How the sampling variances affect the linear predictor of the Fay-Herriot model
The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling variances of the direct estimators of some parameters in the small areas under investigation. The linear predictor of the Fay-Herriot model may be...
Saved in:
Published in | Metron (Rome) Vol. 82; no. 1; pp. 109 - 130 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Milan
Springer Milan
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0026-1424 2281-695X |
DOI | 10.1007/s40300-023-00250-7 |
Cover
Abstract | The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling variances of the direct estimators of some parameters in the small areas under investigation. The linear predictor of the Fay-Herriot model may be biased. When the linking regression model is not misspecified, bias does not affect the linear predictor with equal sampling variances, because the fixed-effects estimator reduces to the ordinary least squares regression estimator. In most applications, these variances are quite different, and this is a cause of concern in the matter of bias in the likelihood-based estimation procedures. We study how unequal sampling variances may cause bias and worse mean squared error of the linear predictor, also introducing a measure of the efficiency of the predictor itself. Simulations are conducted, in order to evaluate empirically in several scenarios the consequences of the heterogeneity of the sampling variances on the linear predictor, by different shapes of their empirical distribution. |
---|---|
AbstractList | The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling variances of the direct estimators of some parameters in the small areas under investigation. The linear predictor of the Fay-Herriot model may be biased. When the linking regression model is not misspecified, bias does not affect the linear predictor with equal sampling variances, because the fixed-effects estimator reduces to the ordinary least squares regression estimator. In most applications, these variances are quite different, and this is a cause of concern in the matter of bias in the likelihood-based estimation procedures. We study how unequal sampling variances may cause bias and worse mean squared error of the linear predictor, also introducing a measure of the efficiency of the predictor itself. Simulations are conducted, in order to evaluate empirically in several scenarios the consequences of the heterogeneity of the sampling variances on the linear predictor, by different shapes of their empirical distribution. |
Author | Pagliarella, Maria Chiara Marcis, Laura Salvatore, Renato |
Author_xml | – sequence: 1 givenname: Laura surname: Marcis fullname: Marcis, Laura organization: Department of Economics and Law, University of Cassino and Southern Lazio – sequence: 2 givenname: Maria Chiara orcidid: 0000-0002-0336-6193 surname: Pagliarella fullname: Pagliarella, Maria Chiara email: mc.pagliarella@unicas.it organization: Department of Economics and Law, University of Cassino and Southern Lazio – sequence: 3 givenname: Renato surname: Salvatore fullname: Salvatore, Renato organization: Department of Economics and Law, University of Cassino and Southern Lazio |
BookMark | eNp9kEFLAzEQhYMoWGv_gKcFz9FJssnuHqVYKxR66cFbyGaTumW7WZNU6b83dgXBQ-cyMO99M8O7QZe96w1CdwQeCEDxGHJgABgowwCUAy4u0ITSkmBR8bdLNElTgUlO82s0C2EHqUrKq1xM0HrpvrL4brKg9kPX9tvsU_lW9dqETFlrdDypSTHKZ4M3Tauj85mzp_lCHfHSeN-6mO1dY7pbdGVVF8zst0_RZvG8mS_xav3yOn9aYc1IFTHXTV2rQoNgtgDNqBVQV40GrnJOLJR1Y7moOa0ak4PNBSGF1pxwpnhdCjZF9-PawbuPgwlR7tzB9-miZMCqMlmAJ1c5urR3IXhjpW6jiq3ro1dtJwnInwDlGKBMAcpTgLJIKP2HDr7dK388D7ERCsncb43_--oM9Q1Y3YQf |
CitedBy_id | crossref_primary_10_1007_s40300_024_00270_x |
Cites_doi | 10.1007/s10260-020-00515-9 10.2478/jos-2014-0004 10.1080/01621459.1979.10482505 10.1002/9781118735855 10.1007/s10260-023-00700-6 10.1111/j.1467-9868.2006.00542.x 10.1016/j.jspi.2009.07.022 10.1002/9781118814963.ch16 10.1111/sjos.12205 10.1016/S0378-3758(02)00215-X 10.1016/j.csda.2014.03.007 10.1007/978-0-387-21544-0 10.1080/01621459.1990.10475320 10.1198/108571106X110531 10.1007/978-3-030-63757-6 10.1002/0471728438 10.1016/S0169-7161(09)00232-6 |
ContentType | Journal Article |
Copyright | Sapienza Università di Roma 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Sapienza Università di Roma 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40300-023-00250-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2281-695X |
EndPage | 130 |
ExternalDocumentID | 10_1007_s40300_023_00250_7 |
GroupedDBID | -EM 06D 0R~ 199 203 2KM 30V 4.4 406 96X AAAVM AABCJ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM LPU M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 RIG RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-5cdbba7c063f70c32f60b9dc05a451f08bdf56b529de40f46117cc5153a5b863 |
IEDL.DBID | AGYKE |
ISSN | 0026-1424 |
IngestDate | Fri Jul 25 11:04:42 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 03:43:26 EDT 2025 Fri Feb 21 02:42:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fay-Herriot model Linear mixed models Predictor efficiency Restricted maximum likelihood Mean squared error |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5cdbba7c063f70c32f60b9dc05a451f08bdf56b529de40f46117cc5153a5b863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0336-6193 |
PQID | 3039886305 |
PQPubID | 2043664 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3039886305 crossref_citationtrail_10_1007_s40300_023_00250_7 crossref_primary_10_1007_s40300_023_00250_7 springer_journals_10_1007_s40300_023_00250_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Milan |
PublicationPlace_xml | – name: Milan – name: Heidelberg |
PublicationTitle | Metron (Rome) |
PublicationTitleAbbrev | METRON |
PublicationYear | 2024 |
Publisher | Springer Milan Springer Nature B.V |
Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
References | Rao, Molina (CR18) 2015 Ghosh, Rao (CR11) 1994; 9 Jiang (CR13) 2007 CR6 Demidenko (CR7) 2004 Hsiao (CR12) 2014 Petrucci, Salvati (CR16) 2006; 11 Marcis, Morales, Pagliarella, Salvatore (CR14) 2023 Prasad, Rao (CR17) 1990; 85 Cho, Eltinge, Gershunskaya, Huff (CR4) 2014; 30 CR23 Fay, Herriot (CR10) 1979; 74 Morales, Esteban, Pérez, Hobza (CR15) 2021 Slud, Maiti (CR21) 2006; 68 Christensen (CR5) 2002 Schmid, Tzavidis, Chambers (CR20) 2016; 433 Fabrizi, Trivisano (CR9) 2010; 140 Berg, Chandra (CR2) 2014; 78 Wang, Ma (CR22) 2002; 106 Beckman, Nachtsheim, Cook (CR1) 1987; 29 Burgard, Esteban, Morales, Pérez (CR3) 2021; 30 Fabrizi, Ferrante, Trivisano, Pratesi (CR8) 2016 Rodriguez, Leiva, Huerta, Lillo, Tapia, Ruggeri (CR19) 2021; 19 JP Burgard (250_CR3) 2021; 30 J Jiang (250_CR13) 2007 JNK Rao (250_CR18) 2015 A Petrucci (250_CR16) 2006; 11 L Marcis (250_CR14) 2023 E Demidenko (250_CR7) 2004 E Fabrizi (250_CR9) 2010; 140 NGN Prasad (250_CR17) 1990; 85 RJ Beckman (250_CR1) 1987; 29 250_CR23 M Ghosh (250_CR11) 1994; 9 EV Slud (250_CR21) 2006; 68 250_CR6 RE Fay (250_CR10) 1979; 74 E Fabrizi (250_CR8) 2016 C Hsiao (250_CR12) 2014 M Rodriguez (250_CR19) 2021; 19 M Cho (250_CR4) 2014; 30 D Morales (250_CR15) 2021 SG Wang (250_CR22) 2002; 106 E Berg (250_CR2) 2014; 78 R Christensen (250_CR5) 2002 T Schmid (250_CR20) 2016; 433 |
References_xml | – volume: 30 start-page: 79 year: 2021 end-page: 108 ident: CR3 article-title: Small area estimation under a measurement error bivariate Fay-Herriot model publication-title: Stat Methods Appl doi: 10.1007/s10260-020-00515-9 – volume: 30 start-page: 63 issue: 1 year: 2014 end-page: 90 ident: CR4 article-title: Evaluation of Generalized Variance Functions in the Analysis of Complex Survey Data publication-title: J Official Stat doi: 10.2478/jos-2014-0004 – volume: 74 start-page: 269 year: 1979 end-page: 277 ident: CR10 article-title: Estimates of income for small places: an application of James-Stein procedures to census data publication-title: J. Am. Stat. Ass. doi: 10.1080/01621459.1979.10482505 – year: 2015 ident: CR18 publication-title: Small area estimation doi: 10.1002/9781118735855 – year: 2023 ident: CR14 article-title: Three-fold Fay-Herriot model for small area estimation and its diagnostics publication-title: Stat Methods Appl doi: 10.1007/s10260-023-00700-6 – volume: 68 start-page: 239 issue: 2 year: 2006 end-page: 257 ident: CR21 article-title: Mean-Squared Error Estimation in Transformed Fay-Herriot Models publication-title: J. R. Stat. Soc. Series B. Stat. Methodol. doi: 10.1111/j.1467-9868.2006.00542.x – volume: 140 start-page: 433 year: 2010 end-page: 443 ident: CR9 article-title: Robust linear mixed models for small area estimation publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2009.07.022 – start-page: 299 year: 2016 end-page: 314 ident: CR8 article-title: Bayesian beta regression model for the estimation of poverty and inequality parameters in small area publication-title: Analysis of Poverty Data by Small Area Estimation doi: 10.1002/9781118814963.ch16 – year: 2014 ident: CR12 publication-title: Analysis of Panel Data (3rd ed. Econometric Society Monographs) – volume: 29 start-page: 413 issue: 4 year: 1987 end-page: 426 ident: CR1 article-title: Diagnostics for mixed-model analysis of variance publication-title: Technometrics – volume: 433 start-page: 806 year: 2016 end-page: 826 ident: CR20 article-title: Outlier Robust Small-Area Estimation Under Spatial Correlation publication-title: Scand J Stat doi: 10.1111/sjos.12205 – volume: 106 start-page: 225 issue: 1–2 year: 2002 end-page: 233 ident: CR22 article-title: On exact tests of linear hypothesis in linear models with nested error structure publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(02)00215-X – volume: 78 start-page: 159 year: 2014 end-page: 175 ident: CR2 article-title: Small area prediction for a unit-level lognormal model publication-title: Computat Stat Data Anal doi: 10.1016/j.csda.2014.03.007 – year: 2002 ident: CR5 publication-title: Plane answers to complex questions doi: 10.1007/978-0-387-21544-0 – volume: 85 start-page: 163 issue: 409 year: 1990 end-page: 171 ident: CR17 article-title: The estimation of the mean squared error of small-area estimators publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1990.10475320 – volume: 11 start-page: 169 issue: 2 year: 2006 end-page: 182 ident: CR16 article-title: Small Area Estimation for Spatial Correlation in Watershed Erosion Assessment publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/108571106X110531 – ident: CR6 – year: 2021 ident: CR15 publication-title: A course on small area estimation and mixed models doi: 10.1007/978-3-030-63757-6 – year: 2004 ident: CR7 publication-title: Mixed models: theory and applications doi: 10.1002/0471728438 – volume: 9 start-page: 55 issue: 1 year: 1994 end-page: 76 ident: CR11 article-title: Small area estimation: an appraisal publication-title: Statist. Sci. – volume: 19 start-page: 399 issue: 3 year: 2021 end-page: 420 ident: CR19 article-title: An asymmetric area model-based approach for small area estimation applied to survey data publication-title: REVSTAT-Statistical J. – year: 2007 ident: CR13 publication-title: Linear and generalized linear mixed models and their applications – ident: CR23 – start-page: 299 volume-title: Analysis of Poverty Data by Small Area Estimation year: 2016 ident: 250_CR8 doi: 10.1002/9781118814963.ch16 – volume: 74 start-page: 269 year: 1979 ident: 250_CR10 publication-title: J. Am. Stat. Ass. doi: 10.1080/01621459.1979.10482505 – volume: 78 start-page: 159 year: 2014 ident: 250_CR2 publication-title: Computat Stat Data Anal doi: 10.1016/j.csda.2014.03.007 – volume: 30 start-page: 79 year: 2021 ident: 250_CR3 publication-title: Stat Methods Appl doi: 10.1007/s10260-020-00515-9 – volume: 140 start-page: 433 year: 2010 ident: 250_CR9 publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2009.07.022 – volume: 433 start-page: 806 year: 2016 ident: 250_CR20 publication-title: Scand J Stat doi: 10.1111/sjos.12205 – volume-title: Analysis of Panel Data (3rd ed. Econometric Society Monographs) year: 2014 ident: 250_CR12 – volume: 19 start-page: 399 issue: 3 year: 2021 ident: 250_CR19 publication-title: REVSTAT-Statistical J. – volume: 30 start-page: 63 issue: 1 year: 2014 ident: 250_CR4 publication-title: J Official Stat doi: 10.2478/jos-2014-0004 – volume: 85 start-page: 163 issue: 409 year: 1990 ident: 250_CR17 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1990.10475320 – volume: 9 start-page: 55 issue: 1 year: 1994 ident: 250_CR11 publication-title: Statist. Sci. – volume-title: Plane answers to complex questions year: 2002 ident: 250_CR5 doi: 10.1007/978-0-387-21544-0 – volume-title: Small area estimation year: 2015 ident: 250_CR18 doi: 10.1002/9781118735855 – volume: 29 start-page: 413 issue: 4 year: 1987 ident: 250_CR1 publication-title: Technometrics – volume-title: Mixed models: theory and applications year: 2004 ident: 250_CR7 doi: 10.1002/0471728438 – volume-title: A course on small area estimation and mixed models year: 2021 ident: 250_CR15 doi: 10.1007/978-3-030-63757-6 – volume-title: Linear and generalized linear mixed models and their applications year: 2007 ident: 250_CR13 – ident: 250_CR6 doi: 10.1016/S0169-7161(09)00232-6 – volume: 106 start-page: 225 issue: 1–2 year: 2002 ident: 250_CR22 publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(02)00215-X – year: 2023 ident: 250_CR14 publication-title: Stat Methods Appl doi: 10.1007/s10260-023-00700-6 – volume: 11 start-page: 169 issue: 2 year: 2006 ident: 250_CR16 publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/108571106X110531 – volume: 68 start-page: 239 issue: 2 year: 2006 ident: 250_CR21 publication-title: J. R. Stat. Soc. Series B. Stat. Methodol. doi: 10.1111/j.1467-9868.2006.00542.x – ident: 250_CR23 |
SSID | ssj0000825946 |
Score | 2.2929728 |
Snippet | The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-subject variance parameters. These values are given by the sampling... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | Bias Heterogeneity Least squares method Mathematics and Statistics Parameters Regression models Sampling Statistical Theory and Methods Statistics |
Title | How the sampling variances affect the linear predictor of the Fay-Herriot model |
URI | https://link.springer.com/article/10.1007/s40300-023-00250-7 https://www.proquest.com/docview/3039886305 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWbrwRpSXPLCBKye18xgBESoQZWmlMkW2EzOAWtQGEPx6zk7SigqQukWxY9nnc-473wvgVOcxU6ERFCFRQLl9kvYOPrMuCig-M85toPB9L-gO-O1QDKugsGnt7V6bJN2fehbsxpEfGUUZQ53gpuEqrAkviqMGrF3cPN7N71as2hOXMTqoYlAbzFXFy_w-0E-ZNAeaC7ZRJ3KSDRjUky09TZ7bb4Vq66-FPI7LrmYT1isMSi5KptmClXy0DU0LO8uszTvw0B1_EISGZCqtx_noibyjTm0ZZEqk8wBxrRaiygl5nVhrDyrvZGzc-0R-0q5N-TguiCu1swv95Lp_1aVV6QWq8UwWVOhMKRlqBDAmZLrjm4CpONNMSC48wyKVGREo4cdZzpnhgeeFWiM26kihoqCzB43ReJTvA0G8mPMIQZhinBsdxyY30kR-jtAt1IFsgVfTPtVVWnJbHeMlnSVUdqRKkVSpI1UatuBs9s1rmZTj395H9Zam1QGdpii54wgnykQLzusdmjf_PdrBct0PoekjDCp9fY6gUUze8mOEMYU6Qa5NLi97JxX3fgNLGecb |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjShPD2zgym3tPEaEKOG9tFKZItuJGUBp1aYg-PWcnaQVCJC6RbFj2edz7jvfC-BEpyFTvhEUIZFHuX2S9g4-sS4KKD4Tzm2g8P2DF_X4TV_0y6CwceXtXpkk3Z96GuzGkR8ZRRlDneCm_iIscdTBWQ2Wzq-ebmd3K1btCYsYHVQxqA3mKuNlfh_ou0yaAc0ftlEncjpr0KsmW3iavDQmuWrozx95HOddzTqslhiUnBdMswELabYJKxZ2Flmbt-AxGrwThIZkLK3HefZM3lCntgwyJtJ5gLhWC1HliAxH1tqDyjsZGPe-Iz9oZFM-DnLiSu1sQ7dz2b2IaFl6gWo8kzkVOlFK-hoBjPGZbreMx1SYaCYkF03DApUY4SnRCpOUM8O9ZtPXGrFRWwoVeO0dqGWDLN0Fgngx5QGCMMU4NzoMTWqkCVopQjdfe7IOzYr2sS7TktvqGK_xNKGyI1WMpIodqWK_DqfTb4ZFUo5_ex9UWxqXB3Qco-QOA5woE3U4q3Zo1vz3aHvzdT-G5ah7fxffXT_c7sNKCyFR4fdzALV8NEkPEdLk6qjk4C_Y3-h8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRALb0R5emADg9vaeYwIKIVCYQAJpsh2YgZQWrUpCH49ZydpAQESYotix3Lss-47-77PADs6CZnyjaAIiTzK7ZO0e_CxTVFA9xlzbonClx2vdcvP78TdBxa_y3YvjyRzToNVaUqzg15sDkbEN462ySj6G-qcOPUnYYozBP8VmDo8vW-P91lsCBTmfB0MN6gldhXcme8b-uyfxqDzyzmpcz_NOZBlx_Osk8f9Yab29dsXTcf__Nk8zBbYlBzmxrQAE0m6CDMWjuZqzktw1eq-EISMZCBtJnr6QJ4x1raGMyDSZYa4UgtdZZ_0-vYUCIN60jXufVO-0paVguxmxF3Bsww3zZOboxYtrmSgGtdqRoWOlZK-RmBjfKYbdeMxFcaaCclFzbBAxUZ4StTDOOHMcK9W87VGzNSQQgVeYwUqaTdNVoEgjkx4gOBMMc6NDkOTGGmCeoKQzteerEKtnIdIF3Ll9taMp2gktOyGKsKhitxQRX4Vdkff9HKxjl9rb5TTGxULdxChRw8D7CgTVdgrZ2tc_HNra3-rvg3T18fN6OKs016HmToipTwdaAMqWX-YbCLSydRWYczvQGzxYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+the+sampling+variances+affect+the+linear+predictor+of+the+Fay-Herriot+model&rft.jtitle=Metron+%28Rome%29&rft.au=Marcis%2C+Laura&rft.au=Pagliarella%2C+Maria+Chiara&rft.au=Salvatore%2C+Renato&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0026-1424&rft.eissn=2281-695X&rft.volume=82&rft.issue=1&rft.spage=109&rft.epage=130&rft_id=info:doi/10.1007%2Fs40300-023-00250-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1424&client=summon |