Deep kernel learning in extreme learning machines
Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based extreme learning machine (KELM) reflected its efficiency in diverse applications where feature mapping functions of hidden nodes are conceale...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 24; no. 1; pp. 11 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-020-00891-8 |
Cover
Loading…
Abstract | Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based extreme learning machine (KELM) reflected its efficiency in diverse applications where feature mapping functions of hidden nodes are concealed from users. The conventional KELM algorithms involve only solitary layer of kernels, thereby emulating shallow learning architectures for its feature transformation. Trend in migrating shallow-based learning models into deep learning architectures opens up a new outlook for machine learning domains. This paper attempts to bestow deep kernel learning approach in a conventional shallow architecture. The emerging arc-cosine kernels possess the potential to mimic the prevailing deep layered frameworks to a greater extent. Unlike other kernels such as linear, polynomial and Gaussian, arc-cosine kernels have a recursive nature by itself and have the potential to express multilayer computation in learning models. This paper explores the possibility of building a new deep kernel machine with extreme learning machine and multilayer arc-cosine kernels. This framework outperforms conventional KELM and deep support vector machine in terms of training time and accuracy. |
---|---|
AbstractList | Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based extreme learning machine (KELM) reflected its efficiency in diverse applications where feature mapping functions of hidden nodes are concealed from users. The conventional KELM algorithms involve only solitary layer of kernels, thereby emulating shallow learning architectures for its feature transformation. Trend in migrating shallow-based learning models into deep learning architectures opens up a new outlook for machine learning domains. This paper attempts to bestow deep kernel learning approach in a conventional shallow architecture. The emerging arc-cosine kernels possess the potential to mimic the prevailing deep layered frameworks to a greater extent. Unlike other kernels such as linear, polynomial and Gaussian, arc-cosine kernels have a recursive nature by itself and have the potential to express multilayer computation in learning models. This paper explores the possibility of building a new deep kernel machine with extreme learning machine and multilayer arc-cosine kernels. This framework outperforms conventional KELM and deep support vector machine in terms of training time and accuracy. |
Author | Afzal, A. L. Nair, Nikhitha K. Asharaf, S. |
Author_xml | – sequence: 1 givenname: A. L. orcidid: 0000-0001-5356-1918 surname: Afzal fullname: Afzal, A. L. email: afzal.res15@iiitmk.ac.in organization: College of Engineering Muttathara – sequence: 2 givenname: Nikhitha K. surname: Nair fullname: Nair, Nikhitha K. organization: Data Engineering Lab, Indian Institute of Information Technology and Management-Kerala (IIITM-K) – sequence: 3 givenname: S. surname: Asharaf fullname: Asharaf, S. organization: Data Engineering Lab, Indian Institute of Information Technology and Management-Kerala (IIITM-K) |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTj22So9RPKHhR8BZidrambrM12YL-e1dXLHjoJROG95kZngkZxTYiIacMzhmAusj9KyUFDhRAG0b1ARkzKQRVZfk8-vtLdkQmOa8AhBBcjwm7QtwUb5giNkWDLsUQl0WIBX50Cde4662dfw0R8zE5rF2T8eS3TsnTzfXj_I4uHm7v55cL6gUzHS2NdzNRKWcqZKI0wqi6NE5XxpT1jHn5ImpQXNSeS2RYKVDaMYfosQIwMzElZ8PcTWrft5g7u2q3KfYrLZdacqVBmT6lh5RPbc4Ja-tD57rQxi650FgG9luQHQTZXpD9EWR1j_J_6CaFtUuf-yExQLkPxyWm3VV7qC9kjHlF |
CitedBy_id | crossref_primary_10_1038_s41598_022_25994_6 crossref_primary_10_48084_etasr_8229 crossref_primary_10_1016_j_envsoft_2021_105119 crossref_primary_10_1109_ACCESS_2020_3042453 crossref_primary_10_3390_pr11051460 crossref_primary_10_1016_j_bspc_2021_103034 crossref_primary_10_1088_1361_6501_ac769a crossref_primary_10_1007_s10462_023_10478_4 crossref_primary_10_1016_j_compchemeng_2025_108998 crossref_primary_10_1016_j_jmapro_2022_10_072 crossref_primary_10_1111_1755_6724_15267 crossref_primary_10_3389_fchem_2022_930766 crossref_primary_10_1177_14759217211072237 crossref_primary_10_3390_s22113997 crossref_primary_10_32604_cmc_2022_025466 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_3390_ijerph191912509 crossref_primary_10_1155_2022_6105804 crossref_primary_10_1007_s00521_021_06727_8 |
Cites_doi | 10.1016/j.neucom.2010.12.038 10.1016/j.neucom.2005.12.126 10.1109/TNN.2006.875977 10.1016/j.neucom.2010.12.041 10.1109/TSMCB.2008.2010506 10.1109/18.661502 10.1016/j.eswa.2017.11.006 10.1016/j.neucom.2012.02.043 10.1109/TNN.2009.2024147 10.1016/j.neucom.2009.02.013 10.1016/j.neucom.2014.01.070 10.1109/TNN.2006.875974 10.1016/j.tics.2007.09.004 10.1016/j.patcog.2011.03.013 10.1016/j.bdr.2017.07.002 10.1162/neco.2006.18.7.1527 10.1109/TPWRS.2008.926431 10.1007/s12559-014-9255-2 10.1016/j.neucom.2013.09.072 10.1109/TCSII.2005.857540 10.1109/TSMCB.2011.2168604 10.1145/2810103.2813687 10.1145/1553374.1553453 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-020-00891-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 19 |
ExternalDocumentID | 10_1007_s10044_020_00891_8 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-59ca63d7a9de1359397f59a8d995f61c4b3f0723fc24e1ed7078a1aeeced00963 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Sun Jul 13 04:39:01 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Fri Feb 21 02:49:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Arc-cosine kernel Deep kernel extreme learning machines Extreme learning machines Deep kernel machines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-59ca63d7a9de1359397f59a8d995f61c4b3f0723fc24e1ed7078a1aeeced00963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5356-1918 |
PQID | 2484278079 |
PQPubID | 2043691 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2484278079 crossref_citationtrail_10_1007_s10044_020_00891_8 crossref_primary_10_1007_s10044_020_00891_8 springer_journals_10_1007_s10044_020_00891_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Huang, Zhu, Mao, Siew, Saratchandran, Sundararajan (CR16) 2006; 53 Bartlett (CR3) 1998; 44 Lu, Wang, Yuan, Han (CR24) 2013; 102 Hinton, Osindero, Teh (CR12) 2006; 18 Mohammed, Minhas, Wu, Sid-Ahmed (CR25) 2011; 44 CR14 Nizar, Dong, Wang (CR27) 2008; 23 CR30 Feng, Huang, Lin, Gay (CR10) 2009; 20 Zong, Huang (CR32) 2011; 74 Chang, Lin (CR7) 2011; 2 Afzal, Asharaf (CR1) 2018; 96 CR2 Nair, Asharaf (CR26) 2017; 10 CR6 CR8 Huang, Zhu, Siew (CR18) 2006; 17 CR29 Huang, Zhou, Ding, Zhang (CR19) 2012; 42 CR9 Xg, Wang, Bi, Gong, Zhao (CR31) 2011; 74 Liu, Wang, Huang, Zhang, Yin (CR23) 2015; 149 CR21 Li, Rong (CR22) 2014; 2014 Bi, Zhao, Wang, Zhang, Wang (CR5) 2015; 149 Huang, Zhu, Siew (CR17) 2006; 70 Lan, Soh, Huang (CR20) 2009; 72 Hinton (CR11) 2007; 11 Rong, Huang, Sundararajan, Saratchandran (CR28) 2009; 39 Huang, Chen, Siew (CR15) 2006; 17 Bengio, Lamblin, Popovici, Larochelle (CR4) 2007; 19 Huang (CR13) 2014; 6 891_CR21 X Liu (891_CR23) 2015; 149 891_CR9 891_CR8 891_CR6 GB Huang (891_CR17) 2006; 70 AA Mohammed (891_CR25) 2011; 44 GE Hinton (891_CR11) 2007; 11 Y Lan (891_CR20) 2009; 72 891_CR2 GE Hinton (891_CR12) 2006; 18 Y Bengio (891_CR4) 2007; 19 Z Xg (891_CR31) 2011; 74 PL Bartlett (891_CR3) 1998; 44 A Afzal (891_CR1) 2018; 96 NK Nair (891_CR26) 2017; 10 G Feng (891_CR10) 2009; 20 GB Huang (891_CR15) 2006; 17 B Li (891_CR22) 2014; 2014 891_CR14 GB Huang (891_CR19) 2012; 42 A Nizar (891_CR27) 2008; 23 W Zong (891_CR32) 2011; 74 CC Chang (891_CR7) 2011; 2 891_CR30 B Lu (891_CR24) 2013; 102 GB Huang (891_CR16) 2006; 53 GB Huang (891_CR18) 2006; 17 X Bi (891_CR5) 2015; 149 891_CR29 HJ Rong (891_CR28) 2009; 39 GB Huang (891_CR13) 2014; 6 |
References_xml | – volume: 19 start-page: 153 year: 2007 ident: CR4 article-title: Greedy layer-wise training of deep networks publication-title: Adv Neural Inf Process Syst – volume: 2014 start-page: 7 year: 2014 ident: CR22 article-title: Li Y (2014) An improved kernel based extreme learning machine for robot execution failures publication-title: Sci World J – volume: 74 start-page: 2444 issue: 16 year: 2011 end-page: 2451 ident: CR31 article-title: Xml document classification based on elm publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.038 – ident: CR14 – ident: CR2 – ident: CR30 – volume: 70 start-page: 489 issue: 1 year: 2006 end-page: 501 ident: CR17 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 17 start-page: 879 issue: 4 year: 2006 end-page: 892 ident: CR15 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875977 – volume: 74 start-page: 2541 issue: 16 year: 2011 end-page: 2551 ident: CR32 article-title: Face recognition based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.041 – ident: CR6 – volume: 39 start-page: 1067 issue: 4 year: 2009 end-page: 1072 ident: CR28 article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) doi: 10.1109/TSMCB.2008.2010506 – ident: CR29 – volume: 44 start-page: 525 issue: 2 year: 1998 end-page: 536 ident: CR3 article-title: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network publication-title: IEEE Trans Inf Theory doi: 10.1109/18.661502 – ident: CR8 – volume: 96 start-page: 149 year: 2018 end-page: 156 ident: CR1 article-title: Deep multiple multilayer kernel learning in core vector machines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.11.006 – volume: 102 start-page: 176 year: 2013 end-page: 183 ident: CR24 article-title: Semantic concept detection for video based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.043 – volume: 20 start-page: 1352 issue: 8 year: 2009 end-page: 1357 ident: CR10 article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2024147 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: CR7 article-title: LibSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol (TIST) – ident: CR21 – volume: 72 start-page: 3391 issue: 13 year: 2009 end-page: 3395 ident: CR20 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.02.013 – volume: 149 start-page: 456 year: 2015 end-page: 463 ident: CR5 article-title: Distributed extreme learning machine with kernels based on mapreduce publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.070 – volume: 17 start-page: 863 issue: 4 year: 2006 end-page: 878 ident: CR18 article-title: Real-time learning capability of neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875974 – volume: 11 start-page: 428 issue: 10 year: 2007 end-page: 434 ident: CR11 article-title: Learning multiple layers of representation publication-title: Trends Cognit Sci doi: 10.1016/j.tics.2007.09.004 – volume: 44 start-page: 2588 issue: 10 year: 2011 end-page: 2597 ident: CR25 article-title: Human face recognition based on multidimensional PCA and extreme learning machine publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.03.013 – volume: 10 start-page: 8 year: 2017 end-page: 20 ident: CR26 article-title: Tensor decomposition based approach for training extreme learning machines publication-title: Big Data Res doi: 10.1016/j.bdr.2017.07.002 – ident: CR9 – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: CR12 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 23 start-page: 946 issue: 3 year: 2008 end-page: 955 ident: CR27 article-title: Power utility nontechnical loss analysis with extreme learning machine method publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.926431 – volume: 6 start-page: 376 issue: 3 year: 2014 end-page: 390 ident: CR13 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cognit Comput doi: 10.1007/s12559-014-9255-2 – volume: 149 start-page: 253 year: 2015 end-page: 264 ident: CR23 article-title: Multiple kernel extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.072 – volume: 53 start-page: 187 issue: 3 year: 2006 end-page: 191 ident: CR16 article-title: Can threshold networks be trained directly? publication-title: IEEE Trans Circuits Syst Part II Express Briefs doi: 10.1109/TCSII.2005.857540 – volume: 42 start-page: 513 issue: 2 year: 2012 end-page: 529 ident: CR19 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) doi: 10.1109/TSMCB.2011.2168604 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 891_CR19 publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) doi: 10.1109/TSMCB.2011.2168604 – volume: 2014 start-page: 7 year: 2014 ident: 891_CR22 publication-title: Sci World J – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 891_CR12 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 102 start-page: 176 year: 2013 ident: 891_CR24 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.043 – volume: 44 start-page: 2588 issue: 10 year: 2011 ident: 891_CR25 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.03.013 – volume: 11 start-page: 428 issue: 10 year: 2007 ident: 891_CR11 publication-title: Trends Cognit Sci doi: 10.1016/j.tics.2007.09.004 – volume: 72 start-page: 3391 issue: 13 year: 2009 ident: 891_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.02.013 – volume: 149 start-page: 253 year: 2015 ident: 891_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.072 – ident: 891_CR30 doi: 10.1145/2810103.2813687 – ident: 891_CR6 – volume: 20 start-page: 1352 issue: 8 year: 2009 ident: 891_CR10 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2024147 – volume: 53 start-page: 187 issue: 3 year: 2006 ident: 891_CR16 publication-title: IEEE Trans Circuits Syst Part II Express Briefs doi: 10.1109/TCSII.2005.857540 – volume: 44 start-page: 525 issue: 2 year: 1998 ident: 891_CR3 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.661502 – ident: 891_CR8 – ident: 891_CR29 – volume: 6 start-page: 376 issue: 3 year: 2014 ident: 891_CR13 publication-title: Cognit Comput doi: 10.1007/s12559-014-9255-2 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 891_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 39 start-page: 1067 issue: 4 year: 2009 ident: 891_CR28 publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) doi: 10.1109/TSMCB.2008.2010506 – volume: 149 start-page: 456 year: 2015 ident: 891_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.070 – volume: 23 start-page: 946 issue: 3 year: 2008 ident: 891_CR27 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.926431 – volume: 19 start-page: 153 year: 2007 ident: 891_CR4 publication-title: Adv Neural Inf Process Syst – volume: 17 start-page: 863 issue: 4 year: 2006 ident: 891_CR18 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875974 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 891_CR7 publication-title: ACM Trans Intell Syst Technol (TIST) – ident: 891_CR14 – volume: 96 start-page: 149 year: 2018 ident: 891_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.11.006 – volume: 74 start-page: 2444 issue: 16 year: 2011 ident: 891_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.038 – volume: 10 start-page: 8 year: 2017 ident: 891_CR26 publication-title: Big Data Res doi: 10.1016/j.bdr.2017.07.002 – ident: 891_CR2 – ident: 891_CR9 – ident: 891_CR21 doi: 10.1145/1553374.1553453 – volume: 74 start-page: 2541 issue: 16 year: 2011 ident: 891_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.041 – volume: 17 start-page: 879 issue: 4 year: 2006 ident: 891_CR15 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875977 |
SSID | ssj0033328 |
Score | 2.3862314 |
Snippet | Emergence of extreme learning machine as a breakneck learning algorithm has marked its prominence in solitary hidden layer feed-forward networks. Kernel-based... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Algorithms Artificial neural networks Computer Science Kernel functions Machine learning Multilayers Pattern Recognition Polynomials Support vector machines Theoretical Advances |
Title | Deep kernel learning in extreme learning machines |
URI | https://link.springer.com/article/10.1007/s10044-020-00891-8 https://www.proquest.com/docview/2484278079 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4IwqlysAGluJXHI8VtFQgmKhUpiixzwhRQtWU_4-dOhQQILE6toez7-67-O4-hE6VBZXIQmLnPQrMGWisVE6xsjLWBbdG18xzt3fJaMyvJ2ISisKqJtu9eZKsLfWnYreYc-zDHee3FMHpOmoLH7u7Wzym_cb-MsZqRlUHBBiWgpNQKvPzHl_d0QpjfnsWrb3NcBttBpgY9ZfnuoPWoNxFWwEyRkEhKzfUsDI0Y3uIXALMomeYlzCNAinEY_RURs4M-5-Bq7GXOpESqn00Hg7uL0Y4ECNg7TRmgYXSecKMzJUBwoRymMIKladGKWETonnBbCwps5pyIGB8R5-c5AAajI9Z2AFqla8lHKIICLc2LoBqaTgzTHFVOBWnxhnQ1ErRQaSRT6ZD13BPXjHNVv2OvUwzJ9OslmmWdtDZx5rZsmfGn7O7jdizoD9VRnnqOUBiqTrovDmK1effdzv63_RjtEF9kkqdht1FrcX8DU4cylgUPdTuXz3cDHr15XoH8ZvHQw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKZGADS_EjcTxWPFSg7dRK3aLEPiNECVVT_j926hBAgMR6djycc3ef7bv7EDqXBmQscoFt9MgxZ6CwlBnF0ohQ5dxoVTHPDYZxb8zvJ9HEF4WVdbZ7_SRZeepPxW4h59gdd2zckgQnq2jNgoHEJXKNabf2v4yxilHVAgGGRcSJL5X5eY2v4ajBmN-eRatoc7uNNj1MDLrLfd1BK1Dsoi0PGQNvkKUV1awMtWwPkWuAWfAM8wKmgSeFeAyeisC6YXcZ2MheqkRKKPfR-PZmdNXDnhgBK2sxCxxJlcVMi0xqICySFlOYSGaJljIyMVE8ZyYUlBlFORDQrqNPRjIABdqdWdgBahWvBRyiAAg3JsyBKqE500xymVsTp9o60MSIqI1IrZ9U-a7hjrximjb9jp1OU6vTtNJpmrTRxcc3s2XPjD9nd2q1p95-ypTyxHGAhEK20WW9Fc3w76sd_W_6GVrvjQb9tH83fDhGG9QlrFQp2R3UWszf4MQijkV-Wv1g7zjgyKI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA_cIFrTpEtznBgTz4kDk3ar2sRBiFGmrfx_kiylAwESVzeNVCe2vzS2P4ROhQbR4TnHJnrkmFGQWIgswkLzUOZMK-mY5-4HnashuxnFo4UqfpftXl1JzmsabJemomxPlG4vFL6FjGF79DExTBCcLKMV446J3dfDqFv5YkqpY1c1oIBiHjPiy2Z-nuNraKrx5rcrUhd5-pto3UPGoDtf4y20BMU22vDwMfDGOTOiiqGhku0g0gOYBC8wLWAceIKIp-C5CIxLtj8Ga9mrS6qE2S4a9i8fL66wJ0nA0nxuiWMhsw5VPBMKCI2FwRc6FlmihIh1h0iWUx3yiGoZMSCgbHefjGQAEpQ9v9A91CjeCthHARCmdZhDJLliVFHBRG7MPVLGmSaax01EKv2k0ncQt0QW47TufWx1mhqdpk6nadJEZ5_vTOb9M_4c3arUnnpbmqURSywfSMhFE51XS1E__n22g_8NP0GrD71-enc9uD1Ea5HNXXHZ2S3UKKfvcGTAR5kfu_31AT29zN4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+kernel+learning+in+extreme+learning+machines&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Afzal%2C+A.+L.&rft.au=Nair%2C+Nikhitha+K.&rft.au=Asharaf%2C+S.&rft.date=2021-02-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=24&rft.issue=1&rft.spage=11&rft.epage=19&rft_id=info:doi/10.1007%2Fs10044-020-00891-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_020_00891_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |