LSS-UNET: Lumbar spinal stenosis semantic segmentation using deep learning
The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires seri...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 26; pp. 41287 - 41305 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires serious expertise, making the diagnosis of LSS difficult. Looking at the literature, the U-Net method can perform semantic segmentation with high success. In recent years, it has been seen in the literature that the success of the classical U-Net has increased when the architecture of different deep learning methods has been applied. In order to segment the LSS region, semantic segmentation was performed on lumbar spine MR images with 3 different deep learning methods. The success of these methods was calculated by Dice and IoU scores. The highest segmentation success among 1560 images was obtained in the ResUNet model with 0.93 DICE score. LSS treatment, which negatively affects human life, is very important because of the difficulty of interpreting MR images and the confusion of LSS with lumbar hernia. Today, expert decision support systems have become essential for correct diagnosis, which is the most important feature of starting a treatment/surgical operation. Especially the high success of classification/segmentation obtained by deep learning methods has also been demonstrated in LSS segmentation, which is the subject of our study. |
---|---|
AbstractList | The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires serious expertise, making the diagnosis of LSS difficult. Looking at the literature, the U-Net method can perform semantic segmentation with high success. In recent years, it has been seen in the literature that the success of the classical U-Net has increased when the architecture of different deep learning methods has been applied. In order to segment the LSS region, semantic segmentation was performed on lumbar spine MR images with 3 different deep learning methods. The success of these methods was calculated by Dice and IoU scores. The highest segmentation success among 1560 images was obtained in the ResUNet model with 0.93 DICE score. LSS treatment, which negatively affects human life, is very important because of the difficulty of interpreting MR images and the confusion of LSS with lumbar hernia. Today, expert decision support systems have become essential for correct diagnosis, which is the most important feature of starting a treatment/surgical operation. Especially the high success of classification/segmentation obtained by deep learning methods has also been demonstrated in LSS segmentation, which is the subject of our study. The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires serious expertise, making the diagnosis of LSS difficult. Looking at the literature, the U-Net method can perform semantic segmentation with high success. In recent years, it has been seen in the literature that the success of the classical U-Net has increased when the architecture of different deep learning methods has been applied. In order to segment the LSS region, semantic segmentation was performed on lumbar spine MR images with 3 different deep learning methods. The success of these methods was calculated by Dice and IoU scores. The highest segmentation success among 1560 images was obtained in the ResUNet model with 0.93 DICE score. LSS treatment, which negatively affects human life, is very important because of the difficulty of interpreting MR images and the confusion of LSS with lumbar hernia. Today, expert decision support systems have become essential for correct diagnosis, which is the most important feature of starting a treatment/surgical operation. Especially the high success of classification/segmentation obtained by deep learning methods has also been demonstrated in LSS segmentation, which is the subject of our study. |
Author | Altun, Sinan Alkan, Ahmet Altun, İdiris |
Author_xml | – sequence: 1 givenname: İdiris orcidid: 0000-0003-4263-766X surname: Altun fullname: Altun, İdiris organization: Department of Neurosurgery, Kahramanmaras Sutcuu Imam Universirty – sequence: 2 givenname: Sinan orcidid: 0000-0002-2356-0460 surname: Altun fullname: Altun, Sinan email: s.altun@yaani.com organization: Department of Electrical and Electronics Engneering, Kahramanmaras Sutcu Imam University – sequence: 3 givenname: Ahmet orcidid: 0000-0003-0857-0764 surname: Alkan fullname: Alkan, Ahmet organization: Department of Electrical and Electronics Engneering, Kahramanmaras Sutcu Imam University |
BookMark | eNp9kEtPwzAQhC1UJNrCH-AUibPBjzi2uaGqvBTBoe3ZclK7cpU4wU4O_HsMQULi0NPOruZbjWYBZr7zBoBrjG4xQvwuYoxyAhGhEDOCGKRnYI4Zp5BzgmdJU4EgZwhfgEWMR4RwwUg-B6_lZgN3b-vtfVaObaVDFnvndZPFwfguuphF02o_uDqJQ2v8oAfX-WyMzh-yvTF91hgdfNouwbnVTTRXv3MJdo_r7eoZlu9PL6uHEtYUywEyjrG23Aq0J0xIifc2XWyFqOWoqLQhBatrbSXX1MpKUoMtloZRLfJc5oguwc30tw_dx2jioI7dGFLmqIgQiAlakCK5xOSqQxdjMFbVbso-BO0ahZH6bk5NzanUnPppTtGEkn9oH1yrw-dpiE5QTGZ_MOEv1QnqCx12gaE |
CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107770 crossref_primary_10_1186_s13018_024_05002_5 crossref_primary_10_3390_diagnostics14020191 crossref_primary_10_1177_20552076241311939 |
Cites_doi | 10.1007/s11042-022-12214-6 10.1016/j.jksues.2020.06.001 10.1007/s11042-022-12212-8 10.1109/ACCESS.2019.2908002 10.1007/s13246-021-01019-w 10.1016/j.artmed.2022.102243 10.1007/s11042-022-11913-4 10.1016/S0304-3959(98)00209-7 10.1016/j.heliyon.2020.e05625 10.1016/j.asoc.2020.106311 10.1007/s11042-022-12460-8 10.1016/j.cmpb.2020.105395 10.1016/j.wneu.2022.03.060 10.1109/TMI.2020.3002417 10.1016/j.ejrad.2019.02.023 10.1109/CVPR.2019.00075 10.1007/s00521-021-05856-4 10.1093/pm/pnz161 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-15205-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 41305 |
ExternalDocumentID | 10_1007_s11042_023_15205_3 |
GrantInformation_xml | – fundername: Türkiye Bilimsel ve Teknolojik Araştırma Kurumu grantid: 122E042 funderid: http://dx.doi.org/10.13039/501100004410 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-5711af7f80d258991df711fb03f706bae265ccaf97a3f9b93e1f19e53a8449403 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:33:56 EDT 2025 Tue Jul 01 04:13:21 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Fri Feb 21 02:43:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | Semantic segmentation Lumbar spinal stenosis U-Net |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5711af7f80d258991df711fb03f706bae265ccaf97a3f9b93e1f19e53a8449403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0857-0764 0000-0002-2356-0460 0000-0003-4263-766X |
PQID | 2880583626 |
PQPubID | 54626 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2880583626 crossref_citationtrail_10_1007_s11042_023_15205_3 crossref_primary_10_1007_s11042_023_15205_3 springer_journals_10_1007_s11042_023_15205_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Shehab, Fahmy, Gasser, El-Mahallawy (CR20) 2021; 33 Ghosh, Chaki, Santosh (CR6) 2021; 44 CR3 Das, Biswas, Bandyopadhyay (CR2) 2022 Lu, Wang, Zhang (CR13) 2020; 6 CR5 Dong, Zhao, Wu, Chang (CR4) 2020; 93 CR8 CR18 Zhang, Wu, Coleman, Kerr (CR21) 2020; 192 CR9 Gong, Liu, Chen, Li, ResAttenGAN (CR7) 2022 Macfarlane, Thomas, Croft, Papageorgiou, Jayson, Silman (CR14) 1999; 80 CR12 CR11 Al-Kafri, Sudirman, Hussain, Al-Jumeily, Natalia, Meidia, Afriliana, Al-Rashdan, Bashtawi, Al-Jumaily (CR1) 2019; 7 CR10 Ronneberger, Fischer, Brox (CR19) 2015 Rana, Singh, Mavuduru (CR16) 2022 Miron, Pasarica, Manta (CR15) 2022 Rehman, Nida, Shah (CR17) 2022 S Ghosh (15205_CR6) 2021; 44 LH Shehab (15205_CR20) 2021; 33 15205_CR18 GJ Macfarlane (15205_CR14) 1999; 80 N Dong (15205_CR4) 2020; 93 Z Zhang (15205_CR21) 2020; 192 C Miron (15205_CR15) 2022 AS Al-Kafri (15205_CR1) 2019; 7 15205_CR9 15205_CR10 D Das (15205_CR2) 2022 15205_CR11 Hu Rehman (15205_CR17) 2022 15205_CR8 15205_CR5 15205_CR3 15205_CR12 S Lu (15205_CR13) 2020; 6 H Gong (15205_CR7) 2022 A Rana (15205_CR16) 2022 O Ronneberger (15205_CR19) 2015 |
References_xml | – year: 2022 ident: CR16 article-title: Quantifying prognosis severity of COVID-19 patients from deep learning based analysis of CT chest images publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12214-6 – ident: CR18 – year: 2015 ident: CR19 publication-title: U-Net: convolutional networks for biomedical ımage segmentation – ident: CR3 – ident: CR12 – volume: 33 start-page: 404 issue: 6 year: 2021 end-page: 412 ident: CR20 article-title: An efficient brain tumor image segmentation based on deep residual networks (ResNets) publication-title: J King Saud Univ - Eng Sci doi: 10.1016/j.jksues.2020.06.001 – year: 2022 ident: CR15 article-title: Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12212-8 – volume: 7 start-page: 43487 year: 2019 end-page: 43501 ident: CR1 article-title: Boundary Delineation of MRI images for lumbar spinal stenosis detection through semantic segmentation using deep neural networks publication-title: Access IEEE doi: 10.1109/ACCESS.2019.2908002 – ident: CR10 – ident: CR11 – volume: 44 start-page: 703 issue: 3 year: 2021 end-page: 712 ident: CR6 article-title: Improved U-Net architecture with VGG-16 for brain tumor segmentation publication-title: Phys Eng Sci Med doi: 10.1007/s13246-021-01019-w – year: 2022 ident: CR7 article-title: Simultaneous segmentation of multiple spinal structures on axial lumbar MRI image using residual attention and adversarial learning publication-title: Artif Intell Med doi: 10.1016/j.artmed.2022.102243 – ident: CR9 – year: 2022 ident: CR2 article-title: Perspective of AI system for COVID-19 detection using chest images: a review publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-11913-4 – volume: 80 start-page: 113 issue: 1 year: 1999 end-page: 119 ident: CR14 article-title: Predictors of early improvement in low back pain amongst consulters to general practice: the influence of pre-morbid and episode-related factors publication-title: Pain doi: 10.1016/S0304-3959(98)00209-7 – ident: CR5 – ident: CR8 – volume: 6 start-page: e05625 issue: 12 year: 2020 ident: CR13 article-title: Detecting pathological brain via ResNet and randomized neural networks publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05625 – volume: 93 start-page: 106311 year: 2020 ident: CR4 article-title: Inception v3 based cervical cell classification combined with artificially extracted features publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106311 – year: 2022 ident: CR17 article-title: Automatic melanoma detection and segmentation in dermoscopy images using deep RetinaNet and conditional random fields publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12460-8 – volume: 192 start-page: 105395 year: 2020 ident: CR21 article-title: DENSE-INception U-net for medical image segmentation publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105395 – year: 2022 ident: 15205_CR2 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-11913-4 – year: 2022 ident: 15205_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12212-8 – ident: 15205_CR11 doi: 10.1016/j.wneu.2022.03.060 – volume: 80 start-page: 113 issue: 1 year: 1999 ident: 15205_CR14 publication-title: Pain doi: 10.1016/S0304-3959(98)00209-7 – ident: 15205_CR5 doi: 10.1109/TMI.2020.3002417 – volume: 33 start-page: 404 issue: 6 year: 2021 ident: 15205_CR20 publication-title: J King Saud Univ - Eng Sci doi: 10.1016/j.jksues.2020.06.001 – ident: 15205_CR12 – year: 2022 ident: 15205_CR17 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12460-8 – volume: 44 start-page: 703 issue: 3 year: 2021 ident: 15205_CR6 publication-title: Phys Eng Sci Med doi: 10.1007/s13246-021-01019-w – ident: 15205_CR8 doi: 10.1016/j.ejrad.2019.02.023 – volume: 93 start-page: 106311 year: 2020 ident: 15205_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106311 – year: 2022 ident: 15205_CR7 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2022.102243 – volume: 6 start-page: e05625 issue: 12 year: 2020 ident: 15205_CR13 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05625 – volume: 192 start-page: 105395 year: 2020 ident: 15205_CR21 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105395 – volume-title: U-Net: convolutional networks for biomedical ımage segmentation year: 2015 ident: 15205_CR19 – year: 2022 ident: 15205_CR16 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12214-6 – ident: 15205_CR9 – ident: 15205_CR18 doi: 10.1109/CVPR.2019.00075 – ident: 15205_CR10 doi: 10.1007/s00521-021-05856-4 – volume: 7 start-page: 43487 year: 2019 ident: 15205_CR1 publication-title: Access IEEE doi: 10.1109/ACCESS.2019.2908002 – ident: 15205_CR3 doi: 10.1093/pm/pnz161 |
SSID | ssj0016524 |
Score | 2.3682976 |
Snippet | The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41287 |
SubjectTerms | Calcification Computer Communication Networks Computer Science Data Structures and Information Theory Decision support systems Deep learning Diagnosis Hernias Image segmentation Medical imaging Multimedia Information Systems Semantic segmentation Semantics Special Purpose and Application-Based Systems Success Teaching methods Track 2: Medical Applications of Multimedia |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UL3rwAzWiaHrwpk3Wbt2HN2IghCAXWMJtabeWkMggDP5_X0fH1KiJl6XZuh7e6-t77ev7_RB6pIGWBobLnAFkxOOpJtL3BNhVphkE9FqVdEBvI78fe4Mpn9qisKK67V6lJMuVui52o6aUBHwMAZ9j8reH6AgazFzkillnnzvwuaWyDR0C_pDaUpmfx_jqjuoY81tatPQ2vXN0asNE3Nnp9QIdqLyJzioKBmwtsolOPuEJXqLBcDwm8ag7ecHD7UKKNS5WhvUKgyrzZTEvcKEWIMp5Co3ZwpYd5dhcfp_hTKkVtiwSsysU97qT1z6xZAkkBSvaEB5QKnSgQydjHDZRIGt4o6Xj6sDxpVDM56AtHQXC1ZGMXEU1jRR3Reh5kee416iRL3N1g7CWKlIB7BNdeDAqIh4ooTQEY4xl3BEtRCuZJalFEjeEFu9JjYFs5JyAnJNSzonbQk_7f1Y7HI0_e7crVSTWpoqEwVLDQwOf00LPlXrqz7-Pdvu_7nfomJUzxJyztFFjs96qe4g8NvKhnGgfCqfMAw priority: 102 providerName: Springer Nature |
Title | LSS-UNET: Lumbar spinal stenosis semantic segmentation using deep learning |
URI | https://link.springer.com/article/10.1007/s11042-023-15205-3 https://www.proquest.com/docview/2880583626 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8CBN2Iwphy4QUSTNn1wQRvaQDwmBEyCU5W2yYTEukG3_4_TpQyQ4NJWTZuDH7Fjx_4AjligE9OGy8QAMuqJVNPE9yTqVaY5OvRalXBAd33_auBdP4tnG3Ar7LHKak0sF-psnJoY-SlHQROhaZ5yPnmnBjXKZFcthMYy1HEJDsMa1Dvd_v3DVx7BFxbWNnQo2kZmy2bmxXPMlKagzaJow0w--KdpWvibv1KkpeXpbcCadRlJe87jTVhS-RasV3AMxGrnFqx-6y24Dde3j4900O8-nZHb2SiRH6SYGAQsgmzNx8VrQQo1QrK-pvgwHNkSpJyYg_BDkik1IRZRYrgDg1736eKKWuAEmqJGTakIGJM60KGTcYEbKqQ7vtGJ4-rA8ROpuC-QczoKpKujJHIV0yxSwpWh50We4-5CLR_nag-ITlSkAtwzunjhTEYiUFJpdMw4z4QjG8AqmsWp7SpuwC3e4kU_ZEPnGOkcl3SO3QYcf_0zmffU-PfrZsWK2OpXES-koQEnFXsWw3_Ptv__bAewwkuJMDGWJtSmHzN1iF7HNGnBcti7bEG93et0-uZ--XLTbVmBw9EBb38CEtfViQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HIADb8R45gAniGjSpl2REELAGDB2YZO4lbRNJiTWDTqE-FP8RpwuZYAENy5V1UfU2l9iJ479AeywQMemDJdZA0ipJxJNY9-T2K9SzdGh16qgA7pp-vW2d3Un7sbgvcyFMdsqyzGxGKjTXmLWyA84Ak1UTfGU4_4TNaxRJrpaUmgMYXGt3l5xypYfXZ6hfnc5r523TuvUsgrQBOE2oCJgTOpAV52UC5xt4EfhFR07rg4cP5aK-wJ_S4eBdHUYh65imoVKuLLqeaHnuNjuOEx6Llpyk5leu_iMWvjCkuhWHYqWmNkknWGqHjOJMGghKVpME33-bghH3u2PgGxh52rzMGsdVHIyRNQCjKlsEeZK8gdix4JFmPlSyXAJrhq3t7TdPG8dksZLN5bPJO8bvi2CIMp6-UNOctVFJT4keNLp2oSnjJht9x2SKtUnlr-iswztfxHoCkxkvUytAtGxClWAM1QXD5zJUARKKo1uIOepcGQFWCmzKLE1zA2VxmM0qr5s5ByhnKNCzpFbgb3Pd_rDCh5_Pr1RqiKyvTmPRtirwH6pntHt31tb-7u1bZiqt24aUeOyeb0O07xAh1nd2YCJwfOL2kR_ZxBvFSAjcP_fqP4AnncLwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED91rYTGA4yPiULZ_MCemEXsxEkzCSEYrQqUCg0q8ZY5iV0h0bSQVmj_Gn8d59ShG9J460sU5cNK7n723dm--wHssUDHpgyXmQNIqScSTWPfk9ivUs3RodeqoAO67Pmdvnd-K24r8FzmwphtleWYWAzU6Sgxc-QHHIEmmqZ4yoG22yKuTttH4wdqGKTMSmtJpzGDyIX684ThW354doq6_sZ5u3Xzs0MtwwBNEHoTKgLGpA5000m5wMgDPxCv6NhxdeD4sVTcF_iLOgykq8M4dBXTLFTClU3PCz3HxXY_QC0wUVEVaiet3tWv1zUMX1hK3aZD0S4zm7IzS9xjJi0G7SVF-2nWov81i3Nf983ybGH12p9gxbqr5HiGrzWoqGwdVksqCGJHhnVY_quu4Qacd6-vab_XuvlButNhLB9JPjbsWwQhlY3yu5zkaogqvUvwZDC06U8ZMZvwByRVakwsm8VgE_oLEelnqGajTG0B0bEKVYDxqosHzmQoAiWVRqeQ81Q4sg6slFmU2IrmhljjPprXYjZyjlDOUSHnyK3D_us741k9j3efbpSqiGzfzqM5EuvwvVTP_Pb_W9t-v7WvsISIjrpnvYsd-MgLcJipngZUJ49TtYvOzyT-YlFG4Peigf0C0DwRUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSS-UNET%3A+Lumbar+spinal+stenosis+semantic+segmentation+using+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Altun%2C+%C4%B0diris&rft.au=Altun%2C+Sinan&rft.au=Alkan%2C+Ahmet&rft.date=2023-11-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=26&rft.spage=41287&rft.epage=41305&rft_id=info:doi/10.1007%2Fs11042-023-15205-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15205_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |