page: 117
  year: 2016
  ident: CR44
  article-title: 3D conformation of a flexible fiber in a turbulent flow
  publication-title: Exp Fluids
– volume: 19
  start-page: 113307
  year: 2007
  ident: CR24
  article-title: Simulation of the motion of flexible fibers in viscous fluid flow
  publication-title: Phys Fluids
– volume: 224
  start-page: 2311
  year: 2013
  ident: CR29
  article-title: Rotation statistics of fibers in wall shear turbulence
  publication-title: Acta Mech
– volume: 42
  start-page: 867
  year: 2011
  ident: CR42
  article-title: Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence
  publication-title: J Aerosol Sci
– volume: 766
  start-page: 202
  year: 2016
  end-page: 225
  ident: CR35
  article-title: Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence
  publication-title: J Fluid Mech
– volume: 121
  start-page: 154501
  year: 2018
  ident: CR1
  article-title: Stretching and buckling of small elastic fibers in turbulence
  publication-title: Phys Rev Lett
– volume: 876
  start-page: 19
  year: 2019
  ident: CR52
  article-title: Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia
  publication-title: J Fluid Mech
– volume: 45
  start-page: 625
  year: 1971
  ident: CR12
  article-title: The motion of long slender bodies in a viscous fluid. Part 2. Shear flow
  publication-title: J Fluid Mech
– volume: 112
  start-page: 074501
  year: 2014
  ident: CR9
  article-title: Flexible fiber in a turbulent flow: a macroscopic polymer
  publication-title: Phys Rev Lett
– volume: 92
  start-page: 591
  year: 1979
  ident: CR17
  article-title: Rotation of small non-axisymmetric particles in a simple shear flow
  publication-title: J Fluid Mech
– ident: CR50
– volume: 212
  start-page: 36
  year: 2014
  ident: CR3
  article-title: Rheological properties of dilute suspensions of rigid and flexible fibers
  publication-title: J Non-Newton Fluid Mech
– volume: 29
  start-page: 093302
  year: 2017
  ident: CR22
  article-title: Numerical modelling of high aspect ratio flexible fibers in inertial flows
  publication-title: Phys Fluids
– ident: CR5
– volume: 111
  start-page: 532
  year: 2017
  ident: CR31
  article-title: Clustering of long flexible fibers in two-dimensional flow fields for different Stokes numbers
  publication-title: Int J Heat Mass Transf
– volume: 121
  start-page: 124502
  year: 2018
  ident: CR6
  article-title: Tumbling of inertial fibers in turbulence
  publication-title: Phys Rev Lett
– volume: 739
  start-page: 22
  year: 2014
  ident: CR48
  article-title: Accumulation of motile elongated micro-organisms in turbulence
  publication-title: J Fluid Mech
– volume: 807
  start-page: 221
  year: 2016
  ident: CR51
  article-title: Why spheroids orient preferentially in near-wall turbulence
  publication-title: J Fluid Mech
– ident: CR18
– volume: 19
  start-page: 703
  year: 1964
  ident: CR8
  article-title: The Stokes resistance of an arbitrary particle IV. Arbitrary fields of flow
  publication-title: Chem Eng Sci
– volume: 88
  start-page: 033003
  year: 2013
  ident: CR26
  article-title: Time persistence of floating particle clusters in free-surface turbulence
  publication-title: Phys Rev E
– volume: 814
  start-page: 42
  year: 2017
  ident: CR41
  article-title: Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence
  publication-title: J Fluid Mech
– volume: 27
  start-page: 035101
  year: 2015
  ident: CR10
  article-title: Shape-dependence of particle rotation in isotropic turbulence
  publication-title: Phys Fluids
– volume: 129
  start-page: 328
  year: 2019
  end-page: 337
  ident: CR32
  article-title: Wind effect on gyrotactic micro-organism surfacing in free-surface turbulence
  publication-title: Adv Water Resour
– volume: 29
  start-page: 053302
  year: 2017
  ident: CR25
  article-title: Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence
  publication-title: Phys Fluids
– volume: 102
  start-page: 161
  year: 1922
  ident: CR19
  article-title: The motion of ellipsoidal particles immersed in a viscous fluid
  publication-title: Proc R Soc Lond Ser A
– volume: 99
  start-page: 1
  year: 2001
  ident: CR20
  article-title: Direct simulation of flexible fibers
  publication-title: J Non-Newton Fluid Mech
– volume: 106
  start-page: 11872
  year: 2009
  ident: CR33
  article-title: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates
  publication-title: Proc Natl Acad Sci
– volume: 329
  start-page: 332
  year: 2018
  ident: CR4
  article-title: Experimental study on orientation and de-mixing phenomena of elongated particles in gas-fluidized beds
  publication-title: Powder Technol
– volume: 123
  start-page: 24001
  year: 2018
  ident: CR15
  article-title: Characterisation of flexible fibre deformations in turbulence
  publication-title: Europhys Lett
– volume: 24
  start-page: 65
  year: 1993
  ident: CR43
  article-title: Deposition of glass fiber particles from turbulent air flow in a pipe
  publication-title: J Aerosol Sci
– volume: 25
  start-page: 831
  year: 1995
  ident: CR14
  article-title: A sublayer model for wall deposition of ellipsoidal particles in turbulent streams
  publication-title: J Aerosol Sci
– volume: 46
  start-page: 858
  year: 2008
  ident: CR23
  article-title: Particle-level simulation of forming of the fiber network in papermaking
  publication-title: Int J Eng Sci
– volume: 230
  start-page: 597
  year: 2019
  end-page: 621
  ident: CR13
  article-title: Orientation, distribution and deformation of inertial flexible fibers in turbulent channel flow
  publication-title: Acta Mech
– volume: 859
  start-page: 887
  year: 2019
  ident: CR37
  article-title: Turbulence modulation in channel flow of finite-size spheroidal particles
  publication-title: J Fluid Mech
– volume: 22
  start-page: 033301
  year: 2010
  ident: CR30
  article-title: Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow
  publication-title: Phys Fluids
– volume: 224
  start-page: 2359
  year: 2013
  ident: CR2
  article-title: A study of a flexible fiber model and its behavior in DNS of turbulent channel flow
  publication-title: Acta Mech
– volume: 119
  start-page: 254501
  year: 2017
  ident: CR16
  article-title: Statistical model for the orientation of non-spherical particles settling in turbulence
  publication-title: Phys Rev Lett
– volume: 35
  start-page: 529
  year: 2008
  ident: CR46
  article-title: Simulation of shape dynamics of a long flexible fiber in a turbulent flow in the hydro-entanglement process
  publication-title: Int Commun Heat Mass Transf
– volume: 121
  start-page: 044501
  year: 2018
  ident: CR40
  article-title: Flexible fiber reveals the two-point statistical properties of turbulence
  publication-title: Phys Rev Lett
– volume: 17
  start-page: 561
  year: 1963
  ident: CR7
  article-title: The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers
  publication-title: J Fluid Mech
– volume: 43
  start-page: 195
  year: 2011
  ident: CR27
  article-title: Fluid mechanics of papermaking
  publication-title: Annu Rev Fluid Mech
– volume: 743
  start-page: R3
  year: 2014
  ident: CR34
  article-title: Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence
  publication-title: J Fluid Mech
– volume: 17
  start-page: 561
  year: 1963
  ident: 1074_CR7
  publication-title: J Fluid Mech
  doi: 10.1017/S002211206300152X
– volume: 876
  start-page: 19
  year: 2019
  ident: 1074_CR52
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2019.521
– volume: 119
  start-page: 254501
  year: 2017
  ident: 1074_CR16
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.119.254501
– volume: 88
  start-page: 033003
  year: 2013
  ident: 1074_CR26
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.88.033003
– volume: 121
  start-page: 124502
  year: 2018
  ident: 1074_CR6
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.124502
– volume: 25
  start-page: 831
  year: 1995
  ident: 1074_CR14
  publication-title: J Aerosol Sci
– volume: 29
  start-page: 093302
  year: 2017
  ident: 1074_CR22
  publication-title: Phys Fluids
  doi: 10.1063/1.5001514
– volume: 224
  start-page: 2359
  year: 2013
  ident: 1074_CR2
  publication-title: Acta Mech
  doi: 10.1007/s00707-013-0918-y
– volume: 859
  start-page: 887
  year: 2019
  ident: 1074_CR37
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2018.854
– volume: 743
  start-page: R3
  year: 2014
  ident: 1074_CR34
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2014.32
– ident: 1074_CR5
  doi: 10.1103/PhysRevLett.123.138003
– volume: 111
  start-page: 532
  year: 2017
  ident: 1074_CR31
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.04.018
– volume: 224
  start-page: 2311
  year: 2013
  ident: 1074_CR29
  publication-title: Acta Mech
  doi: 10.1007/s00707-013-0933-z
– volume: 19
  start-page: 113307
  year: 2007
  ident: 1074_CR24
  publication-title: Phys Fluids
  doi: 10.1063/1.2778937
– volume: 19
  start-page: 703
  year: 1964
  ident: 1074_CR8
  publication-title: Chem Eng Sci
  doi: 10.1016/0009-2509(64)85084-3
– volume: 27
  start-page: 035101
  year: 2015
  ident: 1074_CR10
  publication-title: Phys Fluids
  doi: 10.1063/1.4913501
– volume: 129
  start-page: 328
  year: 2019
  ident: 1074_CR32
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2017.09.001
– volume: 329
  start-page: 332
  year: 2018
  ident: 1074_CR4
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.01.083
– volume: 92
  start-page: 591
  year: 1979
  ident: 1074_CR17
  publication-title: J Fluid Mech
  doi: 10.1017/S002211207900077X
– volume: 24
  start-page: 65
  year: 1993
  ident: 1074_CR43
  publication-title: J Aerosol Sci
  doi: 10.1016/0021-8502(93)90085-N
– volume: 57
  start-page: 117
  year: 2016
  ident: 1074_CR44
  publication-title: Exp Fluids
  doi: 10.1007/s00348-016-2201-1
– volume: 42
  start-page: 867
  year: 2011
  ident: 1074_CR42
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2011.08.001
– volume: 121
  start-page: 044501
  year: 2018
  ident: 1074_CR40
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.044501
– volume: 29
  start-page: 053302
  year: 2017
  ident: 1074_CR25
  publication-title: Phys Fluids
  doi: 10.1063/1.4983345
– volume: 23
  start-page: 043302
  year: 2011
  ident: 1074_CR36
  publication-title: Phys Fluids
  doi: 10.1063/1.3570526
– volume: 35
  start-page: 529
  year: 2008
  ident: 1074_CR46
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2008.01.006
– volume: 739
  start-page: 22
  year: 2014
  ident: 1074_CR48
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2013.608
– volume: 28
  start-page: 013301
  year: 2016
  ident: 1074_CR28
  publication-title: Phys Fluids
  doi: 10.1063/1.4937757
– ident: 1074_CR50
– volume: 106
  start-page: 11872
  year: 2009
  ident: 1074_CR33
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0900040106
– volume: 807
  start-page: 221
  year: 2016
  ident: 1074_CR51
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.619
– volume: 50
  start-page: 1301
  year: 2016
  ident: 1074_CR49
  publication-title: J Compos Mater
  doi: 10.1177/0021998315590266
– volume: 766
  start-page: 202
  year: 2016
  ident: 1074_CR35
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2015.16
– volume-title: Microhydrodynamics: principles and selected applications
  year: 1991
  ident: 1074_CR21
– volume: 22
  start-page: 033301
  year: 2010
  ident: 1074_CR30
  publication-title: Phys Fluids
  doi: 10.1063/1.3328874
– volume: 17
  start-page: 098101
  year: 2005
  ident: 1074_CR38
  publication-title: Phys Fluids
  doi: 10.1063/1.2033573
– volume: 45
  start-page: 625
  year: 1971
  ident: 1074_CR12
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071000259
– volume: 46
  start-page: 858
  year: 2008
  ident: 1074_CR23
  publication-title: Int J Eng Sci
  doi: 10.1016/j.ijengsci.2008.03.008
– volume: 229
  start-page: 827
  year: 2018
  ident: 1074_CR39
  publication-title: Acta Mech
  doi: 10.1007/s00707-017-2002-5
– volume-title: Bubbles, drops and particles
  year: 1978
  ident: 1074_CR11
– volume: 123
  start-page: 24001
  year: 2018
  ident: 1074_CR15
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/123/24001
– volume: 112
  start-page: 074501
  year: 2014
  ident: 1074_CR9
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.112.074501
– volume: 814
  start-page: 42
  year: 2017
  ident: 1074_CR41
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2017.12
– volume: 99
  start-page: 1
  year: 2001
  ident: 1074_CR20
  publication-title: J Non-Newton Fluid Mech
  doi: 10.1016/S0377-0257(01)00113-6
– volume: 102
  start-page: 161
  year: 1922
  ident: 1074_CR19
  publication-title: Proc R Soc Lond Ser A
  doi: 10.1098/rspa.1922.0078
– volume: 98
  start-page: 644
  year: 1993
  ident: 1074_CR47
  publication-title: J Chem Phys
  doi: 10.1063/1.464607
– volume: 212
  start-page: 36
  year: 2014
  ident: 1074_CR3
  publication-title: J Non-Newton Fluid Mech
  doi: 10.1016/j.jnnfm.2014.08.002
– volume: 49
  start-page: 249
  year: 2017
  ident: 1074_CR45
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-010816-060135
– ident: 1074_CR18
– volume: 43
  start-page: 195
  year: 2011
  ident: 1074_CR27
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122109-160700
– volume: 230
  start-page: 597
  year: 2019
  ident: 1074_CR13
  publication-title: Acta Mech
  doi: 10.1007/s00707-018-2355-4
– volume: 121
  start-page: 154501
  year: 2018
  ident: 1074_CR1
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.154501
SSID ssj0010005
Score 2.324711
Snippet In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 343
SubjectTerms Anisotropy
Aspect ratio
Automotive Engineering
Channel flow
Civil Engineering
Classical Mechanics
Computational fluid dynamics
Computer simulation
Deformation
Direct numerical simulation
Fibers
Fluid flow
Inertia
Mathematical models
Mechanical Engineering
Physics
Physics and Astronomy
Recent Advances in Modeling and Simulations of Multiphase Flows
Reynolds number
Shape effects
Shear
Stokes number
Turbulence
Turbulent flow
Twisting
Variations
Title Deformation of flexible fibers in turbulent channel flow
URI https://link.springer.com/article/10.1007/s11012-019-01074-4
https://www.proquest.com/docview/2353610100
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7chuCL06k4nSMPvmlH2_xqHzd1DsU9OZhPZckSEEcndkPwrzfp0hWHCnvuJbSXS-877rs7gEuqbTZtyrzAmI9HlJ54seTcIyEXgYqk1tJWIz8N2WBEHsZ07IrCsoLtXqQk8z91WexmW1GZ0NfyeyyLkFSgRoMojqpQ696_PN6tswcWiBSjWhmh1BXL_L7LT4dUosyNxGjub_p1GBVvuqKZvHWWC9GRXxtNHLf9lAPYdwAUdVcWcwg7Km1A3YFR5K561oDdnBsqsyOIbtW6xBHNNdK2h6aYKaQt2yRDrykyfkssrf9CtpA4VTMjNP88hlH_7vlm4LmBC540N3HhUS1McMpCpYiIMdOYY8ptCKupttBDTPmUCUx9EU2wCckpV1T6KpZMch0zjk-gms5TdQrICDBfKky4xIRGfjxRWMbhCh8GijYhKLSeSNeN3A7FmCVlH2WrpMQoKcmVlJAmXK3XvK96cfwr3SoOM3H3MktCTLEBjGZJE66Lsykf_73b2Xbi57AX2sA8p3e3oLr4WKoLg14Wom2Mtd_rDdvOaNtQGYXdb-Uf4wU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InrxURXrcw_eNJBkX8mxqKVq21MLvS3d7S4IJRXT4t93J00aFBU8Z3YPs7uZb5jvmwG44Q6raVMRRP76BMy6SZAaKQMWSx3ZxDhnUI3cH4juiD2P-bgUheUV270qSRZ_6lrshq2ofOqL_B5kEbJN2PJgIMG5BaO4va4dIAypBrUKxnkplfl5j6_hqMaY38qiRbTpHMBeCRNJe3Wuh7Bhsybsl5CRlA8yb8J2weA0-REkD3YtRCRzRxx2utQzSxxyQnLymhEfXfQSowxBuW9mZ95o_nEMo87j8L4blGMRAuPfyyLgTvsUUsTWMp1S4aikXGKi6bhDgKCncio05aFOJtQnzlxabkKbGmGkS4WkJ9DI5pk9BeINRGgsZdJQxpMwnVhq0niF4iLLWxBV3lGm7BmOoytmqu52jB5V3qOq8KhiLbhdr3lbdcz40_qicroqX0-uYsqph3V-SQvuqoOoP_--29n_zK9hpzvs91TvafByDrsxptIFIfsCGov3pb30eGOhr4rr9QnHa8aW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCMSFxwAxGJADN6i2Nq_1ODGm8Zo4MGm3aMkSCWnqJtqJv0_ctRsgQOJcJwfHrj_L_myAS-6wmjYWQejNJ2DWjYLYSBmwSOrQtoxzBtnIT33RG7D7IR9-YvHn3e5lSXLBacApTUnWmI1dY0V8w7FUPg3GXh_sKGTrsOF_xyFa-iBqL-sICEnKpa2CcV7QZn6-42toWuHNbyXSPPJ092CngIykvXjjfVizSRV2C_hICudMq7CZd3Oa9ABaHbskJZKpIw6nXuqJJQ77Q1LymhAfafQcIw5B6m9iJ15o-n4Ig-7ty00vKFYkBMb7ThZwp306KSJrmY6pcFRSLjHpdNwhWNBjORaa8qZujahPorm03DRtbISRLhaSHkElmSb2GIgXEE1jKZOGMt5qxiNLTRwtEF1oeQ3CUjvKFPPDcY3FRK0mH6NGldeoyjWqWA2ulmdmi-kZf0rXS6WrwpNSFVFOPcTzR2pwXT7E6vPvt538T_wCtp47XfV41384he0Is-q8N7sOlextbs889Mj0eW5dH8SfytI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+of+flexible+fibers+in+turbulent+channel+flow&rft.jtitle=Meccanica+%28Milan%29&rft.au=Dotto%2C+D&rft.au=Soldati%2C+A&rft.au=Marchioli%2C+C&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-6455&rft.eissn=1572-9648&rft.volume=55&rft.issue=2&rft.spage=343&rft.epage=356&rft_id=info:doi/10.1007%2Fs11012-019-01074-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6455&client=summon