Future predictions of wave and response of multiple floating bodies based on the Kalman filter algorithm
The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled,...
Saved in:
Published in | Journal of ocean engineering and marine energy Vol. 10; no. 1; pp. 137 - 154 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled, it is found that 3–8 s or several cycles of waves ahead can be predicted in model scale, depending on the distance between the two points. If a scaling of 1/100 is adopted, this means 30–80 s waves ahead can be estimated. The longer the distance, the longer future predictable time will be. Response predictions using wave prediction data are also investigated. The results for the response prediction also exhibits high accuracy, with even higher predictable future time (80–120 s ahead given 1/100 scale ratio) compared to its associated predictable future time of waves. |
---|---|
AbstractList | The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled, it is found that 3–8 s or several cycles of waves ahead can be predicted in model scale, depending on the distance between the two points. If a scaling of 1/100 is adopted, this means 30–80 s waves ahead can be estimated. The longer the distance, the longer future predictable time will be. Response predictions using wave prediction data are also investigated. The results for the response prediction also exhibits high accuracy, with even higher predictable future time (80–120 s ahead given 1/100 scale ratio) compared to its associated predictable future time of waves. The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two points. Experimental data at 2D tank are used to validate the effectiveness of the proposed method. When causality limitation is fulfilled, it is found that 3–8 s or several cycles of waves ahead can be predicted in model scale, depending on the distance between the two points. If a scaling of 1/100 is adopted, this means 30–80 s waves ahead can be estimated. The longer the distance, the longer future predictable time will be. Response predictions using wave prediction data are also investigated. The results for the response prediction also exhibits high accuracy, with even higher predictable future time (80–120 s ahead given 1/100 scale ratio) compared to its associated predictable future time of waves. |
Author | Tatsumi, Akira Iijima, Kazuhiro Isnaini, Rodhiatul |
Author_xml | – sequence: 1 givenname: Rodhiatul surname: Isnaini fullname: Isnaini, Rodhiatul email: rodhiatul_isnaini@naoe.eng.osaka-u.ac.jp organization: Department of Naval Architecture and Ocean Engineering, Osaka University – sequence: 2 givenname: Akira surname: Tatsumi fullname: Tatsumi, Akira organization: Department of Naval Architecture and Ocean Engineering, Osaka University – sequence: 3 givenname: Kazuhiro surname: Iijima fullname: Iijima, Kazuhiro organization: Department of Naval Architecture and Ocean Engineering, Osaka University |
BookMark | eNp9kE1LAzEYhIMoWGv_gKeA59V8bjZHKVbFghc9h-xu0qbsJmuSVfrv3VrRm6d3GGbmhecCnPrgDQBXGN1ghMRtYkgQUiBCC4QoYsX-BMwIllVRMk5OfzVj52CR0g4hRARlouQzsF2NeYwGDtG0rsku-ASDhZ_6w0DtWxhNGibPHMx-7LIbOgNtF3R2fgPr0DqTYK2TaWHwMG8NfNZdrz20rssmQt1tQnR521-CM6u7ZBY_dw7eVvevy8di_fLwtLxbFw3FMhe84qjmREjb4MZyJlnJS01LJqmwtkSiKhGzgloqkKZtrbnUtGoZZpQ3uq7pHFwfd4cY3keTstqFMfrppSISi6qqpORTihxTTQwpRWPVEF2v415hpA5Q1RGqmqCqb6hqP5XosZSmsN-Y-Df9T-sLMpt8cA |
CitedBy_id | crossref_primary_10_1016_j_apor_2024_104024 crossref_primary_10_1016_j_oceaneng_2024_118537 |
Cites_doi | 10.1115/OMAE2022-82308 10.1016/j.apenergy.2022.119711 10.1016/j.oceaneng.2021.109168 10.1201/9781003360773-58 10.1016/j.egyr.2021.12.034 10.1016/j.rser.2014.07.113 10.3390/jmse8020120 10.1016/j.oceaneng.2022.110862 10.1115/1.3662552 10.3390/jmse7120441 10.1115/OMAE2022-79636 10.1016/j.oceaneng.2009.01.013 10.1016/j.rser.2019.01.012 10.1016/j.oceaneng.2017.01.020 10.1016/j.oceaneng.2019.106722 10.1016/j.renene.2010.07.009 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7TN F1W H96 L.G |
DOI | 10.1007/s40722-023-00304-y |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 2198-6452 |
EndPage | 154 |
ExternalDocumentID | 10_1007_s40722_023_00304_y |
GrantInformation_xml | – fundername: The Sasakawa Scientific Research Grants 2022 by the Japan Science Society (JSS) – fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI grantid: 20H02367 |
GroupedDBID | -EM 203 4.4 406 AAAVM AAFGU AAHNG AAIAL AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYQN AAZMS ABBXA ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADINQ ADKNI ADKPE ADMDM ADOXG ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEJRE AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFNRJ AFQWF AGAYW AGDGC AGGBP AGMZJ AGQMX AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD GQ6 HQYDN HRMNR HVGLF IAO IGS IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE RSV SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR 0R~ AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION ITC ROL SJYHP 7TN F1W H96 L.G |
ID | FETCH-LOGICAL-c319t-5850b5279fc1cf5494656a364937ff6078604f73f370a3dba59a38d41435cabb3 |
ISSN | 2198-6444 |
IngestDate | Thu Oct 10 19:39:59 EDT 2024 Thu Sep 26 18:17:34 EDT 2024 Wed Jan 24 01:17:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Spatial distance Tank test Causality Future predictions Kalman filter Transfer functions |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-5850b5279fc1cf5494656a364937ff6078604f73f370a3dba59a38d41435cabb3 |
PQID | 2917888995 |
PQPubID | 2044334 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2917888995 crossref_primary_10_1007_s40722_023_00304_y springer_journals_10_1007_s40722_023_00304_y |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of ocean engineering and marine energy |
PublicationTitleAbbrev | J. Ocean Eng. Mar. Energy |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Tillenburg D (2021) Technical challenges of floating offshore wind turbines—an overview. FH Münster - University of Applied Sciences IRENA (2019) Future of wind: deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation Paper). International Renewable Energy Agency, Abu Dhabi PascoalRPereraPSoaresCGEstimation of directional sea spectra from ship motions in sea trialsOcean Eng201713212613710.1016/j.oceaneng.2017.01.020 Castellà XT (2020) Operation and maintenance costs for offshore wind farm: analysis and strategies to reduce O&M costs. Master thesis. Industrial Engineering, BarcelonaTech and NTUST Taiwan KalmanREA new approach to linear filtering and predictions problemsJ Basic Eng1960823545393199310.1115/1.3662552 WangMWangCHnydiuk-StefanAFengSAtillaILiZRecent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutionsOcean Eng202123210916810.1016/j.oceaneng.2021.109168 ZhangJZhaoXJinSGreavesDPhase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machineAppl Energy202210.1016/j.apenergy.2022.119711 Komoriyama Y, Iijima K, Fujikubo M (2022) A kalman filtering technique for prediction of wave time histories around ship based on response measurements and its experimental validation. In: Proceedings of the ASME 2022 41st OMAE, Hamburg PascoalRSoaresCGKalman filtering of vessel motions for ocean wave directional spectrum estimationOcean Eng20093647748810.1016/j.oceaneng.2009.01.013 Isnaini R, Toichi K, Tatsumi A, Iijima K (2022b) Real-time wave prediction for floating offshore wind turbine based on the kalman filter. In: RENEW2022, Lisbon KashiwagiMWave-body interaction theory (theory of ship waves)2018OsakaDept. of NAOE, Osaka University EstebanMDDiezJJLópezJSNegroVWhy offshore wind energy?Renewable Energy20113644445010.1016/j.renene.2010.07.009 IidaTMinouraMAnalytical solution of impulse response function of finite-depth water wavesOcean Eng202224911086210.1016/j.oceaneng.2022.110862 Isnaini R, Toichi K, Iijima K, Tatsumi A (2022a) Real-time prediction of incoming wave profile surrounding floating offshore wind turbine using kalman filter. In: Proceedings of the ASME 2022 41st OMAE, Hamburg DavisMCZarnickEETesting ship models in transient waves1966Washington, DCDavid Taylor Model Basin, Department of the Navy EstebanMDLópez-GutiérrezJ-SNegroVOffshore wind farmsJ Mar Sci Eng202081210.3390/jmse8020120 WuXHubYLiYYangJDuanLWangTLiaoSFoundation of offshore wind turbines: a reviewRenew Sustain Energy Rev201910437939310.1016/j.rser.2019.01.012 EllabbanOAbu-RubHBlaabjergFRenewable energy resources: current status, future prospects and their enabling technologyRenew Sustain Energy Rev20143974876410.1016/j.rser.2014.07.113 LawYZSantoHLimKChanEDeterministic wave prediction for unidirectional sea-states in real-time using Artificial Neural NetworkOcean Eng202010.1016/j.oceaneng.2019.106722 SánchezSLópez-GutiérrezJ-SNegroVEstebanMDFoundations in offshore wind farms: evolution, characteristics and range of use. Analysis of main dimensional in monopile foundationJ Mar Sci Eng2019744110.3390/jmse7120441 Butterfield S, Musial W, Jonkman J, Sclavounos P (2005) Engineering challenges for floating offshore wind turbines. In: Copenhagen offshore wind conference, Copenhagen CiuriucARaphaJIGuancheRDomínguez-GarcíaJLDigital tools for floating offshore wind turbines (FOWT): a state of the artEnergy Rep202281207122810.1016/j.egyr.2021.12.034 RE Kalman (304_CR12) 1960; 82 304_CR19 MC Davis (304_CR4) 1966 J Zhang (304_CR22) 2022 304_CR14 MD Esteban (304_CR6) 2011; 36 304_CR11 O Ellabban (304_CR5) 2014; 39 304_CR10 A Ciuriuc (304_CR3) 2022; 8 304_CR9 R Pascoal (304_CR16) 2009; 36 M Wang (304_CR20) 2021; 232 T Iida (304_CR8) 2022; 249 R Pascoal (304_CR17) 2017; 132 S Sánchez (304_CR18) 2019; 7 MD Esteban (304_CR7) 2020; 8 304_CR2 304_CR1 M Kashiwagi (304_CR13) 2018 YZ Law (304_CR15) 2020 X Wu (304_CR21) 2019; 104 |
References_xml | – ident: 304_CR14 doi: 10.1115/OMAE2022-82308 – ident: 304_CR2 – year: 2022 ident: 304_CR22 publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119711 contributor: fullname: J Zhang – ident: 304_CR9 – volume: 232 start-page: 109168 year: 2021 ident: 304_CR20 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.109168 contributor: fullname: M Wang – ident: 304_CR11 doi: 10.1201/9781003360773-58 – volume: 8 start-page: 1207 year: 2022 ident: 304_CR3 publication-title: Energy Rep doi: 10.1016/j.egyr.2021.12.034 contributor: fullname: A Ciuriuc – volume: 39 start-page: 748 year: 2014 ident: 304_CR5 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.113 contributor: fullname: O Ellabban – ident: 304_CR1 – volume: 8 start-page: 1 year: 2020 ident: 304_CR7 publication-title: J Mar Sci Eng doi: 10.3390/jmse8020120 contributor: fullname: MD Esteban – volume: 249 start-page: 110862 year: 2022 ident: 304_CR8 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.110862 contributor: fullname: T Iida – volume: 82 start-page: 35 year: 1960 ident: 304_CR12 publication-title: J Basic Eng doi: 10.1115/1.3662552 contributor: fullname: RE Kalman – volume-title: Wave-body interaction theory (theory of ship waves) year: 2018 ident: 304_CR13 contributor: fullname: M Kashiwagi – volume: 7 start-page: 441 year: 2019 ident: 304_CR18 publication-title: J Mar Sci Eng doi: 10.3390/jmse7120441 contributor: fullname: S Sánchez – ident: 304_CR10 doi: 10.1115/OMAE2022-79636 – volume: 36 start-page: 477 year: 2009 ident: 304_CR16 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2009.01.013 contributor: fullname: R Pascoal – volume: 104 start-page: 379 year: 2019 ident: 304_CR21 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.01.012 contributor: fullname: X Wu – volume: 132 start-page: 126 year: 2017 ident: 304_CR17 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.01.020 contributor: fullname: R Pascoal – year: 2020 ident: 304_CR15 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.106722 contributor: fullname: YZ Law – volume: 36 start-page: 444 year: 2011 ident: 304_CR6 publication-title: Renewable Energy doi: 10.1016/j.renene.2010.07.009 contributor: fullname: MD Esteban – volume-title: Testing ship models in transient waves year: 1966 ident: 304_CR4 contributor: fullname: MC Davis – ident: 304_CR19 |
SSID | ssj0002734765 |
Score | 2.3115392 |
Snippet | The present work explores the possibility of predicting future waves by extending the Kalman filter algorithm by incorporating the spatial distance between two... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 137 |
SubjectTerms | Algorithms Coastal Sciences Distance Engineering Engineering Fluid Dynamics Floating bodies Kalman filters Mechanical Engineering Oceanography Offshore Engineering Renewable and Green Energy Scaling Wave predicting |
Title | Future predictions of wave and response of multiple floating bodies based on the Kalman filter algorithm |
URI | https://link.springer.com/article/10.1007/s40722-023-00304-y https://www.proquest.com/docview/2917888995 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFOEFrQHbsbI8a5fxxQ1aqGESyLlZu3aXuKS2ChxVLX_gn_MzK5fbSgCLla0idb2zJfZ2ZlvZgl55yaOSnjq2ywRsEGJlLRFJlM7FEg5zBw_FFjg_GXqn835p4W3GAx-9lhLu0p-SG5-W1fyP1qFMdArVsn-g2bbSWEAPoN-4Qoahutf6XiiG4JgnX-aJy2l7QoPFNK0ccN_1VGBljioVqXQVGdZIoHQwmUsrVMG1mexwpi-yjGHbonVt3KTV8v1PR4sLH3w46zraKjvuhZYUGhluqiwy-ekyKne6YDz-bbAcym6oEEFQsut8fd80y4S5_llvhbwQDe7Zb4p-8EJlzd85jvBSWReozza4hm0b2ArQxvcMRNPyPpj3m0D7ewB0VjbkekXUy_cI9ONem9NMDSQLXaCg4dzma3TwfZ1twI2Wf_p13gyv7iIZ6eL2QNy6ILtAqN5OJ6cnEzbwB32Awr0EaXtC9TFWLokc-82tx2ebhdzJ_Gu_ZnZE_K4ViMdG1Q9JYOseEYe9dpTPidLgy_awxctFUV8UdA0bfCFgw2-aIMvavBFNb5oWVDAFzX4ogZftMXXCzKfnM4-ntn1yRx2Aia7smGP6UgP5KOSUaI8HmHXPcF8Ds6uUj64nb7DVcAUCxzBUim8SLAw5eicJ0JK9pIcFGWRvSJUMa58EToc-ySlTIZBEDLBPbAToR8F4ZBYjfjiH6YBS9y22tbCjkHYsRZ2fD0kx42E4_qPuo3daISBnijyhuR9I_Xu6_tne_3n2Y7Iww7zx-Sg2uyyN-CiVvJtDZpfI2iVKQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+predictions+of+wave+and+response+of+multiple+floating+bodies+based+on+the+Kalman+filter+algorithm&rft.jtitle=Journal+of+ocean+engineering+and+marine+energy&rft.au=Rodhiatul%2C+Isnaini&rft.au=Tatsumi+Akira&rft.au=Iijima+Kazuhiro&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=2198-6444&rft.eissn=2198-6452&rft.volume=10&rft.issue=1&rft.spage=137&rft.epage=154&rft_id=info:doi/10.1007%2Fs40722-023-00304-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6444&client=summon |