Control problems on infinite horizon subject to time-dependent pure state constraints
In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major ef...
Saved in:
Published in | Mathematics of control, signals, and systems Vol. 36; no. 2; pp. 423 - 450 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major efforts toward the development of algorithms to learn how to solve constrained control problems. In particular, discount plays a role in addressing the challenges that come with models that have unbounded disturbances. Although algorithms have been extensively explored, few results take into account time-dependent state constraints, which are imposed in most real-world control applications. For this purpose, here we investigate feasibility and sufficient conditions for Lipschitz regularity of the value function for a class of discounted infinite horizon optimal control problems subject to time-dependent constraints. We focus on problems with data that allow nonautonomous dynamics, and Lagrangian and state constraints that can be unbounded with possibly nonsmooth boundaries. |
---|---|
AbstractList | In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major efforts toward the development of algorithms to learn how to solve constrained control problems. In particular, discount plays a role in addressing the challenges that come with models that have unbounded disturbances. Although algorithms have been extensively explored, few results take into account time-dependent state constraints, which are imposed in most real-world control applications. For this purpose, here we investigate feasibility and sufficient conditions for Lipschitz regularity of the value function for a class of discounted infinite horizon optimal control problems subject to time-dependent constraints. We focus on problems with data that allow nonautonomous dynamics, and Lagrangian and state constraints that can be unbounded with possibly nonsmooth boundaries. |
Author | Basco, Vincenzo |
Author_xml | – sequence: 1 givenname: Vincenzo surname: Basco fullname: Basco, Vincenzo email: vincenzo.basco@thalesaleniaspace.com organization: Thales Alenia Space |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqOTZJPdPUrxHxS8WPAWdrOJpmyTNcke9NObWkHw0NMww_vNvHkLNHPeaYQuCVwTgOomApRNjYEyDMAqitkJmpOSccxF_TpDc2gYxSVpyjO0iHELAERUZI42K-9S8EMxBt8NehcL7wrrjHU26eLdB_uVB3HqtlqlIvki2Z3GvR6167VLxTgFXcTUZrHyLqbQWpfiOTo17RD1xW9dos393cvqEa-fH55Wt2usGGkS5lXf0E5zyF2vFFWt4UpUpYFOmZ41BrjqFBWiFVSbTudhy0swQAXnUPdsia4Oe7P7j0nHJLd-Ci6flAx4IwTlNc2q-qBSwccYtJHKZsd2_3lrB0lA7kOUhxBlDlH-hChZRuk_dAx214bP4xA7QDGL3ZsOf66OUN9FAoiK |
CitedBy_id | crossref_primary_10_1007_s40574_024_00410_1 |
Cites_doi | 10.1090/S0002-9947-1983-0690039-8 10.1016/j.ifacol.2017.08.979 10.1007/978-0-8176-4848-0 10.1016/j.jet.2016.08.001 10.1109/CDC.2016.7798271 10.1016/j.automatica.2014.10.096 10.3934/mcrf.2018022 10.1109/TAC.2010.2086553 10.1109/TAC.2005.861702 10.1007/978-3-031-22216-0_12 10.1007/978-3-030-17949-6_2 10.1090/S0002-9947-1984-0732102-X 10.1007/978-1-4471-5076-3 10.1109/CDC.2013.6761117 10.1016/j.automatica.2010.06.034 10.1007/s10479-018-2947-3 10.1016/B978-1-55860-377-6.50013-X 10.1109/CDC.2013.6760907 10.1016/j.jmaa.2022.126452 10.1214/aoms/1177700285 10.1007/978-3-319-75169-6 10.1016/B978-1-55860-377-6.50040-2 10.1007/s00030-019-0553-y 10.1109/TAC.2014.2303232 10.1109/TAC.2013.2270052 10.1109/TAC.2012.2203054 10.1109/CDC.2018.8619554 10.2514/3.25375 10.1007/BFb0026710 10.1023/A:1007686309208 10.1109/TAC.2016.2616644 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7SP 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U S0W |
DOI | 10.1007/s00498-023-00372-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database (via ProQuest SciTech Premium Collection) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1435-568X |
EndPage | 450 |
ExternalDocumentID | 10_1007_s00498_023_00372_3 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7SP 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c319t-57d92be50319dcc2caf5c674f0bcfd39f05cbc266a62efbecfda540f0265508d3 |
IEDL.DBID | BENPR |
ISSN | 0932-4194 |
IngestDate | Sat Aug 23 14:46:18 EDT 2025 Tue Jul 01 01:46:44 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Viability Regularity of value functions Infinite horizon control problems State constraints |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-57d92be50319dcc2caf5c674f0bcfd39f05cbc266a62efbecfda540f0265508d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3059662582 |
PQPubID | 29789 |
PageCount | 28 |
ParticipantIDs | proquest_journals_3059662582 crossref_citationtrail_10_1007_s00498_023_00372_3 crossref_primary_10_1007_s00498_023_00372_3 springer_journals_10_1007_s00498_023_00372_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | MCSS |
PublicationTitle | Mathematics of control, signals, and systems |
PublicationTitleAbbrev | Math. Control Signals Syst |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | De Jager B, Van Keulen T (2013) Optimal control of hybrid vehicles. Springer, Kessels KouvaritakisBCannonMCouchmanPMpc as a tool for sustainable development integrated policy assessmentIEEE Trans Autom Control2006511145149219280310.1109/TAC.2005.861702 FrankelADiscounted quotasJ Econ Theory2016166396444356645010.1016/j.jet.2016.08.001 MunosRA study of reinforcement learning in the continuous case by the means of viscosity solutionsMach Learn20004026529910.1023/A:1007686309208 Basco V, Frankowska H (2019) Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints. In: Alabau-Boussouira F, et al (eds) Trends in control theory and partial differential equations, vol 32 of Springer INdAM Series. Springer International Publishing, pp 15 – 52 Gordon GJ (1995) Stable function approximation in dynamic programming. In: Machine learning proceedings. Elsevier, pp 261–268 KamgarpourMSummersTOn infinite dimensional linear programming approach to stochastic controlIFAC-PapersOnLine20175016148615310.1016/j.ifacol.2017.08.979 SchildbachGGoulartPMorariMLinear controller design for chance constrained systemsAutomatica201551278284328477910.1016/j.automatica.2014.10.096 Hashimoto T (2013) Probabilistic constrained model predictive control for linear discrete-time systems with additive stochastic disturbances. In: 52nd IEEE conference on decision and control. IEEE, pp 6434–6439 Bertsekas D (2022) Dynamic programming and optimal control, volume 1. Athena scientific Aubin J-P, Frankowska H (2009) Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc, Boston, MA CannonMKouvaritakisBRakovićSVChengQStochastic tubes in model predictive control with probabilistic constraintsIEEE Trans Autom Control2010561194200277721810.1109/TAC.2010.2086553 BlackwellDDiscounted dynamic programmingAnn Math Stat196536122623517353610.1214/aoms/1177700285 Bertsekas D (2019) Reinforcement learning and optimal control. Athena Scientific Farina M, Giulioni L, Magni L, Scattolini R (2013) A probabilistic approach to model predictive control. In: 52nd IEEE conference on decision and control. IEEE, pp 7734–7739 CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1983277114269003910.1090/S0002-9947-1983-0690039-8 PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Trans Autom Control201662627362749366055910.1109/TAC.2016.2616644 Baird L (1995) Residual algorithms: reinforcement learning with function approximation. In: Machine learning proceedings. Elsevier, pp 30–37 KouvaritakisBCannonMRakovićSVChengQExplicit use of probabilistic distributions in linear predictive controlAutomatica2010461017191724287732810.1016/j.automatica.2010.06.034 Hewing L, Zeilinger MN (2018) Stochastic model predictive control for linear systems using probabilistic reachable sets. In: 2018 IEEE conference on decision and control (CDC), pp 5182–5188. IEEE VinterRBOptimal Control2000Boston, MABirkhäuser MargellosKGoulartPLygerosJOn the road between robust optimization and the scenario approach for chance constrained optimization problemsIEEE Trans Autom Control201459822582263324527110.1109/TAC.2014.2303232 BascoVCannarsaPFrankowskaHNecessary conditions for infinite horizon optimal control problems with state constraintsMath Control Relat Fields201883–4535555391745210.3934/mcrf.2018022 BascoVFrankowskaHHamilton–Jacobi–Bellman equations with time-measurable data and infinite horizonNonlinear Differ Equ Appl20192617390794710.1007/s00030-019-0553-y CrandallMGEvansLCLionsP-LSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1984282248750273210210.1090/S0002-9947-1984-0732102-X Munos R (1998) A general convergence method for reinforcement learning in the continuous case. In: European conference on machine learning. Springer, pp 394–405 BascoVWeak epigraphical solutions to Hamilton–Jacobi–Bellman equations on infinite horizonJ Math Anal Appl20225152444618310.1016/j.jmaa.2022.126452 Boyan J, Moore A (1994) Generalization in reinforcement learning: safely approximating the value function. Adv Neural Inf Process Syst 7 Feichtinger G, Kovacevic RM, Tragler G (2018) Control systems and mathematical methods in economics, volume 687. Lecture Notes in Economics and Mathematical Systems. Springer De Pinho MR, Foroozandeh Z, Matos A (2016) Optimal control problems for path planing of AUV using simplified models. In: 2016 IEEE 55th conference on decision and control (CDC), pp 210–215. IEEE MenonPKABriggsMMNear-optimal midcourse guidance for air-to-air missilesJ Guid Control Dyn199013459660210.2514/3.25375 NystrupPBoydSLindströmEMadsenHMulti-period portfolio selection with drawdown controlAnn Oper Res20192821245271401923910.1007/s10479-018-2947-3 CalafioreGCFagianoLRobust model predictive control via scenario optimizationIEEE Trans Autom Control2012581219224300672510.1109/TAC.2012.2203054 Weston J, Tolić D, Palunko I (2022) Mixed use of Pontryagin’s principle and the Hamilton–Jacobi–Bellman equation in infinite-and finite-horizon constrained optimal control. In: International conference on intelligent autonomous systems. Springer, pp 167–185 Van ParysBPGGoulartPJMorariMInfinite horizon performance bounds for uncertain constrained systemsIEEE Trans Autom Control2013581128032817312599010.1109/TAC.2013.2270052 372_CR21 372_CR20 D Blackwell (372_CR9) 1965; 36 BPG Van Parys (372_CR33) 2013; 58 GC Calafiore (372_CR11) 2012; 58 MG Crandall (372_CR13) 1984; 282 372_CR7 372_CR6 372_CR1 R Munos (372_CR29) 2000; 40 G Schildbach (372_CR32) 2015; 51 372_CR2 372_CR18 372_CR17 RB Vinter (372_CR34) 2000 372_CR16 372_CR15 B Kouvaritakis (372_CR25) 2010; 46 372_CR8 372_CR35 M Kamgarpour (372_CR23) 2017; 50 PKA Menon (372_CR27) 1990; 13 372_CR10 MG Crandall (372_CR14) 1983; 277 B Kouvaritakis (372_CR24) 2006; 51 M Cannon (372_CR12) 2010; 56 V Basco (372_CR4) 2018; 8 P Nystrup (372_CR30) 2019; 282 K Margellos (372_CR26) 2014; 59 V Basco (372_CR3) 2022; 515 R Postoyan (372_CR31) 2016; 62 V Basco (372_CR5) 2019; 26 372_CR28 A Frankel (372_CR19) 2016; 166 372_CR22 |
References_xml | – reference: Bertsekas D (2019) Reinforcement learning and optimal control. Athena Scientific – reference: Basco V, Frankowska H (2019) Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints. In: Alabau-Boussouira F, et al (eds) Trends in control theory and partial differential equations, vol 32 of Springer INdAM Series. Springer International Publishing, pp 15 – 52 – reference: Munos R (1998) A general convergence method for reinforcement learning in the continuous case. In: European conference on machine learning. Springer, pp 394–405 – reference: CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1983277114269003910.1090/S0002-9947-1983-0690039-8 – reference: CannonMKouvaritakisBRakovićSVChengQStochastic tubes in model predictive control with probabilistic constraintsIEEE Trans Autom Control2010561194200277721810.1109/TAC.2010.2086553 – reference: Feichtinger G, Kovacevic RM, Tragler G (2018) Control systems and mathematical methods in economics, volume 687. Lecture Notes in Economics and Mathematical Systems. Springer – reference: Boyan J, Moore A (1994) Generalization in reinforcement learning: safely approximating the value function. Adv Neural Inf Process Syst 7 – reference: BascoVCannarsaPFrankowskaHNecessary conditions for infinite horizon optimal control problems with state constraintsMath Control Relat Fields201883–4535555391745210.3934/mcrf.2018022 – reference: BascoVFrankowskaHHamilton–Jacobi–Bellman equations with time-measurable data and infinite horizonNonlinear Differ Equ Appl20192617390794710.1007/s00030-019-0553-y – reference: FrankelADiscounted quotasJ Econ Theory2016166396444356645010.1016/j.jet.2016.08.001 – reference: Bertsekas D (2022) Dynamic programming and optimal control, volume 1. Athena scientific – reference: CalafioreGCFagianoLRobust model predictive control via scenario optimizationIEEE Trans Autom Control2012581219224300672510.1109/TAC.2012.2203054 – reference: BascoVWeak epigraphical solutions to Hamilton–Jacobi–Bellman equations on infinite horizonJ Math Anal Appl20225152444618310.1016/j.jmaa.2022.126452 – reference: Farina M, Giulioni L, Magni L, Scattolini R (2013) A probabilistic approach to model predictive control. In: 52nd IEEE conference on decision and control. IEEE, pp 7734–7739 – reference: KamgarpourMSummersTOn infinite dimensional linear programming approach to stochastic controlIFAC-PapersOnLine20175016148615310.1016/j.ifacol.2017.08.979 – reference: KouvaritakisBCannonMRakovićSVChengQExplicit use of probabilistic distributions in linear predictive controlAutomatica2010461017191724287732810.1016/j.automatica.2010.06.034 – reference: Weston J, Tolić D, Palunko I (2022) Mixed use of Pontryagin’s principle and the Hamilton–Jacobi–Bellman equation in infinite-and finite-horizon constrained optimal control. In: International conference on intelligent autonomous systems. Springer, pp 167–185 – reference: De Jager B, Van Keulen T (2013) Optimal control of hybrid vehicles. Springer, Kessels – reference: De Pinho MR, Foroozandeh Z, Matos A (2016) Optimal control problems for path planing of AUV using simplified models. In: 2016 IEEE 55th conference on decision and control (CDC), pp 210–215. IEEE – reference: Baird L (1995) Residual algorithms: reinforcement learning with function approximation. In: Machine learning proceedings. Elsevier, pp 30–37 – reference: KouvaritakisBCannonMCouchmanPMpc as a tool for sustainable development integrated policy assessmentIEEE Trans Autom Control2006511145149219280310.1109/TAC.2005.861702 – reference: Hewing L, Zeilinger MN (2018) Stochastic model predictive control for linear systems using probabilistic reachable sets. In: 2018 IEEE conference on decision and control (CDC), pp 5182–5188. IEEE – reference: BlackwellDDiscounted dynamic programmingAnn Math Stat196536122623517353610.1214/aoms/1177700285 – reference: VinterRBOptimal Control2000Boston, MABirkhäuser – reference: CrandallMGEvansLCLionsP-LSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1984282248750273210210.1090/S0002-9947-1984-0732102-X – reference: Gordon GJ (1995) Stable function approximation in dynamic programming. In: Machine learning proceedings. Elsevier, pp 261–268 – reference: SchildbachGGoulartPMorariMLinear controller design for chance constrained systemsAutomatica201551278284328477910.1016/j.automatica.2014.10.096 – reference: NystrupPBoydSLindströmEMadsenHMulti-period portfolio selection with drawdown controlAnn Oper Res20192821245271401923910.1007/s10479-018-2947-3 – reference: Van ParysBPGGoulartPJMorariMInfinite horizon performance bounds for uncertain constrained systemsIEEE Trans Autom Control2013581128032817312599010.1109/TAC.2013.2270052 – reference: MargellosKGoulartPLygerosJOn the road between robust optimization and the scenario approach for chance constrained optimization problemsIEEE Trans Autom Control201459822582263324527110.1109/TAC.2014.2303232 – reference: Hashimoto T (2013) Probabilistic constrained model predictive control for linear discrete-time systems with additive stochastic disturbances. In: 52nd IEEE conference on decision and control. IEEE, pp 6434–6439 – reference: PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Trans Autom Control201662627362749366055910.1109/TAC.2016.2616644 – reference: Aubin J-P, Frankowska H (2009) Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc, Boston, MA – reference: MunosRA study of reinforcement learning in the continuous case by the means of viscosity solutionsMach Learn20004026529910.1023/A:1007686309208 – reference: MenonPKABriggsMMNear-optimal midcourse guidance for air-to-air missilesJ Guid Control Dyn199013459660210.2514/3.25375 – volume: 277 start-page: 1 issue: 1 year: 1983 ident: 372_CR14 publication-title: Trans Amer Math Soc doi: 10.1090/S0002-9947-1983-0690039-8 – volume: 50 start-page: 6148 issue: 1 year: 2017 ident: 372_CR23 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.979 – ident: 372_CR1 doi: 10.1007/978-0-8176-4848-0 – volume: 166 start-page: 396 year: 2016 ident: 372_CR19 publication-title: J Econ Theory doi: 10.1016/j.jet.2016.08.001 – ident: 372_CR16 doi: 10.1109/CDC.2016.7798271 – ident: 372_CR7 – volume: 51 start-page: 278 year: 2015 ident: 372_CR32 publication-title: Automatica doi: 10.1016/j.automatica.2014.10.096 – volume-title: Optimal Control year: 2000 ident: 372_CR34 – volume: 8 start-page: 535 issue: 3–4 year: 2018 ident: 372_CR4 publication-title: Math Control Relat Fields doi: 10.3934/mcrf.2018022 – volume: 56 start-page: 194 issue: 1 year: 2010 ident: 372_CR12 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2086553 – volume: 51 start-page: 145 issue: 1 year: 2006 ident: 372_CR24 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2005.861702 – ident: 372_CR35 doi: 10.1007/978-3-031-22216-0_12 – ident: 372_CR6 doi: 10.1007/978-3-030-17949-6_2 – volume: 282 start-page: 487 issue: 2 year: 1984 ident: 372_CR13 publication-title: Trans Amer Math Soc doi: 10.1090/S0002-9947-1984-0732102-X – ident: 372_CR15 doi: 10.1007/978-1-4471-5076-3 – ident: 372_CR17 doi: 10.1109/CDC.2013.6761117 – volume: 46 start-page: 1719 issue: 10 year: 2010 ident: 372_CR25 publication-title: Automatica doi: 10.1016/j.automatica.2010.06.034 – volume: 282 start-page: 245 issue: 1 year: 2019 ident: 372_CR30 publication-title: Ann Oper Res doi: 10.1007/s10479-018-2947-3 – ident: 372_CR2 doi: 10.1016/B978-1-55860-377-6.50013-X – ident: 372_CR21 doi: 10.1109/CDC.2013.6760907 – volume: 515 issue: 2 year: 2022 ident: 372_CR3 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2022.126452 – volume: 36 start-page: 226 issue: 1 year: 1965 ident: 372_CR9 publication-title: Ann Math Stat doi: 10.1214/aoms/1177700285 – ident: 372_CR18 doi: 10.1007/978-3-319-75169-6 – ident: 372_CR20 doi: 10.1016/B978-1-55860-377-6.50040-2 – volume: 26 start-page: 7 issue: 1 year: 2019 ident: 372_CR5 publication-title: Nonlinear Differ Equ Appl doi: 10.1007/s00030-019-0553-y – ident: 372_CR10 – volume: 59 start-page: 2258 issue: 8 year: 2014 ident: 372_CR26 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2014.2303232 – ident: 372_CR8 – volume: 58 start-page: 2803 issue: 11 year: 2013 ident: 372_CR33 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2013.2270052 – volume: 58 start-page: 219 issue: 1 year: 2012 ident: 372_CR11 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2012.2203054 – ident: 372_CR22 doi: 10.1109/CDC.2018.8619554 – volume: 13 start-page: 596 issue: 4 year: 1990 ident: 372_CR27 publication-title: J Guid Control Dyn doi: 10.2514/3.25375 – ident: 372_CR28 doi: 10.1007/BFb0026710 – volume: 40 start-page: 265 year: 2000 ident: 372_CR29 publication-title: Mach Learn doi: 10.1023/A:1007686309208 – volume: 62 start-page: 2736 issue: 6 year: 2016 ident: 372_CR31 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2016.2616644 |
SSID | ssj0001671 |
Score | 2.332951 |
Snippet | In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 423 |
SubjectTerms | Algorithms Artificial intelligence Communications Engineering Constraints Control Control theory Discounts Machine learning Mathematics Mathematics and Statistics Mechatronics Networks Optimal control Original Article Robotics Systems Theory Time dependence |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvQgPrFaZQ_edKHNZpPtsRRLEerJQG9L9oUFSaRJL_56Z_Oqigre8tiEMN_sznzZeQDchg5V18aGaoswhDYdUmGVoVGqRKxZbMepz3dePEXzJHxc8mWTFFa00e7tlmS1UnfJbt6ZFRRtDPVFUwLKdmGPI3f3gVxJMOnW31FU0Syk6oHf4wybVJmf3_HVHG19zG_bopW1mR3BYeMmkkmN6zHs2OwEDj4VD8SzRVdxtTiFZFrHnJOmQ0xB8oyg9qy8T0le8vXqHS8UG-X_u5AyJ76pPG1b4JbkbbO2pMouItq7jL5zRFmcQTJ7eJ7OadMygWqcSyXlsRkHynKfm2S0DnTquI5iRERpZ9jYDblWGo1yGgXWIX7OpOizOWRiSFWEYefQy_LMXgAxXCBlVYhe6mkRHnHmrNNOhKFjwvVh1EpO6qaeuP-4V9lVQq6kLVHaspK2ZH246555q6tp_Dl60AIim5lVSOb7BSFpE0Ef7luQtrd_f9vl_4ZfwT7qVlhHhQ2gV6439hr9j1LdVOr2AXpg0r8 priority: 102 providerName: Springer Nature |
Title | Control problems on infinite horizon subject to time-dependent pure state constraints |
URI | https://link.springer.com/article/10.1007/s00498-023-00372-3 https://www.proquest.com/docview/3059662582 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se9GD-MRqLXvwpottntuT1NIHSouIgXoKyT5QkKQ26cVf72yyaVWwt2TzIJmZnf1md2c-gCtHoelKX1AuUQ2OjDqUyVhQL4qZz21f9iKd7zydeZPAeZi7czPhlpltlZVPLBy1SLmeI7-1NU8MgnVm3S0-qWaN0qurhkKjBg10wYzVoXE_nD09r31x1ytCLgzbLb3e6Zi0mSJ5ToNjRnHMoroIi0Xt30PTBm_-WSItRp7RAewbyEj6pY4PYUcmR7D3o5Agnk3X1VezYwgG5f5zYthiMpImBC3pXeNL8oZ_9YUN2SrWczAkT4kmmKcVHW5OFqulJEWmEeEaPmoWiTw7gWA0fBlMqKFPoBz7VU5dX_SsWLo6T0lwbvFIudzzUTsxV8LuqY7LY44DdORZUqEulYgQvymMyjBsYcI-hXqSJvIMiHAZhq8xajLSIRIeubaSiivmOMpmqgndSnIhN7XF9cd9hOuqyIW0Q5R2WEg7tJtwvX5mUVbW2Hp3q1JIaHpZFm5sogk3lZI2l_9_2_n2t13AroXYpdwR1oJ6vlzJS8QeedyGGhuN29Doj18fh21jbtgaWP1vGx3arQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QFOYNHG2XpACAGlBdpTK3ELiReBhJrSpELwUXwjM1laQIJbb1ktZ-bF88b2zAAc2gahqz3FpUY12Dqscl9Hirth5HtSeLoeUrxzu-M2e_btg_MwA59lLAxtqyzHxGygVrGkOfJTQXVikKz71vnglVPVKFpdLUto5LC40-9v6LIlZ60r1O-RZTWuu5dNXlQV4BLhlnLHU3Ur0g6F7ygpLRkaR7oedjqSRom6qToykmi3QtfSBj_RqBBpjUFnBdm8rwS2OwvztkBLTpHpjZvxyF9zMwevipyIVlftIkgnC9UjKu5ztJCcUr5YXPw0hBN2-2tBNrNzjRVYLggqu8gRtQozur8GS9_SFuJZe5zrNVmH3mW-250VtWkSFvcZ4vaZ2Cx7Qhl-4IVkFNGMD0tjRuXseVl8N2WD0VCzLK6JSSKrVLMiTTagNxWxbsJcP-7rLWDK8dFZjhA3ITlkeOQIo400vm0b4ZsK1ErJBbLIZE6dewnGOZgzaQco7SCTdiAqcDx-Z5Dn8fj36d1SIUHxTyfBBIEVOCmVNLn9d2vb_7d2AAvNbvs-uG917nZg0ULWlO9F24W5dDjSe8h60mg_gxqDx2lj-wuVDhTN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfGK16h70pEtr3j2IaGtprRYRC73FZB8oSFNNiuhP89c5k0ergt685blkZ7_sfLM7D4B9SyN0lSu5UDgMlgpq3FOh5E4Qeq4wXVUPKN75uue0-9blwB7MwEcRC0NulcWcmE7UMhK0Rl41qU4MknXPqOrcLeKm2TodPXOqIEU7rUU5jQwiXfX2iuZbfNJp4lgfGEbr4q7R5nmFAS4Qegm3XVk3QmVTKI8UwhCBtoXjYgdCoaVZ1zVbhAJ1WOAYSmN3tQyQ4mg0XJDZe9LEdmdhziWrqARz5xe9m9uJHjh2UnOvhgyJ9lqtPGQnDdwjYu5x1JecEsAY3PyuFqdc98f2bKr1WsuwlNNVdpbhawVm1HAVFr8kMcSz60nm13gN-o3M953llWpiFg0ZoviRuC17QCm-44V4HNL6D0siRsXteVGKN2Gj8YtiaZQTE0RdqYJFEq9D_18EuwGlYTRUm8Ck7aHpHCKKAjLP8Mg2tdJCe5alTU-X4biQnC_yvOb0cU_-JCNzKm0fpe2n0vbNMhxO3hllWT3-fLpSDIif_-GxP8VjGY6KQZre_r21rb9b24N5xLV_1el1t2HBQAqVOaZVoJS8jNUOUqAk3M2xxuD-v-H9Cf6EGl8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+problems+on+infinite+horizon+subject+to+time-dependent+pure+state+constraints&rft.jtitle=Mathematics+of+control%2C+signals%2C+and+systems&rft.au=Basco%2C+Vincenzo&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-4194&rft.eissn=1435-568X&rft.volume=36&rft.issue=2&rft.spage=423&rft.epage=450&rft_id=info:doi/10.1007%2Fs00498-023-00372-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-4194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-4194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-4194&client=summon |