Time-optimal trajectory optimization of serial robotic manipulator with kinematic and dynamic limits based on improved particle swarm optimization
Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly. Time-optimal trajectory optimization (TO) is a great concern in the motion control of robotics, which could improve motion efficiency by providin...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 120; no. 1-2; pp. 1253 - 1264 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0268-3768 1433-3015 |
DOI | 10.1007/s00170-022-08796-y |
Cover
Loading…
Abstract | Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly. Time-optimal trajectory optimization (TO) is a great concern in the motion control of robotics, which could improve motion efficiency by providing high-speed and reasonable motion references to motion controllers. In this study, a new general time-optimal TO strategy, the second-order continuous polynomial interpolation function (SCPIF) combined with the particle swarm optimization with cosine-decreasing weight (CDW-PSO) subject to kinematic and dynamic limits, successfully optimizes the movement time of the PUMA 560 serial manipulator. The SCPIF could be used to generate the second-order continuous movement trajectories of six joints in joint space based on the assigned positions and time intervals. The CDW-PSO algorithm could further search for the optimal movement time subject to the limits of the angular displacement, angular velocity, angular acceleration, angular jerk, and joint torque of the manipulator. Two numerical experiments are conducted to illustrate the generalization ability of the CDW-PSO algorithm. The advantage of the CDW would be reflected by comparing with the random weight (RW), the constant weight (CW), and the linearly decreasing weight (LDW), respectively, in each experiment. The experimental results show that the CDW-PSO algorithm would perform better than the RW-PSO, CW-PSO, and LDW-PSO algorithms in terms of the convergence rate and quality of the convergent solution. The proposed time-optimal TO strategy would be applied to all types of manipulators while the optimized trajectories could be incorporated in the motion controllers of the actual manipulators due to considering the kinematic and dynamic limits. |
---|---|
AbstractList | Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly. Time-optimal trajectory optimization (TO) is a great concern in the motion control of robotics, which could improve motion efficiency by providing high-speed and reasonable motion references to motion controllers. In this study, a new general time-optimal TO strategy, the second-order continuous polynomial interpolation function (SCPIF) combined with the particle swarm optimization with cosine-decreasing weight (CDW-PSO) subject to kinematic and dynamic limits, successfully optimizes the movement time of the PUMA 560 serial manipulator. The SCPIF could be used to generate the second-order continuous movement trajectories of six joints in joint space based on the assigned positions and time intervals. The CDW-PSO algorithm could further search for the optimal movement time subject to the limits of the angular displacement, angular velocity, angular acceleration, angular jerk, and joint torque of the manipulator. Two numerical experiments are conducted to illustrate the generalization ability of the CDW-PSO algorithm. The advantage of the CDW would be reflected by comparing with the random weight (RW), the constant weight (CW), and the linearly decreasing weight (LDW), respectively, in each experiment. The experimental results show that the CDW-PSO algorithm would perform better than the RW-PSO, CW-PSO, and LDW-PSO algorithms in terms of the convergence rate and quality of the convergent solution. The proposed time-optimal TO strategy would be applied to all types of manipulators while the optimized trajectories could be incorporated in the motion controllers of the actual manipulators due to considering the kinematic and dynamic limits. |
Author | Xu, Hong-ze Li, Shao-hua Yang, Yu Yao, Xiu-ming Zhang, Ling-ling |
Author_xml | – sequence: 1 givenname: Yu surname: Yang fullname: Yang, Yu organization: School of Electronic and Information Engineering, Beijing Jiaotong University – sequence: 2 givenname: Hong-ze surname: Xu fullname: Xu, Hong-ze organization: School of Electronic and Information Engineering, Beijing Jiaotong University – sequence: 3 givenname: Shao-hua surname: Li fullname: Li, Shao-hua organization: School of Electronic and Information Engineering, Beijing Jiaotong University – sequence: 4 givenname: Ling-ling surname: Zhang fullname: Zhang, Ling-ling organization: School of Electronic and Information Engineering, Beijing Jiaotong University – sequence: 5 givenname: Xiu-ming surname: Yao fullname: Yao, Xiu-ming email: xmyao@bjtu.edu.cn organization: School of Electronic and Information Engineering, Beijing Jiaotong University |
BookMark | eNp9kc9OJCEQxolxkx3HfYE9kXhGoZkG-miM_xITL3omNE3vMnZDC4ymfQyf2JqZTTZ68ESl-H1VX-o7QochBofQb0ZPGaXyLFPKJCW0qghVshFkPkALtuKccMrqQ7SglVCES6F-oqOc14ALJtQCvT_40ZE4FT-aAZdk1s6WmGa8a_k3U3wMOPY4u-SBSLGNxVs8muCnzWCAxa--_MVPPrjRbL9M6HA3BzNCPcCMknFrsuswDPLjlOIL1JNJwA4O51eTxk_bjtGP3gzZ_fr3LtHj1eXDxQ25u7--vTi_I5azppC6laZljZGtslawzirVVJa13HJZ951ytVJS0L6tGts5LlXTQUfUVnaukbXiS3SynwuWnjcuF72OmxRgpa7EqlErpgQDSu0pm2LOyfXa-rLzCcfyg2ZUbxPQ-wQ0JKB3CegZpNUX6ZTgzGn-XsT3ogxw-OPSf1ffqD4Arc-gaQ |
CitedBy_id | crossref_primary_10_3390_a15100363 crossref_primary_10_1016_j_mechmachtheory_2022_105201 crossref_primary_10_1016_j_rcim_2023_102677 crossref_primary_10_1177_09544062231217924 crossref_primary_10_1017_S0263574724000481 crossref_primary_10_3390_math12132077 crossref_primary_10_3390_e25040610 crossref_primary_10_1007_s40747_023_01308_9 crossref_primary_10_1007_s12206_024_1142_5 crossref_primary_10_1177_09544062241253971 crossref_primary_10_3390_app14188234 crossref_primary_10_1007_s43684_024_00077_7 |
Cites_doi | 10.1016/j.neucom.2014.10.065 10.1007/s00500-016-2474-6 10.1016/j.asr.2018.10.034 10.1109/TRO.2018.2880120 10.1016/j.robot.2021.103744 10.4028/www.scientific.net/AMM.376.253 10.4028/www.scientific.net/AMR.711.422 10.1109/ACCESS.2020.2992640 10.1007/978-94-015-9231-4_34 10.1016/j.jmsy.2012.06.001 10.1016/j.euromechsol.2004.02.006 10.1007/s00170-019-04421-7 10.1109/TRA.2002.807548 10.1016/j.rcim.2019.04.016 10.1155/2017/4259869 10.1007/s00170-017-1374-y 10.1016/j.rcim.2012.08.002 10.1109/ACCESS.2019.2949271 10.1088/1742-6596/1820/1/012185 10.5194/ms-6-245-2015 10.4028/www.scientific.net/AMM.543-547.1296 10.1109/CCDC49329.2020.9164017 10.1109/ACCESS.2019.2950561 10.1016/j.cnsns.2008.10.014 10.1007/s00170-008-1506-5 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-022-08796-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1264 |
ExternalDocumentID | 10_1007_s00170_022_08796_y |
GrantInformation_xml | – fundername: national natural science foundation of china grantid: 61773052 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-5b7ab19a7b8cc61dc8892c1b3c375fd8e588760fb29cde3789d58865c7de97583 |
IEDL.DBID | 8FG |
ISSN | 0268-3768 |
IngestDate | Wed Aug 13 03:56:24 EDT 2025 Tue Jul 01 02:01:16 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Fri Feb 21 02:46:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Second-order continuous polynomial interpolation function Particle swarm optimization with cosine-decreasing weight Kinematic and dynamic limits Time-optimal trajectory planning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5b7ab19a7b8cc61dc8892c1b3c375fd8e588760fb29cde3789d58865c7de97583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2649841861 |
PQPubID | 2044010 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2649841861 crossref_citationtrail_10_1007_s00170_022_08796_y crossref_primary_10_1007_s00170_022_08796_y springer_journals_10_1007_s00170_022_08796_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | WangDSTanDPLiuLParticle swarm optimization algorithm: an overviewSoft Comput20182238740810.1007/s00500-016-2474-6 LiuHSLaiXBWuWXTime-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraintsRobot Cim Int Manuf201329230931710.1016/j.rcim.2012.08.002 ChenDLiSQWangJFFengYLiuYA multi-objective trajectory planning method based on the improved immune clonal selection algorithmRobot Cim Int Manuf20195943144210.1016/j.rcim.2019.04.016 Zhang WM, Fu SX (2020) Time-optimal trajectory planning of dulcimer music robot based on PSO algorithm. 2020 CCDC. https://doi.org/10.1109/CCDC49329.2020.9164017 ChuiCBoyceMMonte Carlo Techniques1999Netherlands, BerlinSpringer10.1007/978-94-015-9231-4_34 WangWJTaoQCaoYTWangXHZhangXRobot time-optimal trajectory planning based on improved cuckoo search algorithmIEEE Access20208869238693310.1109/ACCESS.2020.2992640 Han SJ, Shan XC, Fu JX, Xu WJ, Mi HY (1820) Industrial robot trajectory planning based on improved pso algorithm. J Phys Conf Ser 1:012185. https://doi.org/10.1088/1742-6596/1820/1/012185 XuWYuanSCCaoYHResearch on yinma palletizing robot motion feasibility based on matlab-robotics toolboxAppl Mech Mater2014543–5471296130010.4028/www.scientific.net/AMM.543-547.1296 ZuoYHStudy on nurbs surface tool trajectory planning of 6r engraving robotAdv Mat Res201371142242510.4028/www.scientific.net/AMR.711.422 OberherberMGattringerHMuellerASuccessive dynamic programming and subsequent spline optimization for smooth time optimal robot path trackingMech Sci20156224525410.5194/ms-6-245-2015 ZhangQLiSRGuoJXSmooth time-optimal tool trajectory generation for CNC manufacturing systemsJ Manuf Syst2012313280287209242010.1016/j.jmsy.2012.06.001 MaJWGaoSYanHTLvQHuGQA new approach to time-optimal trajectory planning with torque and jerk limits for robotRobot Auton Syst2021140310374410375310.1016/j.robot.2021.103744 LuJNHuHPBaiYPGeneralized radial basis function neural network based on an improved dynamic particle swarm optimization and adaboost algorithmNeurocomputing201515230531510.1016/j.neucom.2014.10.065 LiuCCaoGHQuYYChengYMAn improved pso algorithm for time-optimal trajectory planning of delta robot in intelligent packagingInt J Adv Manuf Tech20201071091109910.1007/s00170-019-04421-7 MacfarlaneSCroftEAJerk-bounded manipulator trajectory planning: design for real-time applicationsIEEE T Robotic Autom2003191425210.1109/TRA.2002.807548 ChenWLiuJJTangYHuanJTrajectory optimization of spray painting robot for complex curved surface based on exponential mean beizier methodMath Probl Eng2017411010.1155/2017/42598691426.65023 XieYEWuXDInamoriTShiZSunXZCuiHTCompensation of base disturbance using optimal trajectory planning of dual-manipulators in a space robotAdv Space Res20196331147116010.1016/j.asr.2018.10.034 MarcosMDGMachadoJATAzevedo-PerdicoulisTPTrajectory planning of redundant manipulators using genetic algorithmsCommun Nonlinear Sci20091472858286910.1016/j.cnsns.2008.10.014 LiuYShiLTianXCWeld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve weldingInt J Adv Manuf Tech2018951–42457247110.1007/s00170-017-1374-y KasererDGattringerHMuellerANearly optimal path following with jerk and torque rate limits using dynamic programmingIEEE T Robot201935252152810.1109/TRO.2018.2880120 IFR press room (2020) IFR presents world robotics report 2020. International Federation of Robotics. https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe WangLWuQLinFLiSChenDCA new trajectory-planning beetle swarm optimization algorithm for trajectory planning of robot manipulatorsIEEE Access2019715433115434510.1109/ACCESS.2019.2949271 GuoTYLiFHuangKZhangFZFengQApplication of optimal algorithm on trajectory planning of mechanical arm based on b-spline curveAppl Mech Mater201337625325610.4028/www.scientific.net/AMM.376.253 RamabalanSSaravananRBalamuruganCMulti-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstaclesInt J Adv Manuf Tech2009415–658059410.1007/s00170-008-1506-5 OgbemheJMpofuKTlaleNOptimal trajectory scheme for robotic welding along complex joints using a hybrid multi-objective genetic algorithmIEEE Access2019715875315876910.1109/ACCESS.2019.2950561 ChettibiTLehtihetHEHaddadMHanchiSMinimum cost trajectory planning for industrial robotsEur J Mech A-Solid200423470371510.1016/j.euromechsol.2004.02.0061060.70016 TY Guo (8796_CR5) 2013; 376 YE Xie (8796_CR15) 2019; 63 W Chen (8796_CR9) 2017; 4 Q Zhang (8796_CR13) 2012; 31 8796_CR19 M Oberherber (8796_CR11) 2015; 6 C Liu (8796_CR21) 2020; 107 D Kaserer (8796_CR12) 2019; 35 T Chettibi (8796_CR23) 2004; 23 Y Liu (8796_CR8) 2018; 95 WJ Wang (8796_CR18) 2020; 8 L Wang (8796_CR20) 2019; 7 8796_CR1 S Ramabalan (8796_CR16) 2009; 41 D Chen (8796_CR6) 2019; 59 C Chui (8796_CR24) 1999 YH Zuo (8796_CR7) 2013; 711 JW Ma (8796_CR2) 2021; 140 J Ogbemhe (8796_CR10) 2019; 7 8796_CR22 DS Wang (8796_CR25) 2018; 22 W Xu (8796_CR4) 2014; 543–547 HS Liu (8796_CR14) 2013; 29 JN Lu (8796_CR26) 2015; 152 MDG Marcos (8796_CR17) 2009; 14 S Macfarlane (8796_CR3) 2003; 19 |
References_xml | – reference: ChenDLiSQWangJFFengYLiuYA multi-objective trajectory planning method based on the improved immune clonal selection algorithmRobot Cim Int Manuf20195943144210.1016/j.rcim.2019.04.016 – reference: XieYEWuXDInamoriTShiZSunXZCuiHTCompensation of base disturbance using optimal trajectory planning of dual-manipulators in a space robotAdv Space Res20196331147116010.1016/j.asr.2018.10.034 – reference: WangLWuQLinFLiSChenDCA new trajectory-planning beetle swarm optimization algorithm for trajectory planning of robot manipulatorsIEEE Access2019715433115434510.1109/ACCESS.2019.2949271 – reference: MacfarlaneSCroftEAJerk-bounded manipulator trajectory planning: design for real-time applicationsIEEE T Robotic Autom2003191425210.1109/TRA.2002.807548 – reference: ChettibiTLehtihetHEHaddadMHanchiSMinimum cost trajectory planning for industrial robotsEur J Mech A-Solid200423470371510.1016/j.euromechsol.2004.02.0061060.70016 – reference: ZuoYHStudy on nurbs surface tool trajectory planning of 6r engraving robotAdv Mat Res201371142242510.4028/www.scientific.net/AMR.711.422 – reference: WangDSTanDPLiuLParticle swarm optimization algorithm: an overviewSoft Comput20182238740810.1007/s00500-016-2474-6 – reference: IFR press room (2020) IFR presents world robotics report 2020. International Federation of Robotics. https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe – reference: KasererDGattringerHMuellerANearly optimal path following with jerk and torque rate limits using dynamic programmingIEEE T Robot201935252152810.1109/TRO.2018.2880120 – reference: XuWYuanSCCaoYHResearch on yinma palletizing robot motion feasibility based on matlab-robotics toolboxAppl Mech Mater2014543–5471296130010.4028/www.scientific.net/AMM.543-547.1296 – reference: GuoTYLiFHuangKZhangFZFengQApplication of optimal algorithm on trajectory planning of mechanical arm based on b-spline curveAppl Mech Mater201337625325610.4028/www.scientific.net/AMM.376.253 – reference: OgbemheJMpofuKTlaleNOptimal trajectory scheme for robotic welding along complex joints using a hybrid multi-objective genetic algorithmIEEE Access2019715875315876910.1109/ACCESS.2019.2950561 – reference: WangWJTaoQCaoYTWangXHZhangXRobot time-optimal trajectory planning based on improved cuckoo search algorithmIEEE Access20208869238693310.1109/ACCESS.2020.2992640 – reference: ChuiCBoyceMMonte Carlo Techniques1999Netherlands, BerlinSpringer10.1007/978-94-015-9231-4_34 – reference: RamabalanSSaravananRBalamuruganCMulti-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstaclesInt J Adv Manuf Tech2009415–658059410.1007/s00170-008-1506-5 – reference: ChenWLiuJJTangYHuanJTrajectory optimization of spray painting robot for complex curved surface based on exponential mean beizier methodMath Probl Eng2017411010.1155/2017/42598691426.65023 – reference: MaJWGaoSYanHTLvQHuGQA new approach to time-optimal trajectory planning with torque and jerk limits for robotRobot Auton Syst2021140310374410375310.1016/j.robot.2021.103744 – reference: OberherberMGattringerHMuellerASuccessive dynamic programming and subsequent spline optimization for smooth time optimal robot path trackingMech Sci20156224525410.5194/ms-6-245-2015 – reference: Han SJ, Shan XC, Fu JX, Xu WJ, Mi HY (1820) Industrial robot trajectory planning based on improved pso algorithm. J Phys Conf Ser 1:012185. https://doi.org/10.1088/1742-6596/1820/1/012185 – reference: LuJNHuHPBaiYPGeneralized radial basis function neural network based on an improved dynamic particle swarm optimization and adaboost algorithmNeurocomputing201515230531510.1016/j.neucom.2014.10.065 – reference: LiuYShiLTianXCWeld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve weldingInt J Adv Manuf Tech2018951–42457247110.1007/s00170-017-1374-y – reference: LiuHSLaiXBWuWXTime-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraintsRobot Cim Int Manuf201329230931710.1016/j.rcim.2012.08.002 – reference: Zhang WM, Fu SX (2020) Time-optimal trajectory planning of dulcimer music robot based on PSO algorithm. 2020 CCDC. https://doi.org/10.1109/CCDC49329.2020.9164017 – reference: MarcosMDGMachadoJATAzevedo-PerdicoulisTPTrajectory planning of redundant manipulators using genetic algorithmsCommun Nonlinear Sci20091472858286910.1016/j.cnsns.2008.10.014 – reference: ZhangQLiSRGuoJXSmooth time-optimal tool trajectory generation for CNC manufacturing systemsJ Manuf Syst2012313280287209242010.1016/j.jmsy.2012.06.001 – reference: LiuCCaoGHQuYYChengYMAn improved pso algorithm for time-optimal trajectory planning of delta robot in intelligent packagingInt J Adv Manuf Tech20201071091109910.1007/s00170-019-04421-7 – volume: 152 start-page: 305 year: 2015 ident: 8796_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.10.065 – volume: 22 start-page: 387 year: 2018 ident: 8796_CR25 publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – volume: 63 start-page: 1147 issue: 3 year: 2019 ident: 8796_CR15 publication-title: Adv Space Res doi: 10.1016/j.asr.2018.10.034 – volume: 35 start-page: 521 issue: 2 year: 2019 ident: 8796_CR12 publication-title: IEEE T Robot doi: 10.1109/TRO.2018.2880120 – volume: 140 start-page: 103744 issue: 3 year: 2021 ident: 8796_CR2 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2021.103744 – volume: 376 start-page: 253 year: 2013 ident: 8796_CR5 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.376.253 – volume: 711 start-page: 422 year: 2013 ident: 8796_CR7 publication-title: Adv Mat Res doi: 10.4028/www.scientific.net/AMR.711.422 – volume: 8 start-page: 86923 year: 2020 ident: 8796_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992640 – volume-title: Monte Carlo Techniques year: 1999 ident: 8796_CR24 doi: 10.1007/978-94-015-9231-4_34 – volume: 31 start-page: 280 issue: 3 year: 2012 ident: 8796_CR13 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2012.06.001 – volume: 23 start-page: 703 issue: 4 year: 2004 ident: 8796_CR23 publication-title: Eur J Mech A-Solid doi: 10.1016/j.euromechsol.2004.02.006 – volume: 107 start-page: 1091 year: 2020 ident: 8796_CR21 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-019-04421-7 – volume: 19 start-page: 42 issue: 1 year: 2003 ident: 8796_CR3 publication-title: IEEE T Robotic Autom doi: 10.1109/TRA.2002.807548 – volume: 59 start-page: 431 year: 2019 ident: 8796_CR6 publication-title: Robot Cim Int Manuf doi: 10.1016/j.rcim.2019.04.016 – volume: 4 start-page: 1 year: 2017 ident: 8796_CR9 publication-title: Math Probl Eng doi: 10.1155/2017/4259869 – volume: 95 start-page: 2457 issue: 1–4 year: 2018 ident: 8796_CR8 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-017-1374-y – volume: 29 start-page: 309 issue: 2 year: 2013 ident: 8796_CR14 publication-title: Robot Cim Int Manuf doi: 10.1016/j.rcim.2012.08.002 – volume: 7 start-page: 154331 year: 2019 ident: 8796_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949271 – ident: 8796_CR22 doi: 10.1088/1742-6596/1820/1/012185 – volume: 6 start-page: 245 issue: 2 year: 2015 ident: 8796_CR11 publication-title: Mech Sci doi: 10.5194/ms-6-245-2015 – volume: 543–547 start-page: 1296 year: 2014 ident: 8796_CR4 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.543-547.1296 – ident: 8796_CR19 doi: 10.1109/CCDC49329.2020.9164017 – ident: 8796_CR1 – volume: 7 start-page: 158753 year: 2019 ident: 8796_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950561 – volume: 14 start-page: 2858 issue: 7 year: 2009 ident: 8796_CR17 publication-title: Commun Nonlinear Sci doi: 10.1016/j.cnsns.2008.10.014 – volume: 41 start-page: 580 issue: 5–6 year: 2009 ident: 8796_CR16 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-008-1506-5 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.4208236 |
Snippet | Effective motion control could achieve the accurate positioning and fast movement of industrial robotics to improve industrial productivity significantly.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1253 |
SubjectTerms | Algorithms Angular acceleration Angular velocity CAE) and Design Computer-Aided Engineering (CAD Continuity (mathematics) Controllers Convergence Engineering Industrial and Production Engineering Industrial robots Interpolation Kinematics Manipulators Mechanical Engineering Media Management Motion control Optimization Original Article Particle swarm optimization Polynomials Robot arms Robotics Trajectory optimization Trigonometric functions |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IENLMWJ49hjhUCIgYlK3SK_KgFtg9Ii1L_BL-bsOC1FgMQWOc5Fyn0-X3x33yF0kWiTFUxqAt6xJkyngihw7IljSucps4lusnwf-F2f3Q_yQSwKm7bZ7m1IMljqRbFboHohPvs8EYXkZL6ONnL4d_e47qe9FkVUFr4T5gJlqfTt55cozlieNbGtGGvgNBTMgSDhl5uIpTU_v3N1-1r6pN_CqGF3ut1B29GtxL0GB7tozU320NYXssF99OGrPUgFJmIMM2e1eg4H9nMchmI5Jq6GuAElritdgTTsCTJCk6-qxv7UFr-AzED0itXEYtu0tMcjXyk1xX5XtBgEPYXTCrh-jeDE03dVj1fedoD6tzeP13ckdmQgBpbqjOS6UJpKVWhhDKfWCCFTQ3UGCs-HVrgcbBZPhjqVxrqsENLCCM9NYR2oRWSHqDOpJu4IYU6No4qrTDjNpJHKDlnqEiMTYQ1YlS6i7YcuTaQr910zRuWCaDkopwTllEE55byLLhfPvDZkHX_OPm31V8aFOy3BP5SCUcFpF121Ol3e_l3a8f-mn6DNNMDKp06eos6sfnNn4N7M9HlA8yez8PCA priority: 102 providerName: Springer Nature |
Title | Time-optimal trajectory optimization of serial robotic manipulator with kinematic and dynamic limits based on improved particle swarm optimization |
URI | https://link.springer.com/article/10.1007/s00170-022-08796-y https://www.proquest.com/docview/2649841861 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcGvIwHNMYmypf8wNuwFieOYz-hdmpBIFUTohJ7ivxVaaw0Xdpp6r_BX8zZcVpAgqdEtnORcj_fXc73gdBpok1WMKkJWMeaMJ0KosCwJ44pnafMJrqJ8h3yyxG7usvvosNtHsMqW5kYBLWtjPeRfwfFLQWjgtPz2V_iu0b509XYQmMDbVHQNB7hYnDR4onKwvfEXOEtlb4R_RrPGcuz5pQrnjpwGlLn4LdE-I0nYpJNSLULhWaIj31PRCE5Wb5UZGvr9NWBatBTg09oJxqYuNsgYhd9cNPPaPtZ2cE99OjzPkgFwuIBVi5qdR9c90schmJiJq7GuIEnritdATXsS2WEdl9Vjb3_Fv8BmqHkK1ZTi23T3B5PfM7UHHv9aDEQ-h38FnA_izDF8_-qfnjxti9oNOjf_rgksTcDMbBpFyTXhdJUqkILYzi1RgiZGqozYH0-tsLlIL14MtapNNZlhZAWRnhuCuuALSL7ijan1dTtI8ypcVRxlQmnmTRS2TFLXWJkIqwB-dJBtP3QpYmFy33_jEm5KrkcmFMCc8rAnHLZQd9Wz8yash3vrj5q-VfGLTwv14DroLOWp-vpt6kdvE_tEH1MA4x80OQR2lzU_9wxGDYLfRLQe4K2uoNeb-ivF7-u-3Dt9Yc_b2B2lHafAJoe-Ko |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CrlABwqVjGlgA9wAot4iWMfKoSAYUpLT63UW_A2UqGTTDODqvxGP6TfyLOTdFokeuvNsp2XKG-134bQm8w6XghtCVjHlgjLFDFg2JMgjM2Z8Jntonz35eRQfD_Kj9bQxZALE8MqB5mYBLWvXbwj_wCKWytBlaQf56ckdo2K3tWhhUZHFruhPYMj22J75wvg9y1j468Hnyek7ypAHJDbkuS2MJZqU1jlnKTeKaWZo5bDR-dTr0IOfCezqWXa-cALpT3MyNwVPmiwrjnAvYPuCs51DCFU428D_VJY1leqxTMdG9-v-IeLnHdetd7LIWlK1YNjkIqMrvqknpTalwrbkBhrn6lCS9JeV5wra_gfB27Si-OHaKM3aPGnjgIfobVQPUYPrpQ5fILOY54JqUE4zWDnsjG_kqugxWmqTwTF9RR37ICb2tYADcfSHKm9WN3geF-MfwPMVGIWm8pj31ZmBuOTmKO1wFEfewyAjtM9CYznPVvgxZlpZtfe9hQd3grWnqH1qq7Cc4QldYEaabgKVminjZ8KFjKnM-UdyLMRosOPLl1fKD326zgpL0s8J-SUgJwyIadsR-jd5TPzrkzIjbu3BvyVvchYlCsCH6H3A05Xy_-HtnkztNfo3uTgx165t7O_-wLdZ4mkYsDmFlpfNn_CSzCqlvZVomSMft426_wFVXIwRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSKgcELRULE8feqMWceI49hEBKx4V6oGVuEV-RaJAssoGof0b_GLGTrILiCL1FjnORMqMxxPPfN8g9DPSJsmY1ASiY02YjgVRENgTx5ROY2Yj3Vb5XvGzEbu4SW9eofhDtXufkmwxDZ6lqWwOx7Y4nAHfAu0L8ZXokcgkJ9MvaAncMfVFXaP4qLcoKjPfFXNmcbH0rejnFp2wNGnzXF3egdMAnoMfE-GXnuhgNh-_8-1WNo9P36VUw041XEOrXYiJj1qbWEcLrvyGVl4RD35Hzx75QSpwFw8ws6nV33B4P8VhqINm4qrArYHiutIVSMOeLCM0_Kpq7E9w8R3IDKSvWJUW27a9Pb73qKkJ9jukxSDoNpxcwPW4M1Q8eVL1w5u3baDR8PT6-Ix03RmIgWXbkFRnSlOpMi2M4dQaIWRsqE5A-WlhhUvBf_Go0LE01iWZkBZGeGoy60AtIvmBFsuqdJsIc2ocVVwlwmkmjVS2YLGLjIyENeBhBoj2Hzo3HXW576Bxn89Il4NyclBOHpSTTwfoYPbMuCXu-HT2Tq-_vFvEkxxiRSkYFZwO0K9ep_Pb_5a29X_T99Hyn5Nh_vv86nIbfY2DhfmKyh202NSPbheinkbvBcN-ATZp968 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-optimal+trajectory+optimization+of+serial+robotic+manipulator+with+kinematic+and+dynamic+limits+based+on+improved+particle+swarm+optimization&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Yang%2C+Yu&rft.au=Xu%2C+Hong-ze&rft.au=Li%2C+Shao-hua&rft.au=Zhang%2C+Ling-ling&rft.date=2022-05-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=120&rft.issue=1-2&rft.spage=1253&rft.epage=1264&rft_id=info:doi/10.1007%2Fs00170-022-08796-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_022_08796_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |