Deep kernel learning in extreme learning machines

Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based extreme learning machine (KELM) reflected its efficiency in diverse applications where feature mapping functions of hidden nodes are conceale...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 24; no. 1; pp. 11 - 19
Main Authors Afzal, A. L., Nair, Nikhitha K., Asharaf, S.
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-020-00891-8

Cover

Loading…
Abstract Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based extreme learning machine (KELM) reflected its efficiency in diverse applications where feature mapping functions of hidden nodes are concealed from users. The conventional KELM algorithms involve only solitary layer of kernels, thereby emulating shallow learning architectures for its feature transformation. Trend in migrating shallow-based learning models into deep learning architectures opens up a new outlook for machine learning domains. This paper attempts to bestow deep kernel learning approach in a conventional shallow architecture. The emerging arc-cosine kernels possess the potential to mimic the prevailing deep layered frameworks to a greater extent. Unlike other kernels such as linear, polynomial and Gaussian, arc-cosine kernels have a recursive nature by itself and have the potential to express multilayer computation in learning models. This paper explores the possibility of building a new deep kernel machine with extreme learning machine and multilayer arc-cosine kernels. This framework outperforms conventional KELM and deep support vector machine in terms of training time and accuracy.
AbstractList Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based extreme learning machine (KELM) reflected its efficiency in diverse applications where feature mapping functions of hidden nodes are concealed from users. The conventional KELM algorithms involve only solitary layer of kernels, thereby emulating shallow learning architectures for its feature transformation. Trend in migrating shallow-based learning models into deep learning architectures opens up a new outlook for machine learning domains. This paper attempts to bestow deep kernel learning approach in a conventional shallow architecture. The emerging arc-cosine kernels possess the potential to mimic the prevailing deep layered frameworks to a greater extent. Unlike other kernels such as linear, polynomial and Gaussian, arc-cosine kernels have a recursive nature by itself and have the potential to express multilayer computation in learning models. This paper explores the possibility of building a new deep kernel machine with extreme learning machine and multilayer arc-cosine kernels. This framework outperforms conventional KELM and deep support vector machine in terms of training time and accuracy.
Author Afzal, A. L.
Nair, Nikhitha K.
Asharaf, S.
Author_xml – sequence: 1
  givenname: A. L.
  orcidid: 0000-0001-5356-1918
  surname: Afzal
  fullname: Afzal, A. L.
  email: afzal.res15@iiitmk.ac.in
  organization: College of Engineering Muttathara
– sequence: 2
  givenname: Nikhitha K.
  surname: Nair
  fullname: Nair, Nikhitha K.
  organization: Data Engineering Lab, Indian Institute of Information Technology and Management-Kerala (IIITM-K)
– sequence: 3
  givenname: S.
  surname: Asharaf
  fullname: Asharaf, S.
  organization: Data Engineering Lab, Indian Institute of Information Technology and Management-Kerala (IIITM-K)
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTj22So9RPKHhR8BZidrambrM12YL-e1dXLHjoJROG95kZngkZxTYiIacMzhmAusj9KyUFDhRAG0b1ARkzKQRVZfk8-vtLdkQmOa8AhBBcjwm7QtwUb5giNkWDLsUQl0WIBX50Cde4662dfw0R8zE5rF2T8eS3TsnTzfXj_I4uHm7v55cL6gUzHS2NdzNRKWcqZKI0wqi6NE5XxpT1jHn5ImpQXNSeS2RYKVDaMYfosQIwMzElZ8PcTWrft5g7u2q3KfYrLZdacqVBmT6lh5RPbc4Ja-tD57rQxi650FgG9luQHQTZXpD9EWR1j_J_6CaFtUuf-yExQLkPxyWm3VV7qC9kjHlF
CitedBy_id crossref_primary_10_1038_s41598_022_25994_6
crossref_primary_10_48084_etasr_8229
crossref_primary_10_1016_j_envsoft_2021_105119
crossref_primary_10_1109_ACCESS_2020_3042453
crossref_primary_10_3390_pr11051460
crossref_primary_10_1016_j_bspc_2021_103034
crossref_primary_10_1088_1361_6501_ac769a
crossref_primary_10_1007_s10462_023_10478_4
crossref_primary_10_1016_j_compchemeng_2025_108998
crossref_primary_10_1016_j_jmapro_2022_10_072
crossref_primary_10_1111_1755_6724_15267
crossref_primary_10_3389_fchem_2022_930766
crossref_primary_10_1177_14759217211072237
crossref_primary_10_3390_s22113997
crossref_primary_10_32604_cmc_2022_025466
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_3390_ijerph191912509
crossref_primary_10_1155_2022_6105804
crossref_primary_10_1007_s00521_021_06727_8
Cites_doi 10.1016/j.neucom.2010.12.038
10.1016/j.neucom.2005.12.126
10.1109/TNN.2006.875977
10.1016/j.neucom.2010.12.041
10.1109/TSMCB.2008.2010506
10.1109/18.661502
10.1016/j.eswa.2017.11.006
10.1016/j.neucom.2012.02.043
10.1109/TNN.2009.2024147
10.1016/j.neucom.2009.02.013
10.1016/j.neucom.2014.01.070
10.1109/TNN.2006.875974
10.1016/j.tics.2007.09.004
10.1016/j.patcog.2011.03.013
10.1016/j.bdr.2017.07.002
10.1162/neco.2006.18.7.1527
10.1109/TPWRS.2008.926431
10.1007/s12559-014-9255-2
10.1016/j.neucom.2013.09.072
10.1109/TCSII.2005.857540
10.1109/TSMCB.2011.2168604
10.1145/2810103.2813687
10.1145/1553374.1553453
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10044-020-00891-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 19
ExternalDocumentID 10_1007_s10044_020_00891_8
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-59ca63d7a9de1359397f59a8d995f61c4b3f0723fc24e1ed7078a1aeeced00963
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Sun Jul 13 04:39:01 EDT 2025
Tue Jul 01 01:15:17 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Fri Feb 21 02:49:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Arc-cosine kernel
Deep kernel extreme learning machines
Extreme learning machines
Deep kernel machines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-59ca63d7a9de1359397f59a8d995f61c4b3f0723fc24e1ed7078a1aeeced00963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5356-1918
PQID 2484278079
PQPubID 2043691
PageCount 9
ParticipantIDs proquest_journals_2484278079
crossref_citationtrail_10_1007_s10044_020_00891_8
crossref_primary_10_1007_s10044_020_00891_8
springer_journals_10_1007_s10044_020_00891_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Huang, Zhu, Mao, Siew, Saratchandran, Sundararajan (CR16) 2006; 53
Bartlett (CR3) 1998; 44
Lu, Wang, Yuan, Han (CR24) 2013; 102
Hinton, Osindero, Teh (CR12) 2006; 18
Mohammed, Minhas, Wu, Sid-Ahmed (CR25) 2011; 44
CR14
Nizar, Dong, Wang (CR27) 2008; 23
CR30
Feng, Huang, Lin, Gay (CR10) 2009; 20
Zong, Huang (CR32) 2011; 74
Chang, Lin (CR7) 2011; 2
Afzal, Asharaf (CR1) 2018; 96
CR2
Nair, Asharaf (CR26) 2017; 10
CR6
CR8
Huang, Zhu, Siew (CR18) 2006; 17
CR29
Huang, Zhou, Ding, Zhang (CR19) 2012; 42
CR9
Xg, Wang, Bi, Gong, Zhao (CR31) 2011; 74
Liu, Wang, Huang, Zhang, Yin (CR23) 2015; 149
CR21
Li, Rong (CR22) 2014; 2014
Bi, Zhao, Wang, Zhang, Wang (CR5) 2015; 149
Huang, Zhu, Siew (CR17) 2006; 70
Lan, Soh, Huang (CR20) 2009; 72
Hinton (CR11) 2007; 11
Rong, Huang, Sundararajan, Saratchandran (CR28) 2009; 39
Huang, Chen, Siew (CR15) 2006; 17
Bengio, Lamblin, Popovici, Larochelle (CR4) 2007; 19
Huang (CR13) 2014; 6
891_CR21
X Liu (891_CR23) 2015; 149
891_CR9
891_CR8
891_CR6
GB Huang (891_CR17) 2006; 70
AA Mohammed (891_CR25) 2011; 44
GE Hinton (891_CR11) 2007; 11
Y Lan (891_CR20) 2009; 72
891_CR2
GE Hinton (891_CR12) 2006; 18
Y Bengio (891_CR4) 2007; 19
Z Xg (891_CR31) 2011; 74
PL Bartlett (891_CR3) 1998; 44
A Afzal (891_CR1) 2018; 96
NK Nair (891_CR26) 2017; 10
G Feng (891_CR10) 2009; 20
GB Huang (891_CR15) 2006; 17
B Li (891_CR22) 2014; 2014
891_CR14
GB Huang (891_CR19) 2012; 42
A Nizar (891_CR27) 2008; 23
W Zong (891_CR32) 2011; 74
CC Chang (891_CR7) 2011; 2
891_CR30
B Lu (891_CR24) 2013; 102
GB Huang (891_CR16) 2006; 53
GB Huang (891_CR18) 2006; 17
X Bi (891_CR5) 2015; 149
891_CR29
HJ Rong (891_CR28) 2009; 39
GB Huang (891_CR13) 2014; 6
References_xml – volume: 19
  start-page: 153
  year: 2007
  ident: CR4
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inf Process Syst
– volume: 2014
  start-page: 7
  year: 2014
  ident: CR22
  article-title: Li Y (2014) An improved kernel based extreme learning machine for robot execution failures
  publication-title: Sci World J
– volume: 74
  start-page: 2444
  issue: 16
  year: 2011
  end-page: 2451
  ident: CR31
  article-title: Xml document classification based on elm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.038
– ident: CR14
– ident: CR2
– ident: CR30
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  end-page: 501
  ident: CR17
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  end-page: 892
  ident: CR15
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875977
– volume: 74
  start-page: 2541
  issue: 16
  year: 2011
  end-page: 2551
  ident: CR32
  article-title: Face recognition based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.041
– ident: CR6
– volume: 39
  start-page: 1067
  issue: 4
  year: 2009
  end-page: 1072
  ident: CR28
  article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2008.2010506
– ident: CR29
– volume: 44
  start-page: 525
  issue: 2
  year: 1998
  end-page: 536
  ident: CR3
  article-title: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.661502
– ident: CR8
– volume: 96
  start-page: 149
  year: 2018
  end-page: 156
  ident: CR1
  article-title: Deep multiple multilayer kernel learning in core vector machines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.11.006
– volume: 102
  start-page: 176
  year: 2013
  end-page: 183
  ident: CR24
  article-title: Semantic concept detection for video based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.043
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  end-page: 1357
  ident: CR10
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2024147
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: CR7
  article-title: LibSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol (TIST)
– ident: CR21
– volume: 72
  start-page: 3391
  issue: 13
  year: 2009
  end-page: 3395
  ident: CR20
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– volume: 149
  start-page: 456
  year: 2015
  end-page: 463
  ident: CR5
  article-title: Distributed extreme learning machine with kernels based on mapreduce
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.070
– volume: 17
  start-page: 863
  issue: 4
  year: 2006
  end-page: 878
  ident: CR18
  article-title: Real-time learning capability of neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875974
– volume: 11
  start-page: 428
  issue: 10
  year: 2007
  end-page: 434
  ident: CR11
  article-title: Learning multiple layers of representation
  publication-title: Trends Cognit Sci
  doi: 10.1016/j.tics.2007.09.004
– volume: 44
  start-page: 2588
  issue: 10
  year: 2011
  end-page: 2597
  ident: CR25
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.03.013
– volume: 10
  start-page: 8
  year: 2017
  end-page: 20
  ident: CR26
  article-title: Tensor decomposition based approach for training extreme learning machines
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2017.07.002
– ident: CR9
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: CR12
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 23
  start-page: 946
  issue: 3
  year: 2008
  end-page: 955
  ident: CR27
  article-title: Power utility nontechnical loss analysis with extreme learning machine method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.926431
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  end-page: 390
  ident: CR13
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cognit Comput
  doi: 10.1007/s12559-014-9255-2
– volume: 149
  start-page: 253
  year: 2015
  end-page: 264
  ident: CR23
  article-title: Multiple kernel extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.072
– volume: 53
  start-page: 187
  issue: 3
  year: 2006
  end-page: 191
  ident: CR16
  article-title: Can threshold networks be trained directly?
  publication-title: IEEE Trans Circuits Syst Part II Express Briefs
  doi: 10.1109/TCSII.2005.857540
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  end-page: 529
  ident: CR19
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2011.2168604
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 891_CR19
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2011.2168604
– volume: 2014
  start-page: 7
  year: 2014
  ident: 891_CR22
  publication-title: Sci World J
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 891_CR12
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 102
  start-page: 176
  year: 2013
  ident: 891_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.043
– volume: 44
  start-page: 2588
  issue: 10
  year: 2011
  ident: 891_CR25
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.03.013
– volume: 11
  start-page: 428
  issue: 10
  year: 2007
  ident: 891_CR11
  publication-title: Trends Cognit Sci
  doi: 10.1016/j.tics.2007.09.004
– volume: 72
  start-page: 3391
  issue: 13
  year: 2009
  ident: 891_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– volume: 149
  start-page: 253
  year: 2015
  ident: 891_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.072
– ident: 891_CR30
  doi: 10.1145/2810103.2813687
– ident: 891_CR6
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  ident: 891_CR10
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2024147
– volume: 53
  start-page: 187
  issue: 3
  year: 2006
  ident: 891_CR16
  publication-title: IEEE Trans Circuits Syst Part II Express Briefs
  doi: 10.1109/TCSII.2005.857540
– volume: 44
  start-page: 525
  issue: 2
  year: 1998
  ident: 891_CR3
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.661502
– ident: 891_CR8
– ident: 891_CR29
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 891_CR13
  publication-title: Cognit Comput
  doi: 10.1007/s12559-014-9255-2
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 891_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 39
  start-page: 1067
  issue: 4
  year: 2009
  ident: 891_CR28
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2008.2010506
– volume: 149
  start-page: 456
  year: 2015
  ident: 891_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.070
– volume: 23
  start-page: 946
  issue: 3
  year: 2008
  ident: 891_CR27
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.926431
– volume: 19
  start-page: 153
  year: 2007
  ident: 891_CR4
  publication-title: Adv Neural Inf Process Syst
– volume: 17
  start-page: 863
  issue: 4
  year: 2006
  ident: 891_CR18
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875974
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 891_CR7
  publication-title: ACM Trans Intell Syst Technol (TIST)
– ident: 891_CR14
– volume: 96
  start-page: 149
  year: 2018
  ident: 891_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.11.006
– volume: 74
  start-page: 2444
  issue: 16
  year: 2011
  ident: 891_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.038
– volume: 10
  start-page: 8
  year: 2017
  ident: 891_CR26
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2017.07.002
– ident: 891_CR2
– ident: 891_CR9
– ident: 891_CR21
  doi: 10.1145/1553374.1553453
– volume: 74
  start-page: 2541
  issue: 16
  year: 2011
  ident: 891_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.041
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 891_CR15
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875977
SSID ssj0033328
Score 2.3862314
Snippet Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Algorithms
Artificial neural networks
Computer Science
Kernel functions
Machine learning
Multilayers
Pattern Recognition
Polynomials
Support vector machines
Theoretical Advances
Title Deep kernel learning in extreme learning machines
URI https://link.springer.com/article/10.1007/s10044-020-00891-8
https://www.proquest.com/docview/2484278079
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4IwqlysAGluJXHI8VtFQgmKhUpiixzwhRQtWU_4-dOhQQILE6toez7-67-O4-hE6VBZXIQmLnPQrMGWisVE6xsjLWBbdG18xzt3fJaMyvJ2ISisKqJtu9eZKsLfWnYreYc-zDHee3FMHpOmoLH7u7Wzym_cb-MsZqRlUHBBiWgpNQKvPzHl_d0QpjfnsWrb3NcBttBpgY9ZfnuoPWoNxFWwEyRkEhKzfUsDI0Y3uIXALMomeYlzCNAinEY_RURs4M-5-Bq7GXOpESqn00Hg7uL0Y4ECNg7TRmgYXSecKMzJUBwoRymMIKladGKWETonnBbCwps5pyIGB8R5-c5AAajI9Z2AFqla8lHKIICLc2LoBqaTgzTHFVOBWnxhnQ1ErRQaSRT6ZD13BPXjHNVv2OvUwzJ9OslmmWdtDZx5rZsmfGn7O7jdizoD9VRnnqOUBiqTrovDmK1effdzv63_RjtEF9kkqdht1FrcX8DU4cylgUPdTuXz3cDHr15XoH8ZvHQw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKZGADS_EjcTxWPFSg7dRK3aLEPiNECVVT_j926hBAgMR6djycc3ef7bv7EDqXBmQscoFt9MgxZ6CwlBnF0ohQ5dxoVTHPDYZxb8zvJ9HEF4WVdbZ7_SRZeepPxW4h59gdd2zckgQnq2jNgoHEJXKNabf2v4yxilHVAgGGRcSJL5X5eY2v4ajBmN-eRatoc7uNNj1MDLrLfd1BK1Dsoi0PGQNvkKUV1awMtWwPkWuAWfAM8wKmgSeFeAyeisC6YXcZ2MheqkRKKPfR-PZmdNXDnhgBK2sxCxxJlcVMi0xqICySFlOYSGaJljIyMVE8ZyYUlBlFORDQrqNPRjIABdqdWdgBahWvBRyiAAg3JsyBKqE500xymVsTp9o60MSIqI1IrZ9U-a7hjrximjb9jp1OU6vTtNJpmrTRxcc3s2XPjD9nd2q1p95-ypTyxHGAhEK20WW9Fc3w76sd_W_6GVrvjQb9tH83fDhGG9QlrFQp2R3UWszf4MQijkV-Wv1g7zjgyKI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA_cIFrTpEtznBgTz4kDk3ar2sRBiFGmrfx_kiylAwESVzeNVCe2vzS2P4ROhQbR4TnHJnrkmFGQWIgswkLzUOZMK-mY5-4HnashuxnFo4UqfpftXl1JzmsabJemomxPlG4vFL6FjGF79DExTBCcLKMV446J3dfDqFv5YkqpY1c1oIBiHjPiy2Z-nuNraKrx5rcrUhd5-pto3UPGoDtf4y20BMU22vDwMfDGOTOiiqGhku0g0gOYBC8wLWAceIKIp-C5CIxLtj8Ga9mrS6qE2S4a9i8fL66wJ0nA0nxuiWMhsw5VPBMKCI2FwRc6FlmihIh1h0iWUx3yiGoZMSCgbHefjGQAEpQ9v9A91CjeCthHARCmdZhDJLliVFHBRG7MPVLGmSaax01EKv2k0ncQt0QW47TufWx1mhqdpk6nadJEZ5_vTOb9M_4c3arUnnpbmqURSywfSMhFE51XS1E__n22g_8NP0GrD71-enc9uD1Ea5HNXXHZ2S3UKKfvcGTAR5kfu_31AT29zN4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+kernel+learning+in+extreme+learning+machines&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Afzal%2C+A.+L.&rft.au=Nair%2C+Nikhitha+K.&rft.au=Asharaf%2C+S.&rft.date=2021-02-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=24&rft.issue=1&rft.spage=11&rft.epage=19&rft_id=info:doi/10.1007%2Fs10044-020-00891-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_020_00891_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon