Joint relational triple extraction based on potential relation detection and conditional entity mapping

Joint relational triple extraction treats entity recognition and relation extraction as a joint task to extract relational triples, and this is a critical task in information extraction and knowledge graph construction. However, most existing joint models still fall short in terms of extracting over...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 53; no. 24; pp. 29656 - 29676
Main Authors Zhou, Xiong, Zhang, Qinghua, Gao, Man, Wang, Guoyin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joint relational triple extraction treats entity recognition and relation extraction as a joint task to extract relational triples, and this is a critical task in information extraction and knowledge graph construction. However, most existing joint models still fall short in terms of extracting overlapping triples. Moreover, these models ignore the trigger words of potential relations during the relation detection process. To address the two issues, a joint model based on P otential R elation D etection and C onditional E ntity M apping is proposed, named PRDCEM. Specifically, the proposed model consists of three components, i.e., potential relation detection, candidate entity tagging, and conditional entity mapping, corresponding to three subtasks. First, a non-autoregressive decoder that contains a cross-attention mechanism is applied to detect potential relations. In this way, different potential relations are associated with the corresponding trigger words in the given sentence, and the semantic representations of the trigger words are fully utilized to encode potential relations. Second, two distinct sequence taggers are employed to extract candidate subjects and objects. Third, an entity mapping module incorporating conditional layer normalization is designed to align the candidate subjects and objects. As such, each candidate subject and each potential relation are combined to form a condition that is incorporated into the sentence, which can effectively extract overlapping triples. Finally, the negative sampling strategy is employed in the entity mapping module to mitigate the error propagation from the previous two components. In a comparison with 15 baselines, the experimental results obtained on two widely used public datasets demonstrate that PRDCEM can effectively extract overlapping triples and achieve improved performance.
AbstractList Joint relational triple extraction treats entity recognition and relation extraction as a joint task to extract relational triples, and this is a critical task in information extraction and knowledge graph construction. However, most existing joint models still fall short in terms of extracting overlapping triples. Moreover, these models ignore the trigger words of potential relations during the relation detection process. To address the two issues, a joint model based on P otential R elation D etection and C onditional E ntity M apping is proposed, named PRDCEM. Specifically, the proposed model consists of three components, i.e., potential relation detection, candidate entity tagging, and conditional entity mapping, corresponding to three subtasks. First, a non-autoregressive decoder that contains a cross-attention mechanism is applied to detect potential relations. In this way, different potential relations are associated with the corresponding trigger words in the given sentence, and the semantic representations of the trigger words are fully utilized to encode potential relations. Second, two distinct sequence taggers are employed to extract candidate subjects and objects. Third, an entity mapping module incorporating conditional layer normalization is designed to align the candidate subjects and objects. As such, each candidate subject and each potential relation are combined to form a condition that is incorporated into the sentence, which can effectively extract overlapping triples. Finally, the negative sampling strategy is employed in the entity mapping module to mitigate the error propagation from the previous two components. In a comparison with 15 baselines, the experimental results obtained on two widely used public datasets demonstrate that PRDCEM can effectively extract overlapping triples and achieve improved performance.
Joint relational triple extraction treats entity recognition and relation extraction as a joint task to extract relational triples, and this is a critical task in information extraction and knowledge graph construction. However, most existing joint models still fall short in terms of extracting overlapping triples. Moreover, these models ignore the trigger words of potential relations during the relation detection process. To address the two issues, a joint model based on Potential Relation Detection and Conditional Entity Mapping is proposed, named PRDCEM. Specifically, the proposed model consists of three components, i.e., potential relation detection, candidate entity tagging, and conditional entity mapping, corresponding to three subtasks. First, a non-autoregressive decoder that contains a cross-attention mechanism is applied to detect potential relations. In this way, different potential relations are associated with the corresponding trigger words in the given sentence, and the semantic representations of the trigger words are fully utilized to encode potential relations. Second, two distinct sequence taggers are employed to extract candidate subjects and objects. Third, an entity mapping module incorporating conditional layer normalization is designed to align the candidate subjects and objects. As such, each candidate subject and each potential relation are combined to form a condition that is incorporated into the sentence, which can effectively extract overlapping triples. Finally, the negative sampling strategy is employed in the entity mapping module to mitigate the error propagation from the previous two components. In a comparison with 15 baselines, the experimental results obtained on two widely used public datasets demonstrate that PRDCEM can effectively extract overlapping triples and achieve improved performance.
Author Zhang, Qinghua
Wang, Guoyin
Gao, Man
Zhou, Xiong
Author_xml – sequence: 1
  givenname: Xiong
  surname: Zhou
  fullname: Zhou, Xiong
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism
– sequence: 2
  givenname: Qinghua
  orcidid: 0000-0002-6154-4656
  surname: Zhang
  fullname: Zhang, Qinghua
  email: zhangqh@cqupt.edu.cn
  organization: Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism
– sequence: 3
  givenname: Man
  surname: Gao
  fullname: Gao, Man
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism
– sequence: 4
  givenname: Guoyin
  surname: Wang
  fullname: Wang, Guoyin
  organization: Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism
BookMark eNp9kL1qwzAURkVJoUnaF-gk6Kz2ypItayyhvwS6ZOgmFFsKCo7sSgo0b187Til0yKTL5XyfLmeGJr71BqFbCvcUQDxECryUBDJGIKeUEn6BpjQXjAguxQRNQWacFIX8vEKzGLcAwBjQKdq8t84nHEyjk2u9bnAKrmsMNt8p6GrY4bWOpsb90LXJ-OR66JfHtUlmpLSvcdX62p16BjId8E53nfOba3RpdRPNzemdo9Xz02rxSpYfL2-LxyWpGJWJ5KJkGYWS10wKXYpa2pxZZoy0tuaFFmvD6VraSkNWGJvrnFUc1lCIYcvZHN2NtV1ov_YmJrVt96E_J6pMggDKM5n3VDZSVWhjDMaqLridDgdFQQ0-1ehT9T7V0acaqst_ocqlo4RelGvOR9kYjf0_fmPC31VnUj-TvI45
CitedBy_id crossref_primary_10_1007_s40747_024_01518_9
Cites_doi 10.18653/v1/2022.acl-long.337
10.18653/v1/2021.emnlp-main.635
10.18653/v1/P19-1136
10.18653/v1/P17-1017
10.3233/FAIA200356
10.3233/SHTI220418
10.1609/aaai.v34i05.6495
10.3115/1690219.1690287
10.18653/v1/2020.coling-main.138
10.1109/TNNLS.2023.3264735
10.1016/j.knosys.2021.107298
10.18653/v1/2022.naacl-main.48
10.18653/v1/D19-1035
10.3115/v1/P14-1038
10.1145/3038912.3052708
10.18653/v1/P17-1113
10.18653/v1/N19-1423
10.18653/v1/2020.acl-main.136
10.18653/v1/P16-2034
10.1007/978-3-642-15939-8_10
10.24963/ijcai.2020/561
10.1186/s12859-017-1609-9
10.24963/ijcai.2020/546
10.18653/v1/P16-1105
10.18653/v1/P19-1129
10.1609/aaai.v29i1.9491
10.1007/s10489-021-02699-3
10.18653/v1/D18-1360
10.1016/j.knosys.2023.110550
10.18653/v1/2021.naacl-main.5
10.18653/v1/P18-1047
10.18653/v1/2021.acl-long.486
10.3115/v1/P14-1090
10.1609/aaai.v34i05.6363
10.1007/s10489-021-02600-2
10.18653/v1/P16-1200
10.3115/v1/D14-1200
10.3233/FAIA200321
10.18653/v1/2020.coling-main.8
10.18653/v1/N19-1078
10.18653/v1/P19-1525
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-023-05111-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 29676
ExternalDocumentID 10_1007_s10489_023_05111_4
GrantInformation_xml – fundername: Foundation for Innovative Research Groups of Natural Science Foundation of Chongqing
  grantid: No.cstc2019jcyjcxttX0002
– fundername: National Key Research and Development Program of China
  grantid: No.2020YFC2003502
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: ey Cooperation Project of Chongqing Municipal Education Commission
  grantid: HZ2021008
– fundername: National Natural Science Foundation of China
  grantid: No.62276038; No.62221005
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-578321084d397a87d9f53f3ee9ffd46a7be41b9fca026ef5a53c40b0671b9f43
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Sat Aug 23 13:33:28 EDT 2025
Tue Jul 01 03:31:58 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Fri Feb 21 02:40:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Entity mapping
Joint relational triple extraction
Conditional layer normalization
Potential relation detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-578321084d397a87d9f53f3ee9ffd46a7be41b9fca026ef5a53c40b0671b9f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6154-4656
PQID 2907014295
PQPubID 326365
PageCount 21
ParticipantIDs proquest_journals_2907014295
crossref_primary_10_1007_s10489_023_05111_4
crossref_citationtrail_10_1007_s10489_023_05111_4
springer_journals_10_1007_s10489_023_05111_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zeng D, Zhang H, Liu Q (2020) Copymtl: Copy mechanism for joint extraction of entities and relations with multi-task learning. In: The thirty-fourth AAAI conference on artificial intelligence, pp 9507–9514. https://doi.org/10.1609/aaai.v34i05.6495
Zheng H, Wen R, Chen X, et al (2021) PRGC: Potential relation and global correspondence based joint relational triple extraction. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing (vol 1: Long Papers), pp 6225–6235. https://doi.org/10.18653/v1/2021.acl-long.486
Eberts M, Ulges A (2020) Span-based joint entity and relation extraction with transformer pre-training. In: 24th European conference on artificial intelligence and 10th conference on prestigious applications of artificial intelligence, pp 2006–2013. https://doi.org/10.3233/FAIA200321
Wei Z, Su J, Wang Y, et al (2020) A novel cascade binary tagging framework for relational triple extraction. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 1476–1488. https://doi.org/10.18653/v1/2020.acl-main.136
Su J (2019) Conditional text generation based on conditional layer normalization-Scientific Spaces. https://kexue.fm/archives/712 Accessed 07 Aug 2023
Ji B, Yu J, Li S, et al (2020) Span-based joint entity and relation extraction with attention-based span-specific and contextual semantic representations. In: Proceedings of the 28th international conference on computational linguistics, pp 88–99. https://doi.org/10.18653/v1/2020.coling-main.8
Zheng S, Wang F, Bao H, et al (2017) Joint extraction of entities and relations based on a novel tagging scheme. In: Proceedings of the 55th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 1227–1236. https://doi.org/10.18653/v1/P17-1113
Ba JL, Kiros JR, Hinton GE (2016) Layer Normalization. arXiv:1607.06450
Fu TJ, Li PH, Ma WY (2019) GraphRel: Modeling text as relational graphs for joint entity and relation extraction. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1409–1418. https://doi.org/10.18653/v1/P19-1136
Luo Y, Xiao F, Zhao H (2020) Hierarchical contextualized representation for named entity recognition. In: The thirty-fourth AAAI conference on artificial intelligence, pp 8441–8448. https://doi.org/10.1609/aaai.v34i05.6363
Zhong Z, Chen D (2021) A frustratingly easy approach for entity and relation extraction. In: Proceedings of the 2021 conference of the north american chapter of the association for computational linguistics: human language technologies, pp 50–61. https://doi.org/10.18653/v1/2021.naacl-main.5
Zeng D, Liu K, Lai S, et al (2014) Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, pp 2335–2344. https://aclanthology.org/C14-1220
Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. In: Advances in neural information processing systems 30: annual conference on neural information processing systems, pp 5998–6008. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
PfeiferBHolzingerASchimekMGRobust random forest-based all-relevant feature ranks for trustworthy aiStud Health Technol Inform202229413713810.3233/SHTI220418
Zeng X, He S, Zeng D, et al (2019) Learning the extraction order of multiple relational facts in a sentence with reinforcement learning. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing, pp 367–377. 10.18653/v1/D19-1035
LiFZhangMFuGA neural joint model for entity and relation extraction from biomedical textBMC Bioinformatics201718119810.1186/s12859-017-1609-9
Ye D, Lin Y, Li P, et al (2022) Packed levitated marker for entity and relation extraction. In: Proceedings of the 60th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 4904–4917. https://doi.org/10.18653/v1/2022.acl-long.337
Miwa M, Bansal M (2016) End-to-end relation extraction using LSTMs on sequences and tree structures. In: Proceedings of the 54th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 1105–1116. https://doi.org/10.18653/v1/P16-1105
Xu B, Wang Q, Lyu Y, et al (2022) EmRel: Joint representation of entities and embedded relations for multi-triple extraction. In: Proceedings of the 2022 conference of the north american chapter of the association for computational linguistics: human language technologies, pp 659–665. https://doi.org/10.18653/v1/2022.naacl-main.48
Akbik A, Bergmann T, Vollgraf R (2019) Pooled contextualized embeddings for named entity recognition. In: Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, vol 1 (Long and Short Papers), pp 724–728. https://doi.org/10.18653/v1/N19-1078
Li X, Li Y, Yang J, et al (2022) A relation aware embedding mechanism for relation extraction. Appl Intell 52(9):10,022–10,031. https://doi.org/10.1007/s10489-021-02699-3
Zhao T, Yan Z, Cao Y, et al (2020) Asking effective and diverse questions: A machine reading comprehension based framework for joint entity-relation extraction. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp 3948–3954. https://doi.org/10.24963/ijcai.2020/546
Yuan Y, Zhou X, Pan S, et al (2020) A relation-specific attention network for joint entity and relation extraction. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp 4054–4060. https://doi.org/10.24963/ijcai.2020/561
GaoCZhangXLiLERGM: A multi-stage joint entity and relation extraction with global entity matchKnowl-Based Syst202327111055010.1016/j.knosys.2023.110550
Riedel S, Yao L, McCallum A (2010) Modeling Relations and Their Mentions without Labeled Text. In: Machine learning and knowledge discovery in databases, pp 148–163. https://doi.org/10.1007/978-3-642-15939-8_10
Luan Y, He L, Ostendorf M, et al (2018) Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Proceedings of the 2018 conference on empirical methods in natural language processing, pp 3219–3232. https://doi.org/10.18653/v1/D18-1360
Lin Y, Shen S, Liu Z, et al (2016) Neural relation extraction with selective attention over instances. In: Proceedings of the 54th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 2124–2133. https://doi.org/10.18653/v1/P16-1200
Zhou P, Shi W, Tian J, et al (2016) Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th annual meeting of the association for computational linguistics (vol 2: Short Papers), pp 207–212. https://doi.org/10.18653/v1/P16-2034
Gardent C, Shimorina A, Narayan S, et al (2017) Creating training corpora for NLG micro-planners. In: Proceedings of the 55th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 179–188. https://doi.org/10.18653/v1/P17-1017
Li X, Yin F, Sun Z, et al (2019) Entity-relation extraction as multi-turn question answering. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1340–1350. https://doi.org/10.18653/v1/P19-1129
Yu B, Zhang Z, Shu X, et al (2020) Joint extraction of entities and relations based on a novel decomposition strategy. In: 24th European conference on artificial intelligence and 10th conference on prestigious applications of artificial intelligence, pp 2282–2289. https://doi.org/10.3233/FAIA200356
Sui D, Zeng X, Chen Y, et al (2023) Joint Entity and Relation Extraction With Set Prediction Networks. IEEE Trans Neural Netw Learn Syst pp 1–12. 10.1109/TNNLS.2023.3264735
Li X, Luo X, Dong C, et al (2021) TDEER: An efficient translating decoding schema for joint extraction of entities and relations. In: Proceedings of the 2021 conference on empirical methods in natural language processing, pp 8055–8064. https://doi.org/10.18653/v1/2021.emnlp-main.635
Mintz M, Bills S, Snow R, et al (2009) Distant supervision for relation extraction without labeled data. In: Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP, pp 1003–1011. https://aclanthology.org/P09-1113
Liu Y, Ott M, Goyal N, et al (2019) RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692
Devlin J, Chang MW, Lee K, et al (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, vol 1 (Long and Short Papers), pp 4171–4186. https://doi.org/10.18653/v1/N19-1423
Dixit K, Al-Onaizan Y (2019) Span-level model for relation extraction. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 5308–5314. https://doi.org/10.18653/v1/P19-1525
Yao X, Van Durme B (2014) Information extraction over structured data: Question answering with Freebase. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 956–966. https://doi.org/10.3115/v1/P14-1090
Li Q, Ji H (2014) Incremental joint extraction of entity mentions and relations. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 402–412. https://doi.org/10.3115/v1/P14-1038
Wang Y, Yu B, Zhang Y, et al (2020) TPLinker: Single-stage joint extraction of entities and relations through token pair linking. In: Proceedings of the 28th international conference on c
B Pfeifer (5111_CR31) 2022; 294
5111_CR41
5111_CR40
5111_CR5
5111_CR4
5111_CR3
5111_CR2
5111_CR9
5111_CR8
5111_CR6
5111_CR29
5111_CR28
5111_CR25
Q Wan (5111_CR35) 2021; 228
5111_CR24
5111_CR46
5111_CR27
5111_CR26
T Lai (5111_CR45) 2022; 52
5111_CR21
5111_CR43
5111_CR20
5111_CR42
5111_CR23
5111_CR22
5111_CR44
C Gao (5111_CR37) 2023; 271
5111_CR30
F Li (5111_CR7) 2017; 18
5111_CR1
5111_CR18
5111_CR17
5111_CR39
5111_CR19
5111_CR14
5111_CR36
5111_CR13
5111_CR16
5111_CR38
5111_CR15
5111_CR10
5111_CR32
5111_CR12
5111_CR34
5111_CR11
5111_CR33
References_xml – reference: Zeng D, Liu K, Lai S, et al (2014) Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, pp 2335–2344. https://aclanthology.org/C14-1220
– reference: GaoCZhangXLiLERGM: A multi-stage joint entity and relation extraction with global entity matchKnowl-Based Syst202327111055010.1016/j.knosys.2023.110550
– reference: Lin Y, Liu Z, Sun M, et al (2015) Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, pp 2181–2187. https://doi.org/10.1609/aaai.v29i1.9491
– reference: LiFZhangMFuGA neural joint model for entity and relation extraction from biomedical textBMC Bioinformatics201718119810.1186/s12859-017-1609-9
– reference: Zeng D, Zhang H, Liu Q (2020) Copymtl: Copy mechanism for joint extraction of entities and relations with multi-task learning. In: The thirty-fourth AAAI conference on artificial intelligence, pp 9507–9514. https://doi.org/10.1609/aaai.v34i05.6495
– reference: Zhou P, Shi W, Tian J, et al (2016) Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th annual meeting of the association for computational linguistics (vol 2: Short Papers), pp 207–212. https://doi.org/10.18653/v1/P16-2034
– reference: Gardent C, Shimorina A, Narayan S, et al (2017) Creating training corpora for NLG micro-planners. In: Proceedings of the 55th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 179–188. https://doi.org/10.18653/v1/P17-1017
– reference: Zeng X, He S, Zeng D, et al (2019) Learning the extraction order of multiple relational facts in a sentence with reinforcement learning. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing, pp 367–377. 10.18653/v1/D19-1035
– reference: Devlin J, Chang MW, Lee K, et al (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, vol 1 (Long and Short Papers), pp 4171–4186. https://doi.org/10.18653/v1/N19-1423
– reference: Wei Z, Su J, Wang Y, et al (2020) A novel cascade binary tagging framework for relational triple extraction. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 1476–1488. https://doi.org/10.18653/v1/2020.acl-main.136
– reference: Lin Y, Shen S, Liu Z, et al (2016) Neural relation extraction with selective attention over instances. In: Proceedings of the 54th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 2124–2133. https://doi.org/10.18653/v1/P16-1200
– reference: PfeiferBHolzingerASchimekMGRobust random forest-based all-relevant feature ranks for trustworthy aiStud Health Technol Inform202229413713810.3233/SHTI220418
– reference: Su J (2019) Conditional text generation based on conditional layer normalization-Scientific Spaces. https://kexue.fm/archives/712 Accessed 07 Aug 2023
– reference: Ye D, Lin Y, Li P, et al (2022) Packed levitated marker for entity and relation extraction. In: Proceedings of the 60th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 4904–4917. https://doi.org/10.18653/v1/2022.acl-long.337
– reference: Li X, Luo X, Dong C, et al (2021) TDEER: An efficient translating decoding schema for joint extraction of entities and relations. In: Proceedings of the 2021 conference on empirical methods in natural language processing, pp 8055–8064. https://doi.org/10.18653/v1/2021.emnlp-main.635
– reference: Zhao T, Yan Z, Cao Y, et al (2020) Asking effective and diverse questions: A machine reading comprehension based framework for joint entity-relation extraction. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp 3948–3954. https://doi.org/10.24963/ijcai.2020/546
– reference: Miwa M, Bansal M (2016) End-to-end relation extraction using LSTMs on sequences and tree structures. In: Proceedings of the 54th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 1105–1116. https://doi.org/10.18653/v1/P16-1105
– reference: Zhong Z, Chen D (2021) A frustratingly easy approach for entity and relation extraction. In: Proceedings of the 2021 conference of the north american chapter of the association for computational linguistics: human language technologies, pp 50–61. https://doi.org/10.18653/v1/2021.naacl-main.5
– reference: Zheng S, Wang F, Bao H, et al (2017) Joint extraction of entities and relations based on a novel tagging scheme. In: Proceedings of the 55th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 1227–1236. https://doi.org/10.18653/v1/P17-1113
– reference: Ji B, Yu J, Li S, et al (2020) Span-based joint entity and relation extraction with attention-based span-specific and contextual semantic representations. In: Proceedings of the 28th international conference on computational linguistics, pp 88–99. https://doi.org/10.18653/v1/2020.coling-main.8
– reference: Zheng H, Wen R, Chen X, et al (2021) PRGC: Potential relation and global correspondence based joint relational triple extraction. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing (vol 1: Long Papers), pp 6225–6235. https://doi.org/10.18653/v1/2021.acl-long.486
– reference: LaiTChengLWangDRMAN: Relational multi-head attention neural network for joint extraction of entities and relationsAppl Intell20225233132314210.1007/s10489-021-02600-2
– reference: Zeng X, Zeng D, He S, et al (2018) Extracting relational facts by an end-to-end neural model with copy mechanism. In: Proceedings of the 56th annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 506–514. https://doi.org/10.18653/v1/P18-1047
– reference: Miwa M, Sasaki Y (2014) Modeling joint entity and relation extraction with table representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1858–1869. https://doi.org/10.3115/v1/D14-1200
– reference: Luan Y, He L, Ostendorf M, et al (2018) Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Proceedings of the 2018 conference on empirical methods in natural language processing, pp 3219–3232. https://doi.org/10.18653/v1/D18-1360
– reference: Xu B, Wang Q, Lyu Y, et al (2022) EmRel: Joint representation of entities and embedded relations for multi-triple extraction. In: Proceedings of the 2022 conference of the north american chapter of the association for computational linguistics: human language technologies, pp 659–665. https://doi.org/10.18653/v1/2022.naacl-main.48
– reference: Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. In: Advances in neural information processing systems 30: annual conference on neural information processing systems, pp 5998–6008. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
– reference: Mintz M, Bills S, Snow R, et al (2009) Distant supervision for relation extraction without labeled data. In: Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP, pp 1003–1011. https://aclanthology.org/P09-1113
– reference: Yuan Y, Zhou X, Pan S, et al (2020) A relation-specific attention network for joint entity and relation extraction. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp 4054–4060. https://doi.org/10.24963/ijcai.2020/561
– reference: Luo Y, Xiao F, Zhao H (2020) Hierarchical contextualized representation for named entity recognition. In: The thirty-fourth AAAI conference on artificial intelligence, pp 8441–8448. https://doi.org/10.1609/aaai.v34i05.6363
– reference: Li X, Yin F, Sun Z, et al (2019) Entity-relation extraction as multi-turn question answering. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1340–1350. https://doi.org/10.18653/v1/P19-1129
– reference: Wang Y, Yu B, Zhang Y, et al (2020) TPLinker: Single-stage joint extraction of entities and relations through token pair linking. In: Proceedings of the 28th international conference on computational linguistics, pp 1572–1582. https://doi.org/10.18653/v1/2020.coling-main.138
– reference: Yu B, Zhang Z, Shu X, et al (2020) Joint extraction of entities and relations based on a novel decomposition strategy. In: 24th European conference on artificial intelligence and 10th conference on prestigious applications of artificial intelligence, pp 2282–2289. https://doi.org/10.3233/FAIA200356
– reference: Akbik A, Bergmann T, Vollgraf R (2019) Pooled contextualized embeddings for named entity recognition. In: Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, vol 1 (Long and Short Papers), pp 724–728. https://doi.org/10.18653/v1/N19-1078
– reference: Sui D, Zeng X, Chen Y, et al (2023) Joint Entity and Relation Extraction With Set Prediction Networks. IEEE Trans Neural Netw Learn Syst pp 1–12. 10.1109/TNNLS.2023.3264735
– reference: Dixit K, Al-Onaizan Y (2019) Span-level model for relation extraction. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 5308–5314. https://doi.org/10.18653/v1/P19-1525
– reference: Riedel S, Yao L, McCallum A (2010) Modeling Relations and Their Mentions without Labeled Text. In: Machine learning and knowledge discovery in databases, pp 148–163. https://doi.org/10.1007/978-3-642-15939-8_10
– reference: Liu Y, Ott M, Goyal N, et al (2019) RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692
– reference: Eberts M, Ulges A (2020) Span-based joint entity and relation extraction with transformer pre-training. In: 24th European conference on artificial intelligence and 10th conference on prestigious applications of artificial intelligence, pp 2006–2013. https://doi.org/10.3233/FAIA200321
– reference: Li X, Li Y, Yang J, et al (2022) A relation aware embedding mechanism for relation extraction. Appl Intell 52(9):10,022–10,031. https://doi.org/10.1007/s10489-021-02699-3
– reference: Fu TJ, Li PH, Ma WY (2019) GraphRel: Modeling text as relational graphs for joint entity and relation extraction. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1409–1418. https://doi.org/10.18653/v1/P19-1136
– reference: WanQWeiLChenXA region-based hypergraph network for joint entity-relation extractionKnowl-Based Syst202122810729810.1016/j.knosys.2021.107298
– reference: Yao X, Van Durme B (2014) Information extraction over structured data: Question answering with Freebase. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 956–966. https://doi.org/10.3115/v1/P14-1090
– reference: Ba JL, Kiros JR, Hinton GE (2016) Layer Normalization. arXiv:1607.06450
– reference: Li Q, Ji H (2014) Incremental joint extraction of entity mentions and relations. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (vol 1: Long Papers), pp 402–412. https://doi.org/10.3115/v1/P14-1038
– reference: Ren X, Wu Z, He W, et al (2017) Cotype: Joint extraction of typed entities and relations with knowledge bases. In: Proceedings of the 26th international conference on world wide web, pp 1015–1024. https://doi.org/10.1145/3038912.3052708
– ident: 5111_CR10
  doi: 10.18653/v1/2022.acl-long.337
– ident: 5111_CR13
  doi: 10.18653/v1/2021.emnlp-main.635
– ident: 5111_CR34
  doi: 10.18653/v1/P19-1136
– ident: 5111_CR44
  doi: 10.18653/v1/P17-1017
– ident: 5111_CR14
  doi: 10.3233/FAIA200356
– volume: 294
  start-page: 137
  year: 2022
  ident: 5111_CR31
  publication-title: Stud Health Technol Inform
  doi: 10.3233/SHTI220418
– ident: 5111_CR42
– ident: 5111_CR16
  doi: 10.1609/aaai.v34i05.6495
– ident: 5111_CR24
  doi: 10.3115/1690219.1690287
– ident: 5111_CR23
  doi: 10.18653/v1/2020.coling-main.138
– ident: 5111_CR38
  doi: 10.1109/TNNLS.2023.3264735
– ident: 5111_CR40
– volume: 228
  start-page: 298
  issue: 107
  year: 2021
  ident: 5111_CR35
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107298
– ident: 5111_CR36
  doi: 10.18653/v1/2022.naacl-main.48
– ident: 5111_CR46
  doi: 10.18653/v1/D19-1035
– ident: 5111_CR3
  doi: 10.3115/v1/P14-1038
– ident: 5111_CR11
  doi: 10.1145/3038912.3052708
– ident: 5111_CR32
  doi: 10.18653/v1/P17-1113
– ident: 5111_CR22
  doi: 10.18653/v1/N19-1423
– ident: 5111_CR12
  doi: 10.18653/v1/2020.acl-main.136
– ident: 5111_CR28
  doi: 10.18653/v1/P16-2034
– ident: 5111_CR43
  doi: 10.1007/978-3-642-15939-8_10
– ident: 5111_CR30
  doi: 10.24963/ijcai.2020/561
– volume: 18
  start-page: 198
  issue: 1
  year: 2017
  ident: 5111_CR7
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1609-9
– ident: 5111_CR19
  doi: 10.24963/ijcai.2020/546
– ident: 5111_CR2
  doi: 10.18653/v1/P16-1105
– ident: 5111_CR20
  doi: 10.18653/v1/P19-1129
– ident: 5111_CR39
– ident: 5111_CR6
  doi: 10.1609/aaai.v29i1.9491
– ident: 5111_CR4
  doi: 10.1007/s10489-021-02699-3
– ident: 5111_CR5
  doi: 10.18653/v1/D18-1360
– volume: 271
  start-page: 550
  issue: 110
  year: 2023
  ident: 5111_CR37
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110550
– ident: 5111_CR9
  doi: 10.18653/v1/2021.naacl-main.5
– ident: 5111_CR15
  doi: 10.18653/v1/P18-1047
– ident: 5111_CR21
  doi: 10.18653/v1/2021.acl-long.486
– ident: 5111_CR1
  doi: 10.3115/v1/P14-1090
– ident: 5111_CR41
– ident: 5111_CR26
  doi: 10.1609/aaai.v34i05.6363
– volume: 52
  start-page: 3132
  issue: 3
  year: 2022
  ident: 5111_CR45
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02600-2
– ident: 5111_CR8
  doi: 10.18653/v1/P16-1200
– ident: 5111_CR27
– ident: 5111_CR29
  doi: 10.3115/v1/D14-1200
– ident: 5111_CR17
  doi: 10.3233/FAIA200321
– ident: 5111_CR18
  doi: 10.18653/v1/2020.coling-main.8
– ident: 5111_CR25
  doi: 10.18653/v1/N19-1078
– ident: 5111_CR33
  doi: 10.18653/v1/P19-1525
SSID ssj0003301
Score 2.3442144
Snippet Joint relational triple extraction treats entity recognition and relation extraction as a joint task to extract relational triples, and this is a critical task...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29656
SubjectTerms Artificial Intelligence
Computer Science
Information retrieval
Knowledge representation
Machines
Manufacturing
Mapping
Mechanical Engineering
Modules
Processes
Semantic relations
Semantics
Sentences
Teaching methods
Words (language)
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVh4IwoFeWCDSE1iJ_FYIaqqEkyt1C2yY7uqBGmVhoF_zzmxW0CAxBYlZw93ucdn3wPgViVMZGGM1s8wGVChUKVkWgRSMwwutG0oYs8hn56T0ZSOZ2zmisLWPtvdX0k2lvpTsRu16T2RzTdDDQ3oLuwxxO42kWsaDTb2FxF6MycPkUWQJHzmSmV-3uOrO9rGmN-uRRtvMzyCAxcmkkEr12PY0eUJHPoRDMRp5CnMx8tFWZPKpbThkrqyR-cEbW7V1iwQ66gUwYfVsra5QUjk6YnStW6pRKkIYmO1cPs09bvv5FXYBg7zM5gMHycPo8DNTggKVKo6QEW01TkZVRhwiCxV3LDYxFpzYxRNRCo1DSU3hUAQpg0TLC5oX6Lvsm9pfA6dclnqCyA6i6TkRZoKhdCDJrKvlQmV5DrjmVFZF0LPwbxwfcXteIuXfNsR2XI9R67nDddz2oW7zZpV21XjT-qeF0zuNGydR4jqEd5FnHXh3gtr-_n33S7_R34F-3bCfJvB0oNOXb3pa4xDannT_HYfS6nU_Q
  priority: 102
  providerName: Springer Nature
Title Joint relational triple extraction based on potential relation detection and conditional entity mapping
URI https://link.springer.com/article/10.1007/s10489-023-05111-4
https://www.proquest.com/docview/2907014295
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR27TsMw8ATtwsIbUR6VBzaIoImTOBNqUR8CUSEEUpkiO7ZRJUhLCQN_z13iUIEEU6z47OHse_oeACc6CqXoBMj9bKg8LjWSlIozT5kQlQtDBUXID3k7jkaP_HoSTpzD7d2FVdY8sWTUepaRj_zcRysO1Xk_CS_nbx51jaLXVddCYxWayIKFaECz1x_f3X_zYrTWy555aGV4UZRMXNqMS57jFC7kU_waUrzHf4qmpb7564m0lDyDTVh3KiPrVme8BSsm34aNuh0Dc9S5A8_Xs2lesIULb8MlxYLc6Az576LKX2AktDTDwXxWUJwQAtXwTJvCVFAy1wztZD11-5S5vJ_sVVIxh-ddeBj0H65Gnuuj4GVIYIWHREmZOoJrVD6kiHViw8AGxiTWah7JWBneUYnNJBpkxoYyDDJ-oVCO0V8e7EEjn-VmH5gRvlJJFsdSoxnCI3VhtO1olRiRCKtFCzo1BtPM1RinVhcv6bI6MmE9RaynJdZT3oLT7zXzqsLGv9BH9cGkjtre0-XdaMFZfVjL6b93O_h_t0NYo-7yVfTKETSKxYc5Rh2kUG1YFYNhG5rdQa83pu_w6abfdtcPZx_97hcLgt5d
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzGeOcAJKrY2fR0QQsAYz9OQdouSJpmQoBujCPGj-I_YbcoEEty4Va3jg-N-thM_AHZ1FMqkFSD62VB5XGr8pVScecqE6FwYaihC55C3d1Hnnl_1wt4EfNS1MJRWWWNiCdR6kNEZ-aGPURy6834aHg-fPZoaRber9QiNSi2uzfsbhmwvR5dnuL97vt8-7552PDdVwMtQ3QoPVZTqVhKu0RTLJNapDQMbGJNaq3kkY2V4S6U2kxieGBvKMMh4UyGq01seINtJmOYBrqbC9PbFF_AHQTltuYkhjRdFac_V6LhKPU65ST4lyyG8ePy7HRw7tz_uY0sz116AOeefspNKoRZhwuRLMF_PfmAOCpahfzV4yAs2crl0uKQY0Zk9Q7AfVcUSjCykZvgwHBSUlIRENT3TpjAVlcw1w6BcPzg-ZeHwO3uS1DmivwLd_xDvKkzlg9ysATOJr1SaxbHUGPPwSDWNti2tUpOkidVJA1q1BEXmGprTXI1HMW7FTFIXKHVRSl3wBux_rRlW7Tz-pN6sN0a4X_tFjBWxAQf1Zo0__85t_W9uOzDT6d7eiJvLu-sNmKWx9lXazCZMFaNXs4XOT6G2S5VjIP5ZxT8BrykUkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB5BkZ64sCPK6gOceBFt4mwHhNgq1go98aTeLDu2KyRISwlC_DT-HTOJQwUS3LhFyWQO48-z2LMAbOsolEk7QO1nQ-VxqXFLqTjzlAnRuTDUUITOIa-70dl_ftELexPwVtfCUFplrRNLRa0HGZ2R7_kYxaE776fhnnVpETcnnYPho0cTpOimtR6nUUHk0ry-YPj2tH9-gmu94_ud09vjM89NGPAyhF7hIVyphiXhGs2yTGKd2jCwgTGptZpHMlaGt1VqM4mhirGhDIOMtxRqeHrLA2Q7CVMxBUUNmDo67d78-zADQVDOXm5hgONFUdpzFTuubo9TppJPqXOobDz-2SqOXd0vt7Ol0evMwYzzVtlhBa95mDD5AszWkyCYUwyL0L8Y3OUFG7nMOvylGNEJPkP5jarSCUb2UjN8GA4KSlFCopqeaVOYikrmmmGIru8cn7KM-JU9SOoj0V-C298Q8DI08kFuVoCZxFcqzeJYaoyAeKRaRtu2VqlJ0sTqpAntWoIic-3NacrGvRg3ZiapC5S6KKUueBN2P_4ZVs09fqRerxdGuI3-JMawbMLferHGn7_ntvozty34g_AWV-fdyzWYphn3VQ7NOjSK0bPZQE-oUJsOcwzEL6P8HSjNGiM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+relational+triple+extraction+based+on+potential+relation+detection+and+conditional+entity+mapping&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhou%2C+Xiong&rft.au=Zhang%2C+Qinghua&rft.au=Gao%2C+Man&rft.au=Wang%2C+Guoyin&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=24&rft.spage=29656&rft.epage=29676&rft_id=info:doi/10.1007%2Fs10489-023-05111-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon