Reconstruction of scene using corneal reflection

Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The reconstructed scene from corneal reflection provides detailed information about the environment opposite to the subject. It also provides scrutiny ab...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 14; pp. 21363 - 21379
Main Authors Rafiq, Maimoona, Bajwa, Usama Ijaz, Gilanie, Ghulam, Anwar, Waqas
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-020-10409-3

Cover

Abstract Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The reconstructed scene from corneal reflection provides detailed information about the environment opposite to the subject. It also provides scrutiny about any critical scenario, a subject is encountered with. This research area has significant applications in computer vision, human-computer interaction, psychology, and image forgery detection. Digital image processing and computer vision techniques have been used to reconstruct the scene from cornea image. The proposed model involved the following steps, i.e., identification of the corneal area in an eye, unnecessary reflection removal from cornea surface, developing eye geometric model to correct the spherical effect of the eye, and implementation of super-resolution (SR) algorithm to reconstruct the lost visual information present in the environment. The proposed study is able to reconstruct the SR scene image from cornea image. The effectiveness of the study is evaluated by using subjective as well as objective evaluation measures. Some useful insights related to cornea reflection construction have been described to make this study more effective.
AbstractList Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The reconstructed scene from corneal reflection provides detailed information about the environment opposite to the subject. It also provides scrutiny about any critical scenario, a subject is encountered with. This research area has significant applications in computer vision, human-computer interaction, psychology, and image forgery detection. Digital image processing and computer vision techniques have been used to reconstruct the scene from cornea image. The proposed model involved the following steps, i.e., identification of the corneal area in an eye, unnecessary reflection removal from cornea surface, developing eye geometric model to correct the spherical effect of the eye, and implementation of super-resolution (SR) algorithm to reconstruct the lost visual information present in the environment. The proposed study is able to reconstruct the SR scene image from cornea image. The effectiveness of the study is evaluated by using subjective as well as objective evaluation measures. Some useful insights related to cornea reflection construction have been described to make this study more effective.
Author Bajwa, Usama Ijaz
Gilanie, Ghulam
Rafiq, Maimoona
Anwar, Waqas
Author_xml – sequence: 1
  givenname: Maimoona
  surname: Rafiq
  fullname: Rafiq, Maimoona
  organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus
– sequence: 2
  givenname: Usama Ijaz
  orcidid: 0000-0001-5755-1194
  surname: Bajwa
  fullname: Bajwa, Usama Ijaz
  email: usamabajwa@cuilahore.edu.pk
  organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus
– sequence: 3
  givenname: Ghulam
  surname: Gilanie
  fullname: Gilanie, Ghulam
  organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus
– sequence: 4
  givenname: Waqas
  surname: Anwar
  fullname: Anwar, Waqas
  organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8BydfLRpj7L4BQuC6Dm06WTpUpM1aQ_-e9OtIHjY08zheWZe3hVZOO-QkGsGtwxA3UXGQHIKHGhaoKLijCxZrgRVirNF2kUJVOXALsgqxj0AK3IulwTe0HgXhzCaofMu8zaLBh1mY-zcLjM-OKz7LKDt8UhcknNb9xGvfueafDw-vG-e6fb16WVzv6VGsGqgedEKqVpRG9OqUjQobWMqA6ZsVIut5TlYKaRFsBxKbJiqRdVi0UhWJbgQa3Iz3z0E_zViHPTej8Gll5rngpUyl8VElTNlgo8xpdSmG-op5xDqrtcM9NSPnvvRqR997EeLpPJ_6iF0n3X4Pi2JWYoJdjsMf6lOWD8GBHns
CitedBy_id crossref_primary_10_3390_app122312484
crossref_primary_10_1080_13682199_2022_2150131
Cites_doi 10.1007/978-3-319-10593-2_13
10.1007/978-3-030-01249-6_29
10.1007/978-3-030-22649-7_31
10.1109/CVPRW.2017.151
10.5244/C.26.22
10.2197/ipsjtcva.5.1
10.1109/CVPR.2018.00503
10.1109/ICME.2019.00222
10.1364/JOSAA.33.002264
10.1587/transinf.2017MVP0020
10.1109/CVPR.2019.00837
10.1007/978-3-319-54187-7_3
10.1002/9781118976005.ch17
10.1007/978-3-030-01219-9_40
10.1145/3338286.3344388
10.1007/978-3-642-33709-3_12
10.1109/CVPRW.2017.150
10.1109/CVPR.2017.19
10.1109/CVPR.2019.00174
10.1109/TIP.2012.2214050
10.1371/journal.pone.0083325
10.1007/s11263-006-6274-9
10.1109/CVPR.2016.207
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-10409-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Psychology
EISSN 1573-7721
EndPage 21379
ExternalDocumentID 10_1007_s11042_020_10409_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-56d347d3accd783be4fbc9c0c8b7dedf250f434fe0f208eb17a39de6b419be463
IEDL.DBID 8FG
ISSN 1380-7501
IngestDate Sat Jul 26 00:04:22 EDT 2025
Tue Jul 01 04:13:09 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Fri Feb 21 02:48:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Cornea reflection
Super resolution
Scene reconstruction
Generative adversarial network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-56d347d3accd783be4fbc9c0c8b7dedf250f434fe0f208eb17a39de6b419be463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5755-1194
PQID 2531845466
PQPubID 54626
PageCount 17
ParticipantIDs proquest_journals_2531845466
crossref_citationtrail_10_1007_s11042_020_10409_3
crossref_primary_10_1007_s11042_020_10409_3
springer_journals_10_1007_s11042_020_10409_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kumar R (2019) Eye protection department. Arovision pharma a ray of hope to enhance vision. https://arovisionpharma.com/childcare-department/. Accessed 22 December 2020
Helland T (2013) A simple algorithm for correcting lens distortion. Tanner Helland. https://tannerhelland.com/2013/02/11/simple-algorithm-correcting-lens-distortion.html. Accessed 15 July 2019
MacKenzie I (2018) The Wiley handbook of human computer interaction. In: Chapter Fitts’ Law. John Wiley & Sons, Ltd, Chichester, UK
Wei K, Yang J, Fu Y, Wipf D, Huang H (2019) Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8178–8187
Yang J, Gong D, Liu L, Shi Q (2018) Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In: Proceedings of the european conference on computer vision (ECCV), pp 654–669
NishinoKNayarSKCorneal imaging system: Environment from eyesInt J Comput Vis2006701234010.1007/s11263-006-6274-9
Nakazawa A, Nitschke C (2012) Point of gaze estimation through corneal surface reflection in an active illumination environment. In: European conference on computer vision. Springer, pp 159–172
Agustsson E, Timofte R (2017) Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 126–135
Nitschke C, Nakazawa A (2012) Super-resolution from corneal images. In: BMVC, pp 1–12
Rong J, Huang S, Shang Z, Ying X (2016) Radial lens distortion correction using convolutional neural networks trained with synthesized images. In: Asian conference on computer vision. Springer, pp 35–49.
Numakura K, Takemura K (2019) Indoor human localization based on the corneal reflection of illumination. In: Proceedings of the 21st international conference on human-computer interaction with mobile devices and services, pp 1–6
Raza MF (2009) For visions come not to polluted eyes, flickr. https://www.flickr.com/photos/m-f-raza/4205563005/. Accessed 10 June 2019
NakazawaANitschkeCNishidaTRegistration of eye reflection and scene images using an aspherical eye modelJOSA A201633112264227610.1364/JOSAA.33.002264
Xue Z, Xue N, Xia GS, Shen W (2019) Learning to calibrate straight lines for fisheye image rectification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1643–1651
OgawaTNakazawaANishidaTPoint of gaze estimation using corneal surface reflection and omnidirectional camera imageIEICE Trans Inf Syst201810151278128710.1587/transinf.2017MVP0020
Wang C, Wan R, Gao F, Shi B, Duan LY (2019) Learning to remove reflections for text images. In: 2019 IEEE international conference on multimedia and expo (ICME). IEEE, pp. 1276–1281
JenkinsRKerrCIdentifiable images of bystanders extracted from corneal reflectionsPloS ONE2013812e8332510.1371/journal.pone.0083325
Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883
NitschkeCNakazawaATakemuraHCorneal imaging revisited: An overview of corneal reflection analysis and applicationsIPSJ Trans Comput Vision Appl2013511810.2197/ipsjtcva.5.1
Pedersen SJK (2007) Circular hough transform, Aalborg University, vision, graphics, and interactive systems. In
Zhang X, Ng R, Chen Q (2018) Single image reflection separation with perceptual losses. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4786–4794
Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690
Lim B, Son S, Kim H, Nah S, Mu Lee K (2017) Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 136–144
Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision. Springer, pp 184–199
Yin X, Wang X, Yu J, Zhang M, Fua P, Tao D (2018) Fisheyerecnet: A multi-context collaborative deep network for fisheye image rectification. In: Proceedings of the european conference on computer vision (ECCV), pp. 469–484
Nagamatsu T, Hiroe M, Rigoll G (2019) Corneal-reflection-based wide range gaze tracking for a car. In: International conference on human-computer interaction. Springer, pp 385-400
MittalAMoorthyAKBovikACNo-reference image quality assessment in the spatial domainIEEE Trans Image Process2012211246954708300114510.1109/TIP.2012.2214050
10409_CR10
A Nakazawa (10409_CR12) 2016; 33
R Jenkins (10409_CR4) 2013; 8
10409_CR19
K Nishino (10409_CR13) 2006; 70
A Mittal (10409_CR9) 2012; 21
10409_CR14
10409_CR11
10409_CR18
10409_CR16
T Ogawa (10409_CR17) 2018; 101
10409_CR20
10409_CR8
10409_CR21
10409_CR5
10409_CR7
10409_CR6
10409_CR1
10409_CR3
10409_CR2
C Nitschke (10409_CR15) 2013; 5
10409_CR24
10409_CR25
10409_CR22
10409_CR23
10409_CR26
10409_CR27
References_xml – reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690
– reference: Pedersen SJK (2007) Circular hough transform, Aalborg University, vision, graphics, and interactive systems. In
– reference: NitschkeCNakazawaATakemuraHCorneal imaging revisited: An overview of corneal reflection analysis and applicationsIPSJ Trans Comput Vision Appl2013511810.2197/ipsjtcva.5.1
– reference: Zhang X, Ng R, Chen Q (2018) Single image reflection separation with perceptual losses. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4786–4794
– reference: Helland T (2013) A simple algorithm for correcting lens distortion. Tanner Helland. https://tannerhelland.com/2013/02/11/simple-algorithm-correcting-lens-distortion.html. Accessed 15 July 2019
– reference: Nakazawa A, Nitschke C (2012) Point of gaze estimation through corneal surface reflection in an active illumination environment. In: European conference on computer vision. Springer, pp 159–172
– reference: MittalAMoorthyAKBovikACNo-reference image quality assessment in the spatial domainIEEE Trans Image Process2012211246954708300114510.1109/TIP.2012.2214050
– reference: Kumar R (2019) Eye protection department. Arovision pharma a ray of hope to enhance vision. https://arovisionpharma.com/childcare-department/. Accessed 22 December 2020
– reference: Nagamatsu T, Hiroe M, Rigoll G (2019) Corneal-reflection-based wide range gaze tracking for a car. In: International conference on human-computer interaction. Springer, pp 385-400
– reference: Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision. Springer, pp 184–199
– reference: OgawaTNakazawaANishidaTPoint of gaze estimation using corneal surface reflection and omnidirectional camera imageIEICE Trans Inf Syst201810151278128710.1587/transinf.2017MVP0020
– reference: Agustsson E, Timofte R (2017) Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 126–135
– reference: JenkinsRKerrCIdentifiable images of bystanders extracted from corneal reflectionsPloS ONE2013812e8332510.1371/journal.pone.0083325
– reference: Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883
– reference: Wei K, Yang J, Fu Y, Wipf D, Huang H (2019) Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8178–8187
– reference: Yang J, Gong D, Liu L, Shi Q (2018) Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In: Proceedings of the european conference on computer vision (ECCV), pp 654–669
– reference: Raza MF (2009) For visions come not to polluted eyes, flickr. https://www.flickr.com/photos/m-f-raza/4205563005/. Accessed 10 June 2019
– reference: NakazawaANitschkeCNishidaTRegistration of eye reflection and scene images using an aspherical eye modelJOSA A201633112264227610.1364/JOSAA.33.002264
– reference: Rong J, Huang S, Shang Z, Ying X (2016) Radial lens distortion correction using convolutional neural networks trained with synthesized images. In: Asian conference on computer vision. Springer, pp 35–49.
– reference: Nitschke C, Nakazawa A (2012) Super-resolution from corneal images. In: BMVC, pp 1–12
– reference: Lim B, Son S, Kim H, Nah S, Mu Lee K (2017) Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 136–144
– reference: Numakura K, Takemura K (2019) Indoor human localization based on the corneal reflection of illumination. In: Proceedings of the 21st international conference on human-computer interaction with mobile devices and services, pp 1–6
– reference: NishinoKNayarSKCorneal imaging system: Environment from eyesInt J Comput Vis2006701234010.1007/s11263-006-6274-9
– reference: Xue Z, Xue N, Xia GS, Shen W (2019) Learning to calibrate straight lines for fisheye image rectification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1643–1651
– reference: MacKenzie I (2018) The Wiley handbook of human computer interaction. In: Chapter Fitts’ Law. John Wiley & Sons, Ltd, Chichester, UK
– reference: Wang C, Wan R, Gao F, Shi B, Duan LY (2019) Learning to remove reflections for text images. In: 2019 IEEE international conference on multimedia and expo (ICME). IEEE, pp. 1276–1281
– reference: Yin X, Wang X, Yu J, Zhang M, Fua P, Tao D (2018) Fisheyerecnet: A multi-context collaborative deep network for fisheye image rectification. In: Proceedings of the european conference on computer vision (ECCV), pp. 469–484
– ident: 10409_CR2
  doi: 10.1007/978-3-319-10593-2_13
– ident: 10409_CR26
  doi: 10.1007/978-3-030-01249-6_29
– ident: 10409_CR10
  doi: 10.1007/978-3-030-22649-7_31
– ident: 10409_CR18
– ident: 10409_CR7
  doi: 10.1109/CVPRW.2017.151
– ident: 10409_CR5
– ident: 10409_CR14
  doi: 10.5244/C.26.22
– ident: 10409_CR3
– volume: 5
  start-page: 1
  year: 2013
  ident: 10409_CR15
  publication-title: IPSJ Trans Comput Vision Appl
  doi: 10.2197/ipsjtcva.5.1
– ident: 10409_CR27
  doi: 10.1109/CVPR.2018.00503
– ident: 10409_CR22
  doi: 10.1109/ICME.2019.00222
– volume: 33
  start-page: 2264
  issue: 11
  year: 2016
  ident: 10409_CR12
  publication-title: JOSA A
  doi: 10.1364/JOSAA.33.002264
– volume: 101
  start-page: 1278
  issue: 5
  year: 2018
  ident: 10409_CR17
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2017MVP0020
– ident: 10409_CR23
  doi: 10.1109/CVPR.2019.00837
– ident: 10409_CR20
  doi: 10.1007/978-3-319-54187-7_3
– ident: 10409_CR8
  doi: 10.1002/9781118976005.ch17
– ident: 10409_CR25
  doi: 10.1007/978-3-030-01219-9_40
– ident: 10409_CR16
  doi: 10.1145/3338286.3344388
– ident: 10409_CR11
  doi: 10.1007/978-3-642-33709-3_12
– ident: 10409_CR1
  doi: 10.1109/CVPRW.2017.150
– ident: 10409_CR6
  doi: 10.1109/CVPR.2017.19
– ident: 10409_CR24
  doi: 10.1109/CVPR.2019.00174
– volume: 21
  start-page: 4695
  issue: 12
  year: 2012
  ident: 10409_CR9
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2214050
– volume: 8
  start-page: e83325
  issue: 12
  year: 2013
  ident: 10409_CR4
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0083325
– volume: 70
  start-page: 23
  issue: 1
  year: 2006
  ident: 10409_CR13
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-006-6274-9
– ident: 10409_CR19
– ident: 10409_CR21
  doi: 10.1109/CVPR.2016.207
SSID ssj0016524
Score 2.2604408
Snippet Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21363
SubjectTerms Algorithms
Computer Communication Networks
Computer Science
Computer vision
Cornea
Data Structures and Information Theory
Digital computers
Digital imaging
Evaluation
Image processing
Image reconstruction
Multimedia Information Systems
Psychology
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOjBj6k4nZKDNy00zUeb4xDHEPRkYbfQpImX0Qnb_48vXbqqqOCt0CQtv5eX_B7vC-BWiSqvnTSJr4xIeF6xRLkQuOZwS3NaZWnrMX1-kbOSP83FPCaFrbpo984l2Z7UfbIbDakkwdzBh-Cx34U9gbZ7UMcym2x9B1LEVrYFflKkNKbK_LzG1-uo55jf3KLtbTM9hsNIE8lkI9cT2HHNEI66FgwkauQQDj7VEzyFNBiTfUlYsvQkFGtyJES3vxE0NBvkhQT_YtFGYDVnUE4fXx9mSWyJkFjUlXUiZM14XrPK2jovmHHcG6tsaguDkNceCY3njHuXekQZz2EEXwVZcKpwsGTnMGiWjbsAIpRHduULZqnihcqVt6ZKc4Vsm1rHzAhoh4y2sV54aFux0H2l44CmRjR1i6ZmI7jbznnfVMv4c_S4A1xHzVnpDA-Fggsu5QjuOyH0r39f7fJ_w69gP-ydTdTXGAYoGneN_GJtbtrt9AEQKcQ0
  priority: 102
  providerName: Springer Nature
Title Reconstruction of scene using corneal reflection
URI https://link.springer.com/article/10.1007/s11042-020-10409-3
https://www.proquest.com/docview/2531845466
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu5SBRwFRKFUGNoiIazuJJ1RQHwJRIUSlMkWxY7NUaVG78O85p04DSHRKlDgP3Xc-f_ad7wCuBE-jTIfSN6nkPotS6gttA9c0qjQjaTcoPKbP43A0YY9TPnULbksXVlnaxMJQZ3Nl18hvu6gsMeMsDO8Wn76tGmW9q66Exi7UCY40Vs_jwXDjRQi5K2ob48d5QNymmfXWOWI3ptjJE55Y___vgalim38cpMW4MziEfUcYvd4a4SPY0XkTDspiDJ7rm03Y-5FZsAmNjWH7OobAzjGrTLHe3Hg2h5P2bND7h4fzzxzpooe_NCsCs_ITmAz6bw8j31VK8BV2oZXPw4yyKKOpUlkUU6mZkUqoQMUSkcgM8hzDKDM6MCh8NM-IibAQMSKwcUhPoZbPc30GHhcGSZeJqSKCxSISRsk0iASScKI0lS0gpZgS5dKI22oWs6RKgGxFm6Bok0K0CW3B9eaZxTqJxtbW7VL6ietQy6SCvwU3JSLV7f_fdr79bRfQ6NoolWJdpQ01hEJfIs1YyU6hSx2o94bvT3083vfHL694ddLtfQPk2c_Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2V9kA5sBQQZfUBThCRxM7iA0IsRYUuQqhI3ELs2FxQCmolxE_xjYzTpAEkeustUhxrPH4Zz3g2gEPuxUGifGHpWHgWC2JqcWUC1xRCmjmxa2ce017fbz-yuyfvqQJfRS6MCassZGImqJOhNHfkpy6CJWQe8_3zt3fLdI0y3tWihcYEFh31-YEm2-js9hr398h1b1qDq7aVdxWwJMJtbHl-QlmQ0FjKJAipUEwLyaUtQ4FUJxp1As0o08rWSCiKMqSfm-Uwh-Ngn-K8C1BjJqO1CrXLVv_-Yeq38L28jW6Iy_VsJ0_TmSTrOSYVxphr-GAiDn4fhaV--8clm510N6uwnKuo5GKCqTWoqLQBK0X7B5JLgwYs_ahl2ID6VJR-roNtrNqyNi0ZamKqRiliwuxfCFq8KSqoBEl6zULB0g14nAsXN6GaDlO1BcTjGtU8HVLpcBbygGspYjvgqPY7UlHRBKdgUyTzwuWmf8ZrVJZcNqyNkLVRxtqINuF4-s3bpGzHzNG7Bfej_BceRSXgmnBS7Ej5-v_ZtmfPdgCL7UGvG3Vv-50dqLsmRia71dmFKm6L2kMlZyz2c2QReJ43mL8B2WQMMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJgYPPlAjiroHPWlD290-9mCMERFEiQdJuNV2u-uFFAwkhr_mr3O2tFRN5MatSbebndmvszM7L4Bz7oReLN3IUGHkGMwLqcGlDlyTCGlmhbaZekyfe267zx4HzqAEX3kujA6rzGViKqjjkdB35A0bweIzh7luQ2VhES_N1s34w9AdpLSnNW-nMYdIV84-0XybXHeauNcXtt26f71rG1mHAUMg9KaG48aUeTENhYg9n0aSqUhwYQo_QgpihfqBYpQpaSpcNIo1pIVr0pjFcbBLcd41WPeox7Xh57ceFh4M18ka6vpIuGNaWcLOPG3P0kkx2nDDBx178PtQLDTdP87Z9Mxr7cBWpqyS2zm6dqEkkyps540gSCYXqrD5o6phFSoLoTrbA1Pbt0WVWjJSRNePkkQH3L8TtH0TVFUJLmmYBoUl-9BfCQ8PoJyMEnkIxOEKFT7lU2Fx5nOPKxGFJvLW5paQNKqBlbMpEFkJc91JYxgUxZc1awNkbZCyNqA1uFx8M54X8Fg6up5zP8h-5klQQK8GV_mOFK__n-1o-WxnsIEQDp46ve4xVGwdLJNe79ShjLsiT1DbmUanKawIvK0ax9-c8Q8D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+scene+using+corneal+reflection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rafiq+Maimoona&rft.au=Bajwa%2C+Usama+Ijaz&rft.au=Gilanie+Ghulam&rft.au=Anwar+Waqas&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=14&rft.spage=21363&rft.epage=21379&rft_id=info:doi/10.1007%2Fs11042-020-10409-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon