On the application of process management and process mining to Industry 4.0
The continuous evolution of digital technologies applied to the more traditional world of industrial automation led to Industry 4.0, which envisions production processes subject to continuous monitoring and able to dynamically respond to changes that can affect the production at any stage (resilient...
Saved in:
Published in | Software and systems modeling Vol. 23; no. 6; pp. 1407 - 1419 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1619-1366 1619-1374 |
DOI | 10.1007/s10270-024-01175-z |
Cover
Abstract | The continuous evolution of digital technologies applied to the more traditional world of industrial automation led to Industry 4.0, which envisions production processes subject to continuous monitoring and able to dynamically respond to changes that can affect the production at any stage (resilient factory). The concept of
agility
, which is a core element of Industry 4.0, is defined as the ability to quickly react to breaks and quickly adapt to changes. Accurate approaches should be implemented aiming at managing, optimizing and improving production processes. In this vision paper, we show how process management (BPM) can benefit from the availability of raw data from the industrial internet of things to obtain agile processes by using a top-down approach based on automated synthesis and a bottom-up approach based on mining. |
---|---|
AbstractList | The continuous evolution of digital technologies applied to the more traditional world of industrial automation led to Industry 4.0, which envisions production processes subject to continuous monitoring and able to dynamically respond to changes that can affect the production at any stage (resilient factory). The concept of
agility
, which is a core element of Industry 4.0, is defined as the ability to quickly react to breaks and quickly adapt to changes. Accurate approaches should be implemented aiming at managing, optimizing and improving production processes. In this vision paper, we show how process management (BPM) can benefit from the availability of raw data from the industrial internet of things to obtain agile processes by using a top-down approach based on automated synthesis and a bottom-up approach based on mining. The continuous evolution of digital technologies applied to the more traditional world of industrial automation led to Industry 4.0, which envisions production processes subject to continuous monitoring and able to dynamically respond to changes that can affect the production at any stage (resilient factory). The concept of agility, which is a core element of Industry 4.0, is defined as the ability to quickly react to breaks and quickly adapt to changes. Accurate approaches should be implemented aiming at managing, optimizing and improving production processes. In this vision paper, we show how process management (BPM) can benefit from the availability of raw data from the industrial internet of things to obtain agile processes by using a top-down approach based on automated synthesis and a bottom-up approach based on mining. |
Author | Koschmider, Agnes Monti, Flavia Mathew, Jerin George Leotta, Francesco Mecella, Massimo |
Author_xml | – sequence: 1 givenname: Flavia orcidid: 0000-0003-3349-7861 surname: Monti fullname: Monti, Flavia – sequence: 2 givenname: Jerin George orcidid: 0000-0002-4626-826X surname: Mathew fullname: Mathew, Jerin George – sequence: 3 givenname: Francesco orcidid: 0000-0001-9216-8502 surname: Leotta fullname: Leotta, Francesco – sequence: 4 givenname: Agnes orcidid: 0000-0001-8206-7636 surname: Koschmider fullname: Koschmider, Agnes – sequence: 5 givenname: Massimo orcidid: 0000-0002-9730-8882 surname: Mecella fullname: Mecella, Massimo |
BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz1snu_nYHKX4USz0oueQzWZrpM2uSXpof72xFQUPzmWGl3nn47lEI997i9A1gRkBELeRQCmggJIWQIhgxeEMjQknsiCVoKOfmvMLNI3RNQC0lJJyPkbPK4_Tm8V6GDbO6OR6j_sOD6E3Nka81V6v7db6hLVvf2XnnV_j1OOFb3cxhT2mM7hC553eRDv9zhP0-nD_Mn8qlqvHxfxuWZiKyFSwhglKJYBsDNRNWQpRQW1Na5npOqpl0whGGbdSiKyamtmGd6KiAkQlWFdN0M1pbj7nY2djUu_9Lvi8UlWE5mD5tdxVnrpM6GMMtlNDcFsd9oqA-uKmTtxU5qaO3NQhm-o_JuPSkUoK2m3-s34CTkRzng |
CitedBy_id | crossref_primary_10_1080_13602381_2024_2448468 crossref_primary_10_1038_s41746_024_01297_0 crossref_primary_10_1109_TSC_2024_3495521 |
Cites_doi | 10.1007/s13740-018-0096-0 10.1002/cpe.4850 10.1109/DSAA.2016.49 10.1016/j.compind.2020.103224 10.1108/BPMJ-04-2020-0163 10.1007/978-3-540-49744-8 10.1109/PIMRC.2018.8580775 10.1007/978-3-319-91563-0_17 10.1109/MC.2003.1160055 10.1109/TKDE.2018.2841877 10.1007/978-3-031-34985-0_6 10.31803/tg-20181008155243 10.1016/j.rcim.2018.11.011 10.1007/s10270-020-00785-7 10.1109/TII.2018.2852491 10.1609/icaps.v30i1.6646 10.1109/WETICE49692.2020.00027 10.1007/978-3-030-64949-4_1 10.1016/j.procir.2022.05.023 10.1109/CBI49978.2020.00031 10.1109/MSMC.2020.3003135 10.1007/s41066-020-00226-2 10.1016/j.procs.2022.01.351 10.1016/j.promfg.2017.09.045 10.1007/978-3-662-49851-4 10.1016/j.compind.2018.04.015 10.1109/RCIS.2018.8406657 10.1145/2948071 10.1017/CBO9781139583923 10.1108/bpmj.2004.15710baa.001 10.1007/978-3-030-94343-1_10 10.1007/978-3-031-07481-3_15 10.1142/8037 10.1016/j.compind.2020.103300 10.1145/3613247 10.1080/08839510490964491 10.1007/s10796-021-10190-0 10.1016/j.ijpe.2020.107617 10.1016/j.procir.2021.01.024 10.1007/s10270-022-01049-2 10.1007/s00287-022-01469-w 10.20965/ijat.2017.p0004 10.1016/j.proeng.2015.12.595 10.1016/j.compind.2023.103916 10.1109/ICWS.2019.00047 10.1007/978-3-662-56509-4 10.1007/978-3-031-45728-9_5 10.1007/978-3-662-65004-2_15 10.1016/j.cie.2018.11.030 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10270-024-01175-z |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1619-1374 |
EndPage | 1419 |
ExternalDocumentID | 10_1007_s10270_024_01175_z |
GroupedDBID | -Y2 .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8AO 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9O PF0 PHGZM PHGZT PQQKQ PROAC PT4 Q2X QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c319t-5b57449009bc08b2277308ecde5cff4a9bb75456e977ecdc85eb6f734707375f3 |
ISSN | 1619-1366 |
IngestDate | Sat Aug 16 21:25:44 EDT 2025 Tue Jul 01 02:55:10 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-5b57449009bc08b2277308ecde5cff4a9bb75456e977ecdc85eb6f734707375f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9730-8882 0000-0001-9216-8502 0000-0003-3349-7861 0000-0002-4626-826X 0000-0001-8206-7636 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10270-024-01175-z.pdf |
PQID | 3144445466 |
PQPubID | 43171 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3144445466 crossref_primary_10_1007_s10270_024_01175_z crossref_citationtrail_10_1007_s10270_024_01175_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-00 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Software and systems modeling |
PublicationYear | 2024 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 1175_CR59 1175_CR16 S Schönig (1175_CR32) 2020; 19 V Krueger (1175_CR41) 2019; 57 1175_CR57 1175_CR58 M Grieves (1175_CR7) 2014; 1 A Augusto (1175_CR13) 2019; 31 1175_CR19 KD Thoben (1175_CR2) 2017; 11 T Ziolkowski (1175_CR55) 2022; 45 M Ghallab (1175_CR18) 2016 A Marrella (1175_CR17) 2019; 8 SJ van Zelst (1175_CR52) 2021; 6 L Barreto (1175_CR24) 2017; 13 1175_CR51 1175_CR53 1175_CR10 1175_CR54 I Compagnucci (1175_CR33) 2023; 22 1175_CR50 1175_CR48 1175_CR49 MN Murty (1175_CR65) 2015 F Mas (1175_CR22) 2015; 132 1175_CR45 1175_CR46 1175_CR47 AH Ter Hofstede (1175_CR56) 2023; 15 J Carmona (1175_CR14) 2018 M Hankel (1175_CR63) 2015; 2 G Culot (1175_CR3) 2020; 226 M Romero (1175_CR4) 2020; 120 A Marrella (1175_CR44) 2016; 8 H Boyes (1175_CR5) 2018; 101 M Dumas (1175_CR11) 2018 1175_CR42 1175_CR43 J Kletti (1175_CR25) 2007 1175_CR39 I Graja (1175_CR36) 2020; 32 P Bazan (1175_CR31) 2022; 28 1175_CR34 1175_CR35 J Friederich (1175_CR37) 2022; 107 E Manavalan (1175_CR23) 2019; 127 C Janiesch (1175_CR8) 2020; 6 1175_CR26 JO Kephart (1175_CR15) 2003; 36 1175_CR27 E Sisinni (1175_CR6) 2018; 14 G De Giacomo (1175_CR28) 2023; 149 N Bicocchi (1175_CR1) 2019; 15 W Van Der Aalst (1175_CR12) 2016 C Ortmeier (1175_CR38) 2021; 98 1175_CR9 S Fernández (1175_CR40) 2005; 19 1175_CR62 1175_CR20 F Steiner (1175_CR30) 2019; 13 1175_CR64 1175_CR21 1175_CR60 A Gažová (1175_CR29) 2022; 200 1175_CR61 |
References_xml | – volume: 8 start-page: 79 issue: 2 year: 2019 ident: 1175_CR17 publication-title: J. Data Semant. doi: 10.1007/s13740-018-0096-0 – ident: 1175_CR59 – volume: 32 issue: 15 year: 2020 ident: 1175_CR36 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.4850 – ident: 1175_CR61 doi: 10.1109/DSAA.2016.49 – volume: 120 year: 2020 ident: 1175_CR4 publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103224 – volume: 28 start-page: 62 issue: 1 year: 2022 ident: 1175_CR31 publication-title: Bus. Process. Manag. J. doi: 10.1108/BPMJ-04-2020-0163 – volume-title: Manufacturing Execution Systems-MES year: 2007 ident: 1175_CR25 doi: 10.1007/978-3-540-49744-8 – ident: 1175_CR50 doi: 10.1109/PIMRC.2018.8580775 – ident: 1175_CR46 – ident: 1175_CR57 doi: 10.1007/978-3-319-91563-0_17 – volume: 36 start-page: 41 issue: 1 year: 2003 ident: 1175_CR15 publication-title: Computer doi: 10.1109/MC.2003.1160055 – volume: 31 start-page: 686 issue: 4 year: 2019 ident: 1175_CR13 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2841877 – ident: 1175_CR42 – volume: 15 start-page: 111 year: 2019 ident: 1175_CR1 publication-title: J. Ind. Inf. Integr. – ident: 1175_CR60 doi: 10.1007/978-3-031-34985-0_6 – volume: 13 start-page: 349 issue: 4 year: 2019 ident: 1175_CR30 publication-title: Tehnički glasnik. doi: 10.31803/tg-20181008155243 – volume: 57 start-page: 213 year: 2019 ident: 1175_CR41 publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2018.11.011 – volume: 19 start-page: 1443 year: 2020 ident: 1175_CR32 publication-title: Softw. Syst. Model. doi: 10.1007/s10270-020-00785-7 – volume: 14 start-page: 4724 issue: 11 year: 2018 ident: 1175_CR6 publication-title: IEEE Trans Ind Inf. doi: 10.1109/TII.2018.2852491 – ident: 1175_CR49 doi: 10.1609/icaps.v30i1.6646 – ident: 1175_CR35 doi: 10.1109/WETICE49692.2020.00027 – ident: 1175_CR16 – ident: 1175_CR53 doi: 10.1007/978-3-030-64949-4_1 – volume: 107 start-page: 546 year: 2022 ident: 1175_CR37 publication-title: Procedia CIRP. doi: 10.1016/j.procir.2022.05.023 – ident: 1175_CR47 – volume-title: Conformance Checking - Relating Processes and Models year: 2018 ident: 1175_CR14 – ident: 1175_CR34 doi: 10.1109/CBI49978.2020.00031 – volume: 6 start-page: 34 issue: 4 year: 2020 ident: 1175_CR8 publication-title: IEEE Syst. Man Cybern. Mag. doi: 10.1109/MSMC.2020.3003135 – ident: 1175_CR19 – ident: 1175_CR26 – volume: 6 start-page: 719 issue: 3 year: 2021 ident: 1175_CR52 publication-title: Granul. Comput. doi: 10.1007/s41066-020-00226-2 – volume: 200 start-page: 1498 year: 2022 ident: 1175_CR29 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.351 – volume: 13 start-page: 1245 year: 2017 ident: 1175_CR24 publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2017.09.045 – volume-title: Process Mining: Data Science in Action year: 2016 ident: 1175_CR12 doi: 10.1007/978-3-662-49851-4 – volume: 101 start-page: 1 year: 2018 ident: 1175_CR5 publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.04.015 – ident: 1175_CR54 doi: 10.1109/RCIS.2018.8406657 – volume: 8 start-page: 1 issue: 2 year: 2016 ident: 1175_CR44 publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/2948071 – volume-title: Automated Planning and Acting year: 2016 ident: 1175_CR18 doi: 10.1017/CBO9781139583923 – ident: 1175_CR20 doi: 10.1108/bpmj.2004.15710baa.001 – ident: 1175_CR58 doi: 10.1007/978-3-030-94343-1_10 – ident: 1175_CR62 doi: 10.1007/978-3-031-07481-3_15 – volume-title: Introduction to Pattern Recognition and Machine Learning year: 2015 ident: 1175_CR65 doi: 10.1142/8037 – ident: 1175_CR27 doi: 10.1016/j.compind.2020.103300 – volume: 2 start-page: 4 issue: 2 year: 2015 ident: 1175_CR63 publication-title: ZVEI. – volume: 15 start-page: 1 issue: 3 year: 2023 ident: 1175_CR56 publication-title: ACM J. Data Inf. Qual. doi: 10.1145/3613247 – volume: 19 start-page: 783 issue: 8 year: 2005 ident: 1175_CR40 publication-title: Appl. Artif. Intell. doi: 10.1080/08839510490964491 – ident: 1175_CR64 doi: 10.1007/s10796-021-10190-0 – volume: 226 year: 2020 ident: 1175_CR3 publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2020.107617 – ident: 1175_CR21 – ident: 1175_CR48 – volume: 1 start-page: 1 year: 2014 ident: 1175_CR7 publication-title: White Paper – volume: 98 start-page: 163 year: 2021 ident: 1175_CR38 publication-title: Procedia CIRP. doi: 10.1016/j.procir.2021.01.024 – volume: 22 start-page: 969 issue: 3 year: 2023 ident: 1175_CR33 publication-title: Softw. Syst. Model. doi: 10.1007/s10270-022-01049-2 – volume: 45 start-page: 218 issue: 4 year: 2022 ident: 1175_CR55 publication-title: Informatik Spektrum. doi: 10.1007/s00287-022-01469-w – volume: 11 start-page: 4 issue: 1 year: 2017 ident: 1175_CR2 publication-title: Int. J. Autom. Technol. doi: 10.20965/ijat.2017.p0004 – ident: 1175_CR10 – volume: 132 start-page: 1053 year: 2015 ident: 1175_CR22 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.12.595 – volume: 149 year: 2023 ident: 1175_CR28 publication-title: Comput. Ind. doi: 10.1016/j.compind.2023.103916 – ident: 1175_CR45 doi: 10.1109/ICWS.2019.00047 – volume-title: Fundamentals of Business Process Management year: 2018 ident: 1175_CR11 doi: 10.1007/978-3-662-56509-4 – ident: 1175_CR43 doi: 10.1007/978-3-031-45728-9_5 – ident: 1175_CR9 – ident: 1175_CR39 doi: 10.1007/978-3-662-65004-2_15 – ident: 1175_CR51 – volume: 127 start-page: 925 year: 2019 ident: 1175_CR23 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.11.030 |
SSID | ssib004299466 ssj0027432 |
Score | 2.3953135 |
Snippet | The continuous evolution of digital technologies applied to the more traditional world of industrial automation led to Industry 4.0, which envisions production... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1407 |
SubjectTerms | Automation Case studies Industrial applications Industrial Internet of Things Industry 4.0 Information systems Internet of Things Manufacturing Process management Software |
Title | On the application of process management and process mining to Industry 4.0 |
URI | https://www.proquest.com/docview/3144445466 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYGXLgwGCAKDPmwGwpKYjt2jwVWdWMqkwCJm2W79gm1aAtC9K_fs2MngU0Idomi17Sp3uc8v5f340PoCxdKCTczGbGFyGA_hmdOWJuZgipqiM5LFaZ9TqvJDf1-y247Rr3QXVLrE7P8Z1_J_6AKMsDVd8m-A9n2R0EA54AvHAFhOL4J48umRrGXhA4FzE3tfyxMbYvIW3GghPA-Z6TteDqmJ3nfSb0C0_yoYmKhGfUcKXPSPhdfE5T0RclFek3oa6B9ZqJtYwlWD6KorCBVnEndlzUUOslUNq3BcUn07R6Eaby3hxa0sYN_2ec89SuXnu-m9AUw4L9ky243Shn4yehK_jwfyx_fphcraK3k3Gfh10bj09NpL6IODHTt_49dUbE38sU9nnsezzfe4E1cb6KNGAbgUYPpFvpg55_Qx0SxgaPF3UYXl3MMEOMexHjhcMQSdxBjwKoTB4hxvcAJYgwQ76Cb8dfrs0kW-S8yA4axzphmnNIheMHa5EKXoAOSC2tmlhnnqBpqzb0DbMGHB6kRzOrKcUI52G3OHNlFq_PF3O4h7EjlZlQxVYgh1ZUWFSPM2qFTmvn5TANUJN1IE4fDe46SO9mNtfb6lKBPGfQplwN03H7nvhmN8urVh0nlMj5CvyWBcJ5SRqtq__WPD9B6t6gP0Wr968F-Bm-w1kdxTfwBpkZc-g |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+application+of+process+management+and+process+mining+to+Industry+4.0&rft.jtitle=Software+and+systems+modeling&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1619-1366&rft.eissn=1619-1374&rft.volume=23&rft.issue=6&rft.spage=1407&rft.epage=1419&rft_id=info:doi/10.1007%2Fs10270-024-01175-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-1366&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-1366&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-1366&client=summon |