LSS-UNET: Lumbar spinal stenosis semantic segmentation using deep learning

The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires seri...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 26; pp. 41287 - 41305
Main Authors Altun, İdiris, Altun, Sinan, Alkan, Ahmet
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires serious expertise, making the diagnosis of LSS difficult. Looking at the literature, the U-Net method can perform semantic segmentation with high success. In recent years, it has been seen in the literature that the success of the classical U-Net has increased when the architecture of different deep learning methods has been applied. In order to segment the LSS region, semantic segmentation was performed on lumbar spine MR images with 3 different deep learning methods. The success of these methods was calculated by Dice and IoU scores. The highest segmentation success among 1560 images was obtained in the ResUNet model with 0.93 DICE score. LSS treatment, which negatively affects human life, is very important because of the difficulty of interpreting MR images and the confusion of LSS with lumbar hernia. Today, expert decision support systems have become essential for correct diagnosis, which is the most important feature of starting a treatment/surgical operation. Especially the high success of classification/segmentation obtained by deep learning methods has also been demonstrated in LSS segmentation, which is the subject of our study.
AbstractList The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires serious expertise, making the diagnosis of LSS difficult. Looking at the literature, the U-Net method can perform semantic segmentation with high success. In recent years, it has been seen in the literature that the success of the classical U-Net has increased when the architecture of different deep learning methods has been applied. In order to segment the LSS region, semantic segmentation was performed on lumbar spine MR images with 3 different deep learning methods. The success of these methods was calculated by Dice and IoU scores. The highest segmentation success among 1560 images was obtained in the ResUNet model with 0.93 DICE score. LSS treatment, which negatively affects human life, is very important because of the difficulty of interpreting MR images and the confusion of LSS with lumbar hernia. Today, expert decision support systems have become essential for correct diagnosis, which is the most important feature of starting a treatment/surgical operation. Especially the high success of classification/segmentation obtained by deep learning methods has also been demonstrated in LSS segmentation, which is the subject of our study.
The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification due to deformation of the bone in the following years. In addition, the correct interpretation and diagnosis of biomedical images requires serious expertise, making the diagnosis of LSS difficult. Looking at the literature, the U-Net method can perform semantic segmentation with high success. In recent years, it has been seen in the literature that the success of the classical U-Net has increased when the architecture of different deep learning methods has been applied. In order to segment the LSS region, semantic segmentation was performed on lumbar spine MR images with 3 different deep learning methods. The success of these methods was calculated by Dice and IoU scores. The highest segmentation success among 1560 images was obtained in the ResUNet model with 0.93 DICE score. LSS treatment, which negatively affects human life, is very important because of the difficulty of interpreting MR images and the confusion of LSS with lumbar hernia. Today, expert decision support systems have become essential for correct diagnosis, which is the most important feature of starting a treatment/surgical operation. Especially the high success of classification/segmentation obtained by deep learning methods has also been demonstrated in LSS segmentation, which is the subject of our study.
Author Altun, Sinan
Alkan, Ahmet
Altun, İdiris
Author_xml – sequence: 1
  givenname: İdiris
  orcidid: 0000-0003-4263-766X
  surname: Altun
  fullname: Altun, İdiris
  organization: Department of Neurosurgery, Kahramanmaras Sutcuu Imam Universirty
– sequence: 2
  givenname: Sinan
  orcidid: 0000-0002-2356-0460
  surname: Altun
  fullname: Altun, Sinan
  email: s.altun@yaani.com
  organization: Department of Electrical and Electronics Engneering, Kahramanmaras Sutcu Imam University
– sequence: 3
  givenname: Ahmet
  orcidid: 0000-0003-0857-0764
  surname: Alkan
  fullname: Alkan, Ahmet
  organization: Department of Electrical and Electronics Engneering, Kahramanmaras Sutcu Imam University
BookMark eNp9kEtPwzAQhC1UJNrCH-AUibPBjzi2uaGqvBTBoe3ZclK7cpU4wU4O_HsMQULi0NPOruZbjWYBZr7zBoBrjG4xQvwuYoxyAhGhEDOCGKRnYI4Zp5BzgmdJU4EgZwhfgEWMR4RwwUg-B6_lZgN3b-vtfVaObaVDFnvndZPFwfguuphF02o_uDqJQ2v8oAfX-WyMzh-yvTF91hgdfNouwbnVTTRXv3MJdo_r7eoZlu9PL6uHEtYUywEyjrG23Aq0J0xIifc2XWyFqOWoqLQhBatrbSXX1MpKUoMtloZRLfJc5oguwc30tw_dx2jioI7dGFLmqIgQiAlakCK5xOSqQxdjMFbVbso-BO0ahZH6bk5NzanUnPppTtGEkn9oH1yrw-dpiE5QTGZ_MOEv1QnqCx12gaE
CitedBy_id crossref_primary_10_1016_j_bspc_2025_107770
crossref_primary_10_1186_s13018_024_05002_5
crossref_primary_10_3390_diagnostics14020191
crossref_primary_10_1177_20552076241311939
Cites_doi 10.1007/s11042-022-12214-6
10.1016/j.jksues.2020.06.001
10.1007/s11042-022-12212-8
10.1109/ACCESS.2019.2908002
10.1007/s13246-021-01019-w
10.1016/j.artmed.2022.102243
10.1007/s11042-022-11913-4
10.1016/S0304-3959(98)00209-7
10.1016/j.heliyon.2020.e05625
10.1016/j.asoc.2020.106311
10.1007/s11042-022-12460-8
10.1016/j.cmpb.2020.105395
10.1016/j.wneu.2022.03.060
10.1109/TMI.2020.3002417
10.1016/j.ejrad.2019.02.023
10.1109/CVPR.2019.00075
10.1007/s00521-021-05856-4
10.1093/pm/pnz161
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-15205-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 41305
ExternalDocumentID 10_1007_s11042_023_15205_3
GrantInformation_xml – fundername: Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
  grantid: 122E042
  funderid: http://dx.doi.org/10.13039/501100004410
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-5711af7f80d258991df711fb03f706bae265ccaf97a3f9b93e1f19e53a8449403
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Sat Jul 26 00:33:56 EDT 2025
Tue Jul 01 04:13:21 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Fri Feb 21 02:43:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Semantic segmentation
Lumbar spinal stenosis
U-Net
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5711af7f80d258991df711fb03f706bae265ccaf97a3f9b93e1f19e53a8449403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0857-0764
0000-0002-2356-0460
0000-0003-4263-766X
PQID 2880583626
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_2880583626
crossref_citationtrail_10_1007_s11042_023_15205_3
crossref_primary_10_1007_s11042_023_15205_3
springer_journals_10_1007_s11042_023_15205_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shehab, Fahmy, Gasser, El-Mahallawy (CR20) 2021; 33
Ghosh, Chaki, Santosh (CR6) 2021; 44
CR3
Das, Biswas, Bandyopadhyay (CR2) 2022
Lu, Wang, Zhang (CR13) 2020; 6
CR5
Dong, Zhao, Wu, Chang (CR4) 2020; 93
CR8
CR18
Zhang, Wu, Coleman, Kerr (CR21) 2020; 192
CR9
Gong, Liu, Chen, Li, ResAttenGAN (CR7) 2022
Macfarlane, Thomas, Croft, Papageorgiou, Jayson, Silman (CR14) 1999; 80
CR12
CR11
Al-Kafri, Sudirman, Hussain, Al-Jumeily, Natalia, Meidia, Afriliana, Al-Rashdan, Bashtawi, Al-Jumaily (CR1) 2019; 7
CR10
Ronneberger, Fischer, Brox (CR19) 2015
Rana, Singh, Mavuduru (CR16) 2022
Miron, Pasarica, Manta (CR15) 2022
Rehman, Nida, Shah (CR17) 2022
S Ghosh (15205_CR6) 2021; 44
LH Shehab (15205_CR20) 2021; 33
15205_CR18
GJ Macfarlane (15205_CR14) 1999; 80
N Dong (15205_CR4) 2020; 93
Z Zhang (15205_CR21) 2020; 192
C Miron (15205_CR15) 2022
AS Al-Kafri (15205_CR1) 2019; 7
15205_CR9
15205_CR10
D Das (15205_CR2) 2022
15205_CR11
Hu Rehman (15205_CR17) 2022
15205_CR8
15205_CR5
15205_CR3
15205_CR12
S Lu (15205_CR13) 2020; 6
H Gong (15205_CR7) 2022
A Rana (15205_CR16) 2022
O Ronneberger (15205_CR19) 2015
References_xml – year: 2022
  ident: CR16
  article-title: Quantifying prognosis severity of COVID-19 patients from deep learning based analysis of CT chest images
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12214-6
– ident: CR18
– year: 2015
  ident: CR19
  publication-title: U-Net: convolutional networks for biomedical ımage segmentation
– ident: CR3
– ident: CR12
– volume: 33
  start-page: 404
  issue: 6
  year: 2021
  end-page: 412
  ident: CR20
  article-title: An efficient brain tumor image segmentation based on deep residual networks (ResNets)
  publication-title: J King Saud Univ - Eng Sci
  doi: 10.1016/j.jksues.2020.06.001
– year: 2022
  ident: CR15
  article-title: Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12212-8
– volume: 7
  start-page: 43487
  year: 2019
  end-page: 43501
  ident: CR1
  article-title: Boundary Delineation of MRI images for lumbar spinal stenosis detection through semantic segmentation using deep neural networks
  publication-title: Access IEEE
  doi: 10.1109/ACCESS.2019.2908002
– ident: CR10
– ident: CR11
– volume: 44
  start-page: 703
  issue: 3
  year: 2021
  end-page: 712
  ident: CR6
  article-title: Improved U-Net architecture with VGG-16 for brain tumor segmentation
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-021-01019-w
– year: 2022
  ident: CR7
  article-title: Simultaneous segmentation of multiple spinal structures on axial lumbar MRI image using residual attention and adversarial learning
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2022.102243
– ident: CR9
– year: 2022
  ident: CR2
  article-title: Perspective of AI system for COVID-19 detection using chest images: a review
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-11913-4
– volume: 80
  start-page: 113
  issue: 1
  year: 1999
  end-page: 119
  ident: CR14
  article-title: Predictors of early improvement in low back pain amongst consulters to general practice: the influence of pre-morbid and episode-related factors
  publication-title: Pain
  doi: 10.1016/S0304-3959(98)00209-7
– ident: CR5
– ident: CR8
– volume: 6
  start-page: e05625
  issue: 12
  year: 2020
  ident: CR13
  article-title: Detecting pathological brain via ResNet and randomized neural networks
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05625
– volume: 93
  start-page: 106311
  year: 2020
  ident: CR4
  article-title: Inception v3 based cervical cell classification combined with artificially extracted features
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106311
– year: 2022
  ident: CR17
  article-title: Automatic melanoma detection and segmentation in dermoscopy images using deep RetinaNet and conditional random fields
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12460-8
– volume: 192
  start-page: 105395
  year: 2020
  ident: CR21
  article-title: DENSE-INception U-net for medical image segmentation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105395
– year: 2022
  ident: 15205_CR2
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-11913-4
– year: 2022
  ident: 15205_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12212-8
– ident: 15205_CR11
  doi: 10.1016/j.wneu.2022.03.060
– volume: 80
  start-page: 113
  issue: 1
  year: 1999
  ident: 15205_CR14
  publication-title: Pain
  doi: 10.1016/S0304-3959(98)00209-7
– ident: 15205_CR5
  doi: 10.1109/TMI.2020.3002417
– volume: 33
  start-page: 404
  issue: 6
  year: 2021
  ident: 15205_CR20
  publication-title: J King Saud Univ - Eng Sci
  doi: 10.1016/j.jksues.2020.06.001
– ident: 15205_CR12
– year: 2022
  ident: 15205_CR17
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12460-8
– volume: 44
  start-page: 703
  issue: 3
  year: 2021
  ident: 15205_CR6
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-021-01019-w
– ident: 15205_CR8
  doi: 10.1016/j.ejrad.2019.02.023
– volume: 93
  start-page: 106311
  year: 2020
  ident: 15205_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106311
– year: 2022
  ident: 15205_CR7
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2022.102243
– volume: 6
  start-page: e05625
  issue: 12
  year: 2020
  ident: 15205_CR13
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05625
– volume: 192
  start-page: 105395
  year: 2020
  ident: 15205_CR21
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105395
– volume-title: U-Net: convolutional networks for biomedical ımage segmentation
  year: 2015
  ident: 15205_CR19
– year: 2022
  ident: 15205_CR16
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12214-6
– ident: 15205_CR9
– ident: 15205_CR18
  doi: 10.1109/CVPR.2019.00075
– ident: 15205_CR10
  doi: 10.1007/s00521-021-05856-4
– volume: 7
  start-page: 43487
  year: 2019
  ident: 15205_CR1
  publication-title: Access IEEE
  doi: 10.1109/ACCESS.2019.2908002
– ident: 15205_CR3
  doi: 10.1093/pm/pnz161
SSID ssj0016524
Score 2.3682976
Snippet The most important information to be noted about LSS not a hernia. While a hernia occurs with a rupture in the disc, LSS occurs as a result of calcification...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41287
SubjectTerms Calcification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Decision support systems
Deep learning
Diagnosis
Hernias
Image segmentation
Medical imaging
Multimedia Information Systems
Semantic segmentation
Semantics
Special Purpose and Application-Based Systems
Success
Teaching methods
Track 2: Medical Applications of Multimedia
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UL3rwAzWiaHrwpk3Wbt2HN2IghCAXWMJtabeWkMggDP5_X0fH1KiJl6XZuh7e6-t77ev7_RB6pIGWBobLnAFkxOOpJtL3BNhVphkE9FqVdEBvI78fe4Mpn9qisKK67V6lJMuVui52o6aUBHwMAZ9j8reH6AgazFzkillnnzvwuaWyDR0C_pDaUpmfx_jqjuoY81tatPQ2vXN0asNE3Nnp9QIdqLyJzioKBmwtsolOPuEJXqLBcDwm8ag7ecHD7UKKNS5WhvUKgyrzZTEvcKEWIMp5Co3ZwpYd5dhcfp_hTKkVtiwSsysU97qT1z6xZAkkBSvaEB5QKnSgQydjHDZRIGt4o6Xj6sDxpVDM56AtHQXC1ZGMXEU1jRR3Reh5kee416iRL3N1g7CWKlIB7BNdeDAqIh4ooTQEY4xl3BEtRCuZJalFEjeEFu9JjYFs5JyAnJNSzonbQk_7f1Y7HI0_e7crVSTWpoqEwVLDQwOf00LPlXrqz7-Pdvu_7nfomJUzxJyztFFjs96qe4g8NvKhnGgfCqfMAw
  priority: 102
  providerName: Springer Nature
Title LSS-UNET: Lumbar spinal stenosis semantic segmentation using deep learning
URI https://link.springer.com/article/10.1007/s11042-023-15205-3
https://www.proquest.com/docview/2880583626
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8CBN2Iwphy4QUSTNn1wQRvaQDwmBEyCU5W2yYTEukG3_4_TpQyQ4NJWTZuDH7Fjx_4AjligE9OGy8QAMuqJVNPE9yTqVaY5OvRalXBAd33_auBdP4tnG3Ar7LHKak0sF-psnJoY-SlHQROhaZ5yPnmnBjXKZFcthMYy1HEJDsMa1Dvd_v3DVx7BFxbWNnQo2kZmy2bmxXPMlKagzaJow0w--KdpWvibv1KkpeXpbcCadRlJe87jTVhS-RasV3AMxGrnFqx-6y24Dde3j4900O8-nZHb2SiRH6SYGAQsgmzNx8VrQQo1QrK-pvgwHNkSpJyYg_BDkik1IRZRYrgDg1736eKKWuAEmqJGTakIGJM60KGTcYEbKqQ7vtGJ4-rA8ROpuC-QczoKpKujJHIV0yxSwpWh50We4-5CLR_nag-ITlSkAtwzunjhTEYiUFJpdMw4z4QjG8AqmsWp7SpuwC3e4kU_ZEPnGOkcl3SO3QYcf_0zmffU-PfrZsWK2OpXES-koQEnFXsWw3_Ptv__bAewwkuJMDGWJtSmHzN1iF7HNGnBcti7bEG93et0-uZ--XLTbVmBw9EBb38CEtfViQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HIADb8R45gAniGjSpl2REELAGDB2YZO4lbRNJiTWDTqE-FP8RpwuZYAENy5V1UfU2l9iJ479AeywQMemDJdZA0ipJxJNY9-T2K9SzdGh16qgA7pp-vW2d3Un7sbgvcyFMdsqyzGxGKjTXmLWyA84Ak1UTfGU4_4TNaxRJrpaUmgMYXGt3l5xypYfXZ6hfnc5r523TuvUsgrQBOE2oCJgTOpAV52UC5xt4EfhFR07rg4cP5aK-wJ_S4eBdHUYh65imoVKuLLqeaHnuNjuOEx6Llpyk5leu_iMWvjCkuhWHYqWmNkknWGqHjOJMGghKVpME33-bghH3u2PgGxh52rzMGsdVHIyRNQCjKlsEeZK8gdix4JFmPlSyXAJrhq3t7TdPG8dksZLN5bPJO8bvi2CIMp6-UNOctVFJT4keNLp2oSnjJht9x2SKtUnlr-iswztfxHoCkxkvUytAtGxClWAM1QXD5zJUARKKo1uIOepcGQFWCmzKLE1zA2VxmM0qr5s5ByhnKNCzpFbgb3Pd_rDCh5_Pr1RqiKyvTmPRtirwH6pntHt31tb-7u1bZiqt24aUeOyeb0O07xAh1nd2YCJwfOL2kR_ZxBvFSAjcP_fqP4AnncLwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED91rYTGA4yPiULZ_MCemEXsxEkzCSEYrQqUCg0q8ZY5iV0h0bSQVmj_Gn8d59ShG9J460sU5cNK7n723dm--wHssUDHpgyXmQNIqScSTWPfk9ivUs3RodeqoAO67Pmdvnd-K24r8FzmwphtleWYWAzU6Sgxc-QHHIEmmqZ4yoG22yKuTttH4wdqGKTMSmtJpzGDyIX684ThW354doq6_sZ5u3Xzs0MtwwBNEHoTKgLGpA5000m5wMgDPxCv6NhxdeD4sVTcF_iLOgykq8M4dBXTLFTClU3PCz3HxXY_QC0wUVEVaiet3tWv1zUMX1hK3aZD0S4zm7IzS9xjJi0G7SVF-2nWov81i3Nf983ybGH12p9gxbqr5HiGrzWoqGwdVksqCGJHhnVY_quu4Qacd6-vab_XuvlButNhLB9JPjbsWwQhlY3yu5zkaogqvUvwZDC06U8ZMZvwByRVakwsm8VgE_oLEelnqGajTG0B0bEKVYDxqosHzmQoAiWVRqeQ81Q4sg6slFmU2IrmhljjPprXYjZyjlDOUSHnyK3D_us741k9j3efbpSqiGzfzqM5EuvwvVTP_Pb_W9t-v7WvsISIjrpnvYsd-MgLcJipngZUJ49TtYvOzyT-YlFG4Peigf0C0DwRUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSS-UNET%3A+Lumbar+spinal+stenosis+semantic+segmentation+using+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Altun%2C+%C4%B0diris&rft.au=Altun%2C+Sinan&rft.au=Alkan%2C+Ahmet&rft.date=2023-11-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=26&rft.spage=41287&rft.epage=41305&rft_id=info:doi/10.1007%2Fs11042-023-15205-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15205_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon