Deformation of flexible fibers in turbulent channel flow
In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber...
Saved in:
Published in | Meccanica (Milan) Vol. 55; no. 2; pp. 343 - 356 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-6455 1572-9648 |
DOI | 10.1007/s11012-019-01074-4 |
Cover
Abstract | In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber twisting and bending, when shape effects add to the inertial bias. To these aims, we use an Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in dilute flow conditions. Fibers are modelled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) interconnected by holonomic constraints that enable relative rotation of neighbouring elements. Statistics are computed from simulations at shear Reynolds number
Re
τ
=
150
, based on the channel half height, for fibers with different aspect ratio,
λ
r
(defined as the ratio between the length
l
r
of each element
r
composing the fiber and its cross-sectional radius,
a
), and different inertia, parameterized by the Stokes number of the element,
S
t
r
. We show that bending of flexible fibers is in general stronger in the bulk of the flow, where they are subject to turbulent velocity fluctuations only. Near the wall, fibers are more easily stretched by the mean shear, especially for large-enough inertia (
S
t
r
>
5
in our simulations). In spite of this different dynamics, which is connected to the anisotropy of the flow, we find that the fiber end-to-end distance reaches a steady state regardless of fiber location with respect to the wall. |
---|---|
AbstractList | In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber twisting and bending, when shape effects add to the inertial bias. To these aims, we use an Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in dilute flow conditions. Fibers are modelled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) interconnected by holonomic constraints that enable relative rotation of neighbouring elements. Statistics are computed from simulations at shear Reynolds number
Re
τ
=
150
, based on the channel half height, for fibers with different aspect ratio,
λ
r
(defined as the ratio between the length
l
r
of each element
r
composing the fiber and its cross-sectional radius,
a
), and different inertia, parameterized by the Stokes number of the element,
S
t
r
. We show that bending of flexible fibers is in general stronger in the bulk of the flow, where they are subject to turbulent velocity fluctuations only. Near the wall, fibers are more easily stretched by the mean shear, especially for large-enough inertia (
S
t
r
>
5
in our simulations). In spite of this different dynamics, which is connected to the anisotropy of the flow, we find that the fiber end-to-end distance reaches a steady state regardless of fiber location with respect to the wall. In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow and have finite inertia. Our aim is to examine the effect of local shear and turbulence anisotropy on fiber twisting and bending, when shape effects add to the inertial bias. To these aims, we use an Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in dilute flow conditions. Fibers are modelled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) interconnected by holonomic constraints that enable relative rotation of neighbouring elements. Statistics are computed from simulations at shear Reynolds number Reτ=150, based on the channel half height, for fibers with different aspect ratio, λr (defined as the ratio between the length lr of each element r composing the fiber and its cross-sectional radius, a), and different inertia, parameterized by the Stokes number of the element, Str. We show that bending of flexible fibers is in general stronger in the bulk of the flow, where they are subject to turbulent velocity fluctuations only. Near the wall, fibers are more easily stretched by the mean shear, especially for large-enough inertia (Str>5 in our simulations). In spite of this different dynamics, which is connected to the anisotropy of the flow, we find that the fiber end-to-end distance reaches a steady state regardless of fiber location with respect to the wall. |
Author | Soldati, A. Dotto, D. Marchioli, C. |
Author_xml | – sequence: 1 givenname: D. surname: Dotto fullname: Dotto, D. organization: Department of Engineering and Architecture, University of Udine – sequence: 2 givenname: A. surname: Soldati fullname: Soldati, A. organization: Department of Engineering and Architecture, University of Udine, Institute of Fluid Mechanics and Heat Transfer, TU Wien – sequence: 3 givenname: C. orcidid: 0000-0003-0208-460X surname: Marchioli fullname: Marchioli, C. email: marchioli@uniud.it organization: Department of Engineering and Architecture, University of Udine, Department of Fluid Mechanics, CISM |
BookMark | eNp9kMtKAzEUhoNUsK2-gKsB16O5TJKZpVStQsGNrsMkPdGUaVKTGdS3N-0IgosuDmfzfefyz9DEBw8IXRJ8TTCWN4kQTGiJSZMLy6qsTtCUcEnLRlT1BE0xprwUFednaJbSBmcKYz5F9R3YELdt74Ivgi1sB19Od1BYpyGmwvmiH6IeOvB9Yd5b76HLUPg8R6e27RJc_PY5en24f1k8lqvn5dPidlUaRpq-5FYTRgUFqHTDhGWScclqJi23-U6i13ItNONY1y0DTbkEbjA0RhhpGyHZHF2Nc3cxfAyQerUJQ_R5paKMM0H2n2SqHikTQ0oRrDKuPzzVx9Z1imC1z0mNOamckzrkpKqs0n_qLrptG7-PS2yUUob9G8S_q45YP9ebeyU |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_1c03474 crossref_primary_10_1007_s00707_022_03205_7 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104065 crossref_primary_10_1103_PhysRevFluids_8_024306 crossref_primary_10_1016_j_aej_2021_01_059 crossref_primary_10_1080_19942060_2023_2177350 crossref_primary_10_1007_s11012_019_01112_1 crossref_primary_10_1007_s00707_020_02685_9 crossref_primary_10_1103_PhysRevFluids_8_084303 crossref_primary_10_1016_j_rinp_2020_103341 crossref_primary_10_1177_00405175241231826 crossref_primary_10_3390_fluids7080255 crossref_primary_10_1017_jfm_2022_611 crossref_primary_10_1016_j_compfluid_2023_105870 crossref_primary_10_1002_aic_18024 crossref_primary_10_1007_s00707_023_03723_y crossref_primary_10_1017_jfm_2021_1145 crossref_primary_10_1017_jfm_2023_420 crossref_primary_10_1103_PhysRevFluids_9_L062501 crossref_primary_10_1017_jfm_2021_185 |
Cites_doi | 10.1017/S002211206300152X 10.1017/jfm.2019.521 10.1103/PhysRevLett.119.254501 10.1103/PhysRevE.88.033003 10.1103/PhysRevLett.121.124502 10.1063/1.5001514 10.1007/s00707-013-0918-y 10.1017/jfm.2018.854 10.1017/jfm.2014.32 10.1103/PhysRevLett.123.138003 10.1016/j.ijheatmasstransfer.2017.04.018 10.1007/s00707-013-0933-z 10.1063/1.2778937 10.1016/0009-2509(64)85084-3 10.1063/1.4913501 10.1016/j.advwatres.2017.09.001 10.1016/j.powtec.2018.01.083 10.1017/S002211207900077X 10.1016/0021-8502(93)90085-N 10.1007/s00348-016-2201-1 10.1016/j.jaerosci.2011.08.001 10.1103/PhysRevLett.121.044501 10.1063/1.4983345 10.1063/1.3570526 10.1016/j.icheatmasstransfer.2008.01.006 10.1017/jfm.2013.608 10.1063/1.4937757 10.1073/pnas.0900040106 10.1017/jfm.2016.619 10.1177/0021998315590266 10.1017/jfm.2015.16 10.1063/1.3328874 10.1063/1.2033573 10.1017/S0022112071000259 10.1016/j.ijengsci.2008.03.008 10.1007/s00707-017-2002-5 10.1209/0295-5075/123/24001 10.1103/PhysRevLett.112.074501 10.1017/jfm.2017.12 10.1016/S0377-0257(01)00113-6 10.1098/rspa.1922.0078 10.1063/1.464607 10.1016/j.jnnfm.2014.08.002 10.1146/annurev-fluid-010816-060135 10.1146/annurev-fluid-122109-160700 10.1007/s00707-018-2355-4 10.1103/PhysRevLett.121.154501 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 2019© Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: 2019© Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11012-019-01074-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1572-9648 |
EndPage | 356 |
ExternalDocumentID | 10_1007_s11012_019_01074_4 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z86 Z8M Z8N Z8P Z8S Z8T ZMTXR ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-5fb13262ee4b936f373573837f5f0741bd7d6b350b8a3eb257e5c0e9c6c7f9673 |
IEDL.DBID | AGYKE |
ISSN | 0025-6455 |
IngestDate | Fri Jul 25 11:10:30 EDT 2025 Tue Jul 01 03:42:45 EDT 2025 Thu Apr 24 23:13:24 EDT 2025 Fri Feb 21 02:38:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Lagrangian tracking Wall turbulence Direct numerical simulation Deformation statistics Flexible fibers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5fb13262ee4b936f373573837f5f0741bd7d6b350b8a3eb257e5c0e9c6c7f9673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0208-460X |
PQID | 2353610100 |
PQPubID | 2043742 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2353610100 crossref_citationtrail_10_1007_s11012_019_01074_4 crossref_primary_10_1007_s11012_019_01074_4 springer_journals_10_1007_s11012_019_01074_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Theoretical and Applied Mechanics AIMETA |
PublicationTitle | Meccanica (Milan) |
PublicationTitleAbbrev | Meccanica |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Brenner (CR8) 1964; 19 Kim, Karrila (CR21) 1991 Dotto, Marchioli (CR13) 2019; 230 Lovecchio, Marchioli, Soldati (CR26) 2013; 88 Lindström, Uesaka (CR23) 2008; 46 Mashayekhpour, Marchioli, Lovecchio, Nemati Lay, Soldati (CR32) 2019; 129 Zhao, Andersson (CR51) 2016; 807 Lindström, Uesaka (CR24) 2007; 19 Clift, Grace, Weber (CR11) 1978 Lovecchio, Zonta, Marchioli, Soldati (CR25) 2017; 29 Sabban, van Hout (CR42) 2011; 42 Kunhappan, Harthong, Chareyre, Balarac, Dumont (CR22) 2017; 29 Verhille, Bartoli (CR44) 2016; 57 Zhao, Challabotla, Andersson, Variano (CR52) 2019; 876 Gay, Favier, Verhille (CR15) 2018; 123 Xiang, Kuznetsov (CR46) 2008; 35 CR5 Yamamoto, Matsuoka (CR47) 1993; 98 Brouzet, Verhille, Le Gal (CR9) 2014; 112 Gustavsson, Jucha, Naso, Lévêque, Pumir, Mehlig (CR16) 2017; 119 Andrić, Fredriksson, Lindström, Sasic, Nilsson (CR2) 2013; 224 Fan, Ahmadi (CR14) 1995; 25 Voth, Soldati (CR45) 2017; 49 Jeffery (CR19) 1922; 102 Marchioli, Zhao, Andersson (CR28) 2016; 28 Zhan, Sardina, Lushi, Brandt (CR48) 2014; 739 Ravnik, Marchioli, Soldati (CR39) 2018; 229 Picciotto, Marchioli, Soldati (CR38) 2005; 17 Brenner, Cox (CR7) 1963; 17 Parsa, Guasto, Kishore, Ouellette, Gollub, Voth (CR36) 2011; 23 Niazi Ardekani, Brandt (CR37) 2019; 859 Boer, Buist, Deen, Padding, Kuipers (CR4) 2018; 329 Andrić, Lindström, Sasic, Nilsson (CR3) 2014; 212 CR18 Marchioli, Fantoni, Soldati (CR30) 2010; 22 Byron, Einarsson, Gustavsson, Voth, Mehlig, Variano (CR10) 2015; 27 Hinch, Leal (CR17) 1979; 92 CR50 Ni, Ouellette, Voth (CR34) 2014; 743 Marchioli, Soldati (CR29) 2013; 224 Bounoua, Verhille, Bartoli (CR6) 2018; 121 Ni, Kramel, Ouellette, Voth (CR35) 2016; 766 Cox (CR12) 1971; 45 Martínez, Vernet, Pallares (CR31) 2017; 111 Rosti, Banaei, Brandt, Mazzino (CR40) 2018; 121 Zhang, Smith (CR49) 2016; 50 Moffet, Prater (CR33) 2009; 106 Lundell, Soderberg, Alfredsson (CR27) 2011; 43 Joung, Phan-Thien, Fan (CR20) 2001; 99 Allende, Henry, Bec (CR1) 2018; 121 Shapiro, Goldenberg (CR43) 1993; 24 Sabban, Cohen, van Hout (CR41) 2017; 814 H Brenner (1074_CR7) 1963; 17 1074_CR5 J Andrić (1074_CR3) 2014; 212 C Zhan (1074_CR48) 2014; 739 L Sabban (1074_CR42) 2011; 42 D Kunhappan (1074_CR22) 2017; 29 R Ni (1074_CR34) 2014; 743 M Byron (1074_CR10) 2015; 27 M Shapiro (1074_CR43) 1993; 24 L Zhao (1074_CR51) 2016; 807 S Lovecchio (1074_CR26) 2013; 88 M Martínez (1074_CR31) 2017; 111 1074_CR18 L Sabban (1074_CR41) 2017; 814 R Ni (1074_CR35) 2016; 766 M Mashayekhpour (1074_CR32) 2019; 129 J Ravnik (1074_CR39) 2018; 229 M Picciotto (1074_CR38) 2005; 17 1074_CR50 EJ Hinch (1074_CR17) 1979; 92 RG Cox (1074_CR12) 1971; 45 FG Fan (1074_CR14) 1995; 25 CG Joung (1074_CR20) 2001; 99 K Gustavsson (1074_CR16) 2017; 119 SB Lindström (1074_CR23) 2008; 46 D Zhang (1074_CR49) 2016; 50 RC Moffet (1074_CR33) 2009; 106 GB Jeffery (1074_CR19) 1922; 102 G Verhille (1074_CR44) 2016; 57 S Parsa (1074_CR36) 2011; 23 L Boer (1074_CR4) 2018; 329 SB Lindström (1074_CR24) 2007; 19 F Lundell (1074_CR27) 2011; 43 P Xiang (1074_CR46) 2008; 35 M Niazi Ardekani (1074_CR37) 2019; 859 D Dotto (1074_CR13) 2019; 230 A Gay (1074_CR15) 2018; 123 GA Voth (1074_CR45) 2017; 49 S Yamamoto (1074_CR47) 1993; 98 R Clift (1074_CR11) 1978 S Kim (1074_CR21) 1991 C Marchioli (1074_CR30) 2010; 22 J Andrić (1074_CR2) 2013; 224 S Allende (1074_CR1) 2018; 121 H Brenner (1074_CR8) 1964; 19 ME Rosti (1074_CR40) 2018; 121 S Bounoua (1074_CR6) 2018; 121 C Brouzet (1074_CR9) 2014; 112 C Marchioli (1074_CR28) 2016; 28 L Zhao (1074_CR52) 2019; 876 C Marchioli (1074_CR29) 2013; 224 S Lovecchio (1074_CR25) 2017; 29 |
References_xml | – year: 1978 ident: CR11 publication-title: Bubbles, drops and particles – volume: 98 start-page: 644 year: 1993 ident: CR47 article-title: A method for dynamic simulation of rigid and flexible fibers in a flow field publication-title: J Chem Phys – volume: 50 start-page: 1301 year: 2016 ident: CR49 article-title: Dynamic simulation of discrete fiber motion in fiber-reinforced composite materials processing publication-title: J Compos Mater – volume: 229 start-page: 827 year: 2018 ident: CR39 article-title: Application limits of Jeffery’s theory for elongated particle torques in turbulence: a DNS assessment publication-title: Acta Mech – volume: 49 start-page: 249 year: 2017 ident: CR45 article-title: Anisotropic particles in turbulence publication-title: Annu Rev Fluid Mech – year: 1991 ident: CR21 publication-title: Microhydrodynamics: principles and selected applications – volume: 28 start-page: 013301 year: 2016 ident: CR28 article-title: On the relative rotational motion between rigid fibers and fluid in turbulent channel flow publication-title: Phys Fluids – volume: 23 start-page: 043302 year: 2011 ident: CR36 article-title: Rotation and alignment of rods in two-dimensional chaotic flow publication-title: Phys Fluids – volume: 17 start-page: 098101 year: 2005 ident: CR38 article-title: Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers publication-title: Phys Fluids – volume: 57 start-page: 117 year: 2016 ident: CR44 article-title: 3D conformation of a flexible fiber in a turbulent flow publication-title: Exp Fluids – volume: 19 start-page: 113307 year: 2007 ident: CR24 article-title: Simulation of the motion of flexible fibers in viscous fluid flow publication-title: Phys Fluids – volume: 224 start-page: 2311 year: 2013 ident: CR29 article-title: Rotation statistics of fibers in wall shear turbulence publication-title: Acta Mech – volume: 42 start-page: 867 year: 2011 ident: CR42 article-title: Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence publication-title: J Aerosol Sci – volume: 766 start-page: 202 year: 2016 end-page: 225 ident: CR35 article-title: Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence publication-title: J Fluid Mech – volume: 121 start-page: 154501 year: 2018 ident: CR1 article-title: Stretching and buckling of small elastic fibers in turbulence publication-title: Phys Rev Lett – volume: 876 start-page: 19 year: 2019 ident: CR52 article-title: Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia publication-title: J Fluid Mech – volume: 45 start-page: 625 year: 1971 ident: CR12 article-title: The motion of long slender bodies in a viscous fluid. Part 2. Shear flow publication-title: J Fluid Mech – volume: 112 start-page: 074501 year: 2014 ident: CR9 article-title: Flexible fiber in a turbulent flow: a macroscopic polymer publication-title: Phys Rev Lett – volume: 92 start-page: 591 year: 1979 ident: CR17 article-title: Rotation of small non-axisymmetric particles in a simple shear flow publication-title: J Fluid Mech – ident: CR50 – volume: 212 start-page: 36 year: 2014 ident: CR3 article-title: Rheological properties of dilute suspensions of rigid and flexible fibers publication-title: J Non-Newton Fluid Mech – volume: 29 start-page: 093302 year: 2017 ident: CR22 article-title: Numerical modelling of high aspect ratio flexible fibers in inertial flows publication-title: Phys Fluids – ident: CR5 – volume: 111 start-page: 532 year: 2017 ident: CR31 article-title: Clustering of long flexible fibers in two-dimensional flow fields for different Stokes numbers publication-title: Int J Heat Mass Transf – volume: 121 start-page: 124502 year: 2018 ident: CR6 article-title: Tumbling of inertial fibers in turbulence publication-title: Phys Rev Lett – volume: 739 start-page: 22 year: 2014 ident: CR48 article-title: Accumulation of motile elongated micro-organisms in turbulence publication-title: J Fluid Mech – volume: 807 start-page: 221 year: 2016 ident: CR51 article-title: Why spheroids orient preferentially in near-wall turbulence publication-title: J Fluid Mech – ident: CR18 – volume: 19 start-page: 703 year: 1964 ident: CR8 article-title: The Stokes resistance of an arbitrary particle IV. Arbitrary fields of flow publication-title: Chem Eng Sci – volume: 88 start-page: 033003 year: 2013 ident: CR26 article-title: Time persistence of floating particle clusters in free-surface turbulence publication-title: Phys Rev E – volume: 814 start-page: 42 year: 2017 ident: CR41 article-title: Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence publication-title: J Fluid Mech – volume: 27 start-page: 035101 year: 2015 ident: CR10 article-title: Shape-dependence of particle rotation in isotropic turbulence publication-title: Phys Fluids – volume: 129 start-page: 328 year: 2019 end-page: 337 ident: CR32 article-title: Wind effect on gyrotactic micro-organism surfacing in free-surface turbulence publication-title: Adv Water Resour – volume: 29 start-page: 053302 year: 2017 ident: CR25 article-title: Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence publication-title: Phys Fluids – volume: 102 start-page: 161 year: 1922 ident: CR19 article-title: The motion of ellipsoidal particles immersed in a viscous fluid publication-title: Proc R Soc Lond Ser A – volume: 99 start-page: 1 year: 2001 ident: CR20 article-title: Direct simulation of flexible fibers publication-title: J Non-Newton Fluid Mech – volume: 106 start-page: 11872 year: 2009 ident: CR33 article-title: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates publication-title: Proc Natl Acad Sci – volume: 329 start-page: 332 year: 2018 ident: CR4 article-title: Experimental study on orientation and de-mixing phenomena of elongated particles in gas-fluidized beds publication-title: Powder Technol – volume: 123 start-page: 24001 year: 2018 ident: CR15 article-title: Characterisation of flexible fibre deformations in turbulence publication-title: Europhys Lett – volume: 24 start-page: 65 year: 1993 ident: CR43 article-title: Deposition of glass fiber particles from turbulent air flow in a pipe publication-title: J Aerosol Sci – volume: 25 start-page: 831 year: 1995 ident: CR14 article-title: A sublayer model for wall deposition of ellipsoidal particles in turbulent streams publication-title: J Aerosol Sci – volume: 46 start-page: 858 year: 2008 ident: CR23 article-title: Particle-level simulation of forming of the fiber network in papermaking publication-title: Int J Eng Sci – volume: 230 start-page: 597 year: 2019 end-page: 621 ident: CR13 article-title: Orientation, distribution and deformation of inertial flexible fibers in turbulent channel flow publication-title: Acta Mech – volume: 859 start-page: 887 year: 2019 ident: CR37 article-title: Turbulence modulation in channel flow of finite-size spheroidal particles publication-title: J Fluid Mech – volume: 22 start-page: 033301 year: 2010 ident: CR30 article-title: Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow publication-title: Phys Fluids – volume: 224 start-page: 2359 year: 2013 ident: CR2 article-title: A study of a flexible fiber model and its behavior in DNS of turbulent channel flow publication-title: Acta Mech – volume: 119 start-page: 254501 year: 2017 ident: CR16 article-title: Statistical model for the orientation of non-spherical particles settling in turbulence publication-title: Phys Rev Lett – volume: 35 start-page: 529 year: 2008 ident: CR46 article-title: Simulation of shape dynamics of a long flexible fiber in a turbulent flow in the hydro-entanglement process publication-title: Int Commun Heat Mass Transf – volume: 121 start-page: 044501 year: 2018 ident: CR40 article-title: Flexible fiber reveals the two-point statistical properties of turbulence publication-title: Phys Rev Lett – volume: 17 start-page: 561 year: 1963 ident: CR7 article-title: The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers publication-title: J Fluid Mech – volume: 43 start-page: 195 year: 2011 ident: CR27 article-title: Fluid mechanics of papermaking publication-title: Annu Rev Fluid Mech – volume: 743 start-page: R3 year: 2014 ident: CR34 article-title: Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence publication-title: J Fluid Mech – volume: 17 start-page: 561 year: 1963 ident: 1074_CR7 publication-title: J Fluid Mech doi: 10.1017/S002211206300152X – volume: 876 start-page: 19 year: 2019 ident: 1074_CR52 publication-title: J Fluid Mech doi: 10.1017/jfm.2019.521 – volume: 119 start-page: 254501 year: 2017 ident: 1074_CR16 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.119.254501 – volume: 88 start-page: 033003 year: 2013 ident: 1074_CR26 publication-title: Phys Rev E doi: 10.1103/PhysRevE.88.033003 – volume: 121 start-page: 124502 year: 2018 ident: 1074_CR6 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.124502 – volume: 25 start-page: 831 year: 1995 ident: 1074_CR14 publication-title: J Aerosol Sci – volume: 29 start-page: 093302 year: 2017 ident: 1074_CR22 publication-title: Phys Fluids doi: 10.1063/1.5001514 – volume: 224 start-page: 2359 year: 2013 ident: 1074_CR2 publication-title: Acta Mech doi: 10.1007/s00707-013-0918-y – volume: 859 start-page: 887 year: 2019 ident: 1074_CR37 publication-title: J Fluid Mech doi: 10.1017/jfm.2018.854 – volume: 743 start-page: R3 year: 2014 ident: 1074_CR34 publication-title: J Fluid Mech doi: 10.1017/jfm.2014.32 – ident: 1074_CR5 doi: 10.1103/PhysRevLett.123.138003 – volume: 111 start-page: 532 year: 2017 ident: 1074_CR31 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.04.018 – volume: 224 start-page: 2311 year: 2013 ident: 1074_CR29 publication-title: Acta Mech doi: 10.1007/s00707-013-0933-z – volume: 19 start-page: 113307 year: 2007 ident: 1074_CR24 publication-title: Phys Fluids doi: 10.1063/1.2778937 – volume: 19 start-page: 703 year: 1964 ident: 1074_CR8 publication-title: Chem Eng Sci doi: 10.1016/0009-2509(64)85084-3 – volume: 27 start-page: 035101 year: 2015 ident: 1074_CR10 publication-title: Phys Fluids doi: 10.1063/1.4913501 – volume: 129 start-page: 328 year: 2019 ident: 1074_CR32 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2017.09.001 – volume: 329 start-page: 332 year: 2018 ident: 1074_CR4 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.01.083 – volume: 92 start-page: 591 year: 1979 ident: 1074_CR17 publication-title: J Fluid Mech doi: 10.1017/S002211207900077X – volume: 24 start-page: 65 year: 1993 ident: 1074_CR43 publication-title: J Aerosol Sci doi: 10.1016/0021-8502(93)90085-N – volume: 57 start-page: 117 year: 2016 ident: 1074_CR44 publication-title: Exp Fluids doi: 10.1007/s00348-016-2201-1 – volume: 42 start-page: 867 year: 2011 ident: 1074_CR42 publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2011.08.001 – volume: 121 start-page: 044501 year: 2018 ident: 1074_CR40 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.044501 – volume: 29 start-page: 053302 year: 2017 ident: 1074_CR25 publication-title: Phys Fluids doi: 10.1063/1.4983345 – volume: 23 start-page: 043302 year: 2011 ident: 1074_CR36 publication-title: Phys Fluids doi: 10.1063/1.3570526 – volume: 35 start-page: 529 year: 2008 ident: 1074_CR46 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2008.01.006 – volume: 739 start-page: 22 year: 2014 ident: 1074_CR48 publication-title: J Fluid Mech doi: 10.1017/jfm.2013.608 – volume: 28 start-page: 013301 year: 2016 ident: 1074_CR28 publication-title: Phys Fluids doi: 10.1063/1.4937757 – ident: 1074_CR50 – volume: 106 start-page: 11872 year: 2009 ident: 1074_CR33 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0900040106 – volume: 807 start-page: 221 year: 2016 ident: 1074_CR51 publication-title: J Fluid Mech doi: 10.1017/jfm.2016.619 – volume: 50 start-page: 1301 year: 2016 ident: 1074_CR49 publication-title: J Compos Mater doi: 10.1177/0021998315590266 – volume: 766 start-page: 202 year: 2016 ident: 1074_CR35 publication-title: J Fluid Mech doi: 10.1017/jfm.2015.16 – volume-title: Microhydrodynamics: principles and selected applications year: 1991 ident: 1074_CR21 – volume: 22 start-page: 033301 year: 2010 ident: 1074_CR30 publication-title: Phys Fluids doi: 10.1063/1.3328874 – volume: 17 start-page: 098101 year: 2005 ident: 1074_CR38 publication-title: Phys Fluids doi: 10.1063/1.2033573 – volume: 45 start-page: 625 year: 1971 ident: 1074_CR12 publication-title: J Fluid Mech doi: 10.1017/S0022112071000259 – volume: 46 start-page: 858 year: 2008 ident: 1074_CR23 publication-title: Int J Eng Sci doi: 10.1016/j.ijengsci.2008.03.008 – volume: 229 start-page: 827 year: 2018 ident: 1074_CR39 publication-title: Acta Mech doi: 10.1007/s00707-017-2002-5 – volume-title: Bubbles, drops and particles year: 1978 ident: 1074_CR11 – volume: 123 start-page: 24001 year: 2018 ident: 1074_CR15 publication-title: Europhys Lett doi: 10.1209/0295-5075/123/24001 – volume: 112 start-page: 074501 year: 2014 ident: 1074_CR9 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.112.074501 – volume: 814 start-page: 42 year: 2017 ident: 1074_CR41 publication-title: J Fluid Mech doi: 10.1017/jfm.2017.12 – volume: 99 start-page: 1 year: 2001 ident: 1074_CR20 publication-title: J Non-Newton Fluid Mech doi: 10.1016/S0377-0257(01)00113-6 – volume: 102 start-page: 161 year: 1922 ident: 1074_CR19 publication-title: Proc R Soc Lond Ser A doi: 10.1098/rspa.1922.0078 – volume: 98 start-page: 644 year: 1993 ident: 1074_CR47 publication-title: J Chem Phys doi: 10.1063/1.464607 – volume: 212 start-page: 36 year: 2014 ident: 1074_CR3 publication-title: J Non-Newton Fluid Mech doi: 10.1016/j.jnnfm.2014.08.002 – volume: 49 start-page: 249 year: 2017 ident: 1074_CR45 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-010816-060135 – ident: 1074_CR18 – volume: 43 start-page: 195 year: 2011 ident: 1074_CR27 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122109-160700 – volume: 230 start-page: 597 year: 2019 ident: 1074_CR13 publication-title: Acta Mech doi: 10.1007/s00707-018-2355-4 – volume: 121 start-page: 154501 year: 2018 ident: 1074_CR1 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.154501 |
SSID | ssj0010005 |
Score | 2.324711 |
Snippet | In this paper, we examine from a statistical point of view the deformation of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 343 |
SubjectTerms | Anisotropy Aspect ratio Automotive Engineering Channel flow Civil Engineering Classical Mechanics Computational fluid dynamics Computer simulation Deformation Direct numerical simulation Fibers Fluid flow Inertia Mathematical models Mechanical Engineering Physics Physics and Astronomy Recent Advances in Modeling and Simulations of Multiphase Flows Reynolds number Shape effects Shear Stokes number Turbulence Turbulent flow Twisting Variations |
Title | Deformation of flexible fibers in turbulent channel flow |
URI | https://link.springer.com/article/10.1007/s11012-019-01074-4 https://www.proquest.com/docview/2353610100 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7chuCL06k4nSMPvmlH2_xqHzd1DsU9OZhPZckSEEcndkPwrzfp0hWHCnvuJbSXS-877rs7gEuqbTZtyrzAmI9HlJ54seTcIyEXgYqk1tJWIz8N2WBEHsZ07IrCsoLtXqQk8z91WexmW1GZ0NfyeyyLkFSgRoMojqpQ696_PN6tswcWiBSjWhmh1BXL_L7LT4dUosyNxGjub_p1GBVvuqKZvHWWC9GRXxtNHLf9lAPYdwAUdVcWcwg7Km1A3YFR5K561oDdnBsqsyOIbtW6xBHNNdK2h6aYKaQt2yRDrykyfkssrf9CtpA4VTMjNP88hlH_7vlm4LmBC540N3HhUS1McMpCpYiIMdOYY8ptCKupttBDTPmUCUx9EU2wCckpV1T6KpZMch0zjk-gms5TdQrICDBfKky4xIRGfjxRWMbhCh8GijYhKLSeSNeN3A7FmCVlH2WrpMQoKcmVlJAmXK3XvK96cfwr3SoOM3H3MktCTLEBjGZJE66Lsykf_73b2Xbi57AX2sA8p3e3oLr4WKoLg14Wom2Mtd_rDdvOaNtQGYXdb-Uf4wU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InrxURXrcw_eNJBkX8mxqKVq21MLvS3d7S4IJRXT4t93J00aFBU8Z3YPs7uZb5jvmwG44Q6raVMRRP76BMy6SZAaKQMWSx3ZxDhnUI3cH4juiD2P-bgUheUV270qSRZ_6lrshq2ofOqL_B5kEbJN2PJgIMG5BaO4va4dIAypBrUKxnkplfl5j6_hqMaY38qiRbTpHMBeCRNJe3Wuh7Bhsybsl5CRlA8yb8J2weA0-REkD3YtRCRzRxx2utQzSxxyQnLymhEfXfQSowxBuW9mZ95o_nEMo87j8L4blGMRAuPfyyLgTvsUUsTWMp1S4aikXGKi6bhDgKCncio05aFOJtQnzlxabkKbGmGkS4WkJ9DI5pk9BeINRGgsZdJQxpMwnVhq0niF4iLLWxBV3lGm7BmOoytmqu52jB5V3qOq8KhiLbhdr3lbdcz40_qicroqX0-uYsqph3V-SQvuqoOoP_--29n_zK9hpzvs91TvafByDrsxptIFIfsCGov3pb30eGOhr4rr9QnHa8aW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCMSFxwAxGJADN6i2Nq_1ODGm8Zo4MGm3aMkSCWnqJtqJv0_ctRsgQOJcJwfHrj_L_myAS-6wmjYWQejNJ2DWjYLYSBmwSOrQtoxzBtnIT33RG7D7IR9-YvHn3e5lSXLBacApTUnWmI1dY0V8w7FUPg3GXh_sKGTrsOF_xyFa-iBqL-sICEnKpa2CcV7QZn6-42toWuHNbyXSPPJ092CngIykvXjjfVizSRV2C_hICudMq7CZd3Oa9ABaHbskJZKpIw6nXuqJJQ77Q1LymhAfafQcIw5B6m9iJ15o-n4Ig-7ty00vKFYkBMb7ThZwp306KSJrmY6pcFRSLjHpdNwhWNBjORaa8qZujahPorm03DRtbISRLhaSHkElmSb2GIgXEE1jKZOGMt5qxiNLTRwtEF1oeQ3CUjvKFPPDcY3FRK0mH6NGldeoyjWqWA2ulmdmi-kZf0rXS6WrwpNSFVFOPcTzR2pwXT7E6vPvt538T_wCtp47XfV41384he0Is-q8N7sOlextbs889Mj0eW5dH8SfytI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+of+flexible+fibers+in+turbulent+channel+flow&rft.jtitle=Meccanica+%28Milan%29&rft.au=Dotto%2C+D&rft.au=Soldati%2C+A&rft.au=Marchioli%2C+C&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-6455&rft.eissn=1572-9648&rft.volume=55&rft.issue=2&rft.spage=343&rft.epage=356&rft_id=info:doi/10.1007%2Fs11012-019-01074-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6455&client=summon |