Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for the Visible Light Driven Photocatalytic Dye Degradation

Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs)...

Full description

Saved in:
Bibliographic Details
Published inTopics in catalysis Vol. 68; no. 13; pp. 1427 - 1438
Main Authors Smrithi, S. P., Kottam, Nagaraju, Vergis, Bincy Rose
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs) from the extract of Cucurbita pepo via hydrothermal technique. The structural, morphological and optical characterizations of the as synthesized NCQDs were carried out using X-ray diffraction studies, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, High resolution transmission electron microscopy (HR-TEM), UV–Visible absorption Spectroscopy, Photoluminescence (PL) Spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The fluorescence quantum yield of the developed NCQDs were found to be 12.19% and the PL spectra appeared to exhibit typical excitation dependent emission behavior of carbon quantum dots. The intrinsic visible light driven photocatalytic activities of NCQDs were studied using crystal violet (CV) dye as the model pollutant. The evaluation of the photocatalytic activity of NCQDs resulted in achieving 99.9% CV dye degradation in 180 min in the presence of 1 mL H 2 O 2 . The advantages of efficient visible light absorption coined with the generation of semiconducting localized states owing to the presence of surface functionalities and electron transfer properties of NCQDs have played prominent roles in the obtained results. Radical trapping experiment revealed the prominent role played by the ⋅ OH radical and the fitting of Langmuir–Hinshelwood kinetic approach yielded an apparent rate constant value of 0.02581 min −1 . Since the photocatalytic activity exhibited by biogenic NCQDs are comparable with those reported with the metal based photocatalysts, this study casts light on the development of alternative metal-free photocatalytic approach for organic pollutant degradation and environmental conservation.
AbstractList Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs) from the extract of Cucurbita pepo via hydrothermal technique. The structural, morphological and optical characterizations of the as synthesized NCQDs were carried out using X-ray diffraction studies, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, High resolution transmission electron microscopy (HR-TEM), UV–Visible absorption Spectroscopy, Photoluminescence (PL) Spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The fluorescence quantum yield of the developed NCQDs were found to be 12.19% and the PL spectra appeared to exhibit typical excitation dependent emission behavior of carbon quantum dots. The intrinsic visible light driven photocatalytic activities of NCQDs were studied using crystal violet (CV) dye as the model pollutant. The evaluation of the photocatalytic activity of NCQDs resulted in achieving 99.9% CV dye degradation in 180 min in the presence of 1 mL H2O2. The advantages of efficient visible light absorption coined with the generation of semiconducting localized states owing to the presence of surface functionalities and electron transfer properties of NCQDs have played prominent roles in the obtained results. Radical trapping experiment revealed the prominent role played by the ⋅OH radical and the fitting of Langmuir–Hinshelwood kinetic approach yielded an apparent rate constant value of 0.02581 min−1. Since the photocatalytic activity exhibited by biogenic NCQDs are comparable with those reported with the metal based photocatalysts, this study casts light on the development of alternative metal-free photocatalytic approach for organic pollutant degradation and environmental conservation.
Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields such as sensing, bioimaging, catalysis and energy harvesting. Herein, we report the green synthesis of nitrogen modified carbon dots (NCQDs) from the extract of Cucurbita pepo via hydrothermal technique. The structural, morphological and optical characterizations of the as synthesized NCQDs were carried out using X-ray diffraction studies, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, High resolution transmission electron microscopy (HR-TEM), UV–Visible absorption Spectroscopy, Photoluminescence (PL) Spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The fluorescence quantum yield of the developed NCQDs were found to be 12.19% and the PL spectra appeared to exhibit typical excitation dependent emission behavior of carbon quantum dots. The intrinsic visible light driven photocatalytic activities of NCQDs were studied using crystal violet (CV) dye as the model pollutant. The evaluation of the photocatalytic activity of NCQDs resulted in achieving 99.9% CV dye degradation in 180 min in the presence of 1 mL H 2 O 2 . The advantages of efficient visible light absorption coined with the generation of semiconducting localized states owing to the presence of surface functionalities and electron transfer properties of NCQDs have played prominent roles in the obtained results. Radical trapping experiment revealed the prominent role played by the ⋅ OH radical and the fitting of Langmuir–Hinshelwood kinetic approach yielded an apparent rate constant value of 0.02581 min −1 . Since the photocatalytic activity exhibited by biogenic NCQDs are comparable with those reported with the metal based photocatalysts, this study casts light on the development of alternative metal-free photocatalytic approach for organic pollutant degradation and environmental conservation.
Author Vergis, Bincy Rose
Smrithi, S. P.
Kottam, Nagaraju
Author_xml – sequence: 1
  givenname: S. P.
  surname: Smrithi
  fullname: Smrithi, S. P.
  organization: Department of Chemistry, M S Ramaiah Institute of Technology (An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belgaum)
– sequence: 2
  givenname: Nagaraju
  orcidid: 0000-0003-0156-8012
  surname: Kottam
  fullname: Kottam, Nagaraju
  email: nagaraju@msrit.edu
  organization: Department of Chemistry, M S Ramaiah Institute of Technology (An Autonomous Institute Affiliated to Visvesvaraya Technological University, Belgaum)
– sequence: 3
  givenname: Bincy Rose
  surname: Vergis
  fullname: Vergis, Bincy Rose
  organization: Department of Chemistry, BMS Institute of Technology and Management
BookMark eNp9kM9KAzEQxoMo-PcFPAU8rybZZHdzlFatUFFBvYbsZtJG2k1NsmJfwOc2tYLgwdMMzPeb-eY7RLu97wGhU0rOKSH1RaSUcV4QxgpCRUOLjx10QEXNCklYs5v7zUgI1uyjwxhfCWG0lvIAfU4gQfA6-SW-88ZZBwZP1m1wBo90aH2PHwfdp2GJxz5FPIbg3rPEhgyMhm4IrUsar2DlsfUBpzngFxdduwA8dbN5wuMN0OOHuU--00kv1sl1eLyGvGsWtNHJ-f4Y7Vm9iHDyU4_Q8_XV02hSTO9vbkeX06IrqUyFMKSsK8OBlrbh3HYlWA1EVoQTZpjRErgRoiJWVg1pZM1NKzVra0tKLgUrj9DZdu8q-LcBYlKvfgh9PqlKxgTnomJ1VjVbVRd8jAGs6vKTG58paLdQlKhN6mqbusrRqu_U1UdG2R90FdxSh_X_ULmFYhb3Mwi_rv6hvgDH3Jie
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_137474
crossref_primary_10_1016_j_diamond_2025_111974
crossref_primary_10_1021_acsomega_2c00092
crossref_primary_10_1007_s11356_022_19808_5
crossref_primary_10_3390_catal13010179
crossref_primary_10_18311_jmmf_2023_43600
crossref_primary_10_18311_jmmf_2023_43607
crossref_primary_10_1038_s41598_024_83054_7
crossref_primary_10_1155_2023_1701496
crossref_primary_10_18311_jmmf_2023_36260
crossref_primary_10_1016_j_jece_2023_110779
crossref_primary_10_18311_jmmf_2023_47304
crossref_primary_10_1016_j_colsurfa_2025_136475
crossref_primary_10_1007_s10971_022_05936_4
crossref_primary_10_1007_s13399_023_04016_z
crossref_primary_10_1007_s13762_024_05826_y
crossref_primary_10_1039_D3NR01966G
Cites_doi 10.1038/srep19028
10.1002/masy.202000002
10.1016/j.apsusc.2017.08.194
10.3390/s20071815
10.1016/j.materresbull.2012.12.010
10.1002/adfm.201504294
10.1016/j.cis.2020.102124
10.1039/C5NJ02181B
10.1021/acsami.5b02715
10.1007/s10895-018-2218-3
10.1016/j.apcatb.2017.06.003
10.1007/s10971-019-05048-6
10.1063/5.0022453
10.1021/cm1018844
10.1016/j.scitotenv.2019.134239
10.1016/j.ejps.2017.08.015
10.1007/s12596-021-00746-3
10.1021/acssuschemeng.6b03182
10.1166/jbn.2020.2973
10.1039/C5NR08838K
10.3390/ma13214975
10.1016/j.talanta.2014.01.046
10.1039/C7CS00543A
10.1039/c2cc33796g
10.3844/ajassp.2016.432.438
10.1021/acsanm.8b02237
10.1007/s42341-021-00348-7
10.1016/j.mtchem.2021.100438
10.3390/scipharm88040044
10.1039/c2cc33869f
10.3390/catal2040572
10.1063/5.0022450
10.1016/j.jiec.2021.01.043
10.1021/acssuschemeng.8b01559
10.1155/2016/2583821
10.1515/ntrev-2017-0199
10.1007/s12668-020-00741-1
10.1016/j.jece.2016.07.026
10.1021/acssuschemeng.7b02929
10.1007/s10895-021-02683-7
10.1016/j.apcatb.2019.02.019
10.1021/es991231c
10.1088/1361-6528/ac30f1
10.1088/2050-6120/abc008
10.1016/j.nanoso.2019.100290
10.1142/S0219581X20500064
10.1016/j.cherd.2021.05.008
10.1039/C4CS00269E
10.1007/s11665-020-04979-4
10.1039/c3ee41444b
10.1016/j.matlet.2011.08.081
10.3390/nano10050930
10.1007/s10854-021-05845-2
10.1016/j.apsusc.2016.09.136
10.1088/2632-959X/abb9fa
10.1016/j.matpr.2018.06.471
10.1002/masy.202000001
10.2174/2405461503666181116121843
10.1016/j.nanoen.2013.07.010
10.1016/j.snb.2015.05.006
10.1039/c2nj20942j
10.1016/j.jechem.2017.01.005
10.1021/cm900709w
10.1039/c0jm02963g
10.1016/j.jphotochemrev.2007.12.003
10.1016/j.jechem.2017.09.013
10.1038/s41598-019-49266-y
10.1016/j.jece.2018.06.060
10.1002/asia.201300076
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s11244-022-01581-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-9028
EndPage 1438
ExternalDocumentID 10_1007_s11244_022_01581_x
GroupedDBID -Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-5d0376d4e13f844fc3efae0960402d2da9e4d5560f96808974db9a2b7f0349523
IEDL.DBID U2A
ISSN 1022-5528
IngestDate Sat Aug 23 12:22:07 EDT 2025
Thu Jul 03 08:25:50 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Mon Jun 30 02:46:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Fluorescence
Dye degradation
Environmental remediation
Carbon quantum dots
Photocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5d0376d4e13f844fc3efae0960402d2da9e4d5560f96808974db9a2b7f0349523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0156-8012
PQID 3225445627
PQPubID 2043828
PageCount 12
ParticipantIDs proquest_journals_3225445627
crossref_citationtrail_10_1007_s11244_022_01581_x
crossref_primary_10_1007_s11244_022_01581_x
springer_journals_10_1007_s11244_022_01581_x
PublicationCentury 2000
PublicationDate 20250700
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Topics in catalysis
PublicationTitleAbbrev Top Catal
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References W Chen (1581_CR46) 2018; 7
J Li (1581_CR3) 2018; 47
N Kottam (1581_CR25) 2021; 9
S Sahu (1581_CR55) 2012; 48
J Zhou (1581_CR47) 2012; 66
B Anshu (1581_CR17) 2018; 6
YL Ding (1581_CR44) 2016; 26
L Tian (1581_CR36) 2009; 21
NHM Saari (1581_CR49) 2020; 88
SY Lim (1581_CR24) 2015; 44
UA Rani (1581_CR35) 2020; 278
C Hanane (1581_CR11) 2021; 171
M Shanmugam (1581_CR19) 2015; 7
JP Paraknowitsch (1581_CR41) 2013; 6
X Wang (1581_CR56) 2011; 21
M Xue (1581_CR60) 2016; 40
BR Vergis (1581_CR53) 2018; 3
Y Zhou (1581_CR72) 2019; 248
NHM Saari (1581_CR51) 2020; 19
X Zhai (1581_CR54) 2012; 48
P Khare (1581_CR20) 2018; 6
A Vinayak (1581_CR21) 2021
S Lu (1581_CR39) 2017; 392
AM Grumezescu (1581_CR52) 2020
G Chen (1581_CR63) 2016; 6
A Bhati (1581_CR70) 2016; 2016
P Sanati (1581_CR50) 2020; 16
K Kim (1581_CR58) 2020; 1
WJ Niu (1581_CR34) 2015; 218
F Zhang (1581_CR59) 2016; 8
C Jiang (1581_CR62) 2014; 127
A Vinayak (1581_CR13) 2020; 29
Y Dong (1581_CR37) 2010; 22
NL Stock (1581_CR6) 2000; 34
MA Lazar (1581_CR10) 2012; 2
MM Naik (1581_CR18) 2019; 91
A Vinayak (1581_CR22) 2021; 20
A Vinayak (1581_CR7) 2021; 31
S Hu (1581_CR66) 2013; 8
SP Smrithi (1581_CR5) 2020; 5
M Coros (1581_CR45) 2020; 20
SP Smrithi (1581_CR43) 2022; 33
T Jayalakshmi (1581_CR16) 2018; 27
RV Bincy (1581_CR4) 2019; 18
A Vinayak (1581_CR8) 2020; 392
V Katheresan (1581_CR1) 2018; 6
D Bharathi (1581_CR32) 2018; 28
P Kamedulski (1581_CR42) 2020; 13
N Sarkar (1581_CR30) 2017; 109
UI Gaya (1581_CR9) 2008; 9
N Santosh (1581_CR29) 2020; 2274
N Santosh (1581_CR28) 2020; 2274
A Vinayak (1581_CR12) 2020; 392
S Perathoner (1581_CR65) 2017; 26
YQ Zhang (1581_CR68) 2013; 2
H Muktha (1581_CR33) 2020; 10
L Jiang (1581_CR38) 2017; 217
M Pan (1581_CR31) 2020; 10
HXC Su (1581_CR2) 2016; 4
A Vinayak (1581_CR26) 2021
MP Aji (1581_CR69) 2016; 13
Y Jinsoo (1581_CR14) 2021; 96
N Kottam (1581_CR48) 2018; 5
Z Ma (1581_CR71) 2012; 36
L Feng (1581_CR40) 2020; 698
S Chae (1581_CR57) 2019; 2
X Li (1581_CR23) 2018; 430
KM Tripathi (1581_CR64) 2017; 5
GS Das (1581_CR67) 2019; 9
A Vinayak (1581_CR15) 2021
A Vinayak (1581_CR27) 2021; 67
Y Sha (1581_CR61) 2013; 48
References_xml – volume: 6
  start-page: 19028
  year: 2016
  ident: 1581_CR63
  publication-title: Sci Rep
  doi: 10.1038/srep19028
– volume: 392
  start-page: 2000002
  issue: 1
  year: 2020
  ident: 1581_CR12
  publication-title: Macromol Symp
  doi: 10.1002/masy.202000002
– volume: 430
  start-page: 53
  year: 2018
  ident: 1581_CR23
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.08.194
– volume: 20
  start-page: 1815
  year: 2020
  ident: 1581_CR45
  publication-title: Sensors
  doi: 10.3390/s20071815
– volume: 48
  start-page: 1728
  year: 2013
  ident: 1581_CR61
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2012.12.010
– volume: 26
  start-page: 1112
  year: 2016
  ident: 1581_CR44
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201504294
– volume: 278
  start-page: 102124
  year: 2020
  ident: 1581_CR35
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2020.102124
– volume: 40
  start-page: 1698
  year: 2016
  ident: 1581_CR60
  publication-title: New J Chem
  doi: 10.1039/C5NJ02181B
– volume: 7
  start-page: 14905
  year: 2015
  ident: 1581_CR19
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b02715
– volume: 28
  start-page: 573
  year: 2018
  ident: 1581_CR32
  publication-title: J Fluoresc
  doi: 10.1007/s10895-018-2218-3
– volume: 217
  start-page: 388
  year: 2017
  ident: 1581_CR38
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2017.06.003
– volume: 91
  start-page: 578
  issue: 3
  year: 2019
  ident: 1581_CR18
  publication-title: J Sol-Gel Sci Technol
  doi: 10.1007/s10971-019-05048-6
– volume: 2274
  start-page: 020007
  issue: 1
  year: 2020
  ident: 1581_CR29
  publication-title: AIP Conf Proc
  doi: 10.1063/5.0022453
– volume: 22
  start-page: 5895
  year: 2010
  ident: 1581_CR37
  publication-title: Chem Mater
  doi: 10.1021/cm1018844
– volume: 698
  start-page: 134239
  year: 2020
  ident: 1581_CR40
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134239
– volume: 109
  start-page: 359
  year: 2017
  ident: 1581_CR30
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2017.08.015
– year: 2021
  ident: 1581_CR15
  publication-title: J Opt
  doi: 10.1007/s12596-021-00746-3
– volume: 5
  start-page: 3982
  year: 2017
  ident: 1581_CR64
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.6b03182
– volume: 16
  start-page: 1370
  year: 2020
  ident: 1581_CR50
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2020.2973
– volume: 8
  start-page: 8618
  year: 2016
  ident: 1581_CR59
  publication-title: Nanoscale
  doi: 10.1039/C5NR08838K
– volume: 13
  start-page: 4975
  year: 2020
  ident: 1581_CR42
  publication-title: Materials
  doi: 10.3390/ma13214975
– volume: 127
  start-page: 68
  year: 2014
  ident: 1581_CR62
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.01.046
– volume: 47
  start-page: 2322
  year: 2018
  ident: 1581_CR3
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00543A
– volume: 48
  start-page: 8835
  year: 2012
  ident: 1581_CR55
  publication-title: Chem Commun
  doi: 10.1039/c2cc33796g
– volume: 13
  start-page: 432
  year: 2016
  ident: 1581_CR69
  publication-title: Am J Appl Sci
  doi: 10.3844/ajassp.2016.432.438
– volume: 2
  start-page: 1350
  year: 2019
  ident: 1581_CR57
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.8b02237
– year: 2021
  ident: 1581_CR21
  publication-title: Trans Electr Electron Mater
  doi: 10.1007/s42341-021-00348-7
– volume: 20
  issue: 3
  year: 2021
  ident: 1581_CR22
  publication-title: Mater Today Chem
  doi: 10.1016/j.mtchem.2021.100438
– volume: 88
  start-page: 44
  year: 2020
  ident: 1581_CR49
  publication-title: Sci Pharm
  doi: 10.3390/scipharm88040044
– volume: 48
  start-page: 7955
  year: 2012
  ident: 1581_CR54
  publication-title: Chem Commun
  doi: 10.1039/c2cc33869f
– volume: 2
  start-page: 572
  year: 2012
  ident: 1581_CR10
  publication-title: Catalysts
  doi: 10.3390/catal2040572
– volume: 2274
  start-page: 020005
  issue: 1
  year: 2020
  ident: 1581_CR28
  publication-title: AIP Conf Proc
  doi: 10.1063/5.0022450
– volume: 5
  start-page: 73
  year: 2020
  ident: 1581_CR5
  publication-title: J Sci Adv Mater Dev
– volume: 96
  start-page: 390
  year: 2021
  ident: 1581_CR14
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2021.01.043
– volume: 6
  start-page: 9246
  year: 2018
  ident: 1581_CR17
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b01559
– volume: 2016
  start-page: 2583821
  year: 2016
  ident: 1581_CR70
  publication-title: Int J Photoenergy
  doi: 10.1155/2016/2583821
– volume: 7
  start-page: 157
  year: 2018
  ident: 1581_CR46
  publication-title: Nanotechnol Rev
  doi: 10.1515/ntrev-2017-0199
– volume: 10
  start-page: 731
  year: 2020
  ident: 1581_CR33
  publication-title: BioNanoScience
  doi: 10.1007/s12668-020-00741-1
– volume: 4
  start-page: 3618
  year: 2016
  ident: 1581_CR2
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2016.07.026
– volume: 67
  start-page: 33
  issue: 1
  year: 2021
  ident: 1581_CR27
  publication-title: J Nano R
– volume: 6
  start-page: 579
  year: 2018
  ident: 1581_CR20
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02929
– volume: 31
  start-page: 1
  issue: 2
  year: 2021
  ident: 1581_CR7
  publication-title: J Fluoresc
  doi: 10.1007/s10895-021-02683-7
– volume: 248
  start-page: 157
  year: 2019
  ident: 1581_CR72
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.02.019
– volume: 34
  start-page: 1747
  year: 2000
  ident: 1581_CR6
  publication-title: Environ Sci Technol
  doi: 10.1021/es991231c
– volume: 33
  start-page: 045403
  year: 2022
  ident: 1581_CR43
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac30f1
– volume: 9
  start-page: 012001
  year: 2021
  ident: 1581_CR25
  publication-title: Methods Appl fluoresc
  doi: 10.1088/2050-6120/abc008
– volume: 18
  start-page: 100290
  year: 2019
  ident: 1581_CR4
  publication-title: Nano-Struct Nano-Objects
  doi: 10.1016/j.nanoso.2019.100290
– volume: 19
  start-page: 2050006
  issue: 6
  year: 2020
  ident: 1581_CR51
  publication-title: Int J Nanosci
  doi: 10.1142/S0219581X20500064
– volume: 171
  start-page: 198
  year: 2021
  ident: 1581_CR11
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2021.05.008
– volume: 44
  start-page: 362
  year: 2015
  ident: 1581_CR24
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00269E
– volume: 29
  start-page: 4
  year: 2020
  ident: 1581_CR13
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-020-04979-4
– start-page: 405
  volume-title: Nanoengineering in the beverage industry, the science of beverage
  year: 2020
  ident: 1581_CR52
– volume: 6
  start-page: 2839
  year: 2013
  ident: 1581_CR41
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee41444b
– volume: 66
  start-page: 222
  year: 2012
  ident: 1581_CR47
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2011.08.081
– volume: 10
  start-page: 930
  year: 2020
  ident: 1581_CR31
  publication-title: Nanomaterials
  doi: 10.3390/nano10050930
– year: 2021
  ident: 1581_CR26
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-021-05845-2
– volume: 392
  start-page: 966
  year: 2017
  ident: 1581_CR39
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.09.136
– volume: 1
  start-page: 020043
  year: 2020
  ident: 1581_CR58
  publication-title: Nano Ex
  doi: 10.1088/2632-959X/abb9fa
– volume: 5
  start-page: 20849
  year: 2018
  ident: 1581_CR48
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2018.06.471
– volume: 392
  start-page: 2000001
  issue: 1
  year: 2020
  ident: 1581_CR8
  publication-title: Macromol Symp
  doi: 10.1002/masy.202000001
– volume: 3
  start-page: 153
  issue: 3
  year: 2018
  ident: 1581_CR53
  publication-title: Curr Nanomater
  doi: 10.2174/2405461503666181116121843
– volume: 2
  start-page: 545
  year: 2013
  ident: 1581_CR68
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.07.010
– volume: 218
  start-page: 229
  year: 2015
  ident: 1581_CR34
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2015.05.006
– volume: 36
  start-page: 861
  year: 2012
  ident: 1581_CR71
  publication-title: New J Chem
  doi: 10.1039/c2nj20942j
– volume: 26
  start-page: 207
  year: 2017
  ident: 1581_CR65
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.01.005
– volume: 21
  start-page: 2803
  year: 2009
  ident: 1581_CR36
  publication-title: Chem Mater
  doi: 10.1021/cm900709w
– volume: 21
  start-page: 2445
  year: 2011
  ident: 1581_CR56
  publication-title: Mater Chem
  doi: 10.1039/c0jm02963g
– volume: 9
  start-page: 1
  year: 2008
  ident: 1581_CR9
  publication-title: J Photochem Photobiol C Photochem Rev
  doi: 10.1016/j.jphotochemrev.2007.12.003
– volume: 27
  start-page: 183
  year: 2018
  ident: 1581_CR16
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.09.013
– volume: 9
  start-page: 15084
  year: 2019
  ident: 1581_CR67
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49266-y
– volume: 6
  start-page: 4676
  year: 2018
  ident: 1581_CR1
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2018.06.060
– volume: 8
  start-page: 1035
  year: 2013
  ident: 1581_CR66
  publication-title: Chem Asian J
  doi: 10.1002/asia.201300076
SSID ssj0021799
Score 2.556252
Snippet Zero dimensional nanocarbon dots with unique photophysical and optical characters have grabbed tremendous popularity owing to its application in diverse fields...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1427
SubjectTerms Absorption spectroscopy
Carbon
Carbon dots
Catalysis
Catalytic activity
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Dyes
Electromagnetic absorption
Electron transfer
Electrons
Energy harvesting
Fourier transforms
High resolution electron microscopy
Hydrogen peroxide
Industrial Chemistry/Chemical Engineering
Infrared spectroscopy
Medical imaging
Microscopy
Original Paper
Pharmacy
Photocatalysis
Photodegradation
Photoluminescence
Physical Chemistry
Pollutants
Quantum dots
Spectrum analysis
Title Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for the Visible Light Driven Photocatalytic Dye Degradation
URI https://link.springer.com/article/10.1007/s11244-022-01581-x
https://www.proquest.com/docview/3225445627
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7iHvRFvOJ0ynnwTQNdm3bt464Obyg40aeSNqkOtnZsrbg_4O_2nK51KCr41IcmoeRLcr6vORfGTijFuDAsyd3QsLhw7AZH1mpzQwVChWjwHEXxztc3Tn8gLh7txyIobFZ6u5dXkvlJvQx2I1PEyfscTZhb58gcKzZqd3LkGpjNT5lFOc7yO06SWbbpFqEyP4_x1RwtOea3a9Hc2vQ22UZBE6G5wHWLreh4m621y-psO-y9T34sCUrmMVwnahghlYT-nOKvoC2nQRLDXYazlo2hk6Qz6OBKe8UmFE4C7SzMpsEwlTBB_g3IWwF5IDwMcX-MNFyRYIcOdYjh9iVJk_wnzxy_BTpzjWM9T-WiFtMuG_S69-0-L2oq8BA3W8ptZeCRooSuW5ErRBRaOpKadAwKSWUq6WmhbKRBkUdFORA3FXjSDBoRJbJB1brHVuMk1vsMVGRIV2sUVB6KGEt6lnQ08hvXMQLHs9wqq5dT64dFwnGqezHyl6mSCQ4f4fBzOPy3Kjv97DNZpNv4s3WtRMwvtt7MpxNKkK5rVNlZieLy9e-jHfyv-SFbN6kWcO66W2Or6TTTR0hQ0uCYVZq9VuuGnudPl93jfH1-AI273r8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4hONBLxV_VFChzoKd2JcdeO_aBA4pBBhJUJFJxc9feNY0ENkpsIC_Ak_CgnXFsolZtpR44e71a7czsfN_u_ADsc4lxaTlK-KnlCOm5PUGo1RWWTqROyeF5mvOdh-deNJKnV-7VEjy3uTB1tHv7JFmf1ItkN3ZFgqPPyYX5XfHYhFKemdkDEbXpwUlIUv1k28dHl_1INL0EREpKVgpXW2RKWpquk_lSZqljMmUYvxOB0rZWgZHaJfefBdyMgtark0DZSS_jAi4ulzegg36FwIfPtjOyD19oHddUq99Umda5tt-k5vx5zb-6vwWm_e0ZtvZux2vwtoGleDjXo3VYMvkGrPbbbnCb8BRx3ExBFP0Wh4UeZwRdMZpxvhf21SQpcryoSErVLYZFOcWQNPuehnD6CvartJok41LhHeF9JJyMhDvx25js8cbggC8IMOQfcvz6oyiL-lJpRmvBcGZoruuJmvd-2oLRq-z7O1jOi9y8B9SZpXxjiMAFRJocFTjKM4SnfM9KvMDxO9BttzZOmwLn3GfjJl6UZmZxxCSOuBZH_NiBzy__3M3Le_xz9E4rsbgx9WnMJ6JkHtnrwJdWiovPf5_tw_8N34PV6HI4iAcn52fb8MbmPsR12PAOLJeTyuwSOCqTj7VuInx_bWP4CffjF4k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hKhUuiD4QKY_OgZ7aFY69duxDD1HcKJSHqNRU3Mzau6aRwI4Sm5I_0N_DT2TGsRO1KpU4cPZ6tdqZ2flmd74ZgAMuMS4tRwk_sRwhPbcjCLW6wtKx1Ak5PE8z3_n0zBsM5dcL92IF7hsuTJXt3jxJzjkNXKUpKw7HOj1cEt_YLQnORCd35rfFXZ1WeWxmvyhom34-CknCH2y7_-V7byDqvgIiIYUrhKstMistTdtJfSnTxDGpMozlKZjStlaBkdolKJAG3JiC1q7jQNlxJ-ViLi6XOqBD_4Vk9jFZ0NDuLkI8rq9Wva9yiOfafk3T-fea_3SFS3z715Ns5en6m7BRQ1TsznXqFayY7DWs9ZrOcG_g94BzaHIK12_wNNejlGAsDmbM_cKemsR5ht9Kklh5g2FeTDEkLb-lIUxlwV6ZlJN4VCgcE_ZHwsxIGBR_jMg2rw2e8GUBhvxDhuc_8yKvLphmtBYMZ4bmupqoeR-otzB8ln3fgtUsz8w2oE4t5RtDwVxAAZSjAkd5hrCV71mxFzh-C9rN1kZJXeyce25cR8syzSyOiMQRVeKI7lrwcfHPeF7q47-jdxuJRbXZTyM-HSXHlJ0WfGqkuPz8-Gzvnjb8Pbw8D_vRydHZ8Q6s29ySuMog3oXVYlKaPcJJRbxfqSbC5XPbwgNdRxu8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom+Modified+Hybrid+Carbon+Quantum+Dots+Derived+from+Cucurbita+pepo+for+the+Visible+Light+Driven+Photocatalytic+Dye+Degradation&rft.jtitle=Topics+in+catalysis&rft.au=Smrithi%2C+S.+P.&rft.au=Kottam%2C+Nagaraju&rft.au=Vergis%2C+Bincy+Rose&rft.date=2025-07-01&rft.pub=Springer+US&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=68&rft.issue=13&rft.spage=1427&rft.epage=1438&rft_id=info:doi/10.1007%2Fs11244-022-01581-x&rft.externalDocID=10_1007_s11244_022_01581_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon