ViT-PGC: vision transformer for pedestrian gender classification on small-size dataset
Pedestrian gender classification (PGC) is a key task in full-body-based pedestrian image analysis and has become an important area in applications like content-based image retrieval, visual surveillance, smart city, and demographic collection. In the last decade, convolutional neural networks (CNN)...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 26; no. 4; pp. 1805 - 1819 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-023-01196-2 |
Cover
Loading…
Abstract | Pedestrian gender classification (PGC) is a key task in full-body-based pedestrian image analysis and has become an important area in applications like content-based image retrieval, visual surveillance, smart city, and demographic collection. In the last decade, convolutional neural networks (CNN) have appeared with great potential and with reliable choices for vision tasks, such as object classification, recognition, detection, etc. But CNN has a limited local receptive field that prevents them from learning information about the global context. In contrast, a vision transformer (ViT) is a better alternative to CNN because it utilizes a self-attention mechanism to attend to a different patch of an input image. In this work, generic and effective modules such as locality self-attention (LSA), and shifted patch tokenization (SPT)-based vision transformer model are explored for the PGC task. With the use of these modules in ViT, it is successfully able to learn from stretch even on small-size (SS) datasets and overcome the lack of locality inductive bias. Through extensive experimentation, we found that the proposed ViT model produced better results in terms of overall and mean accuracies. The better results confirm that ViT outperformed state-of-the-art (SOTA) PGC methods. |
---|---|
AbstractList | Pedestrian gender classification (PGC) is a key task in full-body-based pedestrian image analysis and has become an important area in applications like content-based image retrieval, visual surveillance, smart city, and demographic collection. In the last decade, convolutional neural networks (CNN) have appeared with great potential and with reliable choices for vision tasks, such as object classification, recognition, detection, etc. But CNN has a limited local receptive field that prevents them from learning information about the global context. In contrast, a vision transformer (ViT) is a better alternative to CNN because it utilizes a self-attention mechanism to attend to a different patch of an input image. In this work, generic and effective modules such as locality self-attention (LSA), and shifted patch tokenization (SPT)-based vision transformer model are explored for the PGC task. With the use of these modules in ViT, it is successfully able to learn from stretch even on small-size (SS) datasets and overcome the lack of locality inductive bias. Through extensive experimentation, we found that the proposed ViT model produced better results in terms of overall and mean accuracies. The better results confirm that ViT outperformed state-of-the-art (SOTA) PGC methods. |
Author | Yasmin, Mussarat Asim, Usman Fayyaz, Muhammad Abbas, Farhat |
Author_xml | – sequence: 1 givenname: Farhat orcidid: 0000-0001-6182-3244 surname: Abbas fullname: Abbas, Farhat email: farhatabbas421@gmail.com organization: Department of Computer Science, COMSATS University Islamabad – sequence: 2 givenname: Mussarat surname: Yasmin fullname: Yasmin, Mussarat organization: Department of Computer Science, COMSATS University Islamabad – sequence: 3 givenname: Muhammad surname: Fayyaz fullname: Fayyaz, Muhammad organization: Department of Computer Science, FAST-National University of Computer and Emerging Sciences (NUCES) – sequence: 4 givenname: Usman surname: Asim fullname: Asim, Usman organization: DeltaX |
BookMark | eNp9kE1LAzEQQINUsK3-AU8LnqP53M16k6JVKOihFm8hzWZLyjZbM1tBf71pVxQ8FIaZEOZlJm-EBqENDqFLSq4pIcUNpCwEJoxjQmmZY3aChlRwjgsp3wa_Z0HP0AhgTQjnnKkhWiz8HL9MJ7fZhwffhqyLJkDdxo2LWSrZ1lUOuuhNyFYuVOnWNgbA196abg-kgI1pGgz-y2WV6Qy47hyd1qYBd_FTx-j14X4-ecSz5-nT5G6GLadlh2WhBBOKSVVVjohKKWVr5WReW1s5JurcSEaYkpK4MpekWMrcLJdKlso6mks-Rlf9u9vYvu_Sonrd7mJIIzVTJeOkoKVKXazvsrEFiK7W2-g3Jn5qSvTen-796eRPH_xpliD1D7K-O3w5KfLNcZT3KKQ5YeXi31ZHqG_1uoZn |
CitedBy_id | crossref_primary_10_3390_s25061736 crossref_primary_10_1007_s10044_024_01406_5 crossref_primary_10_3390_fractalfract8100551 |
Cites_doi | 10.1145/2733373.2806332 10.1049/cp.2017.0102 10.1016/j.comcom.2021.09.001 10.1117/12.2280487 10.1007/s10044-018-0688-1 10.1007/s11760-022-02217-z 10.1007/978-3-319-57421-9_17 10.1007/s10044-018-0725-0 10.1016/j.patrec.2017.07.007 10.1109/ICCV48922.2021.01007 10.1117/12.2077079 10.1007/s00521-020-05071-7 10.1007/s42452-021-04881-1 10.1007/s12652-019-01267-5 10.48161/qaj.v1n2a63 10.1145/2647868.2654966 10.1109/TIP.2019.2891888 10.1109/ACCESS.2018.2889797 10.1109/CVPR.2016.90 10.1186/s41074-018-0048-5 10.1109/ICCV.2019.00338 10.1038/s41598-021-95218-w 10.1109/ICCV.2015.384 10.1109/ICB45273.2019.8987245 10.1007/978-3-030-87237-3_5 10.1088/1742-6596/1813/1/012051 10.1109/CVPR.2017.360 10.32010/26166127.2021.4.1.60.90 10.1002/ima.22812 10.1007/s00371-020-01814-8 10.1109/ISPACS.2017.8265639 10.1007/s00521-020-05015-1 10.1109/ICCV48922.2021.01172 10.1016/j.future.2018.05.002 10.1016/j.apenergy.2021.117912 10.1016/j.patcog.2017.06.011 10.1007/s00521-018-3754-0 10.1016/j.eswa.2021.116288 10.1109/CVPR46437.2021.01625 10.1609/aaai.v36i2.20103 10.1016/j.patrec.2018.01.010 10.1007/978-3-642-12297-2_23 10.1016/j.asoc.2018.05.012 10.1109/ICCASIT50869.2020.9368658 10.1109/ICCVW.2009.5457467 10.1016/j.irbm.2019.10.006 10.1007/978-3-642-39065-4_67 10.1109/AVSS.2017.8078525 10.1007/s12652-020-02750-0 10.1016/j.compag.2018.10.013 10.1609/aaai.v31i1.11231 10.1007/s00521-021-06652-w 10.1038/s41598-020-59108-x 10.1080/0952813X.2019.1572657 10.3390/math9192499 10.1504/IJBM.2016.082604 10.1109/CVPR.2015.7298594 10.1109/AIMS.2013.13 10.1007/s11042-018-7031-0 10.1109/TPAMI.2017.2669035 10.1016/j.jfranklin.2017.09.003 10.1109/JIOT.2020.3021763 10.1109/ICCV48922.2021.00986 10.1109/ICCV48922.2021.00060 10.1109/ICCV48922.2021.00009 10.1016/j.measurement.2019.01.041 10.1109/CAC.2018.8623118 10.1145/1459359.1459470 10.1007/s10044-015-0499-6 10.1109/ICCV.2017.97 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-023-01196-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 1819 |
ExternalDocumentID | 10_1007_s10044_023_01196_2 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-5784248258dde04d888cf8e56fccde24f6a52028550e96507b56abb8598ce1653 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Sat Jul 26 00:43:46 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Tue Jul 01 01:15:18 EDT 2025 Fri Feb 21 02:44:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Vision transformer Pedestrian gender classification Deep CNN models LSA and SPT SS datasets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5784248258dde04d888cf8e56fccde24f6a52028550e96507b56abb8598ce1653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6182-3244 |
PQID | 2892307198 |
PQPubID | 2043691 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2892307198 crossref_primary_10_1007_s10044_023_01196_2 crossref_citationtrail_10_1007_s10044_023_01196_2 springer_journals_10_1007_s10044_023_01196_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | DongHZhangLZouBExploring vision transformers for polarimetric SAR image classificationIEEE Trans Geosci Remote Sens202160115 SindagiVAPatelVMA survey of recent advances in cnn-based single image crowd counting and density estimationPattern Recogn Lett2018107316 Azzopardi G, Greco A, Saggese A, Vento M (2017) Fast gender recognition in videos using a novel descriptor based on the gradient magnitudes of facial landmarks. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 1–6. Antipov G, Berrani S-A, Ruchaud N, Dugelay J-L (2015) Learned vs. hand-crafted features for pedestrian gender recognition. In: Proceedings of the 23rd ACM international conference on Multimedia 1263–1266. Sun C, Shrivastava A, Singh S, Gupta A (2017) Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE international conference on computer vision 843–852. NogayHSAkinciTCYilmazMDetection of invisible cracks in ceramic materials using by pre-trained deep convolutional neural networkNeural Comput Appl20223414231432 YoshihashiRTrinhTTKawakamiRYouSIidaMNaemuraTPedestrian detection with motion features via two-stream ConvNetsIPSJ Trans Compute Vis Appl20181012 SalihBMAbdulazeezAMHassanOMSGender classification based on iris recognition using artificial neural networksQubahan Acad J20211156163 LuTHanBChenLYuFXueCA generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learningSci Rep20211115824 Zhao C, Wang X, Wong WK, Zheng W, Yang J, Miao D (2017) Multiple metric learning based on bar-shape descriptor for person re-identification. Pattern Recog Gornale S, Basavanna M, Kruti R (2017) Fingerprint based gender classification using local binary pattern. Int J Comput Intell Res ISSN, 0973–1873 Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision 10012-10022 AbbasFYasminMFayyazMAbd ElazizMLuSEl-LatifAAAGender classification using proposed CNN-based model and ant colony optimizationMathematics2021924992021 Tapia J, Arellano C (2019) Gender classification from Iris texture images using a new set of binary statistical image features. In: 2019 International Conference on Biometrics (ICB). 1-7. Lee SH, Lee S, Song BC (2021) Vision transformer for small-size datasets. arXiv preprint arXiv:2112.13492 CaiLZhuJZengHChenJCaiCMaK-KHog-assisted deep feature learning for pedestrian gender recognitionJ Franklin Inst201835519912008 CıbukMBudakUGuoYInceMCSengurAEfficient deep features selections and classification for flower species recognitionMeasurement2019137713 AbbasFYasminMFayyazMElazizMALuSEl-LatifAAAGender classification using proposed cnn-based model and ant colony optimizationMathematics202192499 BrownTMannBRyderNSubbiahMKaplanJDDhariwalPLanguage models are few-shot learnersAdv Neural Inf Process Syst20203318771901 Xu J, Luo L, Deng C, Huang H (2018) Bilevel distance metric learning for robust image recognition. In: Advances in Neural Information Processing Systems 4198–4207. Srinivas A, Lin T-Y, Parmar N, Shlens J, Abbeel P, Vaswani A (2021) Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 16519–16529. GeelenCDWijnhovenRGDubbelmanGGender classification in low-resolution surveillance video: in-depth comparison of random forests and SVMsVideo Surv Transp Imaging Appl20152015170183 LeeMLeeJ-HKimD-HGender recognition using optimal gait feature based on recursive feature elimination in normal walkingExpert Syst Appl2022189 Cai L, Zeng H, Zhu J, Cao J, Hou J, Cai C (2017) Multi-view joint learning network for pedestrian gender classification. In: 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) 23-27. Xu Z, Sun K, Mao J (2020) Research on ResNet101 network chemical reagent label image classification based on transfer learning. In: 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT) 354–358. Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450. Ng CB, Tay YH, Goi BM (2017) Training strategy for convolutional neural networks in pedestrian gender classification. In: Second International Workshop on Pattern Recognition 10443: 226-230. SPIE. Bhojanapalli S, Chakrabarti A, Glasner D, Li D, Unterthiner T, Veit A (2021) Understanding robustness of transformers for image classification. In: Proceedings of the IEEE/CVF international conference on computer vision. 10231–10241. NgC-BTayY-HGoiB-MPedestrian gender classification using combined global and local parts-based convolutional neural networksPattern Anal Appl201922146914804009731 KhanMAAkramTSharifMAwaisMJavedKAliHCCDF: automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN featuresComput Electron Agric2018155220236 LinFWuYZhuangYLongXXuWHuman gender classification: a reviewInt J Biomet20168275300 Yaghoubi E, Alirezazadeh P, Assunção E, Neves JC, Proençaã H (2019) Region-based cnns for pedestrian gender recognition in visual surveillance environments. In: 2019 International Conference of the Biometrics Special Interest Group (BIOSIG) 1-5. Bello I, Zoph B, Vaswani A, Shlens J, Le QV (2019) Attention augmented convolutional networks. arXiv preprint arXiv:1904.09925. FayyazMYasminMSharifMRazaMJ-LDFR: joint low-level and deep neural network feature representations for pedestrian gender classificationNeural Comput Appl202133361391 Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang Z, et al. (2021) Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet. In: 2021 IEEE, in CVF International Conference on Computer Vision, ICCV 538-547. Collins M, Zhang J, Miller P, Wang H (2009) Full body image feature representations for gender profiling. In: 2009 IEEE 12th International conference on computer vision workshops, ICCV workshops. 1235-1242. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition 770-778. ZhangMSuHWenJClassification of flower image based on attention mechanism and multi-loss attention networkComput Commun2021179307317 Cai L, Zhu J, Zeng H, Chen J, Cai C (2018) Deep-learned and hand-crafted features fusion network for pedestrian gender recognition. In: Proceedings of ELM-2016, Springer. 207–215. AhadMFayyazMPedestrian gender recognition with handcrafted feature ensemblesAzerbaijan J High Perform Comput2021416090 Ng C-B, Tay Y-H, Goi B-M (2013) A convolutional neural network for pedestrian gender recognition. In: International symposium on neural networks 558–564. SharifMAttique KhanMRashidMYasminMAfzaFTanikUJDeep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy imagesJ Exp Theore Artif Intell2019334577599 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proc Syst 25 Raza M, Zonghai C, Rehman SU, Zhenhua G, Jikai W, Peng B (2017) Part-wise pedestrian gender recognition via deep convolutional neural networks Liu T, Ye X, Sun (2018) Combining convolutional neural network and support vector machine for gait-based gender recognition. In: 2018 Chinese Automation Congress (CAC) 3477-3481. Deng Y, Luo P, Loy CC, Tang X (2014)Pedestrian attribute recognition at far distance. In: Proceedings of the 22nd ACM international conference on Multimedia 789-792. ShaheedKMaoAQureshiIKumarMHussainSUllahIDS-CNN: A pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognitionExpert Syst Appl2022191 Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L (2021) Cvt: Introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 22-31). YuanBHanLGuXYanHMulti-deep features fusion for high-resolution remote sensing image scene classificationNeural Comput Appl20213320472063 SunYZhangMSunZTanTDemographic analysis from biometric data: achievements, challenges, and new frontiersIEEE Trans Pattern Anal Mach Intell201740332351 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Guo G, Mu G, Fu Y (2009) Gender from body: a biologically-inspired approach with manifold learning. In: Asian conference on computer vision 236–245. AhmedKSainiMFCML-gait: fog computing and machine learning inspired human identity and gender recognition using gait sequencesSignal, Image Video Proc2022174925936 Xiao T, Li S, Wang B, Lin L, Wang X (2017) Joint detection and identification feature learning for person search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3415–3424. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition 1-9 Ng C-B, Tay Y-H, Goi B-M (2013) Comparing image representations for training a convolutional neural network to classify gender. In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulatio 29–33. GrecoASaggeseAVentoMVigilanteVGender recognition in the wild: a robustness evaluation over corrupted imagesJ Ambient Intell Humaniz Comput2021121046110472 RazaMSharifMYasminMKhanMASabaTFernandesSLAppearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learningFutur Gener Comput Syst2018882839 Y Y-L He (1196_CR73) 2018; 70 M Raza (1196_CR47) 2018; 88 1196_CR89 1196_CR87 1196_CR88 R Yoshihashi (1196_CR2) 2018; 10 HS Nogay (1196_CR32) 2022; 34 VA Sindagi (1196_CR30) 2018; 107 F Abbas (1196_CR49) 2021; 9 1196_CR41 BM Salih (1196_CR11) 2021; 1 1196_CR42 MA Khan (1196_CR3) 2018; 22 1196_CR40 1196_CR84 T Brown (1196_CR60) 2020; 33 1196_CR80 1196_CR38 1196_CR39 1196_CR37 A Greco (1196_CR19) 2021; 12 M Ahad (1196_CR23) 2021; 4 R Cui (1196_CR31) 2019; 7 Q Zhang (1196_CR85) 2022; 4 1196_CR35 1196_CR79 K Shaheed (1196_CR33) 2022; 191 K Ahmed (1196_CR13) 2022; 17 S Gupta (1196_CR16) 2021; 37 C-B Ng (1196_CR54) 2019; 22 L Cai (1196_CR26) 2018; 355 M Rashid (1196_CR44) 2019; 78 V Carletti (1196_CR18) 2020; 11 1196_CR6 M Fayyaz (1196_CR7) 2021; 33 M Toğaçar (1196_CR76) 2020; 41 1196_CR8 M Lee (1196_CR14) 2022; 189 1196_CR1 L Cai (1196_CR27) 2020; 8 R Kruti (1196_CR10) 2019; 7 MA Khan (1196_CR45) 2018; 155 1196_CR75 1196_CR72 1196_CR9 1196_CR70 1196_CR71 M Zhang (1196_CR83) 2021; 179 1196_CR69 M Cıbuk (1196_CR78) 2019; 137 1196_CR67 1196_CR24 1196_CR68 1196_CR21 A Krishnaswamy Rangarajan (1196_CR34) 2020; 10 1196_CR65 H Acikgoz (1196_CR82) 2022; 305 1196_CR66 N Ahmadi (1196_CR17) 2020; 32 1196_CR29 T Lu (1196_CR81) 2021; 11 C-B Ng (1196_CR5) 2015; 18 1196_CR63 1196_CR20 CD Geelen (1196_CR28) 2015; 2015 1196_CR64 1196_CR61 1196_CR62 1196_CR58 HA Sanghvi (1196_CR86) 2023; 33 1196_CR15 F Abbas (1196_CR25) 2021; 9 1196_CR59 1196_CR12 H Dong (1196_CR36) 2021; 60 1196_CR56 1196_CR57 Y Sun (1196_CR22) 2017; 40 1196_CR55 C Li (1196_CR43) 2018; 104 M Sharif (1196_CR46) 2019; 33 B Yuan (1196_CR77) 2021; 33 H Yao (1196_CR4) 2019; 28 1196_CR52 1196_CR53 L Cai (1196_CR48) 2020; 8 1196_CR50 1196_CR51 F Lin (1196_CR74) 2016; 8 1196_CR90 1196_CR91 |
References_xml | – reference: Benz P, Ham S, Zhang C, Karjauv A, Kweon IS (2021) Adversarial robustness comparison of vision transformer and mlp-mixer to cnns. arXiv preprint arXiv:2110.02797 – reference: Xu Z, Sun K, Mao J (2020) Research on ResNet101 network chemical reagent label image classification based on transfer learning. In: 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT) 354–358. – reference: Krishnaswamy RangarajanAPurushothamanRDisease classification in eggplant using pre-trained VGG16 and MSVMSci Rep2020102322 – reference: YoshihashiRTrinhTTKawakamiRYouSIidaMNaemuraTPedestrian detection with motion features via two-stream ConvNetsIPSJ Trans Compute Vis Appl20181012 – reference: AhmedKSainiMFCML-gait: fog computing and machine learning inspired human identity and gender recognition using gait sequencesSignal, Image Video Proc2022174925936 – reference: Paul S, Chen P-Y (2022) Vision transformers are robust earners. In: Proceedings of the AAAI conference on Artificial Intelligence 2071–2081. – reference: Heo B, Yun S, Han D, Chun S, Choe J, Oh SJ (2021) Rethinking spatial dimensions of vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision 11936–11945. – reference: Sun C, Shrivastava A, Singh S, Gupta A (2017) Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE international conference on computer vision 843–852. – reference: Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. – reference: Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision 10012-10022 – reference: Li S, Wang L, Li J, Yao Y (2021) Image classification algorithm based on improved AlexNet. J Phys: Conf Ser 012051. – reference: Cao L, Dikmen M, Fu Y, Huang TS (2008) Gender recognition from body. In: Proceedings of the 16th ACM international conference on Multimedia. 725–728. – reference: Xu J, Luo L, Deng C, Huang H (2018) Bilevel distance metric learning for robust image recognition. In: Advances in Neural Information Processing Systems 4198–4207. – reference: RazaMSharifMYasminMKhanMASabaTFernandesSLAppearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learningFutur Gener Comput Syst2018882839 – reference: Srinivas A, Lin T-Y, Parmar N, Shlens J, Abbeel P, Vaswani A (2021) Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 16519–16529. – reference: GuptaSThakurKKumarM2D-human face recognition using SIFT and SURF descriptors of face’s feature regionsVis Comput202137447456 – reference: ZhangMSuHWenJClassification of flower image based on attention mechanism and multi-loss attention networkComput Commun2021179307317 – reference: Cai Z, Saberian M, Vasconcelos N (2015) Learning complexity-aware cascades for deep pedestrian detection. In: Proceedings of the IEEE international conference on computer vision. 3361–3369. – reference: LiCGuoJPorikliFPangYLightennet: a convolutional neural network for weakly illuminated image enhancementPattern Recogn Lett20181041522 – reference: CıbukMBudakUGuoYInceMCSengurAEfficient deep features selections and classification for flower species recognitionMeasurement2019137713 – reference: LuTHanBChenLYuFXueCA generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learningSci Rep20211115824 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition 770-778. – reference: Deng Y, Luo P, Loy CC, Tang X (2014)Pedestrian attribute recognition at far distance. In: Proceedings of the 22nd ACM international conference on Multimedia 789-792. – reference: ToğaçarMErgenBCömertZÖzyurtFA deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning modelsIrbm202041212222 – reference: Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers and distillation through attention. In: International conference on machine learning 10347-10357. PMLR. – reference: Gornale S, Basavanna M, Kruti R (2017) Fingerprint based gender classification using local binary pattern. Int J Comput Intell Res ISSN, 0973–1873 – reference: Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450. – reference: CaiLZhuJZengHChenJCaiCMaK-KHog-assisted deep feature learning for pedestrian gender recognitionJ Franklin Inst201835519912008 – reference: Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang Z, et al. (2021) Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet. In: 2021 IEEE, in CVF International Conference on Computer Vision, ICCV 538-547. – reference: CaiLZengHZhuJCaoJWangYMaK-KCascading scene and viewpoint feature learning for pedestrian gender recognitionIEEE Internet Things J2020830143026 – reference: AhmadiNAkbarizadehGIris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifierNeural Comput Appl20203222672281 – reference: FayyazMYasminMSharifMRazaMJ-LDFR: joint low-level and deep neural network feature representations for pedestrian gender classificationNeural Comput Appl202133361391 – reference: LinFWuYZhuangYLongXXuWHuman gender classification: a reviewInt J Biomet20168275300 – reference: KhanMAAkramTSharifMAwaisMJavedKAliHCCDF: automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN featuresComput Electron Agric2018155220236 – reference: NgC-BTayY-HGoiB-MA review of facial gender recognitionPattern Anal Appl2015187397553397042 – reference: Ng C-B, Tay Y-H, Goi B-M (2013) Comparing image representations for training a convolutional neural network to classify gender. In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulatio 29–33. – reference: YaoHZhangSHongRZhangYXuCTianQDeep representation learning with part loss for person re-identificationIEEE Trans Image Proc201928628602871393755107122873 – reference: Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. – reference: AcikgozHA novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecastingAppl Energy2022305 – reference: SanghviHAPatelRHAgarwalAGuptaSSawhneyVPandyaASA deep learning approach for classification of COVID and pneumonia using DenseNet-201Int J Imaging Syst Technol2023331838 – reference: Tapia J, Arellano C (2019) Gender classification from Iris texture images using a new set of binary statistical image features. In: 2019 International Conference on Biometrics (ICB). 1-7. – reference: SunYZhangMSunZTanTDemographic analysis from biometric data: achievements, challenges, and new frontiersIEEE Trans Pattern Anal Mach Intell201740332351 – reference: Lee SH, Lee S, Song BC (2021) Vision transformer for small-size datasets. arXiv preprint arXiv:2112.13492 – reference: GrecoASaggeseAVentoMVigilanteVGender recognition in the wild: a robustness evaluation over corrupted imagesJ Ambient Intell Humaniz Comput2021121046110472 – reference: AbbasFYasminMFayyazMElazizMALuSEl-LatifAAAGender classification using proposed cnn-based model and ant colony optimizationMathematics202192499 – reference: Azzopardi G, Greco A, Saggese A, Vento M (2017) Fast gender recognition in videos using a novel descriptor based on the gradient magnitudes of facial landmarks. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 1–6. – reference: AhadMFayyazMPedestrian gender recognition with handcrafted feature ensemblesAzerbaijan J High Perform Comput2021416090 – reference: Zhao C, Wang X, Wong WK, Zheng W, Yang J, Miao D (2017) Multiple metric learning based on bar-shape descriptor for person re-identification. Pattern Recog – reference: Xiao T, Li S, Wang B, Lin L, Wang X (2017) Joint detection and identification feature learning for person search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3415–3424. – reference: Antipov G, Berrani S-A, Ruchaud N, Dugelay J-L (2015) Learned vs. hand-crafted features for pedestrian gender recognition. In: Proceedings of the 23rd ACM international conference on Multimedia 1263–1266. – reference: DongHZhangLZouBExploring vision transformers for polarimetric SAR image classificationIEEE Trans Geosci Remote Sens202160115 – reference: Bello I, Zoph B, Vaswani A, Shlens J, Le QV (2019) Attention augmented convolutional networks. arXiv preprint arXiv:1904.09925. – reference: HeY-LZhangX-LAoWHuangJZDetermining the optimal temperature parameter for Softmax function in reinforcement learningAppl Soft Comput2018708085 – reference: Cai L, Zhu J, Zeng H, Chen J, Cai C (2018) Deep-learned and hand-crafted features fusion network for pedestrian gender recognition. In: Proceedings of ELM-2016, Springer. 207–215. – reference: RashidMKhanMASharifMRazaMSarfrazMMAfzaFObject detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point featuresMultimed Tools Appl2019781575115777 – reference: CarlettiVGrecoASaggeseAVentoMAn effective real time gender recognition system for smart camerasJ Ambient Intell Humaniz Comput20201124072419 – reference: Collins M, Zhang J, Miller P, Wang H (2009) Full body image feature representations for gender profiling. In: 2009 IEEE 12th International conference on computer vision workshops, ICCV workshops. 1235-1242. – reference: Emmadi SC, Aerra MR, Bantu S (2023) Performance Analysis of VGG-16 Deep Learning Model for COVID-19 Detection using Chest X-Ray Images. In: 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom) 1001-1007. IEEE. – reference: ZhangQA novel ResNet101 model based on dense dilated convolution for image classificationSN Appl Sci20224113 – reference: Guo G, Mu G, Fu Y (2009) Gender from body: a biologically-inspired approach with manifold learning. In: Asian conference on computer vision 236–245. – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. (2017) Attention is all you need. Adv Neural Inf Proc Syst 30 – reference: Raza M, Zonghai C, Rehman SU, Zhenhua G, Jikai W, Peng B (2017) Part-wise pedestrian gender recognition via deep convolutional neural networks – reference: Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261. – reference: Ng CB, Tay YH, Goi BM (2017) Training strategy for convolutional neural networks in pedestrian gender classification. In: Second International Workshop on Pattern Recognition 10443: 226-230. SPIE. – reference: Liu T, Ye X, Sun (2018) Combining convolutional neural network and support vector machine for gait-based gender recognition. In: 2018 Chinese Automation Congress (CAC) 3477-3481. – reference: ShaheedKMaoAQureshiIKumarMHussainSUllahIDS-CNN: A pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognitionExpert Syst Appl2022191 – reference: Yaghoubi E, Alirezazadeh P, Assunção E, Neves JC, Proençaã H (2019) Region-based cnns for pedestrian gender recognition in visual surveillance environments. In: 2019 International Conference of the Biometrics Special Interest Group (BIOSIG) 1-5. – reference: Jie H, Li S, Gang S, Albanie S (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. – reference: YuanBHanLGuXYanHMulti-deep features fusion for high-resolution remote sensing image scene classificationNeural Comput Appl20213320472063 – reference: GeelenCDWijnhovenRGDubbelmanGGender classification in low-resolution surveillance video: in-depth comparison of random forests and SVMsVideo Surv Transp Imaging Appl20152015170183 – reference: SindagiVAPatelVMA survey of recent advances in cnn-based single image crowd counting and density estimationPattern Recogn Lett2018107316 – reference: Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L (2021) Cvt: Introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 22-31). – reference: NgC-BTayY-HGoiB-MPedestrian gender classification using combined global and local parts-based convolutional neural networksPattern Anal Appl201922146914804009731 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556. – reference: Bhojanapalli S, Chakrabarti A, Glasner D, Li D, Unterthiner T, Veit A (2021) Understanding robustness of transformers for image classification. In: Proceedings of the IEEE/CVF international conference on computer vision. 10231–10241. – reference: KrutiRPatilAGornaleSFusion of local binary pattern and local phase quantization features set for gender classification using fingerprintsInt J Comput Sci Eng201972229 – reference: Ng C-B, Tay Y-H, Goi B-M (2013) A convolutional neural network for pedestrian gender recognition. In: International symposium on neural networks 558–564. – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proc Syst 25 – reference: KhanMAAkramTSharifMJavedMYMuhammadNYasminMAn implementation of optimized framework for action classification using multilayers neural network on selected fused featuresPattern Analy Appl201822137713974009725 – reference: CaiLZengHZhuJCaoJWangYMaKKCascading scene and viewpoint feature learning for pedestrian gender recognitionIEEE Internet Things J20208430143026 – reference: Cai L, Zeng H, Zhu J, Cao J, Hou J, Cai C (2017) Multi-view joint learning network for pedestrian gender classification. In: 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) 23-27. – reference: Geelen CD, Wijnhoven RG, Dubbelman G (2015) Gender classification in low-resolution surveillance video: in-depth comparison of random forests and SVMs. In: Video Surveillance and Transportation Imaging Applications 9407: 170-183. SPIE. – reference: SharifMAttique KhanMRashidMYasminMAfzaFTanikUJDeep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy imagesJ Exp Theore Artif Intell2019334577599 – reference: SalihBMAbdulazeezAMHassanOMSGender classification based on iris recognition using artificial neural networksQubahan Acad J20211156163 – reference: AbbasFYasminMFayyazMAbd ElazizMLuSEl-LatifAAAGender classification using proposed CNN-based model and ant colony optimizationMathematics2021924992021 – reference: BrownTMannBRyderNSubbiahMKaplanJDDhariwalPLanguage models are few-shot learnersAdv Neural Inf Process Syst20203318771901 – reference: NogayHSAkinciTCYilmazMDetection of invisible cracks in ceramic materials using by pre-trained deep convolutional neural networkNeural Comput Appl20223414231432 – reference: Yu S, Ma K, Bi Q, Bian C, Ning M, He N, Li Y, Liu H, Zheng Y (2021) Mil-vt: Multiple instance learning enhanced vision transformer for fundus image classification. InMedical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, Proceedings, Part VIII 24 2021 (pp. 45-54). Springer International Publishing. – reference: LeeMLeeJ-HKimD-HGender recognition using optimal gait feature based on recursive feature elimination in normal walkingExpert Syst Appl2022189 – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition 1-9 – reference: CuiRHuaGZhuAWuJLiuHHard sample mining and learning for skeleton-based human action recognition and identificationIEEE Access2019782458257 – ident: 1196_CR53 doi: 10.1145/2733373.2806332 – ident: 1196_CR39 – ident: 1196_CR64 – ident: 1196_CR29 doi: 10.1049/cp.2017.0102 – volume: 179 start-page: 307 year: 2021 ident: 1196_CR83 publication-title: Comput Commun doi: 10.1016/j.comcom.2021.09.001 – ident: 1196_CR50 doi: 10.1117/12.2280487 – volume: 22 start-page: 1377 year: 2018 ident: 1196_CR3 publication-title: Pattern Analy Appl doi: 10.1007/s10044-018-0688-1 – volume: 17 start-page: 925 issue: 4 year: 2022 ident: 1196_CR13 publication-title: Signal, Image Video Proc doi: 10.1007/s11760-022-02217-z – ident: 1196_CR8 doi: 10.1007/978-3-319-57421-9_17 – volume: 22 start-page: 1469 year: 2019 ident: 1196_CR54 publication-title: Pattern Anal Appl doi: 10.1007/s10044-018-0725-0 – ident: 1196_CR55 – volume: 107 start-page: 3 year: 2018 ident: 1196_CR30 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.07.007 – ident: 1196_CR35 doi: 10.1109/ICCV48922.2021.01007 – ident: 1196_CR88 doi: 10.1117/12.2077079 – ident: 1196_CR59 – volume: 33 start-page: 2047 year: 2021 ident: 1196_CR77 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05071-7 – volume: 4 start-page: 1 year: 2022 ident: 1196_CR85 publication-title: SN Appl Sci doi: 10.1007/s42452-021-04881-1 – volume: 33 start-page: 1877 year: 2020 ident: 1196_CR60 publication-title: Adv Neural Inf Process Syst – volume: 11 start-page: 2407 year: 2020 ident: 1196_CR18 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-019-01267-5 – volume: 1 start-page: 156 year: 2021 ident: 1196_CR11 publication-title: Qubahan Acad J doi: 10.48161/qaj.v1n2a63 – ident: 1196_CR71 doi: 10.1145/2647868.2654966 – volume: 28 start-page: 2860 issue: 6 year: 2019 ident: 1196_CR4 publication-title: IEEE Trans Image Proc doi: 10.1109/TIP.2019.2891888 – volume: 7 start-page: 8245 year: 2019 ident: 1196_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889797 – ident: 1196_CR91 doi: 10.1109/CVPR.2016.90 – volume: 10 start-page: 12 year: 2018 ident: 1196_CR2 publication-title: IPSJ Trans Compute Vis Appl doi: 10.1186/s41074-018-0048-5 – ident: 1196_CR40 – ident: 1196_CR63 doi: 10.1109/ICCV.2019.00338 – volume: 11 start-page: 15824 year: 2021 ident: 1196_CR81 publication-title: Sci Rep doi: 10.1038/s41598-021-95218-w – ident: 1196_CR1 doi: 10.1109/ICCV.2015.384 – ident: 1196_CR12 doi: 10.1109/ICB45273.2019.8987245 – ident: 1196_CR37 doi: 10.1007/978-3-030-87237-3_5 – ident: 1196_CR79 doi: 10.1088/1742-6596/1813/1/012051 – ident: 1196_CR56 doi: 10.1109/CVPR.2017.360 – ident: 1196_CR58 – ident: 1196_CR9 – volume: 4 start-page: 60 issue: 1 year: 2021 ident: 1196_CR23 publication-title: Azerbaijan J High Perform Comput doi: 10.32010/26166127.2021.4.1.60.90 – volume: 2015 start-page: 170 year: 2015 ident: 1196_CR28 publication-title: Video Surv Transp Imaging Appl – ident: 1196_CR89 – volume: 33 start-page: 18 year: 2023 ident: 1196_CR86 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22812 – volume: 37 start-page: 447 year: 2021 ident: 1196_CR16 publication-title: Vis Comput doi: 10.1007/s00371-020-01814-8 – ident: 1196_CR51 doi: 10.1109/ISPACS.2017.8265639 – ident: 1196_CR66 – volume: 33 start-page: 361 year: 2021 ident: 1196_CR7 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05015-1 – ident: 1196_CR68 doi: 10.1109/ICCV48922.2021.01172 – volume: 88 start-page: 28 year: 2018 ident: 1196_CR47 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.05.002 – volume: 305 year: 2022 ident: 1196_CR82 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117912 – ident: 1196_CR87 doi: 10.1016/j.patcog.2017.06.011 – volume: 32 start-page: 2267 year: 2020 ident: 1196_CR17 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3754-0 – volume: 191 year: 2022 ident: 1196_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116288 – ident: 1196_CR61 doi: 10.1109/CVPR46437.2021.01625 – ident: 1196_CR38 doi: 10.1609/aaai.v36i2.20103 – ident: 1196_CR62 – volume: 104 start-page: 15 year: 2018 ident: 1196_CR43 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.01.010 – ident: 1196_CR20 doi: 10.1007/978-3-642-12297-2_23 – volume: 70 start-page: 80 year: 2018 ident: 1196_CR73 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.012 – ident: 1196_CR80 doi: 10.1109/ICCASIT50869.2020.9368658 – ident: 1196_CR41 doi: 10.1109/ICCVW.2009.5457467 – volume: 41 start-page: 212 year: 2020 ident: 1196_CR76 publication-title: Irbm doi: 10.1016/j.irbm.2019.10.006 – ident: 1196_CR24 doi: 10.1007/978-3-642-39065-4_67 – ident: 1196_CR6 doi: 10.1109/AVSS.2017.8078525 – volume: 12 start-page: 10461 year: 2021 ident: 1196_CR19 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02750-0 – volume: 155 start-page: 220 year: 2018 ident: 1196_CR45 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.10.013 – ident: 1196_CR75 doi: 10.1609/aaai.v31i1.11231 – volume: 34 start-page: 1423 year: 2022 ident: 1196_CR32 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06652-w – volume: 10 start-page: 2322 year: 2020 ident: 1196_CR34 publication-title: Sci Rep doi: 10.1038/s41598-020-59108-x – volume: 33 start-page: 577 issue: 4 year: 2019 ident: 1196_CR46 publication-title: J Exp Theore Artif Intell doi: 10.1080/0952813X.2019.1572657 – volume: 9 start-page: 2499 year: 2021 ident: 1196_CR49 publication-title: Mathematics doi: 10.3390/math9192499 – volume: 8 start-page: 275 year: 2016 ident: 1196_CR74 publication-title: Int J Biomet doi: 10.1504/IJBM.2016.082604 – volume: 60 start-page: 1 year: 2021 ident: 1196_CR36 publication-title: IEEE Trans Geosci Remote Sens – ident: 1196_CR57 – ident: 1196_CR90 doi: 10.1109/CVPR.2015.7298594 – ident: 1196_CR72 – ident: 1196_CR52 doi: 10.1109/AIMS.2013.13 – volume: 78 start-page: 15751 year: 2019 ident: 1196_CR44 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7031-0 – volume: 40 start-page: 332 year: 2017 ident: 1196_CR22 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2669035 – volume: 9 start-page: 2021 issue: 2499 year: 2021 ident: 1196_CR25 publication-title: Mathematics – volume: 355 start-page: 1991 year: 2018 ident: 1196_CR26 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2017.09.003 – volume: 8 start-page: 3014 year: 2020 ident: 1196_CR27 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.3021763 – ident: 1196_CR70 doi: 10.1109/ICCV48922.2021.00986 – volume: 7 start-page: 22 year: 2019 ident: 1196_CR10 publication-title: Int J Comput Sci Eng – ident: 1196_CR84 – volume: 189 year: 2022 ident: 1196_CR14 publication-title: Expert Syst Appl – ident: 1196_CR21 – volume: 8 start-page: 3014 issue: 4 year: 2020 ident: 1196_CR48 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.3021763 – ident: 1196_CR67 doi: 10.1109/ICCV48922.2021.00060 – ident: 1196_CR69 doi: 10.1109/ICCV48922.2021.00009 – volume: 137 start-page: 7 year: 2019 ident: 1196_CR78 publication-title: Measurement doi: 10.1016/j.measurement.2019.01.041 – ident: 1196_CR15 doi: 10.1109/CAC.2018.8623118 – ident: 1196_CR42 doi: 10.1145/1459359.1459470 – volume: 18 start-page: 739 year: 2015 ident: 1196_CR5 publication-title: Pattern Anal Appl doi: 10.1007/s10044-015-0499-6 – ident: 1196_CR65 doi: 10.1109/ICCV.2017.97 |
SSID | ssj0033328 |
Score | 2.3549004 |
Snippet | Pedestrian gender classification (PGC) is a key task in full-body-based pedestrian image analysis and has become an important area in applications like... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1805 |
SubjectTerms | Artificial neural networks Classification Computer Science Datasets Image analysis Image retrieval Modules Object recognition Pattern Recognition Short Paper Vision |
Title | ViT-PGC: vision transformer for pedestrian gender classification on small-size dataset |
URI | https://link.springer.com/article/10.1007/s10044-023-01196-2 https://www.proquest.com/docview/2892307198 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_iLl78Fqdz5OBNA_1I0tTbGPtAUTxsY55Kk6YymHXYevGv96VNnIoKQqE0fc3hvbyX32veB0LnudJUaO0RGXJOaJ4LInOeEsliKWPBRZaaH_q3d3w8pddzNrdJYaWLdndHkrWl_pTs5lFKYI8hpk4ZJ2B4Wwx8d7Oup0HP2d8wDOuOqgAEQhIx6ttUmZ_n-LodrTHmt2PRercZ7qJtCxNxr5HrHtrQxT7asZARW4UsYch1ZXBjB2g2W0zI_ah_hZu8cVw5bApUcMMrnem6W0eBH-tGclgZCG1ihmoxYbjKp3S5JOXiTWMTQ1rq6hBNh4NJf0xs9wSiQK0qAqpIAwoOoAAL5tEMXF2VC814rlSmAwoSMdwzBc10DDgtkoynUgoWC6V9zsIjtFk8F_oYYZV5KtY5VeDLUS9jMopTX8VpBM8qkLKNfMfERNnS4qbDxTJZF0U2jE-A8UnN-CRoo4uPb1ZNYY0_qTtONolVsjIBX9GEsfuxaKNLJ6_1699nO_kf-SnaMk3mmwzEDtqsXl71GUCRSnZRqzd6uBl06xX4DlKm1XM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kPejFt7g-c_CmkT6SbOpNRF2feNgVPZUmTWVxXcXWi7_eSZu4KioIhdI0DW0mM_NNMw-A7UIbJo0JqIqFoKwoJFWFyKjiiVKJFDLP7A_9yyvR7bOzW37rgsJK7-3utyRrSf0p2C1gjKKOoTZPmaAoeCcZ2uC8BZMHJ3fnR14Cx3Fc11RFKBDTDmehC5b5eZSvCmmMMr9tjNb65ngW-v5NGzeTh73XSu3pt29JHP_7KXMw4wAoOWhWzDxMmNECzDowShyrl9jk6z34tkW4uRn06PXJ4T5pItJJ5VEv9sITeTa5qeuAjMh9XaKOaAvOrTdSvQAIHuVjNhzScvBmiPVOLU21BP3jo95hl7q6DFQjw1YUmZxFDE1LibIxYDka0bqQhotC69xEDGnNI8QtaPyYBBFgR3GRKSV5IrUJBY-XoTV6GpkVIDoPdGIKptFKZEHOVSfJQp1kHbzWkVJtCD1xUu2SltvaGcN0nG7ZzmWKc5nWc5lGbdj5eOa5SdnxZ-91T_PUsW-ZohVqHeTDRLZh15NwfPv30Vb_130Lprq9y4v04vTqfA2mbSn7Js5xHVrVy6vZQMBTqU23vt8BzRnzuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAX3ojBgBy4QbQ-kizlNg3GeE07bNNuVZOmaNIoEy0Xfj1O2rKBAAmpUtU0zcGunc-t7Q-hs0RpKrR2iPQ5JzRJBJEJj4hkgZSB4CKOzAf9xz7vjejdhE2Wqvhttnv1S7KoaTBdmtK8OY-T5lLhm0Mpgf2GmJ5lnIATXgV37JqkrpHXrnyx7_uWXRVAgU9ajLpl2czPa3zdmhZ489svUrvzdLfQRgkZcbvQ8TZa0ekO2izhIy6NM4OhiqGhGttF4_F0SAY3nUtc1JDjvMKpMAtOeK5jbZk7UvxkSeWwMnDa5A9ZlWE4sudoNiPZ9F1jk0-a6XwPjbrXw06PlEwKRIGJ5QTMknoUgkEB3syhMYS9KhGa8USpWHsUtMM8QBoQrugAMFtLMh5JKVgglHY58_dRLX1J9QHCKnZUoBOqIK6jTsxkK4hcFUQtuFaelHXkVkIMVdlm3LBdzMJFg2Qj-BAEH1rBh14dnX8-My-abPw5u1HpJiwNLgshbjQp7W4g6uii0tfi9u-rHf5v-ilaG1x1w4fb_v0RWjfc80VhYgPV8tc3fQwIJZcn9iX8AHs72w4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ViT-PGC%3A+vision+transformer+for+pedestrian+gender+classification+on+small-size+dataset&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Farhat%2C+Abbas&rft.au=Mussarat%2C+Yasmin&rft.au=Fayyaz+Muhammad&rft.au=Usman%2C+Asim&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=26&rft.issue=4&rft.spage=1805&rft.epage=1819&rft_id=info:doi/10.1007%2Fs10044-023-01196-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |