How the sampling variances affect the linear predictor of the Fay-Herriot model

The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling variances of the direct estimators of some parameters in the small areas under investigation. The linear predictor of the Fay-Herriot model may be...

Full description

Saved in:
Bibliographic Details
Published inMetron (Rome) Vol. 82; no. 1; pp. 109 - 130
Main Authors Marcis, Laura, Pagliarella, Maria Chiara, Salvatore, Renato
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0026-1424
2281-695X
DOI10.1007/s40300-023-00250-7

Cover

Abstract The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling variances of the direct estimators of some parameters in the small areas under investigation. The linear predictor of the Fay-Herriot model may be biased. When the linking regression model is not misspecified, bias does not affect the linear predictor with equal sampling variances, because the fixed-effects estimator reduces to the ordinary least squares regression estimator. In most applications, these variances are quite different, and this is a cause of concern in the matter of bias in the likelihood-based estimation procedures. We study how unequal sampling variances may cause bias and worse mean squared error of the linear predictor, also introducing a measure of the efficiency of the predictor itself. Simulations are conducted, in order to evaluate empirically in several scenarios the consequences of the heterogeneity of the sampling variances on the linear predictor, by different shapes of their empirical distribution.
AbstractList The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling variances of the direct estimators of some parameters in the small areas under investigation. The linear predictor of the Fay-Herriot model may be biased. When the linking regression model is not misspecified, bias does not affect the linear predictor with equal sampling variances, because the fixed-effects estimator reduces to the ordinary least squares regression estimator. In most applications, these variances are quite different, and this is a cause of concern in the matter of bias in the likelihood-based estimation procedures. We study how unequal sampling variances may cause bias and worse mean squared error of the linear predictor, also introducing a measure of the efficiency of the predictor itself. Simulations are conducted, in order to evaluate empirically in several scenarios the consequences of the heterogeneity of the sampling variances on the linear predictor, by different shapes of their empirical distribution.
Author Pagliarella, Maria Chiara
Marcis, Laura
Salvatore, Renato
Author_xml – sequence: 1
  givenname: Laura
  surname: Marcis
  fullname: Marcis, Laura
  organization: Department of Economics and Law, University of Cassino and Southern Lazio
– sequence: 2
  givenname: Maria Chiara
  orcidid: 0000-0002-0336-6193
  surname: Pagliarella
  fullname: Pagliarella, Maria Chiara
  email: mc.pagliarella@unicas.it
  organization: Department of Economics and Law, University of Cassino and Southern Lazio
– sequence: 3
  givenname: Renato
  surname: Salvatore
  fullname: Salvatore, Renato
  organization: Department of Economics and Law, University of Cassino and Southern Lazio
BookMark eNp9kEFLAzEQhYMoWGv_gKcFz9FJssnuHqVYKxR66cFbyGaTumW7WZNU6b83dgXBQ-cyMO99M8O7QZe96w1CdwQeCEDxGHJgABgowwCUAy4u0ITSkmBR8bdLNElTgUlO82s0C2EHqUrKq1xM0HrpvrL4brKg9kPX9tvsU_lW9dqETFlrdDypSTHKZ4M3Tauj85mzp_lCHfHSeN-6mO1dY7pbdGVVF8zst0_RZvG8mS_xav3yOn9aYc1IFTHXTV2rQoNgtgDNqBVQV40GrnJOLJR1Y7moOa0ak4PNBSGF1pxwpnhdCjZF9-PawbuPgwlR7tzB9-miZMCqMlmAJ1c5urR3IXhjpW6jiq3ro1dtJwnInwDlGKBMAcpTgLJIKP2HDr7dK388D7ERCsncb43_--oM9Q1Y3YQf
CitedBy_id crossref_primary_10_1007_s40300_024_00270_x
Cites_doi 10.1007/s10260-020-00515-9
10.2478/jos-2014-0004
10.1080/01621459.1979.10482505
10.1002/9781118735855
10.1007/s10260-023-00700-6
10.1111/j.1467-9868.2006.00542.x
10.1016/j.jspi.2009.07.022
10.1002/9781118814963.ch16
10.1111/sjos.12205
10.1016/S0378-3758(02)00215-X
10.1016/j.csda.2014.03.007
10.1007/978-0-387-21544-0
10.1080/01621459.1990.10475320
10.1198/108571106X110531
10.1007/978-3-030-63757-6
10.1002/0471728438
10.1016/S0169-7161(09)00232-6
ContentType Journal Article
Copyright Sapienza Università di Roma 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Sapienza Università di Roma 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40300-023-00250-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2281-695X
EndPage 130
ExternalDocumentID 10_1007_s40300_023_00250_7
GroupedDBID -EM
06D
0R~
199
203
2KM
30V
4.4
406
96X
AAAVM
AABCJ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
LPU
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-5cdbba7c063f70c32f60b9dc05a451f08bdf56b529de40f46117cc5153a5b863
IEDL.DBID AGYKE
ISSN 0026-1424
IngestDate Fri Jul 25 11:04:42 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Tue Jul 01 03:43:26 EDT 2025
Fri Feb 21 02:42:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fay-Herriot model
Linear mixed models
Predictor efficiency
Restricted maximum likelihood
Mean squared error
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5cdbba7c063f70c32f60b9dc05a451f08bdf56b529de40f46117cc5153a5b863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0336-6193
PQID 3039886305
PQPubID 2043664
PageCount 22
ParticipantIDs proquest_journals_3039886305
crossref_citationtrail_10_1007_s40300_023_00250_7
crossref_primary_10_1007_s40300_023_00250_7
springer_journals_10_1007_s40300_023_00250_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Heidelberg
PublicationTitle Metron (Rome)
PublicationTitleAbbrev METRON
PublicationYear 2024
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Rao, Molina (CR18) 2015
Ghosh, Rao (CR11) 1994; 9
Jiang (CR13) 2007
CR6
Demidenko (CR7) 2004
Hsiao (CR12) 2014
Petrucci, Salvati (CR16) 2006; 11
Marcis, Morales, Pagliarella, Salvatore (CR14) 2023
Prasad, Rao (CR17) 1990; 85
Cho, Eltinge, Gershunskaya, Huff (CR4) 2014; 30
CR23
Fay, Herriot (CR10) 1979; 74
Morales, Esteban, Pérez, Hobza (CR15) 2021
Slud, Maiti (CR21) 2006; 68
Christensen (CR5) 2002
Schmid, Tzavidis, Chambers (CR20) 2016; 433
Fabrizi, Trivisano (CR9) 2010; 140
Berg, Chandra (CR2) 2014; 78
Wang, Ma (CR22) 2002; 106
Beckman, Nachtsheim, Cook (CR1) 1987; 29
Burgard, Esteban, Morales, Pérez (CR3) 2021; 30
Fabrizi, Ferrante, Trivisano, Pratesi (CR8) 2016
Rodriguez, Leiva, Huerta, Lillo, Tapia, Ruggeri (CR19) 2021; 19
JP Burgard (250_CR3) 2021; 30
J Jiang (250_CR13) 2007
JNK Rao (250_CR18) 2015
A Petrucci (250_CR16) 2006; 11
L Marcis (250_CR14) 2023
E Demidenko (250_CR7) 2004
E Fabrizi (250_CR9) 2010; 140
NGN Prasad (250_CR17) 1990; 85
RJ Beckman (250_CR1) 1987; 29
250_CR23
M Ghosh (250_CR11) 1994; 9
EV Slud (250_CR21) 2006; 68
250_CR6
RE Fay (250_CR10) 1979; 74
E Fabrizi (250_CR8) 2016
C Hsiao (250_CR12) 2014
M Rodriguez (250_CR19) 2021; 19
M Cho (250_CR4) 2014; 30
D Morales (250_CR15) 2021
SG Wang (250_CR22) 2002; 106
E Berg (250_CR2) 2014; 78
R Christensen (250_CR5) 2002
T Schmid (250_CR20) 2016; 433
References_xml – volume: 30
  start-page: 79
  year: 2021
  end-page: 108
  ident: CR3
  article-title: Small area estimation under a measurement error bivariate Fay-Herriot model
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-020-00515-9
– volume: 30
  start-page: 63
  issue: 1
  year: 2014
  end-page: 90
  ident: CR4
  article-title: Evaluation of Generalized Variance Functions in the Analysis of Complex Survey Data
  publication-title: J Official Stat
  doi: 10.2478/jos-2014-0004
– volume: 74
  start-page: 269
  year: 1979
  end-page: 277
  ident: CR10
  article-title: Estimates of income for small places: an application of James-Stein procedures to census data
  publication-title: J. Am. Stat. Ass.
  doi: 10.1080/01621459.1979.10482505
– year: 2015
  ident: CR18
  publication-title: Small area estimation
  doi: 10.1002/9781118735855
– year: 2023
  ident: CR14
  article-title: Three-fold Fay-Herriot model for small area estimation and its diagnostics
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-023-00700-6
– volume: 68
  start-page: 239
  issue: 2
  year: 2006
  end-page: 257
  ident: CR21
  article-title: Mean-Squared Error Estimation in Transformed Fay-Herriot Models
  publication-title: J. R. Stat. Soc. Series B. Stat. Methodol.
  doi: 10.1111/j.1467-9868.2006.00542.x
– volume: 140
  start-page: 433
  year: 2010
  end-page: 443
  ident: CR9
  article-title: Robust linear mixed models for small area estimation
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2009.07.022
– start-page: 299
  year: 2016
  end-page: 314
  ident: CR8
  article-title: Bayesian beta regression model for the estimation of poverty and inequality parameters in small area
  publication-title: Analysis of Poverty Data by Small Area Estimation
  doi: 10.1002/9781118814963.ch16
– year: 2014
  ident: CR12
  publication-title: Analysis of Panel Data (3rd ed. Econometric Society Monographs)
– volume: 29
  start-page: 413
  issue: 4
  year: 1987
  end-page: 426
  ident: CR1
  article-title: Diagnostics for mixed-model analysis of variance
  publication-title: Technometrics
– volume: 433
  start-page: 806
  year: 2016
  end-page: 826
  ident: CR20
  article-title: Outlier Robust Small-Area Estimation Under Spatial Correlation
  publication-title: Scand J Stat
  doi: 10.1111/sjos.12205
– volume: 106
  start-page: 225
  issue: 1–2
  year: 2002
  end-page: 233
  ident: CR22
  article-title: On exact tests of linear hypothesis in linear models with nested error structure
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(02)00215-X
– volume: 78
  start-page: 159
  year: 2014
  end-page: 175
  ident: CR2
  article-title: Small area prediction for a unit-level lognormal model
  publication-title: Computat Stat Data Anal
  doi: 10.1016/j.csda.2014.03.007
– year: 2002
  ident: CR5
  publication-title: Plane answers to complex questions
  doi: 10.1007/978-0-387-21544-0
– volume: 85
  start-page: 163
  issue: 409
  year: 1990
  end-page: 171
  ident: CR17
  article-title: The estimation of the mean squared error of small-area estimators
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10475320
– volume: 11
  start-page: 169
  issue: 2
  year: 2006
  end-page: 182
  ident: CR16
  article-title: Small Area Estimation for Spatial Correlation in Watershed Erosion Assessment
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/108571106X110531
– ident: CR6
– year: 2021
  ident: CR15
  publication-title: A course on small area estimation and mixed models
  doi: 10.1007/978-3-030-63757-6
– year: 2004
  ident: CR7
  publication-title: Mixed models: theory and applications
  doi: 10.1002/0471728438
– volume: 9
  start-page: 55
  issue: 1
  year: 1994
  end-page: 76
  ident: CR11
  article-title: Small area estimation: an appraisal
  publication-title: Statist. Sci.
– volume: 19
  start-page: 399
  issue: 3
  year: 2021
  end-page: 420
  ident: CR19
  article-title: An asymmetric area model-based approach for small area estimation applied to survey data
  publication-title: REVSTAT-Statistical J.
– year: 2007
  ident: CR13
  publication-title: Linear and generalized linear mixed models and their applications
– ident: CR23
– start-page: 299
  volume-title: Analysis of Poverty Data by Small Area Estimation
  year: 2016
  ident: 250_CR8
  doi: 10.1002/9781118814963.ch16
– volume: 74
  start-page: 269
  year: 1979
  ident: 250_CR10
  publication-title: J. Am. Stat. Ass.
  doi: 10.1080/01621459.1979.10482505
– volume: 78
  start-page: 159
  year: 2014
  ident: 250_CR2
  publication-title: Computat Stat Data Anal
  doi: 10.1016/j.csda.2014.03.007
– volume: 30
  start-page: 79
  year: 2021
  ident: 250_CR3
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-020-00515-9
– volume: 140
  start-page: 433
  year: 2010
  ident: 250_CR9
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2009.07.022
– volume: 433
  start-page: 806
  year: 2016
  ident: 250_CR20
  publication-title: Scand J Stat
  doi: 10.1111/sjos.12205
– volume-title: Analysis of Panel Data (3rd ed. Econometric Society Monographs)
  year: 2014
  ident: 250_CR12
– volume: 19
  start-page: 399
  issue: 3
  year: 2021
  ident: 250_CR19
  publication-title: REVSTAT-Statistical J.
– volume: 30
  start-page: 63
  issue: 1
  year: 2014
  ident: 250_CR4
  publication-title: J Official Stat
  doi: 10.2478/jos-2014-0004
– volume: 85
  start-page: 163
  issue: 409
  year: 1990
  ident: 250_CR17
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10475320
– volume: 9
  start-page: 55
  issue: 1
  year: 1994
  ident: 250_CR11
  publication-title: Statist. Sci.
– volume-title: Plane answers to complex questions
  year: 2002
  ident: 250_CR5
  doi: 10.1007/978-0-387-21544-0
– volume-title: Small area estimation
  year: 2015
  ident: 250_CR18
  doi: 10.1002/9781118735855
– volume: 29
  start-page: 413
  issue: 4
  year: 1987
  ident: 250_CR1
  publication-title: Technometrics
– volume-title: Mixed models: theory and applications
  year: 2004
  ident: 250_CR7
  doi: 10.1002/0471728438
– volume-title: A course on small area estimation and mixed models
  year: 2021
  ident: 250_CR15
  doi: 10.1007/978-3-030-63757-6
– volume-title: Linear and generalized linear mixed models and their applications
  year: 2007
  ident: 250_CR13
– ident: 250_CR6
  doi: 10.1016/S0169-7161(09)00232-6
– volume: 106
  start-page: 225
  issue: 1–2
  year: 2002
  ident: 250_CR22
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(02)00215-X
– year: 2023
  ident: 250_CR14
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-023-00700-6
– volume: 11
  start-page: 169
  issue: 2
  year: 2006
  ident: 250_CR16
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/108571106X110531
– volume: 68
  start-page: 239
  issue: 2
  year: 2006
  ident: 250_CR21
  publication-title: J. R. Stat. Soc. Series B. Stat. Methodol.
  doi: 10.1111/j.1467-9868.2006.00542.x
– ident: 250_CR23
SSID ssj0000825946
Score 2.2929728
Snippet The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Bias
Heterogeneity
Least squares method
Mathematics and Statistics
Parameters
Regression models
Sampling
Statistical Theory and Methods
Statistics
Title How the sampling variances affect the linear predictor of the Fay-Herriot model
URI https://link.springer.com/article/10.1007/s40300-023-00250-7
https://www.proquest.com/docview/3039886305
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWbrwRpSXPLCBKye18xgBESoQZWmlMkW2EzOAWtQGEPx6zk7SigqQukWxY9nnc-473wvgVOcxU6ERFCFRQLl9kvYOPrMuCig-M85toPB9L-gO-O1QDKugsGnt7V6bJN2fehbsxpEfGUUZQ53gpuEqrAkviqMGrF3cPN7N71as2hOXMTqoYlAbzFXFy_w-0E-ZNAeaC7ZRJ3KSDRjUky09TZ7bb4Vq66-FPI7LrmYT1isMSi5KptmClXy0DU0LO8uszTvw0B1_EISGZCqtx_noibyjTm0ZZEqk8wBxrRaiygl5nVhrDyrvZGzc-0R-0q5N-TguiCu1swv95Lp_1aVV6QWq8UwWVOhMKRlqBDAmZLrjm4CpONNMSC48wyKVGREo4cdZzpnhgeeFWiM26kihoqCzB43ReJTvA0G8mPMIQZhinBsdxyY30kR-jtAt1IFsgVfTPtVVWnJbHeMlnSVUdqRKkVSpI1UatuBs9s1rmZTj395H9Zam1QGdpii54wgnykQLzusdmjf_PdrBct0PoekjDCp9fY6gUUze8mOEMYU6Qa5NLi97JxX3fgNLGecb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjShPD2zgym3tPEaEKOG9tFKZItuJGUBp1aYg-PWcnaQVCJC6RbFj2edz7jvfC-BEpyFTvhEUIZFHuX2S9g4-sS4KKD4Tzm2g8P2DF_X4TV_0y6CwceXtXpkk3Z96GuzGkR8ZRRlDneCm_iIscdTBWQ2Wzq-ebmd3K1btCYsYHVQxqA3mKuNlfh_ou0yaAc0ftlEncjpr0KsmW3iavDQmuWrozx95HOddzTqslhiUnBdMswELabYJKxZ2Flmbt-AxGrwThIZkLK3HefZM3lCntgwyJtJ5gLhWC1HliAxH1tqDyjsZGPe-Iz9oZFM-DnLiSu1sQ7dz2b2IaFl6gWo8kzkVOlFK-hoBjPGZbreMx1SYaCYkF03DApUY4SnRCpOUM8O9ZtPXGrFRWwoVeO0dqGWDLN0Fgngx5QGCMMU4NzoMTWqkCVopQjdfe7IOzYr2sS7TktvqGK_xNKGyI1WMpIodqWK_DqfTb4ZFUo5_ex9UWxqXB3Qco-QOA5woE3U4q3Zo1vz3aHvzdT-G5ah7fxffXT_c7sNKCyFR4fdzALV8NEkPEdLk6qjk4C_Y3-h8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRALb0R5emADg9vaeYwIKIVCYQAJpsh2YgZQWrUpCH49ZydpAQESYotix3Lss-47-77PADs6CZnyjaAIiTzK7ZO0e_CxTVFA9xlzbonClx2vdcvP78TdBxa_y3YvjyRzToNVaUqzg15sDkbEN462ySj6G-qcOPUnYYozBP8VmDo8vW-P91lsCBTmfB0MN6gldhXcme8b-uyfxqDzyzmpcz_NOZBlx_Osk8f9Yab29dsXTcf__Nk8zBbYlBzmxrQAE0m6CDMWjuZqzktw1eq-EISMZCBtJnr6QJ4x1raGMyDSZYa4UgtdZZ_0-vYUCIN60jXufVO-0paVguxmxF3Bsww3zZOboxYtrmSgGtdqRoWOlZK-RmBjfKYbdeMxFcaaCclFzbBAxUZ4StTDOOHMcK9W87VGzNSQQgVeYwUqaTdNVoEgjkx4gOBMMc6NDkOTGGmCeoKQzteerEKtnIdIF3Ll9taMp2gktOyGKsKhitxQRX4Vdkff9HKxjl9rb5TTGxULdxChRw8D7CgTVdgrZ2tc_HNra3-rvg3T18fN6OKs016HmToipTwdaAMqWX-YbCLSydRWYczvQGzxYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+the+sampling+variances+affect+the+linear+predictor+of+the+Fay-Herriot+model&rft.jtitle=Metron+%28Rome%29&rft.au=Marcis%2C+Laura&rft.au=Pagliarella%2C+Maria+Chiara&rft.au=Salvatore%2C+Renato&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0026-1424&rft.eissn=2281-695X&rft.volume=82&rft.issue=1&rft.spage=109&rft.epage=130&rft_id=info:doi/10.1007%2Fs40300-023-00250-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1424&client=summon