Control problems on infinite horizon subject to time-dependent pure state constraints

In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major ef...

Full description

Saved in:
Bibliographic Details
Published inMathematics of control, signals, and systems Vol. 36; no. 2; pp. 423 - 450
Main Author Basco, Vincenzo
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major efforts toward the development of algorithms to learn how to solve constrained control problems. In particular, discount plays a role in addressing the challenges that come with models that have unbounded disturbances. Although algorithms have been extensively explored, few results take into account time-dependent state constraints, which are imposed in most real-world control applications. For this purpose, here we investigate feasibility and sufficient conditions for Lipschitz regularity of the value function for a class of discounted infinite horizon optimal control problems subject to time-dependent constraints. We focus on problems with data that allow nonautonomous dynamics, and Lagrangian and state constraints that can be unbounded with possibly nonsmooth boundaries.
AbstractList In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for applications in artificial intelligence and machine learning. The strong links between reinforcement learning and control theory have led to major efforts toward the development of algorithms to learn how to solve constrained control problems. In particular, discount plays a role in addressing the challenges that come with models that have unbounded disturbances. Although algorithms have been extensively explored, few results take into account time-dependent state constraints, which are imposed in most real-world control applications. For this purpose, here we investigate feasibility and sufficient conditions for Lipschitz regularity of the value function for a class of discounted infinite horizon optimal control problems subject to time-dependent constraints. We focus on problems with data that allow nonautonomous dynamics, and Lagrangian and state constraints that can be unbounded with possibly nonsmooth boundaries.
Author Basco, Vincenzo
Author_xml – sequence: 1
  givenname: Vincenzo
  surname: Basco
  fullname: Basco, Vincenzo
  email: vincenzo.basco@thalesaleniaspace.com
  organization: Thales Alenia Space
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqOTZJPdPUrxHxS8WPAWdrOJpmyTNcke9NObWkHw0NMww_vNvHkLNHPeaYQuCVwTgOomApRNjYEyDMAqitkJmpOSccxF_TpDc2gYxSVpyjO0iHELAERUZI42K-9S8EMxBt8NehcL7wrrjHU26eLdB_uVB3HqtlqlIvki2Z3GvR6167VLxTgFXcTUZrHyLqbQWpfiOTo17RD1xW9dos393cvqEa-fH55Wt2usGGkS5lXf0E5zyF2vFFWt4UpUpYFOmZ41BrjqFBWiFVSbTudhy0swQAXnUPdsia4Oe7P7j0nHJLd-Ci6flAx4IwTlNc2q-qBSwccYtJHKZsd2_3lrB0lA7kOUhxBlDlH-hChZRuk_dAx214bP4xA7QDGL3ZsOf66OUN9FAoiK
CitedBy_id crossref_primary_10_1007_s40574_024_00410_1
Cites_doi 10.1090/S0002-9947-1983-0690039-8
10.1016/j.ifacol.2017.08.979
10.1007/978-0-8176-4848-0
10.1016/j.jet.2016.08.001
10.1109/CDC.2016.7798271
10.1016/j.automatica.2014.10.096
10.3934/mcrf.2018022
10.1109/TAC.2010.2086553
10.1109/TAC.2005.861702
10.1007/978-3-031-22216-0_12
10.1007/978-3-030-17949-6_2
10.1090/S0002-9947-1984-0732102-X
10.1007/978-1-4471-5076-3
10.1109/CDC.2013.6761117
10.1016/j.automatica.2010.06.034
10.1007/s10479-018-2947-3
10.1016/B978-1-55860-377-6.50013-X
10.1109/CDC.2013.6760907
10.1016/j.jmaa.2022.126452
10.1214/aoms/1177700285
10.1007/978-3-319-75169-6
10.1016/B978-1-55860-377-6.50040-2
10.1007/s00030-019-0553-y
10.1109/TAC.2014.2303232
10.1109/TAC.2013.2270052
10.1109/TAC.2012.2203054
10.1109/CDC.2018.8619554
10.2514/3.25375
10.1007/BFb0026710
10.1023/A:1007686309208
10.1109/TAC.2016.2616644
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7SP
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
S0W
DOI 10.1007/s00498-023-00372-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database (via ProQuest SciTech Premium Collection)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1435-568X
EndPage 450
ExternalDocumentID 10_1007_s00498_023_00372_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7SP
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c319t-57d92be50319dcc2caf5c674f0bcfd39f05cbc266a62efbecfda540f0265508d3
IEDL.DBID BENPR
ISSN 0932-4194
IngestDate Sat Aug 23 14:46:18 EDT 2025
Tue Jul 01 01:46:44 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Viability
Regularity of value functions
Infinite horizon control problems
State constraints
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-57d92be50319dcc2caf5c674f0bcfd39f05cbc266a62efbecfda540f0265508d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3059662582
PQPubID 29789
PageCount 28
ParticipantIDs proquest_journals_3059662582
crossref_citationtrail_10_1007_s00498_023_00372_3
crossref_primary_10_1007_s00498_023_00372_3
springer_journals_10_1007_s00498_023_00372_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle MCSS
PublicationTitle Mathematics of control, signals, and systems
PublicationTitleAbbrev Math. Control Signals Syst
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References De Jager B, Van Keulen T (2013) Optimal control of hybrid vehicles. Springer, Kessels
KouvaritakisBCannonMCouchmanPMpc as a tool for sustainable development integrated policy assessmentIEEE Trans Autom Control2006511145149219280310.1109/TAC.2005.861702
FrankelADiscounted quotasJ Econ Theory2016166396444356645010.1016/j.jet.2016.08.001
MunosRA study of reinforcement learning in the continuous case by the means of viscosity solutionsMach Learn20004026529910.1023/A:1007686309208
Basco V, Frankowska H (2019) Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints. In: Alabau-Boussouira F, et al (eds) Trends in control theory and partial differential equations, vol 32 of Springer INdAM Series. Springer International Publishing, pp 15 – 52
Gordon GJ (1995) Stable function approximation in dynamic programming. In: Machine learning proceedings. Elsevier, pp 261–268
KamgarpourMSummersTOn infinite dimensional linear programming approach to stochastic controlIFAC-PapersOnLine20175016148615310.1016/j.ifacol.2017.08.979
SchildbachGGoulartPMorariMLinear controller design for chance constrained systemsAutomatica201551278284328477910.1016/j.automatica.2014.10.096
Hashimoto T (2013) Probabilistic constrained model predictive control for linear discrete-time systems with additive stochastic disturbances. In: 52nd IEEE conference on decision and control. IEEE, pp 6434–6439
Bertsekas D (2022) Dynamic programming and optimal control, volume 1. Athena scientific
Aubin J-P, Frankowska H (2009) Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc, Boston, MA
CannonMKouvaritakisBRakovićSVChengQStochastic tubes in model predictive control with probabilistic constraintsIEEE Trans Autom Control2010561194200277721810.1109/TAC.2010.2086553
BlackwellDDiscounted dynamic programmingAnn Math Stat196536122623517353610.1214/aoms/1177700285
Bertsekas D (2019) Reinforcement learning and optimal control. Athena Scientific
Farina M, Giulioni L, Magni L, Scattolini R (2013) A probabilistic approach to model predictive control. In: 52nd IEEE conference on decision and control. IEEE, pp 7734–7739
CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1983277114269003910.1090/S0002-9947-1983-0690039-8
PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Trans Autom Control201662627362749366055910.1109/TAC.2016.2616644
Baird L (1995) Residual algorithms: reinforcement learning with function approximation. In: Machine learning proceedings. Elsevier, pp 30–37
KouvaritakisBCannonMRakovićSVChengQExplicit use of probabilistic distributions in linear predictive controlAutomatica2010461017191724287732810.1016/j.automatica.2010.06.034
Hewing L, Zeilinger MN (2018) Stochastic model predictive control for linear systems using probabilistic reachable sets. In: 2018 IEEE conference on decision and control (CDC), pp 5182–5188. IEEE
VinterRBOptimal Control2000Boston, MABirkhäuser
MargellosKGoulartPLygerosJOn the road between robust optimization and the scenario approach for chance constrained optimization problemsIEEE Trans Autom Control201459822582263324527110.1109/TAC.2014.2303232
BascoVCannarsaPFrankowskaHNecessary conditions for infinite horizon optimal control problems with state constraintsMath Control Relat Fields201883–4535555391745210.3934/mcrf.2018022
BascoVFrankowskaHHamilton–Jacobi–Bellman equations with time-measurable data and infinite horizonNonlinear Differ Equ Appl20192617390794710.1007/s00030-019-0553-y
CrandallMGEvansLCLionsP-LSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1984282248750273210210.1090/S0002-9947-1984-0732102-X
Munos R (1998) A general convergence method for reinforcement learning in the continuous case. In: European conference on machine learning. Springer, pp 394–405
BascoVWeak epigraphical solutions to Hamilton–Jacobi–Bellman equations on infinite horizonJ Math Anal Appl20225152444618310.1016/j.jmaa.2022.126452
Boyan J, Moore A (1994) Generalization in reinforcement learning: safely approximating the value function. Adv Neural Inf Process Syst 7
Feichtinger G, Kovacevic RM, Tragler G (2018) Control systems and mathematical methods in economics, volume 687. Lecture Notes in Economics and Mathematical Systems. Springer
De Pinho MR, Foroozandeh Z, Matos A (2016) Optimal control problems for path planing of AUV using simplified models. In: 2016 IEEE 55th conference on decision and control (CDC), pp 210–215. IEEE
MenonPKABriggsMMNear-optimal midcourse guidance for air-to-air missilesJ Guid Control Dyn199013459660210.2514/3.25375
NystrupPBoydSLindströmEMadsenHMulti-period portfolio selection with drawdown controlAnn Oper Res20192821245271401923910.1007/s10479-018-2947-3
CalafioreGCFagianoLRobust model predictive control via scenario optimizationIEEE Trans Autom Control2012581219224300672510.1109/TAC.2012.2203054
Weston J, Tolić D, Palunko I (2022) Mixed use of Pontryagin’s principle and the Hamilton–Jacobi–Bellman equation in infinite-and finite-horizon constrained optimal control. In: International conference on intelligent autonomous systems. Springer, pp 167–185
Van ParysBPGGoulartPJMorariMInfinite horizon performance bounds for uncertain constrained systemsIEEE Trans Autom Control2013581128032817312599010.1109/TAC.2013.2270052
372_CR21
372_CR20
D Blackwell (372_CR9) 1965; 36
BPG Van Parys (372_CR33) 2013; 58
GC Calafiore (372_CR11) 2012; 58
MG Crandall (372_CR13) 1984; 282
372_CR7
372_CR6
372_CR1
R Munos (372_CR29) 2000; 40
G Schildbach (372_CR32) 2015; 51
372_CR2
372_CR18
372_CR17
RB Vinter (372_CR34) 2000
372_CR16
372_CR15
B Kouvaritakis (372_CR25) 2010; 46
372_CR8
372_CR35
M Kamgarpour (372_CR23) 2017; 50
PKA Menon (372_CR27) 1990; 13
372_CR10
MG Crandall (372_CR14) 1983; 277
B Kouvaritakis (372_CR24) 2006; 51
M Cannon (372_CR12) 2010; 56
V Basco (372_CR4) 2018; 8
P Nystrup (372_CR30) 2019; 282
K Margellos (372_CR26) 2014; 59
V Basco (372_CR3) 2022; 515
R Postoyan (372_CR31) 2016; 62
V Basco (372_CR5) 2019; 26
372_CR28
A Frankel (372_CR19) 2016; 166
372_CR22
References_xml – reference: Bertsekas D (2019) Reinforcement learning and optimal control. Athena Scientific
– reference: Basco V, Frankowska H (2019) Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints. In: Alabau-Boussouira F, et al (eds) Trends in control theory and partial differential equations, vol 32 of Springer INdAM Series. Springer International Publishing, pp 15 – 52
– reference: Munos R (1998) A general convergence method for reinforcement learning in the continuous case. In: European conference on machine learning. Springer, pp 394–405
– reference: CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1983277114269003910.1090/S0002-9947-1983-0690039-8
– reference: CannonMKouvaritakisBRakovićSVChengQStochastic tubes in model predictive control with probabilistic constraintsIEEE Trans Autom Control2010561194200277721810.1109/TAC.2010.2086553
– reference: Feichtinger G, Kovacevic RM, Tragler G (2018) Control systems and mathematical methods in economics, volume 687. Lecture Notes in Economics and Mathematical Systems. Springer
– reference: Boyan J, Moore A (1994) Generalization in reinforcement learning: safely approximating the value function. Adv Neural Inf Process Syst 7
– reference: BascoVCannarsaPFrankowskaHNecessary conditions for infinite horizon optimal control problems with state constraintsMath Control Relat Fields201883–4535555391745210.3934/mcrf.2018022
– reference: BascoVFrankowskaHHamilton–Jacobi–Bellman equations with time-measurable data and infinite horizonNonlinear Differ Equ Appl20192617390794710.1007/s00030-019-0553-y
– reference: FrankelADiscounted quotasJ Econ Theory2016166396444356645010.1016/j.jet.2016.08.001
– reference: Bertsekas D (2022) Dynamic programming and optimal control, volume 1. Athena scientific
– reference: CalafioreGCFagianoLRobust model predictive control via scenario optimizationIEEE Trans Autom Control2012581219224300672510.1109/TAC.2012.2203054
– reference: BascoVWeak epigraphical solutions to Hamilton–Jacobi–Bellman equations on infinite horizonJ Math Anal Appl20225152444618310.1016/j.jmaa.2022.126452
– reference: Farina M, Giulioni L, Magni L, Scattolini R (2013) A probabilistic approach to model predictive control. In: 52nd IEEE conference on decision and control. IEEE, pp 7734–7739
– reference: KamgarpourMSummersTOn infinite dimensional linear programming approach to stochastic controlIFAC-PapersOnLine20175016148615310.1016/j.ifacol.2017.08.979
– reference: KouvaritakisBCannonMRakovićSVChengQExplicit use of probabilistic distributions in linear predictive controlAutomatica2010461017191724287732810.1016/j.automatica.2010.06.034
– reference: Weston J, Tolić D, Palunko I (2022) Mixed use of Pontryagin’s principle and the Hamilton–Jacobi–Bellman equation in infinite-and finite-horizon constrained optimal control. In: International conference on intelligent autonomous systems. Springer, pp 167–185
– reference: De Jager B, Van Keulen T (2013) Optimal control of hybrid vehicles. Springer, Kessels
– reference: De Pinho MR, Foroozandeh Z, Matos A (2016) Optimal control problems for path planing of AUV using simplified models. In: 2016 IEEE 55th conference on decision and control (CDC), pp 210–215. IEEE
– reference: Baird L (1995) Residual algorithms: reinforcement learning with function approximation. In: Machine learning proceedings. Elsevier, pp 30–37
– reference: KouvaritakisBCannonMCouchmanPMpc as a tool for sustainable development integrated policy assessmentIEEE Trans Autom Control2006511145149219280310.1109/TAC.2005.861702
– reference: Hewing L, Zeilinger MN (2018) Stochastic model predictive control for linear systems using probabilistic reachable sets. In: 2018 IEEE conference on decision and control (CDC), pp 5182–5188. IEEE
– reference: BlackwellDDiscounted dynamic programmingAnn Math Stat196536122623517353610.1214/aoms/1177700285
– reference: VinterRBOptimal Control2000Boston, MABirkhäuser
– reference: CrandallMGEvansLCLionsP-LSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans Amer Math Soc1984282248750273210210.1090/S0002-9947-1984-0732102-X
– reference: Gordon GJ (1995) Stable function approximation in dynamic programming. In: Machine learning proceedings. Elsevier, pp 261–268
– reference: SchildbachGGoulartPMorariMLinear controller design for chance constrained systemsAutomatica201551278284328477910.1016/j.automatica.2014.10.096
– reference: NystrupPBoydSLindströmEMadsenHMulti-period portfolio selection with drawdown controlAnn Oper Res20192821245271401923910.1007/s10479-018-2947-3
– reference: Van ParysBPGGoulartPJMorariMInfinite horizon performance bounds for uncertain constrained systemsIEEE Trans Autom Control2013581128032817312599010.1109/TAC.2013.2270052
– reference: MargellosKGoulartPLygerosJOn the road between robust optimization and the scenario approach for chance constrained optimization problemsIEEE Trans Autom Control201459822582263324527110.1109/TAC.2014.2303232
– reference: Hashimoto T (2013) Probabilistic constrained model predictive control for linear discrete-time systems with additive stochastic disturbances. In: 52nd IEEE conference on decision and control. IEEE, pp 6434–6439
– reference: PostoyanRBuşoniuLNešićDDaafouzJStability analysis of discrete-time infinite-horizon optimal control with discounted costIEEE Trans Autom Control201662627362749366055910.1109/TAC.2016.2616644
– reference: Aubin J-P, Frankowska H (2009) Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc, Boston, MA
– reference: MunosRA study of reinforcement learning in the continuous case by the means of viscosity solutionsMach Learn20004026529910.1023/A:1007686309208
– reference: MenonPKABriggsMMNear-optimal midcourse guidance for air-to-air missilesJ Guid Control Dyn199013459660210.2514/3.25375
– volume: 277
  start-page: 1
  issue: 1
  year: 1983
  ident: 372_CR14
  publication-title: Trans Amer Math Soc
  doi: 10.1090/S0002-9947-1983-0690039-8
– volume: 50
  start-page: 6148
  issue: 1
  year: 2017
  ident: 372_CR23
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.979
– ident: 372_CR1
  doi: 10.1007/978-0-8176-4848-0
– volume: 166
  start-page: 396
  year: 2016
  ident: 372_CR19
  publication-title: J Econ Theory
  doi: 10.1016/j.jet.2016.08.001
– ident: 372_CR16
  doi: 10.1109/CDC.2016.7798271
– ident: 372_CR7
– volume: 51
  start-page: 278
  year: 2015
  ident: 372_CR32
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.096
– volume-title: Optimal Control
  year: 2000
  ident: 372_CR34
– volume: 8
  start-page: 535
  issue: 3–4
  year: 2018
  ident: 372_CR4
  publication-title: Math Control Relat Fields
  doi: 10.3934/mcrf.2018022
– volume: 56
  start-page: 194
  issue: 1
  year: 2010
  ident: 372_CR12
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2086553
– volume: 51
  start-page: 145
  issue: 1
  year: 2006
  ident: 372_CR24
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2005.861702
– ident: 372_CR35
  doi: 10.1007/978-3-031-22216-0_12
– ident: 372_CR6
  doi: 10.1007/978-3-030-17949-6_2
– volume: 282
  start-page: 487
  issue: 2
  year: 1984
  ident: 372_CR13
  publication-title: Trans Amer Math Soc
  doi: 10.1090/S0002-9947-1984-0732102-X
– ident: 372_CR15
  doi: 10.1007/978-1-4471-5076-3
– ident: 372_CR17
  doi: 10.1109/CDC.2013.6761117
– volume: 46
  start-page: 1719
  issue: 10
  year: 2010
  ident: 372_CR25
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.06.034
– volume: 282
  start-page: 245
  issue: 1
  year: 2019
  ident: 372_CR30
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-018-2947-3
– ident: 372_CR2
  doi: 10.1016/B978-1-55860-377-6.50013-X
– ident: 372_CR21
  doi: 10.1109/CDC.2013.6760907
– volume: 515
  issue: 2
  year: 2022
  ident: 372_CR3
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2022.126452
– volume: 36
  start-page: 226
  issue: 1
  year: 1965
  ident: 372_CR9
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177700285
– ident: 372_CR18
  doi: 10.1007/978-3-319-75169-6
– ident: 372_CR20
  doi: 10.1016/B978-1-55860-377-6.50040-2
– volume: 26
  start-page: 7
  issue: 1
  year: 2019
  ident: 372_CR5
  publication-title: Nonlinear Differ Equ Appl
  doi: 10.1007/s00030-019-0553-y
– ident: 372_CR10
– volume: 59
  start-page: 2258
  issue: 8
  year: 2014
  ident: 372_CR26
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2014.2303232
– ident: 372_CR8
– volume: 58
  start-page: 2803
  issue: 11
  year: 2013
  ident: 372_CR33
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2013.2270052
– volume: 58
  start-page: 219
  issue: 1
  year: 2012
  ident: 372_CR11
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2012.2203054
– ident: 372_CR22
  doi: 10.1109/CDC.2018.8619554
– volume: 13
  start-page: 596
  issue: 4
  year: 1990
  ident: 372_CR27
  publication-title: J Guid Control Dyn
  doi: 10.2514/3.25375
– ident: 372_CR28
  doi: 10.1007/BFb0026710
– volume: 40
  start-page: 265
  year: 2000
  ident: 372_CR29
  publication-title: Mach Learn
  doi: 10.1023/A:1007686309208
– volume: 62
  start-page: 2736
  issue: 6
  year: 2016
  ident: 372_CR31
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2016.2616644
SSID ssj0001671
Score 2.332951
Snippet In the last decades, control problems with infinite horizons and discount factors have become increasingly central not only for economics but also for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 423
SubjectTerms Algorithms
Artificial intelligence
Communications Engineering
Constraints
Control
Control theory
Discounts
Machine learning
Mathematics
Mathematics and Statistics
Mechatronics
Networks
Optimal control
Original Article
Robotics
Systems Theory
Time dependence
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvQgPrFaZQ_edKHNZpPtsRRLEerJQG9L9oUFSaRJL_56Z_Oqigre8tiEMN_sznzZeQDchg5V18aGaoswhDYdUmGVoVGqRKxZbMepz3dePEXzJHxc8mWTFFa00e7tlmS1UnfJbt6ZFRRtDPVFUwLKdmGPI3f3gVxJMOnW31FU0Syk6oHf4wybVJmf3_HVHG19zG_bopW1mR3BYeMmkkmN6zHs2OwEDj4VD8SzRVdxtTiFZFrHnJOmQ0xB8oyg9qy8T0le8vXqHS8UG-X_u5AyJ76pPG1b4JbkbbO2pMouItq7jL5zRFmcQTJ7eJ7OadMygWqcSyXlsRkHynKfm2S0DnTquI5iRERpZ9jYDblWGo1yGgXWIX7OpOizOWRiSFWEYefQy_LMXgAxXCBlVYhe6mkRHnHmrNNOhKFjwvVh1EpO6qaeuP-4V9lVQq6kLVHaspK2ZH246555q6tp_Dl60AIim5lVSOb7BSFpE0Ef7luQtrd_f9vl_4ZfwT7qVlhHhQ2gV6439hr9j1LdVOr2AXpg0r8
  priority: 102
  providerName: Springer Nature
Title Control problems on infinite horizon subject to time-dependent pure state constraints
URI https://link.springer.com/article/10.1007/s00498-023-00372-3
https://www.proquest.com/docview/3059662582
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se9GD-MRqLXvwpottntuT1NIHSouIgXoKyT5QkKQ26cVf72yyaVWwt2TzIJmZnf1md2c-gCtHoelKX1AuUQ2OjDqUyVhQL4qZz21f9iKd7zydeZPAeZi7czPhlpltlZVPLBy1SLmeI7-1NU8MgnVm3S0-qWaN0qurhkKjBg10wYzVoXE_nD09r31x1ytCLgzbLb3e6Zi0mSJ5ToNjRnHMoroIi0Xt30PTBm_-WSItRp7RAewbyEj6pY4PYUcmR7D3o5Agnk3X1VezYwgG5f5zYthiMpImBC3pXeNL8oZ_9YUN2SrWczAkT4kmmKcVHW5OFqulJEWmEeEaPmoWiTw7gWA0fBlMqKFPoBz7VU5dX_SsWLo6T0lwbvFIudzzUTsxV8LuqY7LY44DdORZUqEulYgQvymMyjBsYcI-hXqSJvIMiHAZhq8xajLSIRIeubaSiivmOMpmqgndSnIhN7XF9cd9hOuqyIW0Q5R2WEg7tJtwvX5mUVbW2Hp3q1JIaHpZFm5sogk3lZI2l_9_2_n2t13AroXYpdwR1oJ6vlzJS8QeedyGGhuN29Doj18fh21jbtgaWP1vGx3arQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QFOYNHG2XpACAGlBdpTK3ELiReBhJrSpELwUXwjM1laQIJbb1ktZ-bF88b2zAAc2gahqz3FpUY12Dqscl9Hirth5HtSeLoeUrxzu-M2e_btg_MwA59lLAxtqyzHxGygVrGkOfJTQXVikKz71vnglVPVKFpdLUto5LC40-9v6LIlZ60r1O-RZTWuu5dNXlQV4BLhlnLHU3Ur0g6F7ygpLRkaR7oedjqSRom6qToykmi3QtfSBj_RqBBpjUFnBdm8rwS2OwvztkBLTpHpjZvxyF9zMwevipyIVlftIkgnC9UjKu5ztJCcUr5YXPw0hBN2-2tBNrNzjRVYLggqu8gRtQozur8GS9_SFuJZe5zrNVmH3mW-250VtWkSFvcZ4vaZ2Cx7Qhl-4IVkFNGMD0tjRuXseVl8N2WD0VCzLK6JSSKrVLMiTTagNxWxbsJcP-7rLWDK8dFZjhA3ITlkeOQIo400vm0b4ZsK1ErJBbLIZE6dewnGOZgzaQco7SCTdiAqcDx-Z5Dn8fj36d1SIUHxTyfBBIEVOCmVNLn9d2vb_7d2AAvNbvs-uG917nZg0ULWlO9F24W5dDjSe8h60mg_gxqDx2lj-wuVDhTN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfGK16h70pEtr3j2IaGtprRYRC73FZB8oSFNNiuhP89c5k0ergt685blkZ7_sfLM7D4B9SyN0lSu5UDgMlgpq3FOh5E4Qeq4wXVUPKN75uue0-9blwB7MwEcRC0NulcWcmE7UMhK0Rl41qU4MknXPqOrcLeKm2TodPXOqIEU7rUU5jQwiXfX2iuZbfNJp4lgfGEbr4q7R5nmFAS4Qegm3XVk3QmVTKI8UwhCBtoXjYgdCoaVZ1zVbhAJ1WOAYSmN3tQyQ4mg0XJDZe9LEdmdhziWrqARz5xe9m9uJHjh2UnOvhgyJ9lqtPGQnDdwjYu5x1JecEsAY3PyuFqdc98f2bKr1WsuwlNNVdpbhawVm1HAVFr8kMcSz60nm13gN-o3M953llWpiFg0ZoviRuC17QCm-44V4HNL6D0siRsXteVGKN2Gj8YtiaZQTE0RdqYJFEq9D_18EuwGlYTRUm8Ck7aHpHCKKAjLP8Mg2tdJCe5alTU-X4biQnC_yvOb0cU_-JCNzKm0fpe2n0vbNMhxO3hllWT3-fLpSDIif_-GxP8VjGY6KQZre_r21rb9b24N5xLV_1el1t2HBQAqVOaZVoJS8jNUOUqAk3M2xxuD-v-H9Cf6EGl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+problems+on+infinite+horizon+subject+to+time-dependent+pure+state+constraints&rft.jtitle=Mathematics+of+control%2C+signals%2C+and+systems&rft.au=Basco%2C+Vincenzo&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-4194&rft.eissn=1435-568X&rft.volume=36&rft.issue=2&rft.spage=423&rft.epage=450&rft_id=info:doi/10.1007%2Fs00498-023-00372-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-4194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-4194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-4194&client=summon