Future predictions of wave and response of multiple floating bodies based on the Kalman filter algorithm

The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled,...

Full description

Saved in:
Bibliographic Details
Published inJournal of ocean engineering and marine energy Vol. 10; no. 1; pp. 137 - 154
Main Authors Isnaini, Rodhiatul, Tatsumi, Akira, Iijima, Kazuhiro
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled, it is found that 3–8 s or several cycles of waves ahead can be predicted in model scale, depending on the distance between the two points. If a scaling of 1/100 is adopted, this means 30–80 s waves ahead can be estimated. The longer the distance, the longer future predictable time will be. Response predictions using wave prediction data are also investigated. The results for the response prediction also exhibits high accuracy, with even higher predictable future time (80–120 s ahead given 1/100 scale ratio) compared to its associated predictable future time of waves.
AbstractList The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled, it is found that 3–8 s or several cycles of waves ahead can be predicted in model scale, depending on the distance between the two points. If a scaling of 1/100 is adopted, this means 30–80 s waves ahead can be estimated. The longer the distance, the longer future predictable time will be. Response predictions using wave prediction data are also investigated. The results for the response prediction also exhibits high accuracy, with even higher predictable future time (80–120 s ahead given 1/100 scale ratio) compared to its associated predictable future time of waves.
The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled, it is found that 3–8 s or several cycles of waves ahead can be predicted in model scale, depending on the distance between the two points. If a scaling of 1/100 is adopted, this means 30–80 s waves ahead can be estimated. The longer the distance, the longer future predictable time will be. Response predictions using wave prediction data are also investigated. The results for the response prediction also exhibits high accuracy, with even higher predictable future time (80–120 s ahead given 1/100 scale ratio) compared to its associated predictable future time of waves.
Author Tatsumi, Akira
Iijima, Kazuhiro
Isnaini, Rodhiatul
Author_xml – sequence: 1
  givenname: Rodhiatul
  surname: Isnaini
  fullname: Isnaini, Rodhiatul
  email: rodhiatul_isnaini@naoe.eng.osaka-u.ac.jp
  organization: Department of Naval Architecture and Ocean Engineering, Osaka University
– sequence: 2
  givenname: Akira
  surname: Tatsumi
  fullname: Tatsumi, Akira
  organization: Department of Naval Architecture and Ocean Engineering, Osaka University
– sequence: 3
  givenname: Kazuhiro
  surname: Iijima
  fullname: Iijima, Kazuhiro
  organization: Department of Naval Architecture and Ocean Engineering, Osaka University
BookMark eNp9kE1LAzEYhIMoWGv_gKeA59V8bjZHKVbFghc9h-xu0qbsJmuSVfrv3VrRm6d3GGbmhecCnPrgDQBXGN1ghMRtYkgQUiBCC4QoYsX-BMwIllVRMk5OfzVj52CR0g4hRARlouQzsF2NeYwGDtG0rsku-ASDhZ_6w0DtWxhNGibPHMx-7LIbOgNtF3R2fgPr0DqTYK2TaWHwMG8NfNZdrz20rssmQt1tQnR521-CM6u7ZBY_dw7eVvevy8di_fLwtLxbFw3FMhe84qjmREjb4MZyJlnJS01LJqmwtkSiKhGzgloqkKZtrbnUtGoZZpQ3uq7pHFwfd4cY3keTstqFMfrppSISi6qqpORTihxTTQwpRWPVEF2v415hpA5Q1RGqmqCqb6hqP5XosZSmsN-Y-Df9T-sLMpt8cA
CitedBy_id crossref_primary_10_1016_j_apor_2024_104024
crossref_primary_10_1016_j_oceaneng_2024_118537
Cites_doi 10.1115/OMAE2022-82308
10.1016/j.apenergy.2022.119711
10.1016/j.oceaneng.2021.109168
10.1201/9781003360773-58
10.1016/j.egyr.2021.12.034
10.1016/j.rser.2014.07.113
10.3390/jmse8020120
10.1016/j.oceaneng.2022.110862
10.1115/1.3662552
10.3390/jmse7120441
10.1115/OMAE2022-79636
10.1016/j.oceaneng.2009.01.013
10.1016/j.rser.2019.01.012
10.1016/j.oceaneng.2017.01.020
10.1016/j.oceaneng.2019.106722
10.1016/j.renene.2010.07.009
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.1007/s40722-023-00304-y
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 2198-6452
EndPage 154
ExternalDocumentID 10_1007_s40722_023_00304_y
GrantInformation_xml – fundername: The Sasakawa Scientific Research Grants 2022 by the Japan Science Society (JSS)
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI
  grantid: 20H02367
GroupedDBID -EM
203
4.4
406
AAAVM
AAFGU
AAHNG
AAIAL
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYQN
AAZMS
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFNRJ
AFQWF
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
GQ6
HQYDN
HRMNR
HVGLF
IAO
IGS
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
RSV
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
0R~
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
ITC
ROL
SJYHP
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-c319t-5850b5279fc1cf5494656a364937ff6078604f73f370a3dba59a38d41435cabb3
ISSN 2198-6444
IngestDate Thu Oct 10 19:39:59 EDT 2024
Thu Sep 26 18:17:34 EDT 2024
Wed Jan 24 01:17:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Spatial distance
Tank test
Causality
Future predictions
Kalman filter
Transfer functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-5850b5279fc1cf5494656a364937ff6078604f73f370a3dba59a38d41435cabb3
PQID 2917888995
PQPubID 2044334
PageCount 18
ParticipantIDs proquest_journals_2917888995
crossref_primary_10_1007_s40722_023_00304_y
springer_journals_10_1007_s40722_023_00304_y
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of ocean engineering and marine energy
PublicationTitleAbbrev J. Ocean Eng. Mar. Energy
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Tillenburg D (2021) Technical challenges of floating offshore wind turbines—an overview. FH Münster - University of Applied Sciences
IRENA (2019) Future of wind: deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation Paper). International Renewable Energy Agency, Abu Dhabi
PascoalRPereraPSoaresCGEstimation of directional sea spectra from ship motions in sea trialsOcean Eng201713212613710.1016/j.oceaneng.2017.01.020
Castellà XT (2020) Operation and maintenance costs for offshore wind farm: analysis and strategies to reduce O&M costs. Master thesis. Industrial Engineering, BarcelonaTech and NTUST Taiwan
KalmanREA new approach to linear filtering and predictions problemsJ Basic Eng1960823545393199310.1115/1.3662552
WangMWangCHnydiuk-StefanAFengSAtillaILiZRecent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutionsOcean Eng202123210916810.1016/j.oceaneng.2021.109168
ZhangJZhaoXJinSGreavesDPhase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machineAppl Energy202210.1016/j.apenergy.2022.119711
Komoriyama Y, Iijima K, Fujikubo M (2022) A kalman filtering technique for prediction of wave time histories around ship based on response measurements and its experimental validation. In: Proceedings of the ASME 2022 41st OMAE, Hamburg
PascoalRSoaresCGKalman filtering of vessel motions for ocean wave directional spectrum estimationOcean Eng20093647748810.1016/j.oceaneng.2009.01.013
Isnaini R, Toichi K, Tatsumi A, Iijima K (2022b) Real-time wave prediction for floating offshore wind turbine based on the kalman filter. In: RENEW2022, Lisbon
KashiwagiMWave-body interaction theory (theory of ship waves)2018OsakaDept. of NAOE, Osaka University
EstebanMDDiezJJLópezJSNegroVWhy offshore wind energy?Renewable Energy20113644445010.1016/j.renene.2010.07.009
IidaTMinouraMAnalytical solution of impulse response function of finite-depth water wavesOcean Eng202224911086210.1016/j.oceaneng.2022.110862
Isnaini R, Toichi K, Iijima K, Tatsumi A (2022a) Real-time prediction of incoming wave profile surrounding floating offshore wind turbine using kalman filter. In: Proceedings of the ASME 2022 41st OMAE, Hamburg
DavisMCZarnickEETesting ship models in transient waves1966Washington, DCDavid Taylor Model Basin, Department of the Navy
EstebanMDLópez-GutiérrezJ-SNegroVOffshore wind farmsJ Mar Sci Eng202081210.3390/jmse8020120
WuXHubYLiYYangJDuanLWangTLiaoSFoundation of offshore wind turbines: a reviewRenew Sustain Energy Rev201910437939310.1016/j.rser.2019.01.012
EllabbanOAbu-RubHBlaabjergFRenewable energy resources: current status, future prospects and their enabling technologyRenew Sustain Energy Rev20143974876410.1016/j.rser.2014.07.113
LawYZSantoHLimKChanEDeterministic wave prediction for unidirectional sea-states in real-time using Artificial Neural NetworkOcean Eng202010.1016/j.oceaneng.2019.106722
SánchezSLópez-GutiérrezJ-SNegroVEstebanMDFoundations in offshore wind farms: evolution, characteristics and range of use. Analysis of main dimensional in monopile foundationJ Mar Sci Eng2019744110.3390/jmse7120441
Butterfield S, Musial W, Jonkman J, Sclavounos P (2005) Engineering challenges for floating offshore wind turbines. In: Copenhagen offshore wind conference, Copenhagen
CiuriucARaphaJIGuancheRDomínguez-GarcíaJLDigital tools for floating offshore wind turbines (FOWT): a state of the artEnergy Rep202281207122810.1016/j.egyr.2021.12.034
RE Kalman (304_CR12) 1960; 82
304_CR19
MC Davis (304_CR4) 1966
J Zhang (304_CR22) 2022
304_CR14
MD Esteban (304_CR6) 2011; 36
304_CR11
O Ellabban (304_CR5) 2014; 39
304_CR10
A Ciuriuc (304_CR3) 2022; 8
304_CR9
R Pascoal (304_CR16) 2009; 36
M Wang (304_CR20) 2021; 232
T Iida (304_CR8) 2022; 249
R Pascoal (304_CR17) 2017; 132
S Sánchez (304_CR18) 2019; 7
MD Esteban (304_CR7) 2020; 8
304_CR2
304_CR1
M Kashiwagi (304_CR13) 2018
YZ Law (304_CR15) 2020
X Wu (304_CR21) 2019; 104
References_xml – ident: 304_CR14
  doi: 10.1115/OMAE2022-82308
– ident: 304_CR2
– year: 2022
  ident: 304_CR22
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119711
  contributor:
    fullname: J Zhang
– ident: 304_CR9
– volume: 232
  start-page: 109168
  year: 2021
  ident: 304_CR20
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.109168
  contributor:
    fullname: M Wang
– ident: 304_CR11
  doi: 10.1201/9781003360773-58
– volume: 8
  start-page: 1207
  year: 2022
  ident: 304_CR3
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.12.034
  contributor:
    fullname: A Ciuriuc
– volume: 39
  start-page: 748
  year: 2014
  ident: 304_CR5
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.113
  contributor:
    fullname: O Ellabban
– ident: 304_CR1
– volume: 8
  start-page: 1
  year: 2020
  ident: 304_CR7
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse8020120
  contributor:
    fullname: MD Esteban
– volume: 249
  start-page: 110862
  year: 2022
  ident: 304_CR8
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.110862
  contributor:
    fullname: T Iida
– volume: 82
  start-page: 35
  year: 1960
  ident: 304_CR12
  publication-title: J Basic Eng
  doi: 10.1115/1.3662552
  contributor:
    fullname: RE Kalman
– volume-title: Wave-body interaction theory (theory of ship waves)
  year: 2018
  ident: 304_CR13
  contributor:
    fullname: M Kashiwagi
– volume: 7
  start-page: 441
  year: 2019
  ident: 304_CR18
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse7120441
  contributor:
    fullname: S Sánchez
– ident: 304_CR10
  doi: 10.1115/OMAE2022-79636
– volume: 36
  start-page: 477
  year: 2009
  ident: 304_CR16
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2009.01.013
  contributor:
    fullname: R Pascoal
– volume: 104
  start-page: 379
  year: 2019
  ident: 304_CR21
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.01.012
  contributor:
    fullname: X Wu
– volume: 132
  start-page: 126
  year: 2017
  ident: 304_CR17
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2017.01.020
  contributor:
    fullname: R Pascoal
– year: 2020
  ident: 304_CR15
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106722
  contributor:
    fullname: YZ Law
– volume: 36
  start-page: 444
  year: 2011
  ident: 304_CR6
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.07.009
  contributor:
    fullname: MD Esteban
– volume-title: Testing ship models in transient waves
  year: 1966
  ident: 304_CR4
  contributor:
    fullname: MC Davis
– ident: 304_CR19
SSID ssj0002734765
Score 2.3115392
Snippet The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 137
SubjectTerms Algorithms
Coastal Sciences
Distance
Engineering
Engineering Fluid Dynamics
Floating bodies
Kalman filters
Mechanical Engineering
Oceanography
Offshore Engineering
Renewable and Green Energy
Scaling
Wave predicting
Title Future predictions of wave and response of multiple floating bodies based on the Kalman filter algorithm
URI https://link.springer.com/article/10.1007/s40722-023-00304-y
https://www.proquest.com/docview/2917888995
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFOEFrQHbsbI8a5fxxQ1aqGESyLlZu3aXuKS2ChxVLX_gn_MzK5fbSgCLla0idb2zJfZ2ZlvZgl55yaOSnjq2ywRsEGJlLRFJlM7FEg5zBw_FFjg_GXqn835p4W3GAx-9lhLu0p-SG5-W1fyP1qFMdArVsn-g2bbSWEAPoN-4Qoahutf6XiiG4JgnX-aJy2l7QoPFNK0ccN_1VGBljioVqXQVGdZIoHQwmUsrVMG1mexwpi-yjGHbonVt3KTV8v1PR4sLH3w46zraKjvuhZYUGhluqiwy-ekyKne6YDz-bbAcym6oEEFQsut8fd80y4S5_llvhbwQDe7Zb4p-8EJlzd85jvBSWReozza4hm0b2ArQxvcMRNPyPpj3m0D7ewB0VjbkekXUy_cI9ONem9NMDSQLXaCg4dzma3TwfZ1twI2Wf_p13gyv7iIZ6eL2QNy6ILtAqN5OJ6cnEzbwB32Awr0EaXtC9TFWLokc-82tx2ebhdzJ_Gu_ZnZE_K4ViMdG1Q9JYOseEYe9dpTPidLgy_awxctFUV8UdA0bfCFgw2-aIMvavBFNb5oWVDAFzX4ogZftMXXCzKfnM4-ntn1yRx2Aia7smGP6UgP5KOSUaI8HmHXPcF8Ds6uUj64nb7DVcAUCxzBUim8SLAw5eicJ0JK9pIcFGWRvSJUMa58EToc-ySlTIZBEDLBPbAToR8F4ZBYjfjiH6YBS9y22tbCjkHYsRZ2fD0kx42E4_qPuo3daISBnijyhuR9I_Xu6_tne_3n2Y7Iww7zx-Sg2uyyN-CiVvJtDZpfI2iVKQ
link.rule.ids 315,783,787,27936,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+predictions+of+wave+and+response+of+multiple+floating+bodies+based+on+the+Kalman+filter+algorithm&rft.jtitle=Journal+of+ocean+engineering+and+marine+energy&rft.au=Rodhiatul%2C+Isnaini&rft.au=Tatsumi+Akira&rft.au=Iijima+Kazuhiro&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=2198-6444&rft.eissn=2198-6452&rft.volume=10&rft.issue=1&rft.spage=137&rft.epage=154&rft_id=info:doi/10.1007%2Fs40722-023-00304-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6444&client=summon