Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for the Visible Light Driven Photocatalytic Dye Degradation
Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs)...
Saved in:
Published in | Topics in catalysis Vol. 68; no. 13; pp. 1427 - 1438 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs) from the extract of
Cucurbita pepo
via hydrothermal technique. The structural, morphological and optical characterizations of the as synthesized NCQDs were carried out using X-ray diffraction studies, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, High resolution transmission electron microscopy (HR-TEM), UV–Visible absorption Spectroscopy, Photoluminescence (PL) Spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The fluorescence quantum yield of the developed NCQDs were found to be 12.19% and the PL spectra appeared to exhibit typical excitation dependent emission behavior of carbon quantum dots. The intrinsic visible light driven photocatalytic activities of NCQDs were studied using crystal violet (CV) dye as the model pollutant. The evaluation of the photocatalytic activity of NCQDs resulted in achieving 99.9% CV dye degradation in 180 min in the presence of 1 mL H
2
O
2
. The advantages of efficient visible light absorption coined with the generation of semiconducting localized states owing to the presence of surface functionalities and electron transfer properties of NCQDs have played prominent roles in the obtained results. Radical trapping experiment revealed the prominent role played by the
⋅
OH radical and the fitting of Langmuir–Hinshelwood kinetic approach yielded an apparent rate constant value of 0.02581 min
−1
. Since the photocatalytic activity exhibited by biogenic NCQDs are comparable with those reported with the metal based photocatalysts, this study casts light on the development of alternative metal-free photocatalytic approach for organic pollutant degradation and environmental conservation. |
---|---|
AbstractList | Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs) from the extract of Cucurbita pepo via hydrothermal technique. The structural, morphological and optical characterizations of the as synthesized NCQDs were carried out using X-ray diffraction studies, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, High resolution transmission electron microscopy (HR-TEM), UV–Visible absorption Spectroscopy, Photoluminescence (PL) Spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The fluorescence quantum yield of the developed NCQDs were found to be 12.19% and the PL spectra appeared to exhibit typical excitation dependent emission behavior of carbon quantum dots. The intrinsic visible light driven photocatalytic activities of NCQDs were studied using crystal violet (CV) dye as the model pollutant. The evaluation of the photocatalytic activity of NCQDs resulted in achieving 99.9% CV dye degradation in 180 min in the presence of 1 mL H2O2. The advantages of efficient visible light absorption coined with the generation of semiconducting localized states owing to the presence of surface functionalities and electron transfer properties of NCQDs have played prominent roles in the obtained results. Radical trapping experiment revealed the prominent role played by the ⋅OH radical and the fitting of Langmuir–Hinshelwood kinetic approach yielded an apparent rate constant value of 0.02581 min−1. Since the photocatalytic activity exhibited by biogenic NCQDs are comparable with those reported with the metal based photocatalysts, this study casts light on the development of alternative metal-free photocatalytic approach for organic pollutant degradation and environmental conservation. Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs) from the extract of Cucurbita pepo via hydrothermal technique. The structural, morphological and optical characterizations of the as synthesized NCQDs were carried out using X-ray diffraction studies, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, High resolution transmission electron microscopy (HR-TEM), UV–Visible absorption Spectroscopy, Photoluminescence (PL) Spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The fluorescence quantum yield of the developed NCQDs were found to be 12.19% and the PL spectra appeared to exhibit typical excitation dependent emission behavior of carbon quantum dots. The intrinsic visible light driven photocatalytic activities of NCQDs were studied using crystal violet (CV) dye as the model pollutant. The evaluation of the photocatalytic activity of NCQDs resulted in achieving 99.9% CV dye degradation in 180 min in the presence of 1 mL H 2 O 2 . The advantages of efficient visible light absorption coined with the generation of semiconducting localized states owing to the presence of surface functionalities and electron transfer properties of NCQDs have played prominent roles in the obtained results. Radical trapping experiment revealed the prominent role played by the ⋅ OH radical and the fitting of Langmuir–Hinshelwood kinetic approach yielded an apparent rate constant value of 0.02581 min −1 . Since the photocatalytic activity exhibited by biogenic NCQDs are comparable with those reported with the metal based photocatalysts, this study casts light on the development of alternative metal-free photocatalytic approach for organic pollutant degradation and environmental conservation. |
Author | Vergis, Bincy Rose Smrithi, S. P. Kottam, Nagaraju |
Author_xml | – sequence: 1 givenname: S. P. surname: Smrithi fullname: Smrithi, S. P. organization: Department of Chemistry, M S Ramaiah Institute of Technology (An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belgaum) – sequence: 2 givenname: Nagaraju orcidid: 0000-0003-0156-8012 surname: Kottam fullname: Kottam, Nagaraju email: nagaraju@msrit.edu organization: Department of Chemistry, M S Ramaiah Institute of Technology (An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belgaum) – sequence: 3 givenname: Bincy Rose surname: Vergis fullname: Vergis, Bincy Rose organization: Department of Chemistry, BMS Institute of Technology and Management |
BookMark | eNp9kM9KAzEQxoMo-PcFPAU8rybZZHdzlFatUFFBvYbsZtJG2k1NsmJfwOc2tYLgwdMMzPeb-eY7RLu97wGhU0rOKSH1RaSUcV4QxgpCRUOLjx10QEXNCklYs5v7zUgI1uyjwxhfCWG0lvIAfU4gQfA6-SW-88ZZBwZP1m1wBo90aH2PHwfdp2GJxz5FPIbg3rPEhgyMhm4IrUsar2DlsfUBpzngFxdduwA8dbN5wuMN0OOHuU--00kv1sl1eLyGvGsWtNHJ-f4Y7Vm9iHDyU4_Q8_XV02hSTO9vbkeX06IrqUyFMKSsK8OBlrbh3HYlWA1EVoQTZpjRErgRoiJWVg1pZM1NKzVra0tKLgUrj9DZdu8q-LcBYlKvfgh9PqlKxgTnomJ1VjVbVRd8jAGs6vKTG58paLdQlKhN6mqbusrRqu_U1UdG2R90FdxSh_X_ULmFYhb3Mwi_rv6hvgDH3Jie |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_137474 crossref_primary_10_1016_j_diamond_2025_111974 crossref_primary_10_1021_acsomega_2c00092 crossref_primary_10_1007_s11356_022_19808_5 crossref_primary_10_3390_catal13010179 crossref_primary_10_18311_jmmf_2023_43600 crossref_primary_10_18311_jmmf_2023_43607 crossref_primary_10_1038_s41598_024_83054_7 crossref_primary_10_1155_2023_1701496 crossref_primary_10_18311_jmmf_2023_36260 crossref_primary_10_1016_j_jece_2023_110779 crossref_primary_10_18311_jmmf_2023_47304 crossref_primary_10_1016_j_colsurfa_2025_136475 crossref_primary_10_1007_s10971_022_05936_4 crossref_primary_10_1007_s13399_023_04016_z crossref_primary_10_1007_s13762_024_05826_y crossref_primary_10_1039_D3NR01966G |
Cites_doi | 10.1038/srep19028 10.1002/masy.202000002 10.1016/j.apsusc.2017.08.194 10.3390/s20071815 10.1016/j.materresbull.2012.12.010 10.1002/adfm.201504294 10.1016/j.cis.2020.102124 10.1039/C5NJ02181B 10.1021/acsami.5b02715 10.1007/s10895-018-2218-3 10.1016/j.apcatb.2017.06.003 10.1007/s10971-019-05048-6 10.1063/5.0022453 10.1021/cm1018844 10.1016/j.scitotenv.2019.134239 10.1016/j.ejps.2017.08.015 10.1007/s12596-021-00746-3 10.1021/acssuschemeng.6b03182 10.1166/jbn.2020.2973 10.1039/C5NR08838K 10.3390/ma13214975 10.1016/j.talanta.2014.01.046 10.1039/C7CS00543A 10.1039/c2cc33796g 10.3844/ajassp.2016.432.438 10.1021/acsanm.8b02237 10.1007/s42341-021-00348-7 10.1016/j.mtchem.2021.100438 10.3390/scipharm88040044 10.1039/c2cc33869f 10.3390/catal2040572 10.1063/5.0022450 10.1016/j.jiec.2021.01.043 10.1021/acssuschemeng.8b01559 10.1155/2016/2583821 10.1515/ntrev-2017-0199 10.1007/s12668-020-00741-1 10.1016/j.jece.2016.07.026 10.1021/acssuschemeng.7b02929 10.1007/s10895-021-02683-7 10.1016/j.apcatb.2019.02.019 10.1021/es991231c 10.1088/1361-6528/ac30f1 10.1088/2050-6120/abc008 10.1016/j.nanoso.2019.100290 10.1142/S0219581X20500064 10.1016/j.cherd.2021.05.008 10.1039/C4CS00269E 10.1007/s11665-020-04979-4 10.1039/c3ee41444b 10.1016/j.matlet.2011.08.081 10.3390/nano10050930 10.1007/s10854-021-05845-2 10.1016/j.apsusc.2016.09.136 10.1088/2632-959X/abb9fa 10.1016/j.matpr.2018.06.471 10.1002/masy.202000001 10.2174/2405461503666181116121843 10.1016/j.nanoen.2013.07.010 10.1016/j.snb.2015.05.006 10.1039/c2nj20942j 10.1016/j.jechem.2017.01.005 10.1021/cm900709w 10.1039/c0jm02963g 10.1016/j.jphotochemrev.2007.12.003 10.1016/j.jechem.2017.09.013 10.1038/s41598-019-49266-y 10.1016/j.jece.2018.06.060 10.1002/asia.201300076 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11244-022-01581-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 1438 |
ExternalDocumentID | 10_1007_s11244_022_01581_x |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-5d0376d4e13f844fc3efae0960402d2da9e4d5560f96808974db9a2b7f0349523 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Sat Aug 23 12:22:07 EDT 2025 Thu Jul 03 08:25:50 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Mon Jun 30 02:46:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Fluorescence Dye degradation Environmental remediation Carbon quantum dots Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5d0376d4e13f844fc3efae0960402d2da9e4d5560f96808974db9a2b7f0349523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0156-8012 |
PQID | 3225445627 |
PQPubID | 2043828 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3225445627 crossref_citationtrail_10_1007_s11244_022_01581_x crossref_primary_10_1007_s11244_022_01581_x springer_journals_10_1007_s11244_022_01581_x |
PublicationCentury | 2000 |
PublicationDate | 20250700 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | W Chen (1581_CR46) 2018; 7 J Li (1581_CR3) 2018; 47 N Kottam (1581_CR25) 2021; 9 S Sahu (1581_CR55) 2012; 48 J Zhou (1581_CR47) 2012; 66 B Anshu (1581_CR17) 2018; 6 YL Ding (1581_CR44) 2016; 26 L Tian (1581_CR36) 2009; 21 NHM Saari (1581_CR49) 2020; 88 SY Lim (1581_CR24) 2015; 44 UA Rani (1581_CR35) 2020; 278 C Hanane (1581_CR11) 2021; 171 M Shanmugam (1581_CR19) 2015; 7 JP Paraknowitsch (1581_CR41) 2013; 6 X Wang (1581_CR56) 2011; 21 M Xue (1581_CR60) 2016; 40 BR Vergis (1581_CR53) 2018; 3 Y Zhou (1581_CR72) 2019; 248 NHM Saari (1581_CR51) 2020; 19 X Zhai (1581_CR54) 2012; 48 P Khare (1581_CR20) 2018; 6 A Vinayak (1581_CR21) 2021 S Lu (1581_CR39) 2017; 392 AM Grumezescu (1581_CR52) 2020 G Chen (1581_CR63) 2016; 6 A Bhati (1581_CR70) 2016; 2016 P Sanati (1581_CR50) 2020; 16 K Kim (1581_CR58) 2020; 1 WJ Niu (1581_CR34) 2015; 218 F Zhang (1581_CR59) 2016; 8 C Jiang (1581_CR62) 2014; 127 A Vinayak (1581_CR13) 2020; 29 Y Dong (1581_CR37) 2010; 22 NL Stock (1581_CR6) 2000; 34 MA Lazar (1581_CR10) 2012; 2 MM Naik (1581_CR18) 2019; 91 A Vinayak (1581_CR22) 2021; 20 A Vinayak (1581_CR7) 2021; 31 S Hu (1581_CR66) 2013; 8 SP Smrithi (1581_CR5) 2020; 5 M Coros (1581_CR45) 2020; 20 SP Smrithi (1581_CR43) 2022; 33 T Jayalakshmi (1581_CR16) 2018; 27 RV Bincy (1581_CR4) 2019; 18 A Vinayak (1581_CR8) 2020; 392 V Katheresan (1581_CR1) 2018; 6 D Bharathi (1581_CR32) 2018; 28 P Kamedulski (1581_CR42) 2020; 13 N Sarkar (1581_CR30) 2017; 109 UI Gaya (1581_CR9) 2008; 9 N Santosh (1581_CR29) 2020; 2274 N Santosh (1581_CR28) 2020; 2274 A Vinayak (1581_CR12) 2020; 392 S Perathoner (1581_CR65) 2017; 26 YQ Zhang (1581_CR68) 2013; 2 H Muktha (1581_CR33) 2020; 10 L Jiang (1581_CR38) 2017; 217 M Pan (1581_CR31) 2020; 10 HXC Su (1581_CR2) 2016; 4 A Vinayak (1581_CR26) 2021 MP Aji (1581_CR69) 2016; 13 Y Jinsoo (1581_CR14) 2021; 96 N Kottam (1581_CR48) 2018; 5 Z Ma (1581_CR71) 2012; 36 L Feng (1581_CR40) 2020; 698 S Chae (1581_CR57) 2019; 2 X Li (1581_CR23) 2018; 430 KM Tripathi (1581_CR64) 2017; 5 GS Das (1581_CR67) 2019; 9 A Vinayak (1581_CR15) 2021 A Vinayak (1581_CR27) 2021; 67 Y Sha (1581_CR61) 2013; 48 |
References_xml | – volume: 6 start-page: 19028 year: 2016 ident: 1581_CR63 publication-title: Sci Rep doi: 10.1038/srep19028 – volume: 392 start-page: 2000002 issue: 1 year: 2020 ident: 1581_CR12 publication-title: Macromol Symp doi: 10.1002/masy.202000002 – volume: 430 start-page: 53 year: 2018 ident: 1581_CR23 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.08.194 – volume: 20 start-page: 1815 year: 2020 ident: 1581_CR45 publication-title: Sensors doi: 10.3390/s20071815 – volume: 48 start-page: 1728 year: 2013 ident: 1581_CR61 publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2012.12.010 – volume: 26 start-page: 1112 year: 2016 ident: 1581_CR44 publication-title: Adv Funct Mater doi: 10.1002/adfm.201504294 – volume: 278 start-page: 102124 year: 2020 ident: 1581_CR35 publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2020.102124 – volume: 40 start-page: 1698 year: 2016 ident: 1581_CR60 publication-title: New J Chem doi: 10.1039/C5NJ02181B – volume: 7 start-page: 14905 year: 2015 ident: 1581_CR19 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b02715 – volume: 28 start-page: 573 year: 2018 ident: 1581_CR32 publication-title: J Fluoresc doi: 10.1007/s10895-018-2218-3 – volume: 217 start-page: 388 year: 2017 ident: 1581_CR38 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2017.06.003 – volume: 91 start-page: 578 issue: 3 year: 2019 ident: 1581_CR18 publication-title: J Sol-Gel Sci Technol doi: 10.1007/s10971-019-05048-6 – volume: 2274 start-page: 020007 issue: 1 year: 2020 ident: 1581_CR29 publication-title: AIP Conf Proc doi: 10.1063/5.0022453 – volume: 22 start-page: 5895 year: 2010 ident: 1581_CR37 publication-title: Chem Mater doi: 10.1021/cm1018844 – volume: 698 start-page: 134239 year: 2020 ident: 1581_CR40 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134239 – volume: 109 start-page: 359 year: 2017 ident: 1581_CR30 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2017.08.015 – year: 2021 ident: 1581_CR15 publication-title: J Opt doi: 10.1007/s12596-021-00746-3 – volume: 5 start-page: 3982 year: 2017 ident: 1581_CR64 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.6b03182 – volume: 16 start-page: 1370 year: 2020 ident: 1581_CR50 publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2020.2973 – volume: 8 start-page: 8618 year: 2016 ident: 1581_CR59 publication-title: Nanoscale doi: 10.1039/C5NR08838K – volume: 13 start-page: 4975 year: 2020 ident: 1581_CR42 publication-title: Materials doi: 10.3390/ma13214975 – volume: 127 start-page: 68 year: 2014 ident: 1581_CR62 publication-title: Talanta doi: 10.1016/j.talanta.2014.01.046 – volume: 47 start-page: 2322 year: 2018 ident: 1581_CR3 publication-title: Chem Soc Rev doi: 10.1039/C7CS00543A – volume: 48 start-page: 8835 year: 2012 ident: 1581_CR55 publication-title: Chem Commun doi: 10.1039/c2cc33796g – volume: 13 start-page: 432 year: 2016 ident: 1581_CR69 publication-title: Am J Appl Sci doi: 10.3844/ajassp.2016.432.438 – volume: 2 start-page: 1350 year: 2019 ident: 1581_CR57 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.8b02237 – year: 2021 ident: 1581_CR21 publication-title: Trans Electr Electron Mater doi: 10.1007/s42341-021-00348-7 – volume: 20 issue: 3 year: 2021 ident: 1581_CR22 publication-title: Mater Today Chem doi: 10.1016/j.mtchem.2021.100438 – volume: 88 start-page: 44 year: 2020 ident: 1581_CR49 publication-title: Sci Pharm doi: 10.3390/scipharm88040044 – volume: 48 start-page: 7955 year: 2012 ident: 1581_CR54 publication-title: Chem Commun doi: 10.1039/c2cc33869f – volume: 2 start-page: 572 year: 2012 ident: 1581_CR10 publication-title: Catalysts doi: 10.3390/catal2040572 – volume: 2274 start-page: 020005 issue: 1 year: 2020 ident: 1581_CR28 publication-title: AIP Conf Proc doi: 10.1063/5.0022450 – volume: 5 start-page: 73 year: 2020 ident: 1581_CR5 publication-title: J Sci Adv Mater Dev – volume: 96 start-page: 390 year: 2021 ident: 1581_CR14 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2021.01.043 – volume: 6 start-page: 9246 year: 2018 ident: 1581_CR17 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b01559 – volume: 2016 start-page: 2583821 year: 2016 ident: 1581_CR70 publication-title: Int J Photoenergy doi: 10.1155/2016/2583821 – volume: 7 start-page: 157 year: 2018 ident: 1581_CR46 publication-title: Nanotechnol Rev doi: 10.1515/ntrev-2017-0199 – volume: 10 start-page: 731 year: 2020 ident: 1581_CR33 publication-title: BioNanoScience doi: 10.1007/s12668-020-00741-1 – volume: 4 start-page: 3618 year: 2016 ident: 1581_CR2 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2016.07.026 – volume: 67 start-page: 33 issue: 1 year: 2021 ident: 1581_CR27 publication-title: J Nano R – volume: 6 start-page: 579 year: 2018 ident: 1581_CR20 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b02929 – volume: 31 start-page: 1 issue: 2 year: 2021 ident: 1581_CR7 publication-title: J Fluoresc doi: 10.1007/s10895-021-02683-7 – volume: 248 start-page: 157 year: 2019 ident: 1581_CR72 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.02.019 – volume: 34 start-page: 1747 year: 2000 ident: 1581_CR6 publication-title: Environ Sci Technol doi: 10.1021/es991231c – volume: 33 start-page: 045403 year: 2022 ident: 1581_CR43 publication-title: Nanotechnology doi: 10.1088/1361-6528/ac30f1 – volume: 9 start-page: 012001 year: 2021 ident: 1581_CR25 publication-title: Methods Appl fluoresc doi: 10.1088/2050-6120/abc008 – volume: 18 start-page: 100290 year: 2019 ident: 1581_CR4 publication-title: Nano-Struct Nano-Objects doi: 10.1016/j.nanoso.2019.100290 – volume: 19 start-page: 2050006 issue: 6 year: 2020 ident: 1581_CR51 publication-title: Int J Nanosci doi: 10.1142/S0219581X20500064 – volume: 171 start-page: 198 year: 2021 ident: 1581_CR11 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2021.05.008 – volume: 44 start-page: 362 year: 2015 ident: 1581_CR24 publication-title: Chem Soc Rev doi: 10.1039/C4CS00269E – volume: 29 start-page: 4 year: 2020 ident: 1581_CR13 publication-title: J Mater Eng Perform doi: 10.1007/s11665-020-04979-4 – start-page: 405 volume-title: Nanoengineering in the beverage industry, the science of beverage year: 2020 ident: 1581_CR52 – volume: 6 start-page: 2839 year: 2013 ident: 1581_CR41 publication-title: Energy Environ Sci doi: 10.1039/c3ee41444b – volume: 66 start-page: 222 year: 2012 ident: 1581_CR47 publication-title: Mater Lett doi: 10.1016/j.matlet.2011.08.081 – volume: 10 start-page: 930 year: 2020 ident: 1581_CR31 publication-title: Nanomaterials doi: 10.3390/nano10050930 – year: 2021 ident: 1581_CR26 publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-021-05845-2 – volume: 392 start-page: 966 year: 2017 ident: 1581_CR39 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.09.136 – volume: 1 start-page: 020043 year: 2020 ident: 1581_CR58 publication-title: Nano Ex doi: 10.1088/2632-959X/abb9fa – volume: 5 start-page: 20849 year: 2018 ident: 1581_CR48 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2018.06.471 – volume: 392 start-page: 2000001 issue: 1 year: 2020 ident: 1581_CR8 publication-title: Macromol Symp doi: 10.1002/masy.202000001 – volume: 3 start-page: 153 issue: 3 year: 2018 ident: 1581_CR53 publication-title: Curr Nanomater doi: 10.2174/2405461503666181116121843 – volume: 2 start-page: 545 year: 2013 ident: 1581_CR68 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.010 – volume: 218 start-page: 229 year: 2015 ident: 1581_CR34 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2015.05.006 – volume: 36 start-page: 861 year: 2012 ident: 1581_CR71 publication-title: New J Chem doi: 10.1039/c2nj20942j – volume: 26 start-page: 207 year: 2017 ident: 1581_CR65 publication-title: J Energy Chem doi: 10.1016/j.jechem.2017.01.005 – volume: 21 start-page: 2803 year: 2009 ident: 1581_CR36 publication-title: Chem Mater doi: 10.1021/cm900709w – volume: 21 start-page: 2445 year: 2011 ident: 1581_CR56 publication-title: Mater Chem doi: 10.1039/c0jm02963g – volume: 9 start-page: 1 year: 2008 ident: 1581_CR9 publication-title: J Photochem Photobiol C Photochem Rev doi: 10.1016/j.jphotochemrev.2007.12.003 – volume: 27 start-page: 183 year: 2018 ident: 1581_CR16 publication-title: J Energy Chem doi: 10.1016/j.jechem.2017.09.013 – volume: 9 start-page: 15084 year: 2019 ident: 1581_CR67 publication-title: Sci Rep doi: 10.1038/s41598-019-49266-y – volume: 6 start-page: 4676 year: 2018 ident: 1581_CR1 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2018.06.060 – volume: 8 start-page: 1035 year: 2013 ident: 1581_CR66 publication-title: Chem Asian J doi: 10.1002/asia.201300076 |
SSID | ssj0021799 |
Score | 2.556252 |
Snippet | Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1427 |
SubjectTerms | Absorption spectroscopy Carbon Carbon dots Catalysis Catalytic activity Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Dyes Electromagnetic absorption Electron transfer Electrons Energy harvesting Fourier transforms High resolution electron microscopy Hydrogen peroxide Industrial Chemistry/Chemical Engineering Infrared spectroscopy Medical imaging Microscopy Original Paper Pharmacy Photocatalysis Photodegradation Photoluminescence Physical Chemistry Pollutants Quantum dots Spectrum analysis |
Title | Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for the Visible Light Driven Photocatalytic Dye Degradation |
URI | https://link.springer.com/article/10.1007/s11244-022-01581-x https://www.proquest.com/docview/3225445627 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7iHvRFvOJ0ynnwTQNdm3bt464Obyg40aeSNqkOtnZsrbg_4O_2nK51KCr41IcmoeRLcr6vORfGTijFuDAsyd3QsLhw7AZH1mpzQwVChWjwHEXxztc3Tn8gLh7txyIobFZ6u5dXkvlJvQx2I1PEyfscTZhb58gcKzZqd3LkGpjNT5lFOc7yO06SWbbpFqEyP4_x1RwtOea3a9Hc2vQ22UZBE6G5wHWLreh4m621y-psO-y9T34sCUrmMVwnahghlYT-nOKvoC2nQRLDXYazlo2hk6Qz6OBKe8UmFE4C7SzMpsEwlTBB_g3IWwF5IDwMcX-MNFyRYIcOdYjh9iVJk_wnzxy_BTpzjWM9T-WiFtMuG_S69-0-L2oq8BA3W8ptZeCRooSuW5ErRBRaOpKadAwKSWUq6WmhbKRBkUdFORA3FXjSDBoRJbJB1brHVuMk1vsMVGRIV2sUVB6KGEt6lnQ08hvXMQLHs9wqq5dT64dFwnGqezHyl6mSCQ4f4fBzOPy3Kjv97DNZpNv4s3WtRMwvtt7MpxNKkK5rVNlZieLy9e-jHfyv-SFbN6kWcO66W2Or6TTTR0hQ0uCYVZq9VuuGnudPl93jfH1-AI273r8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4hONBLxV_VFChzoKd2JcdeO_aBA4pBBhJUJFJxc9feNY0ENkpsIC_Ak_CgnXFsolZtpR44e71a7czsfN_u_ADsc4lxaTlK-KnlCOm5PUGo1RWWTqROyeF5mvOdh-deNJKnV-7VEjy3uTB1tHv7JFmf1ItkN3ZFgqPPyYX5XfHYhFKemdkDEbXpwUlIUv1k28dHl_1INL0EREpKVgpXW2RKWpquk_lSZqljMmUYvxOB0rZWgZHaJfefBdyMgtark0DZSS_jAi4ulzegg36FwIfPtjOyD19oHddUq99Umda5tt-k5vx5zb-6vwWm_e0ZtvZux2vwtoGleDjXo3VYMvkGrPbbbnCb8BRx3ExBFP0Wh4UeZwRdMZpxvhf21SQpcryoSErVLYZFOcWQNPuehnD6CvartJok41LhHeF9JJyMhDvx25js8cbggC8IMOQfcvz6oyiL-lJpRmvBcGZoruuJmvd-2oLRq-z7O1jOi9y8B9SZpXxjiMAFRJocFTjKM4SnfM9KvMDxO9BttzZOmwLn3GfjJl6UZmZxxCSOuBZH_NiBzy__3M3Le_xz9E4rsbgx9WnMJ6JkHtnrwJdWiovPf5_tw_8N34PV6HI4iAcn52fb8MbmPsR12PAOLJeTyuwSOCqTj7VuInx_bWP4CffjF4k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hKhUuiD4QKY_OgZ7aFY69duxDD1HcKJSHqNRU3Mzau6aRwI4Sm5I_0N_DT2TGsRO1KpU4cPZ6tdqZ2flmd74ZgAMuMS4tRwk_sRwhPbcjCLW6wtKx1Ak5PE8z3_n0zBsM5dcL92IF7hsuTJXt3jxJzjkNXKUpKw7HOj1cEt_YLQnORCd35rfFXZ1WeWxmvyhom34-CknCH2y7_-V7byDqvgIiIYUrhKstMistTdtJfSnTxDGpMozlKZjStlaBkdolKJAG3JiC1q7jQNlxJ-ViLi6XOqBD_4Vk9jFZ0NDuLkI8rq9Wva9yiOfafk3T-fea_3SFS3z715Ns5en6m7BRQ1TsznXqFayY7DWs9ZrOcG_g94BzaHIK12_wNNejlGAsDmbM_cKemsR5ht9Kklh5g2FeTDEkLb-lIUxlwV6ZlJN4VCgcE_ZHwsxIGBR_jMg2rw2e8GUBhvxDhuc_8yKvLphmtBYMZ4bmupqoeR-otzB8ln3fgtUsz8w2oE4t5RtDwVxAAZSjAkd5hrCV71mxFzh-C9rN1kZJXeyce25cR8syzSyOiMQRVeKI7lrwcfHPeF7q47-jdxuJRbXZTyM-HSXHlJ0WfGqkuPz8-Gzvnjb8Pbw8D_vRydHZ8Q6s29ySuMog3oXVYlKaPcJJRbxfqSbC5XPbwgNdRxu8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom+Modified+Hybrid+Carbon+Quantum+Dots+Derived+from+Cucurbita+pepo+for+the+Visible+Light+Driven+Photocatalytic+Dye+Degradation&rft.jtitle=Topics+in+catalysis&rft.au=Smrithi%2C+S.+P.&rft.au=Kottam%2C+Nagaraju&rft.au=Vergis%2C+Bincy+Rose&rft.date=2025-07-01&rft.pub=Springer+US&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=68&rft.issue=13&rft.spage=1427&rft.epage=1438&rft_id=info:doi/10.1007%2Fs11244-022-01581-x&rft.externalDocID=10_1007_s11244_022_01581_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |