Time-optimal trajectory optimization of serial robotic manipulator with kinematic and dynamic limits based on improved particle swarm optimization

Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly. Time-optimal trajectory optimization (TO) is a great concern in the motion control of robotics, which could improve motion efficiency by providin...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 120; no. 1-2; pp. 1253 - 1264
Main Authors Yang, Yu, Xu, Hong-ze, Li, Shao-hua, Zhang, Ling-ling, Yao, Xiu-ming
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-022-08796-y

Cover

Loading…
Abstract Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly. Time-optimal trajectory optimization (TO) is a great concern in the motion control of robotics, which could improve motion efficiency by providing high-speed and reasonable motion references to motion controllers. In this study, a new general time-optimal TO strategy, the second-order continuous polynomial interpolation function (SCPIF) combined with the particle swarm optimization with cosine-decreasing weight (CDW-PSO) subject to kinematic and dynamic limits, successfully optimizes the movement time of the PUMA 560 serial manipulator. The SCPIF could be used to generate the second-order continuous movement trajectories of six joints in joint space based on the assigned positions and time intervals. The CDW-PSO algorithm could further search for the optimal movement time subject to the limits of the angular displacement, angular velocity, angular acceleration, angular jerk, and joint torque of the manipulator. Two numerical experiments are conducted to illustrate the generalization ability of the CDW-PSO algorithm. The advantage of the CDW would be reflected by comparing with the random weight (RW), the constant weight (CW), and the linearly decreasing weight (LDW), respectively, in each experiment. The experimental results show that the CDW-PSO algorithm would perform better than the RW-PSO, CW-PSO, and LDW-PSO algorithms in terms of the convergence rate and quality of the convergent solution. The proposed time-optimal TO strategy would be applied to all types of manipulators while the optimized trajectories could be incorporated in the motion controllers of the actual manipulators due to considering the kinematic and dynamic limits.
AbstractList Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly. Time-optimal trajectory optimization (TO) is a great concern in the motion control of robotics, which could improve motion efficiency by providing high-speed and reasonable motion references to motion controllers. In this study, a new general time-optimal TO strategy, the second-order continuous polynomial interpolation function (SCPIF) combined with the particle swarm optimization with cosine-decreasing weight (CDW-PSO) subject to kinematic and dynamic limits, successfully optimizes the movement time of the PUMA 560 serial manipulator. The SCPIF could be used to generate the second-order continuous movement trajectories of six joints in joint space based on the assigned positions and time intervals. The CDW-PSO algorithm could further search for the optimal movement time subject to the limits of the angular displacement, angular velocity, angular acceleration, angular jerk, and joint torque of the manipulator. Two numerical experiments are conducted to illustrate the generalization ability of the CDW-PSO algorithm. The advantage of the CDW would be reflected by comparing with the random weight (RW), the constant weight (CW), and the linearly decreasing weight (LDW), respectively, in each experiment. The experimental results show that the CDW-PSO algorithm would perform better than the RW-PSO, CW-PSO, and LDW-PSO algorithms in terms of the convergence rate and quality of the convergent solution. The proposed time-optimal TO strategy would be applied to all types of manipulators while the optimized trajectories could be incorporated in the motion controllers of the actual manipulators due to considering the kinematic and dynamic limits.
Author Xu, Hong-ze
Li, Shao-hua
Yang, Yu
Yao, Xiu-ming
Zhang, Ling-ling
Author_xml – sequence: 1
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University
– sequence: 2
  givenname: Hong-ze
  surname: Xu
  fullname: Xu, Hong-ze
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University
– sequence: 3
  givenname: Shao-hua
  surname: Li
  fullname: Li, Shao-hua
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University
– sequence: 4
  givenname: Ling-ling
  surname: Zhang
  fullname: Zhang, Ling-ling
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University
– sequence: 5
  givenname: Xiu-ming
  surname: Yao
  fullname: Yao, Xiu-ming
  email: xmyao@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University
BookMark eNp9kc9OJCEQxolxkx3HfYE9kXhGoZkG-miM_xITL3omNE3vMnZDC4ymfQyf2JqZTTZ68ESl-H1VX-o7QochBofQb0ZPGaXyLFPKJCW0qghVshFkPkALtuKccMrqQ7SglVCES6F-oqOc14ALJtQCvT_40ZE4FT-aAZdk1s6WmGa8a_k3U3wMOPY4u-SBSLGNxVs8muCnzWCAxa--_MVPPrjRbL9M6HA3BzNCPcCMknFrsuswDPLjlOIL1JNJwA4O51eTxk_bjtGP3gzZ_fr3LtHj1eXDxQ25u7--vTi_I5azppC6laZljZGtslawzirVVJa13HJZ951ytVJS0L6tGts5LlXTQUfUVnaukbXiS3SynwuWnjcuF72OmxRgpa7EqlErpgQDSu0pm2LOyfXa-rLzCcfyg2ZUbxPQ-wQ0JKB3CegZpNUX6ZTgzGn-XsT3ogxw-OPSf1ffqD4Arc-gaQ
CitedBy_id crossref_primary_10_3390_a15100363
crossref_primary_10_1016_j_mechmachtheory_2022_105201
crossref_primary_10_1016_j_rcim_2023_102677
crossref_primary_10_1177_09544062231217924
crossref_primary_10_1017_S0263574724000481
crossref_primary_10_3390_math12132077
crossref_primary_10_3390_e25040610
crossref_primary_10_1007_s40747_023_01308_9
crossref_primary_10_1007_s12206_024_1142_5
crossref_primary_10_1177_09544062241253971
crossref_primary_10_3390_app14188234
crossref_primary_10_1007_s43684_024_00077_7
Cites_doi 10.1016/j.neucom.2014.10.065
10.1007/s00500-016-2474-6
10.1016/j.asr.2018.10.034
10.1109/TRO.2018.2880120
10.1016/j.robot.2021.103744
10.4028/www.scientific.net/AMM.376.253
10.4028/www.scientific.net/AMR.711.422
10.1109/ACCESS.2020.2992640
10.1007/978-94-015-9231-4_34
10.1016/j.jmsy.2012.06.001
10.1016/j.euromechsol.2004.02.006
10.1007/s00170-019-04421-7
10.1109/TRA.2002.807548
10.1016/j.rcim.2019.04.016
10.1155/2017/4259869
10.1007/s00170-017-1374-y
10.1016/j.rcim.2012.08.002
10.1109/ACCESS.2019.2949271
10.1088/1742-6596/1820/1/012185
10.5194/ms-6-245-2015
10.4028/www.scientific.net/AMM.543-547.1296
10.1109/CCDC49329.2020.9164017
10.1109/ACCESS.2019.2950561
10.1016/j.cnsns.2008.10.014
10.1007/s00170-008-1506-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-022-08796-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1264
ExternalDocumentID 10_1007_s00170_022_08796_y
GrantInformation_xml – fundername: national natural science foundation of china
  grantid: 61773052
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-5b7ab19a7b8cc61dc8892c1b3c375fd8e588760fb29cde3789d58865c7de97583
IEDL.DBID 8FG
ISSN 0268-3768
IngestDate Wed Aug 13 03:56:24 EDT 2025
Tue Jul 01 02:01:16 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Fri Feb 21 02:46:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Second-order continuous polynomial interpolation function
Particle swarm optimization with cosine-decreasing weight
Kinematic and dynamic limits
Time-optimal trajectory planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5b7ab19a7b8cc61dc8892c1b3c375fd8e588760fb29cde3789d58865c7de97583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2649841861
PQPubID 2044010
PageCount 12
ParticipantIDs proquest_journals_2649841861
crossref_citationtrail_10_1007_s00170_022_08796_y
crossref_primary_10_1007_s00170_022_08796_y
springer_journals_10_1007_s00170_022_08796_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References WangDSTanDPLiuLParticle swarm optimization algorithm: an overviewSoft Comput20182238740810.1007/s00500-016-2474-6
LiuHSLaiXBWuWXTime-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraintsRobot Cim Int Manuf201329230931710.1016/j.rcim.2012.08.002
ChenDLiSQWangJFFengYLiuYA multi-objective trajectory planning method based on the improved immune clonal selection algorithmRobot Cim Int Manuf20195943144210.1016/j.rcim.2019.04.016
Zhang WM, Fu SX (2020) Time-optimal trajectory planning of dulcimer music robot based on PSO algorithm. 2020 CCDC. https://doi.org/10.1109/CCDC49329.2020.9164017
ChuiCBoyceMMonte Carlo Techniques1999Netherlands, BerlinSpringer10.1007/978-94-015-9231-4_34
WangWJTaoQCaoYTWangXHZhangXRobot time-optimal trajectory planning based on improved cuckoo search algorithmIEEE Access20208869238693310.1109/ACCESS.2020.2992640
Han SJ, Shan XC, Fu JX, Xu WJ, Mi HY (1820) Industrial robot trajectory planning based on improved pso algorithm. J Phys Conf Ser 1:012185. https://doi.org/10.1088/1742-6596/1820/1/012185
XuWYuanSCCaoYHResearch on yinma palletizing robot motion feasibility based on matlab-robotics toolboxAppl Mech Mater2014543–5471296130010.4028/www.scientific.net/AMM.543-547.1296
ZuoYHStudy on nurbs surface tool trajectory planning of 6r engraving robotAdv Mat Res201371142242510.4028/www.scientific.net/AMR.711.422
OberherberMGattringerHMuellerASuccessive dynamic programming and subsequent spline optimization for smooth time optimal robot path trackingMech Sci20156224525410.5194/ms-6-245-2015
ZhangQLiSRGuoJXSmooth time-optimal tool trajectory generation for CNC manufacturing systemsJ Manuf Syst2012313280287209242010.1016/j.jmsy.2012.06.001
MaJWGaoSYanHTLvQHuGQA new approach to time-optimal trajectory planning with torque and jerk limits for robotRobot Auton Syst2021140310374410375310.1016/j.robot.2021.103744
LuJNHuHPBaiYPGeneralized radial basis function neural network based on an improved dynamic particle swarm optimization and adaboost algorithmNeurocomputing201515230531510.1016/j.neucom.2014.10.065
LiuCCaoGHQuYYChengYMAn improved pso algorithm for time-optimal trajectory planning of delta robot in intelligent packagingInt J Adv Manuf Tech20201071091109910.1007/s00170-019-04421-7
MacfarlaneSCroftEAJerk-bounded manipulator trajectory planning: design for real-time applicationsIEEE T Robotic Autom2003191425210.1109/TRA.2002.807548
ChenWLiuJJTangYHuanJTrajectory optimization of spray painting robot for complex curved surface based on exponential mean beizier methodMath Probl Eng2017411010.1155/2017/42598691426.65023
XieYEWuXDInamoriTShiZSunXZCuiHTCompensation of base disturbance using optimal trajectory planning of dual-manipulators in a space robotAdv Space Res20196331147116010.1016/j.asr.2018.10.034
MarcosMDGMachadoJATAzevedo-PerdicoulisTPTrajectory planning of redundant manipulators using genetic algorithmsCommun Nonlinear Sci20091472858286910.1016/j.cnsns.2008.10.014
LiuYShiLTianXCWeld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve weldingInt J Adv Manuf Tech2018951–42457247110.1007/s00170-017-1374-y
KasererDGattringerHMuellerANearly optimal path following with jerk and torque rate limits using dynamic programmingIEEE T Robot201935252152810.1109/TRO.2018.2880120
IFR press room (2020) IFR presents world robotics report 2020. International Federation of Robotics. https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe
WangLWuQLinFLiSChenDCA new trajectory-planning beetle swarm optimization algorithm for trajectory planning of robot manipulatorsIEEE Access2019715433115434510.1109/ACCESS.2019.2949271
GuoTYLiFHuangKZhangFZFengQApplication of optimal algorithm on trajectory planning of mechanical arm based on b-spline curveAppl Mech Mater201337625325610.4028/www.scientific.net/AMM.376.253
RamabalanSSaravananRBalamuruganCMulti-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstaclesInt J Adv Manuf Tech2009415–658059410.1007/s00170-008-1506-5
OgbemheJMpofuKTlaleNOptimal trajectory scheme for robotic welding along complex joints using a hybrid multi-objective genetic algorithmIEEE Access2019715875315876910.1109/ACCESS.2019.2950561
ChettibiTLehtihetHEHaddadMHanchiSMinimum cost trajectory planning for industrial robotsEur J Mech A-Solid200423470371510.1016/j.euromechsol.2004.02.0061060.70016
TY Guo (8796_CR5) 2013; 376
YE Xie (8796_CR15) 2019; 63
W Chen (8796_CR9) 2017; 4
Q Zhang (8796_CR13) 2012; 31
8796_CR19
M Oberherber (8796_CR11) 2015; 6
C Liu (8796_CR21) 2020; 107
D Kaserer (8796_CR12) 2019; 35
T Chettibi (8796_CR23) 2004; 23
Y Liu (8796_CR8) 2018; 95
WJ Wang (8796_CR18) 2020; 8
L Wang (8796_CR20) 2019; 7
8796_CR1
S Ramabalan (8796_CR16) 2009; 41
D Chen (8796_CR6) 2019; 59
C Chui (8796_CR24) 1999
YH Zuo (8796_CR7) 2013; 711
JW Ma (8796_CR2) 2021; 140
J Ogbemhe (8796_CR10) 2019; 7
8796_CR22
DS Wang (8796_CR25) 2018; 22
W Xu (8796_CR4) 2014; 543–547
HS Liu (8796_CR14) 2013; 29
JN Lu (8796_CR26) 2015; 152
MDG Marcos (8796_CR17) 2009; 14
S Macfarlane (8796_CR3) 2003; 19
References_xml – reference: ChenDLiSQWangJFFengYLiuYA multi-objective trajectory planning method based on the improved immune clonal selection algorithmRobot Cim Int Manuf20195943144210.1016/j.rcim.2019.04.016
– reference: XieYEWuXDInamoriTShiZSunXZCuiHTCompensation of base disturbance using optimal trajectory planning of dual-manipulators in a space robotAdv Space Res20196331147116010.1016/j.asr.2018.10.034
– reference: WangLWuQLinFLiSChenDCA new trajectory-planning beetle swarm optimization algorithm for trajectory planning of robot manipulatorsIEEE Access2019715433115434510.1109/ACCESS.2019.2949271
– reference: MacfarlaneSCroftEAJerk-bounded manipulator trajectory planning: design for real-time applicationsIEEE T Robotic Autom2003191425210.1109/TRA.2002.807548
– reference: ChettibiTLehtihetHEHaddadMHanchiSMinimum cost trajectory planning for industrial robotsEur J Mech A-Solid200423470371510.1016/j.euromechsol.2004.02.0061060.70016
– reference: ZuoYHStudy on nurbs surface tool trajectory planning of 6r engraving robotAdv Mat Res201371142242510.4028/www.scientific.net/AMR.711.422
– reference: WangDSTanDPLiuLParticle swarm optimization algorithm: an overviewSoft Comput20182238740810.1007/s00500-016-2474-6
– reference: IFR press room (2020) IFR presents world robotics report 2020. International Federation of Robotics. https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe
– reference: KasererDGattringerHMuellerANearly optimal path following with jerk and torque rate limits using dynamic programmingIEEE T Robot201935252152810.1109/TRO.2018.2880120
– reference: XuWYuanSCCaoYHResearch on yinma palletizing robot motion feasibility based on matlab-robotics toolboxAppl Mech Mater2014543–5471296130010.4028/www.scientific.net/AMM.543-547.1296
– reference: GuoTYLiFHuangKZhangFZFengQApplication of optimal algorithm on trajectory planning of mechanical arm based on b-spline curveAppl Mech Mater201337625325610.4028/www.scientific.net/AMM.376.253
– reference: OgbemheJMpofuKTlaleNOptimal trajectory scheme for robotic welding along complex joints using a hybrid multi-objective genetic algorithmIEEE Access2019715875315876910.1109/ACCESS.2019.2950561
– reference: WangWJTaoQCaoYTWangXHZhangXRobot time-optimal trajectory planning based on improved cuckoo search algorithmIEEE Access20208869238693310.1109/ACCESS.2020.2992640
– reference: ChuiCBoyceMMonte Carlo Techniques1999Netherlands, BerlinSpringer10.1007/978-94-015-9231-4_34
– reference: RamabalanSSaravananRBalamuruganCMulti-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstaclesInt J Adv Manuf Tech2009415–658059410.1007/s00170-008-1506-5
– reference: ChenWLiuJJTangYHuanJTrajectory optimization of spray painting robot for complex curved surface based on exponential mean beizier methodMath Probl Eng2017411010.1155/2017/42598691426.65023
– reference: MaJWGaoSYanHTLvQHuGQA new approach to time-optimal trajectory planning with torque and jerk limits for robotRobot Auton Syst2021140310374410375310.1016/j.robot.2021.103744
– reference: OberherberMGattringerHMuellerASuccessive dynamic programming and subsequent spline optimization for smooth time optimal robot path trackingMech Sci20156224525410.5194/ms-6-245-2015
– reference: Han SJ, Shan XC, Fu JX, Xu WJ, Mi HY (1820) Industrial robot trajectory planning based on improved pso algorithm. J Phys Conf Ser 1:012185. https://doi.org/10.1088/1742-6596/1820/1/012185
– reference: LuJNHuHPBaiYPGeneralized radial basis function neural network based on an improved dynamic particle swarm optimization and adaboost algorithmNeurocomputing201515230531510.1016/j.neucom.2014.10.065
– reference: LiuYShiLTianXCWeld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve weldingInt J Adv Manuf Tech2018951–42457247110.1007/s00170-017-1374-y
– reference: LiuHSLaiXBWuWXTime-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraintsRobot Cim Int Manuf201329230931710.1016/j.rcim.2012.08.002
– reference: Zhang WM, Fu SX (2020) Time-optimal trajectory planning of dulcimer music robot based on PSO algorithm. 2020 CCDC. https://doi.org/10.1109/CCDC49329.2020.9164017
– reference: MarcosMDGMachadoJATAzevedo-PerdicoulisTPTrajectory planning of redundant manipulators using genetic algorithmsCommun Nonlinear Sci20091472858286910.1016/j.cnsns.2008.10.014
– reference: ZhangQLiSRGuoJXSmooth time-optimal tool trajectory generation for CNC manufacturing systemsJ Manuf Syst2012313280287209242010.1016/j.jmsy.2012.06.001
– reference: LiuCCaoGHQuYYChengYMAn improved pso algorithm for time-optimal trajectory planning of delta robot in intelligent packagingInt J Adv Manuf Tech20201071091109910.1007/s00170-019-04421-7
– volume: 152
  start-page: 305
  year: 2015
  ident: 8796_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.065
– volume: 22
  start-page: 387
  year: 2018
  ident: 8796_CR25
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2474-6
– volume: 63
  start-page: 1147
  issue: 3
  year: 2019
  ident: 8796_CR15
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2018.10.034
– volume: 35
  start-page: 521
  issue: 2
  year: 2019
  ident: 8796_CR12
  publication-title: IEEE T Robot
  doi: 10.1109/TRO.2018.2880120
– volume: 140
  start-page: 103744
  issue: 3
  year: 2021
  ident: 8796_CR2
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2021.103744
– volume: 376
  start-page: 253
  year: 2013
  ident: 8796_CR5
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.376.253
– volume: 711
  start-page: 422
  year: 2013
  ident: 8796_CR7
  publication-title: Adv Mat Res
  doi: 10.4028/www.scientific.net/AMR.711.422
– volume: 8
  start-page: 86923
  year: 2020
  ident: 8796_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992640
– volume-title: Monte Carlo Techniques
  year: 1999
  ident: 8796_CR24
  doi: 10.1007/978-94-015-9231-4_34
– volume: 31
  start-page: 280
  issue: 3
  year: 2012
  ident: 8796_CR13
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2012.06.001
– volume: 23
  start-page: 703
  issue: 4
  year: 2004
  ident: 8796_CR23
  publication-title: Eur J Mech A-Solid
  doi: 10.1016/j.euromechsol.2004.02.006
– volume: 107
  start-page: 1091
  year: 2020
  ident: 8796_CR21
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-019-04421-7
– volume: 19
  start-page: 42
  issue: 1
  year: 2003
  ident: 8796_CR3
  publication-title: IEEE T Robotic Autom
  doi: 10.1109/TRA.2002.807548
– volume: 59
  start-page: 431
  year: 2019
  ident: 8796_CR6
  publication-title: Robot Cim Int Manuf
  doi: 10.1016/j.rcim.2019.04.016
– volume: 4
  start-page: 1
  year: 2017
  ident: 8796_CR9
  publication-title: Math Probl Eng
  doi: 10.1155/2017/4259869
– volume: 95
  start-page: 2457
  issue: 1–4
  year: 2018
  ident: 8796_CR8
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-017-1374-y
– volume: 29
  start-page: 309
  issue: 2
  year: 2013
  ident: 8796_CR14
  publication-title: Robot Cim Int Manuf
  doi: 10.1016/j.rcim.2012.08.002
– volume: 7
  start-page: 154331
  year: 2019
  ident: 8796_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949271
– ident: 8796_CR22
  doi: 10.1088/1742-6596/1820/1/012185
– volume: 6
  start-page: 245
  issue: 2
  year: 2015
  ident: 8796_CR11
  publication-title: Mech Sci
  doi: 10.5194/ms-6-245-2015
– volume: 543–547
  start-page: 1296
  year: 2014
  ident: 8796_CR4
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.543-547.1296
– ident: 8796_CR19
  doi: 10.1109/CCDC49329.2020.9164017
– ident: 8796_CR1
– volume: 7
  start-page: 158753
  year: 2019
  ident: 8796_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950561
– volume: 14
  start-page: 2858
  issue: 7
  year: 2009
  ident: 8796_CR17
  publication-title: Commun Nonlinear Sci
  doi: 10.1016/j.cnsns.2008.10.014
– volume: 41
  start-page: 580
  issue: 5–6
  year: 2009
  ident: 8796_CR16
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-008-1506-5
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.4208236
Snippet Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1253
SubjectTerms Algorithms
Angular acceleration
Angular velocity
CAE) and Design
Computer-Aided Engineering (CAD
Continuity (mathematics)
Controllers
Convergence
Engineering
Industrial and Production Engineering
Industrial robots
Interpolation
Kinematics
Manipulators
Mechanical Engineering
Media Management
Motion control
Optimization
Original Article
Particle swarm optimization
Polynomials
Robot arms
Robotics
Trajectory optimization
Trigonometric functions
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IENLMWJ49hjhUCIgYlK3SK_KgFtg9Ii1L_BL-bsOC1FgMQWOc5Fyn0-X3x33yF0kWiTFUxqAt6xJkyngihw7IljSucps4lusnwf-F2f3Q_yQSwKm7bZ7m1IMljqRbFboHohPvs8EYXkZL6ONnL4d_e47qe9FkVUFr4T5gJlqfTt55cozlieNbGtGGvgNBTMgSDhl5uIpTU_v3N1-1r6pN_CqGF3ut1B29GtxL0GB7tozU320NYXssF99OGrPUgFJmIMM2e1eg4H9nMchmI5Jq6GuAElritdgTTsCTJCk6-qxv7UFr-AzED0itXEYtu0tMcjXyk1xX5XtBgEPYXTCrh-jeDE03dVj1fedoD6tzeP13ckdmQgBpbqjOS6UJpKVWhhDKfWCCFTQ3UGCs-HVrgcbBZPhjqVxrqsENLCCM9NYR2oRWSHqDOpJu4IYU6No4qrTDjNpJHKDlnqEiMTYQ1YlS6i7YcuTaQr910zRuWCaDkopwTllEE55byLLhfPvDZkHX_OPm31V8aFOy3BP5SCUcFpF121Ol3e_l3a8f-mn6DNNMDKp06eos6sfnNn4N7M9HlA8yez8PCA
  priority: 102
  providerName: Springer Nature
Title Time-optimal trajectory optimization of serial robotic manipulator with kinematic and dynamic limits based on improved particle swarm optimization
URI https://link.springer.com/article/10.1007/s00170-022-08796-y
https://www.proquest.com/docview/2649841861
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcGvIwHNMYmypf8wNuwFieOYz-hdmpBIFUTohJ7ivxVaaw0Xdpp6r_BX8zZcVpAgqdEtnORcj_fXc73gdBpok1WMKkJWMeaMJ0KosCwJ44pnafMJrqJ8h3yyxG7usvvosNtHsMqW5kYBLWtjPeRfwfFLQWjgtPz2V_iu0b509XYQmMDbVHQNB7hYnDR4onKwvfEXOEtlb4R_RrPGcuz5pQrnjpwGlLn4LdE-I0nYpJNSLULhWaIj31PRCE5Wb5UZGvr9NWBatBTg09oJxqYuNsgYhd9cNPPaPtZ2cE99OjzPkgFwuIBVi5qdR9c90schmJiJq7GuIEnritdATXsS2WEdl9Vjb3_Fv8BmqHkK1ZTi23T3B5PfM7UHHv9aDEQ-h38FnA_izDF8_-qfnjxti9oNOjf_rgksTcDMbBpFyTXhdJUqkILYzi1RgiZGqozYH0-tsLlIL14MtapNNZlhZAWRnhuCuuALSL7ijan1dTtI8ypcVRxlQmnmTRS2TFLXWJkIqwB-dJBtP3QpYmFy33_jEm5KrkcmFMCc8rAnHLZQd9Wz8yash3vrj5q-VfGLTwv14DroLOWp-vpt6kdvE_tEH1MA4x80OQR2lzU_9wxGDYLfRLQe4K2uoNeb-ivF7-u-3Dt9Yc_b2B2lHafAJoe-Ko
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CrlABwqVjGlgA9wAot4iWMfKoSAYUpLT63UW_A2UqGTTDODqvxGP6TfyLOTdFokeuvNsp2XKG-134bQm8w6XghtCVjHlgjLFDFg2JMgjM2Z8Jntonz35eRQfD_Kj9bQxZALE8MqB5mYBLWvXbwj_wCKWytBlaQf56ckdo2K3tWhhUZHFruhPYMj22J75wvg9y1j468Hnyek7ypAHJDbkuS2MJZqU1jlnKTeKaWZo5bDR-dTr0IOfCezqWXa-cALpT3MyNwVPmiwrjnAvYPuCs51DCFU428D_VJY1leqxTMdG9-v-IeLnHdetd7LIWlK1YNjkIqMrvqknpTalwrbkBhrn6lCS9JeV5wra_gfB27Si-OHaKM3aPGnjgIfobVQPUYPrpQ5fILOY54JqUE4zWDnsjG_kqugxWmqTwTF9RR37ICb2tYADcfSHKm9WN3geF-MfwPMVGIWm8pj31ZmBuOTmKO1wFEfewyAjtM9CYznPVvgxZlpZtfe9hQd3grWnqH1qq7Cc4QldYEaabgKVminjZ8KFjKnM-UdyLMRosOPLl1fKD326zgpL0s8J-SUgJwyIadsR-jd5TPzrkzIjbu3BvyVvchYlCsCH6H3A05Xy_-HtnkztNfo3uTgx165t7O_-wLdZ4mkYsDmFlpfNn_CSzCqlvZVomSMft426_wFVXIwRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSKgcELRULE8feqMWceI49hEBKx4V6oGVuEV-RaJAssoGof0b_GLGTrILiCL1FjnORMqMxxPPfN8g9DPSJsmY1ASiY02YjgVRENgTx5ROY2Yj3Vb5XvGzEbu4SW9eofhDtXufkmwxDZ6lqWwOx7Y4nAHfAu0L8ZXokcgkJ9MvaAncMfVFXaP4qLcoKjPfFXNmcbH0rejnFp2wNGnzXF3egdMAnoMfE-GXnuhgNh-_8-1WNo9P36VUw041XEOrXYiJj1qbWEcLrvyGVl4RD35Hzx75QSpwFw8ws6nV33B4P8VhqINm4qrArYHiutIVSMOeLCM0_Kpq7E9w8R3IDKSvWJUW27a9Pb73qKkJ9jukxSDoNpxcwPW4M1Q8eVL1w5u3baDR8PT6-Ix03RmIgWXbkFRnSlOpMi2M4dQaIWRsqE5A-WlhhUvBf_Go0LE01iWZkBZGeGoy60AtIvmBFsuqdJsIc2ocVVwlwmkmjVS2YLGLjIyENeBhBoj2Hzo3HXW576Bxn89Il4NyclBOHpSTTwfoYPbMuCXu-HT2Tq-_vFvEkxxiRSkYFZwO0K9ep_Pb_5a29X_T99Hyn5Nh_vv86nIbfY2DhfmKyh202NSPbheinkbvBcN-ATZp968
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-optimal+trajectory+optimization+of+serial+robotic+manipulator+with+kinematic+and+dynamic+limits+based+on+improved+particle+swarm+optimization&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Yang%2C+Yu&rft.au=Xu%2C+Hong-ze&rft.au=Li%2C+Shao-hua&rft.au=Zhang%2C+Ling-ling&rft.date=2022-05-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=120&rft.issue=1-2&rft.spage=1253&rft.epage=1264&rft_id=info:doi/10.1007%2Fs00170-022-08796-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_022_08796_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon