On the absolute stability of a two-step third order method on a graded mesh for an initial-value problem

A two-step third order method on a variable mesh for the approximation of nonlinear IVP: u ″ = f ( t , u , u ′ ) , u ( t 0 ) = γ 0 , u ′ ( t 0 ) = γ 1 is proposed. For computation, only a monotonically decreasing mesh will be employed. The method when applied to a test equation u ″ + 2 α u ′ + β 2 u...

Full description

Saved in:
Bibliographic Details
Published inComputational & applied mathematics Vol. 40; no. 1
Main Authors Mohanty, R. K., Ghosh, Bishnu Pada, McKee, Sean
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2238-3603
1807-0302
DOI10.1007/s40314-021-01416-7

Cover

Loading…
Abstract A two-step third order method on a variable mesh for the approximation of nonlinear IVP: u ″ = f ( t , u , u ′ ) , u ( t 0 ) = γ 0 , u ′ ( t 0 ) = γ 1 is proposed. For computation, only a monotonically decreasing mesh will be employed. The method when applied to a test equation u ″ + 2 α u ′ + β 2 u = g ( t ) , α > β ≥ 0 , is shown to be unconditionally stable. The proposed method is applicable to solve singular problems. A special technique is required to compute the method near the singular point. Several problems of physical significance including three problems on boundary layer are examined to illustrate the convergent character and usefulness of the approximation. Approximate solutions are provided to validate the functionality of the suggested approximation.
AbstractList A two-step third order method on a variable mesh for the approximation of nonlinear IVP: u ″ = f ( t , u , u ′ ) , u ( t 0 ) = γ 0 , u ′ ( t 0 ) = γ 1 is proposed. For computation, only a monotonically decreasing mesh will be employed. The method when applied to a test equation u ″ + 2 α u ′ + β 2 u = g ( t ) , α > β ≥ 0 , is shown to be unconditionally stable. The proposed method is applicable to solve singular problems. A special technique is required to compute the method near the singular point. Several problems of physical significance including three problems on boundary layer are examined to illustrate the convergent character and usefulness of the approximation. Approximate solutions are provided to validate the functionality of the suggested approximation.
A two-step third order method on a variable mesh for the approximation of nonlinear IVP: u″=f(t,u,u′),u(t0)=γ0,u′(t0)=γ1 is proposed. For computation, only a monotonically decreasing mesh will be employed. The method when applied to a test equation u″+2αu′+β2u=g(t),α>β≥0, is shown to be unconditionally stable. The proposed method is applicable to solve singular problems. A special technique is required to compute the method near the singular point. Several problems of physical significance including three problems on boundary layer are examined to illustrate the convergent character and usefulness of the approximation. Approximate solutions are provided to validate the functionality of the suggested approximation.
ArticleNumber 35
Author McKee, Sean
Ghosh, Bishnu Pada
Mohanty, R. K.
Author_xml – sequence: 1
  givenname: R. K.
  orcidid: 0000-0001-6832-1239
  surname: Mohanty
  fullname: Mohanty, R. K.
  email: rmohanty@sau.ac.in
  organization: Department of Applied Mathematics, South Asian University
– sequence: 2
  givenname: Bishnu Pada
  surname: Ghosh
  fullname: Ghosh, Bishnu Pada
  organization: Department of Applied Mathematics, South Asian University
– sequence: 3
  givenname: Sean
  surname: McKee
  fullname: McKee, Sean
  organization: Department of Mathematics and Statistics, University of Strathclyde
BookMark eNp9kE1LAzEQhoMo2Kp_wFPAc3Rmk93sHqX4BYIXPYdsNmtTtklNUsV_b7SC4KGnYYbnmRneOTn0wVtCzhEuEUBeJQEcBYMKGaDAhskDMsMWJAMO1SGZVRVvGW-AH5N5SisALlGIGVk-eZqXluo-hWmbLU1Z925y-ZOGkWqaPwJL2W4K5OJAQxxspGubl6E0vgCvUQ92KKO0pGOIVHvqvMtOT-xdT1tLNzH0k12fkqNRT8me_dYT8nJ787y4Z49Pdw-L60dmOHaZ1VJwHKESXQ8WUfZmlEOHnZAwamn6Vko0PdcceG2kqAvXaCFbg6YRtkF-Qi52e8vdt61NWa3CNvpyUlWiretKyu6baneUiSGlaEdlXNbZBZ-jdpNCUN-5ql2uquSqfnJVsqjVP3UT3VrHz_0S30mpwP7Vxr-v9lhfBEGLzg
CitedBy_id crossref_primary_10_1007_s00500_023_07909_3
crossref_primary_10_1007_s10910_022_01441_9
crossref_primary_10_1016_j_apnum_2021_10_016
crossref_primary_10_1016_j_mex_2023_102308
crossref_primary_10_1016_j_camwa_2022_07_009
crossref_primary_10_1007_s40314_022_01991_3
crossref_primary_10_1007_s10910_023_01509_0
Cites_doi 10.1137/1.9781611970944
10.1016/S0893-9659(04)90019-5
10.1016/S0377-0427(96)00132-X
10.1007/BF01401041
10.1201/9780203908518
10.1093/imanum/23.2.197
10.1016/j.cam.2004.11.045
10.1016/0377-0427(94)00127-8
10.1007/BF01933627
10.1023/A:1026167824656
10.1080/00207160801965271
10.1016/j.aml.2015.01.008
10.1080/00207160701871843
10.1016/0377-0427(85)90018-4
10.1016/0045-7825(84)90009-4
10.1007/s00366-019-00857-3
10.1016/j.amc.2006.05.071
10.1007/BF01931689
10.1093/imamat/18.2.189
10.1016/j.amc.2004.07.002
ContentType Journal Article
Copyright SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021
SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.
Copyright_xml – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021
– notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021.
DBID AAYXX
CITATION
DOI 10.1007/s40314-021-01416-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
ExternalDocumentID 10_1007_s40314_021_01416_7
GrantInformation_xml – fundername: Royal Society of Edinburgh
  grantid: 2014
  funderid: http://dx.doi.org/10.13039/501100000332
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c319t-57431f0249b0e117bcf7d919470fa7cb8771cb3a3035c74549b6a478c1c64e613
IEDL.DBID AGYKE
ISSN 2238-3603
IngestDate Fri Jul 25 11:21:05 EDT 2025
Tue Jul 01 00:46:04 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Fri Feb 21 02:48:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 65L05
65L06
Graded mesh
Nonlinear IVPs
Region of absolute stability
65L07
Damped wave equation
Mathematics Subject Classification
Boundary layer problems
Singular problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-57431f0249b0e117bcf7d919470fa7cb8771cb3a3035c74549b6a478c1c64e613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6832-1239
PQID 2485527791
PQPubID 2044245
ParticipantIDs proquest_journals_2485527791
crossref_citationtrail_10_1007_s40314_021_01416_7
crossref_primary_10_1007_s40314_021_01416_7
springer_journals_10_1007_s40314_021_01416_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational & applied mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Rai, Ananthakrishnaiah (CR20) 1996; 67
Hairer (CR6) 1979; 32
Lambert (CR11) 1991
Chawla (CR1) 1983; 23
Chawla (CR2) 1985; 12
Jain, Iyengar, Subramanyam (CR7) 1984; 42
Mohanty (CR15) 2005; 182
Samarskii (CR23) 2001
CR8
Simos, Famelis, Tsitouras (CR24) 2003; 34
Lambert (CR10) 1973
Dahlquist (CR4) 1978; 18
Rai, Ananthakrishnaiah (CR21) 1997; 79
Mohanty (CR13) 2004; 17
Mohanty (CR14) 2005; 165
Mohanty (CR17) 2009; 86
Mohanty, Ghosh (CR18) 2021
Kelly (CR9) 1995
Hageman, Young (CR5) 2004
Mohanty (CR16) 2006; 183
Saldanha, Saldanha (CR22) 2009; 86
Coleman (CR3) 2003; 23
Mohanty, McKee (CR19) 2015; 45
Lambert, Watson (CR12) 1976; 18
AS Rai (1416_CR20) 1996; 67
RK Mohanty (1416_CR18) 2021
G Saldanha (1416_CR22) 2009; 86
JP Coleman (1416_CR3) 2003; 23
RK Mohanty (1416_CR16) 2006; 183
RK Mohanty (1416_CR19) 2015; 45
AA Samarskii (1416_CR23) 2001
RK Mohanty (1416_CR17) 2009; 86
LA Hageman (1416_CR5) 2004
MK Jain (1416_CR7) 1984; 42
AS Rai (1416_CR21) 1997; 79
MM Chawla (1416_CR2) 1985; 12
JD Lambert (1416_CR12) 1976; 18
TE Simos (1416_CR24) 2003; 34
1416_CR8
RK Mohanty (1416_CR13) 2004; 17
MM Chawla (1416_CR1) 1983; 23
RK Mohanty (1416_CR15) 2005; 182
G Dahlquist (1416_CR4) 1978; 18
E Hairer (1416_CR6) 1979; 32
JD Lambert (1416_CR11) 1991
RK Mohanty (1416_CR14) 2005; 165
JD Lambert (1416_CR10) 1973
CT Kelly (1416_CR9) 1995
References_xml – year: 2004
  ident: CR5
  publication-title: Applied iterative methods
– year: 1995
  ident: CR9
  publication-title: Iterative methods for linear and non-linear equations
  doi: 10.1137/1.9781611970944
– volume: 17
  start-page: 101
  year: 2004
  end-page: 105
  ident: CR13
  article-title: An unconditionally stable difference scheme for the one space dimensional linear hyperbolic equation
  publication-title: Appl Math Lett
  doi: 10.1016/S0893-9659(04)90019-5
– volume: 79
  start-page: 167
  year: 1997
  end-page: 182
  ident: CR21
  article-title: Obrechkoff methods having additional parameters for general second order differential equations
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(96)00132-X
– volume: 32
  start-page: 373
  year: 1979
  end-page: 379
  ident: CR6
  article-title: Unconditionally stable methods for second order differential equations
  publication-title: Numer Math
  doi: 10.1007/BF01401041
– year: 2001
  ident: CR23
  publication-title: The theory of difference schemes
  doi: 10.1201/9780203908518
– volume: 23
  start-page: 197
  year: 2003
  end-page: 220
  ident: CR3
  article-title: Order conditions for a class of two-step methods for y"=f(x, y)
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/23.2.197
– volume: 182
  start-page: 173
  year: 2005
  end-page: 187
  ident: CR15
  article-title: A family of variable mesh methods for the estimates of ( ) and the solution of nonlinear two point boundary value problems with singularity
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2004.11.045
– volume: 67
  start-page: 271
  year: 1996
  end-page: 276
  ident: CR20
  article-title: Additive parameters methods for the numerical integration of y"=f(x, y, y')
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(94)00127-8
– volume: 23
  start-page: 541
  year: 1983
  end-page: 542
  ident: CR1
  article-title: Unconditionally stable Numerov type methods for second order differential equations
  publication-title: BIT
  doi: 10.1007/BF01933627
– year: 1973
  ident: CR10
  publication-title: Computational methods in ordinary differential equations
– volume: 34
  start-page: 27
  year: 2003
  end-page: 40
  ident: CR24
  article-title: Zero dissipative explicit Numerov-type methods for second order IVPs with oscillating solutions
  publication-title: Numer Algorithms
  doi: 10.1023/A:1026167824656
– volume: 86
  start-page: 2061
  year: 2009
  end-page: 2071
  ident: CR17
  article-title: New unconditionally stable difference schemes for the solution of multi-dimensional Telegraphic equations
  publication-title: Int J Comput Math
  doi: 10.1080/00207160801965271
– volume: 45
  start-page: 31
  year: 2015
  end-page: 36
  ident: CR19
  article-title: On the stability of two new two-step explicit methods for the numerical integration of second order initial value problem on a variable mesh
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2015.01.008
– volume: 86
  start-page: 1424
  year: 2009
  end-page: 1432
  ident: CR22
  article-title: A class of explicit two-step superstable methods for second-order linear initial value problems
  publication-title: Int J Comput Math
  doi: 10.1080/00207160701871843
– volume: 12
  start-page: 217
  year: 1985
  end-page: 220
  ident: CR2
  article-title: Superstable two-step methods for the numerical integration of general second order initial value problem J
  publication-title: Comput Appl Math
  doi: 10.1016/0377-0427(85)90018-4
– volume: 165
  start-page: 229
  year: 2005
  end-page: 236
  ident: CR14
  article-title: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
  publication-title: Appl Math Comput
– volume: 42
  start-page: 273
  year: 1984
  end-page: 286
  ident: CR7
  article-title: Variable mesh methods for the numerical solution of two point singular perturbation problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(84)90009-4
– year: 2021
  ident: CR18
  article-title: Absolute stability of an implicit method based on third-order off-step discretization for the initial-value problem on a graded mesh
  publication-title: Eng Computs
  doi: 10.1007/s00366-019-00857-3
– ident: CR8
– volume: 183
  start-page: 477
  year: 2006
  end-page: 485
  ident: CR16
  article-title: A class of non-uniform mesh three point arithmetic average discretization for y"=f(x, y, y') and the estimates of y'
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.05.071
– volume: 18
  start-page: 133
  year: 1978
  end-page: 136
  ident: CR4
  article-title: On accuracy and unconditional stability of linear multistep methods for second order differential equations
  publication-title: BIT
  doi: 10.1007/BF01931689
– volume: 18
  start-page: 189
  year: 1976
  end-page: 202
  ident: CR12
  article-title: Symmetric multistep methods for periodic initial value problems J
  publication-title: Inst Maths Applics
  doi: 10.1093/imamat/18.2.189
– year: 1991
  ident: CR11
  publication-title: Numerical methods for ordinary differential systems: the initial value problem
– volume: 18
  start-page: 133
  year: 1978
  ident: 1416_CR4
  publication-title: BIT
  doi: 10.1007/BF01931689
– volume: 18
  start-page: 189
  year: 1976
  ident: 1416_CR12
  publication-title: Inst Maths Applics
  doi: 10.1093/imamat/18.2.189
– volume: 17
  start-page: 101
  year: 2004
  ident: 1416_CR13
  publication-title: Appl Math Lett
  doi: 10.1016/S0893-9659(04)90019-5
– volume-title: The theory of difference schemes
  year: 2001
  ident: 1416_CR23
  doi: 10.1201/9780203908518
– volume-title: Applied iterative methods
  year: 2004
  ident: 1416_CR5
– volume: 42
  start-page: 273
  year: 1984
  ident: 1416_CR7
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(84)90009-4
– volume: 23
  start-page: 197
  year: 2003
  ident: 1416_CR3
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/23.2.197
– year: 2021
  ident: 1416_CR18
  publication-title: Eng Computs
  doi: 10.1007/s00366-019-00857-3
– volume: 12
  start-page: 217
  year: 1985
  ident: 1416_CR2
  publication-title: Comput Appl Math
  doi: 10.1016/0377-0427(85)90018-4
– volume-title: Iterative methods for linear and non-linear equations
  year: 1995
  ident: 1416_CR9
  doi: 10.1137/1.9781611970944
– volume: 165
  start-page: 229
  year: 2005
  ident: 1416_CR14
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2004.07.002
– ident: 1416_CR8
– volume: 34
  start-page: 27
  year: 2003
  ident: 1416_CR24
  publication-title: Numer Algorithms
  doi: 10.1023/A:1026167824656
– volume: 183
  start-page: 477
  year: 2006
  ident: 1416_CR16
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.05.071
– volume: 79
  start-page: 167
  year: 1997
  ident: 1416_CR21
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(96)00132-X
– volume: 23
  start-page: 541
  year: 1983
  ident: 1416_CR1
  publication-title: BIT
  doi: 10.1007/BF01933627
– volume-title: Computational methods in ordinary differential equations
  year: 1973
  ident: 1416_CR10
– volume: 45
  start-page: 31
  year: 2015
  ident: 1416_CR19
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2015.01.008
– volume: 67
  start-page: 271
  year: 1996
  ident: 1416_CR20
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(94)00127-8
– volume: 182
  start-page: 173
  year: 2005
  ident: 1416_CR15
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2004.11.045
– volume: 32
  start-page: 373
  year: 1979
  ident: 1416_CR6
  publication-title: Numer Math
  doi: 10.1007/BF01401041
– volume-title: Numerical methods for ordinary differential systems: the initial value problem
  year: 1991
  ident: 1416_CR11
– volume: 86
  start-page: 2061
  year: 2009
  ident: 1416_CR17
  publication-title: Int J Comput Math
  doi: 10.1080/00207160801965271
– volume: 86
  start-page: 1424
  year: 2009
  ident: 1416_CR22
  publication-title: Int J Comput Math
  doi: 10.1080/00207160701871843
SSID ssj0037144
Score 2.1839156
Snippet A two-step third order method on a variable mesh for the approximation of nonlinear IVP: u ″ = f ( t , u , u ′ ) , u ( t 0 ) = γ 0 , u ′ ( t 0 ) = γ 1 is...
A two-step third order method on a variable mesh for the approximation of nonlinear IVP: u″=f(t,u,u′),u(t0)=γ0,u′(t0)=γ1 is proposed. For computation, only a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Applied physics
Approximation
Boundary layers
Computational mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Title On the absolute stability of a two-step third order method on a graded mesh for an initial-value problem
URI https://link.springer.com/article/10.1007/s40314-021-01416-7
https://www.proquest.com/docview/2485527791
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61cKEHaHmI5SUfegOjeOPYyREQWwSCXlgJTpFfAQRk0SYIwa9n7HUWgWgljlEmVmJ_4_miGX8D8Fu4IlGZtdT2M0N5hZ6ukDXQRFshVCp1P2TPT8_E0ZAfX2QX8VBY01W7dynJsFNPD7txr7ROfUmBL04UVH6HWeQfCaJ7du_P5clhtwN7ETqfTcbIl9NUJGk8LPP5KO8D0hvL_JAYDfFmsADD7k0nZSa3u4-t3jUvH0Qcv_opP2E-ElCyN0HML_jm6kVYiGSURFdvFuHH6VTQtVmC6781wUuidMCqI0gqQ1ntMxlVRJH2aUQRLw9odDO2JAh6kkl3ajKq0eBqrCyOf--aa4I8maia3Pi6JXVHvd64I7GzzTIMB4fnB0c0NmmgBr23pZmnIJUXHtSJY0xqU0lbsILLpFLS6FxKZnSqMFRmRnL8HdVCcZkbZgR3SCZWYKYe1W4VSF45mzLmssRVPE9FkbnKKq0yprnvbtQD1q1UaaKCuW-kcVdOtZfDxJY4sWWY2FL2YHv6zMNEv-O_1hsdAMroy00ZRN_6UhasBzvder7d_vdoa18zX4e5foCEr5XZgJl2_Og2kfG0egsBPtjfP9uKQH8FrUf1Fw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5dD2AJS26rZAfeBGjeKNH9kjqqDLY-mFlegp8iuASrNoE1SVX9-x11lUVJA4RplYiT3j-aL5_A3AtvTDTAvnqBsIS3mFka4RNdDMOCl1rswgVs_Hp3I04Ufn4jwdCms6tntXkow79eKwGw9K6zRQCgI5UVL1ApY5_oOLHizvfftxvN_twEGELlSTMfMVNJdZng7L_H-UfxPSPcp8UBiN-eZgFSbdm85pJj93b1uza-8eiDg-91PWYCUBULI395g3sOTrdVhNYJSkUG_W4fV4IejavIXL7zXBS6JN9FVPEFRGWu0fMq2IJu3vKUV_uUGjq5kjUdCTzLtTk2mNBhcz7XD8X765JIiTia7JVeAt6Wsa9MY9SZ1t3sHkYP_s64imJg3UYvS2VAQIUgXhQZN5xpSxlXJDXBaVVVpZUyjFrMk1pkphFcffUSM1V4VlVnKPYOI99Opp7T8AKSrvcsa8yHzFi1wOha-cNloww0N3oz6wbqVKmxTMQyON63KhvRwntsSJLePElqoPO4tnbub6HU9ab3QOUKZYbsoo-jZQasj68KVbz_vbj4_28Xnmn-Hl6Gx8Up4cnh5_gleD6B6BN7MBvXZ26zcR_bRmKzn7X6Zs9oo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRarKgVdbsbzqQ2-tId44dnJEwPIqtIci0VPkZ0FAdrUbhODXYzvO8lCpVPUYZWIl9tjzRfPNNwCfmSkSkWmNdS9TmFq304VDDTiRmjGRctkL2fPjE7Z_Sg_PsrMnVfyB7d6mJJuaBq_SVNWbQ203J4Vv1KuuY08v8ERFhvkbmKZeXa0D01t7v45229PYC9L5zLKLgjlOWZLGwpk_j_I8OD0izhdJ0hB7-nMg2rduKCeXGze13FD3LwQd_-ez5mE2AlO01XjSAkyZahHmIkhF8QgYL8LM8UTodfwezr9XyF0iIYMPG-TAZqDb3qGBRQLVtwPs_GjojC5GGgWhT9R0rUaDyhn8Hgntxr8243Pk8DMSFbrwfCZxhb0OuUGx480HOO3v_tzex7F5A1ZuV9c489DEekFCmRhCuFSW64IUlCdWcCVzzomSqXAhNFOcut9UyQTluSKKUeNAxkfoVIPKLAHKrdEpISZLjKV5yorMWC2kyIikvutRF0i7aqWKyua-wcZVOdFkDhNbuoktw8SWvAtfJs8MG12Pv1qvts5Qxj0-LoMYXI_zgnTha7u2j7dfH23538w_wdsfO_3y28HJ0Qq86wXv8HSaVejUoxuz5kBRLdej3z8Air7_bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+absolute+stability+of+a+two-step+third+order+method+on+a+graded+mesh+for+an+initial-value+problem&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Mohanty%2C+R.+K.&rft.au=Ghosh%2C+Bishnu+Pada&rft.au=McKee%2C+Sean&rft.date=2021-02-01&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=40&rft.issue=1&rft_id=info:doi/10.1007%2Fs40314-021-01416-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40314_021_01416_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon