Reconstruction of scene using corneal reflection
Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The reconstructed scene from corneal reflection provides detailed information about the environment opposite to the subject. It also provides scrutiny ab...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 14; pp. 21363 - 21379 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-020-10409-3 |
Cover
Abstract | Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The reconstructed scene from corneal reflection provides detailed information about the environment opposite to the subject. It also provides scrutiny about any critical scenario, a subject is encountered with. This research area has significant applications in computer vision, human-computer interaction, psychology, and image forgery detection. Digital image processing and computer vision techniques have been used to reconstruct the scene from cornea image. The proposed model involved the following steps, i.e., identification of the corneal area in an eye, unnecessary reflection removal from cornea surface, developing eye geometric model to correct the spherical effect of the eye, and implementation of super-resolution (SR) algorithm to reconstruct the lost visual information present in the environment. The proposed study is able to reconstruct the SR scene image from cornea image. The effectiveness of the study is evaluated by using subjective as well as objective evaluation measures. Some useful insights related to cornea reflection construction have been described to make this study more effective. |
---|---|
AbstractList | Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The reconstructed scene from corneal reflection provides detailed information about the environment opposite to the subject. It also provides scrutiny about any critical scenario, a subject is encountered with. This research area has significant applications in computer vision, human-computer interaction, psychology, and image forgery detection. Digital image processing and computer vision techniques have been used to reconstruct the scene from cornea image. The proposed model involved the following steps, i.e., identification of the corneal area in an eye, unnecessary reflection removal from cornea surface, developing eye geometric model to correct the spherical effect of the eye, and implementation of super-resolution (SR) algorithm to reconstruct the lost visual information present in the environment. The proposed study is able to reconstruct the SR scene image from cornea image. The effectiveness of the study is evaluated by using subjective as well as objective evaluation measures. Some useful insights related to cornea reflection construction have been described to make this study more effective. |
Author | Bajwa, Usama Ijaz Gilanie, Ghulam Rafiq, Maimoona Anwar, Waqas |
Author_xml | – sequence: 1 givenname: Maimoona surname: Rafiq fullname: Rafiq, Maimoona organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus – sequence: 2 givenname: Usama Ijaz orcidid: 0000-0001-5755-1194 surname: Bajwa fullname: Bajwa, Usama Ijaz email: usamabajwa@cuilahore.edu.pk organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus – sequence: 3 givenname: Ghulam surname: Gilanie fullname: Gilanie, Ghulam organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus – sequence: 4 givenname: Waqas surname: Anwar fullname: Anwar, Waqas organization: Department of Computer Science, COMSATS University Islamabad, Lahore Campus |
BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8BydfLRpj7L4BQuC6Dm06WTpUpM1aQ_-e9OtIHjY08zheWZe3hVZOO-QkGsGtwxA3UXGQHIKHGhaoKLijCxZrgRVirNF2kUJVOXALsgqxj0AK3IulwTe0HgXhzCaofMu8zaLBh1mY-zcLjM-OKz7LKDt8UhcknNb9xGvfueafDw-vG-e6fb16WVzv6VGsGqgedEKqVpRG9OqUjQobWMqA6ZsVIut5TlYKaRFsBxKbJiqRdVi0UhWJbgQa3Iz3z0E_zViHPTej8Gll5rngpUyl8VElTNlgo8xpdSmG-op5xDqrtcM9NSPnvvRqR997EeLpPJ_6iF0n3X4Pi2JWYoJdjsMf6lOWD8GBHns |
CitedBy_id | crossref_primary_10_3390_app122312484 crossref_primary_10_1080_13682199_2022_2150131 |
Cites_doi | 10.1007/978-3-319-10593-2_13 10.1007/978-3-030-01249-6_29 10.1007/978-3-030-22649-7_31 10.1109/CVPRW.2017.151 10.5244/C.26.22 10.2197/ipsjtcva.5.1 10.1109/CVPR.2018.00503 10.1109/ICME.2019.00222 10.1364/JOSAA.33.002264 10.1587/transinf.2017MVP0020 10.1109/CVPR.2019.00837 10.1007/978-3-319-54187-7_3 10.1002/9781118976005.ch17 10.1007/978-3-030-01219-9_40 10.1145/3338286.3344388 10.1007/978-3-642-33709-3_12 10.1109/CVPRW.2017.150 10.1109/CVPR.2017.19 10.1109/CVPR.2019.00174 10.1109/TIP.2012.2214050 10.1371/journal.pone.0083325 10.1007/s11263-006-6274-9 10.1109/CVPR.2016.207 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-020-10409-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Psychology |
EISSN | 1573-7721 |
EndPage | 21379 |
ExternalDocumentID | 10_1007_s11042_020_10409_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-56d347d3accd783be4fbc9c0c8b7dedf250f434fe0f208eb17a39de6b419be463 |
IEDL.DBID | 8FG |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:04:22 EDT 2025 Tue Jul 01 04:13:09 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Fri Feb 21 02:48:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Cornea reflection Super resolution Scene reconstruction Generative adversarial network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-56d347d3accd783be4fbc9c0c8b7dedf250f434fe0f208eb17a39de6b419be463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5755-1194 |
PQID | 2531845466 |
PQPubID | 54626 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2531845466 crossref_citationtrail_10_1007_s11042_020_10409_3 crossref_primary_10_1007_s11042_020_10409_3 springer_journals_10_1007_s11042_020_10409_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210600 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Kumar R (2019) Eye protection department. Arovision pharma a ray of hope to enhance vision. https://arovisionpharma.com/childcare-department/. Accessed 22 December 2020 Helland T (2013) A simple algorithm for correcting lens distortion. Tanner Helland. https://tannerhelland.com/2013/02/11/simple-algorithm-correcting-lens-distortion.html. Accessed 15 July 2019 MacKenzie I (2018) The Wiley handbook of human computer interaction. In: Chapter Fitts’ Law. John Wiley & Sons, Ltd, Chichester, UK Wei K, Yang J, Fu Y, Wipf D, Huang H (2019) Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8178–8187 Yang J, Gong D, Liu L, Shi Q (2018) Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In: Proceedings of the european conference on computer vision (ECCV), pp 654–669 NishinoKNayarSKCorneal imaging system: Environment from eyesInt J Comput Vis2006701234010.1007/s11263-006-6274-9 Nakazawa A, Nitschke C (2012) Point of gaze estimation through corneal surface reflection in an active illumination environment. In: European conference on computer vision. Springer, pp 159–172 Agustsson E, Timofte R (2017) Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 126–135 Nitschke C, Nakazawa A (2012) Super-resolution from corneal images. In: BMVC, pp 1–12 Rong J, Huang S, Shang Z, Ying X (2016) Radial lens distortion correction using convolutional neural networks trained with synthesized images. In: Asian conference on computer vision. Springer, pp 35–49. Numakura K, Takemura K (2019) Indoor human localization based on the corneal reflection of illumination. In: Proceedings of the 21st international conference on human-computer interaction with mobile devices and services, pp 1–6 Raza MF (2009) For visions come not to polluted eyes, flickr. https://www.flickr.com/photos/m-f-raza/4205563005/. Accessed 10 June 2019 NakazawaANitschkeCNishidaTRegistration of eye reflection and scene images using an aspherical eye modelJOSA A201633112264227610.1364/JOSAA.33.002264 Xue Z, Xue N, Xia GS, Shen W (2019) Learning to calibrate straight lines for fisheye image rectification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1643–1651 OgawaTNakazawaANishidaTPoint of gaze estimation using corneal surface reflection and omnidirectional camera imageIEICE Trans Inf Syst201810151278128710.1587/transinf.2017MVP0020 Wang C, Wan R, Gao F, Shi B, Duan LY (2019) Learning to remove reflections for text images. In: 2019 IEEE international conference on multimedia and expo (ICME). IEEE, pp. 1276–1281 JenkinsRKerrCIdentifiable images of bystanders extracted from corneal reflectionsPloS ONE2013812e8332510.1371/journal.pone.0083325 Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883 NitschkeCNakazawaATakemuraHCorneal imaging revisited: An overview of corneal reflection analysis and applicationsIPSJ Trans Comput Vision Appl2013511810.2197/ipsjtcva.5.1 Pedersen SJK (2007) Circular hough transform, Aalborg University, vision, graphics, and interactive systems. In Zhang X, Ng R, Chen Q (2018) Single image reflection separation with perceptual losses. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4786–4794 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690 Lim B, Son S, Kim H, Nah S, Mu Lee K (2017) Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 136–144 Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision. Springer, pp 184–199 Yin X, Wang X, Yu J, Zhang M, Fua P, Tao D (2018) Fisheyerecnet: A multi-context collaborative deep network for fisheye image rectification. In: Proceedings of the european conference on computer vision (ECCV), pp. 469–484 Nagamatsu T, Hiroe M, Rigoll G (2019) Corneal-reflection-based wide range gaze tracking for a car. In: International conference on human-computer interaction. Springer, pp 385-400 MittalAMoorthyAKBovikACNo-reference image quality assessment in the spatial domainIEEE Trans Image Process2012211246954708300114510.1109/TIP.2012.2214050 10409_CR10 A Nakazawa (10409_CR12) 2016; 33 R Jenkins (10409_CR4) 2013; 8 10409_CR19 K Nishino (10409_CR13) 2006; 70 A Mittal (10409_CR9) 2012; 21 10409_CR14 10409_CR11 10409_CR18 10409_CR16 T Ogawa (10409_CR17) 2018; 101 10409_CR20 10409_CR8 10409_CR21 10409_CR5 10409_CR7 10409_CR6 10409_CR1 10409_CR3 10409_CR2 C Nitschke (10409_CR15) 2013; 5 10409_CR24 10409_CR25 10409_CR22 10409_CR23 10409_CR26 10409_CR27 |
References_xml | – reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690 – reference: Pedersen SJK (2007) Circular hough transform, Aalborg University, vision, graphics, and interactive systems. In – reference: NitschkeCNakazawaATakemuraHCorneal imaging revisited: An overview of corneal reflection analysis and applicationsIPSJ Trans Comput Vision Appl2013511810.2197/ipsjtcva.5.1 – reference: Zhang X, Ng R, Chen Q (2018) Single image reflection separation with perceptual losses. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4786–4794 – reference: Helland T (2013) A simple algorithm for correcting lens distortion. Tanner Helland. https://tannerhelland.com/2013/02/11/simple-algorithm-correcting-lens-distortion.html. Accessed 15 July 2019 – reference: Nakazawa A, Nitschke C (2012) Point of gaze estimation through corneal surface reflection in an active illumination environment. In: European conference on computer vision. Springer, pp 159–172 – reference: MittalAMoorthyAKBovikACNo-reference image quality assessment in the spatial domainIEEE Trans Image Process2012211246954708300114510.1109/TIP.2012.2214050 – reference: Kumar R (2019) Eye protection department. Arovision pharma a ray of hope to enhance vision. https://arovisionpharma.com/childcare-department/. Accessed 22 December 2020 – reference: Nagamatsu T, Hiroe M, Rigoll G (2019) Corneal-reflection-based wide range gaze tracking for a car. In: International conference on human-computer interaction. Springer, pp 385-400 – reference: Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: European conference on computer vision. Springer, pp 184–199 – reference: OgawaTNakazawaANishidaTPoint of gaze estimation using corneal surface reflection and omnidirectional camera imageIEICE Trans Inf Syst201810151278128710.1587/transinf.2017MVP0020 – reference: Agustsson E, Timofte R (2017) Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 126–135 – reference: JenkinsRKerrCIdentifiable images of bystanders extracted from corneal reflectionsPloS ONE2013812e8332510.1371/journal.pone.0083325 – reference: Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883 – reference: Wei K, Yang J, Fu Y, Wipf D, Huang H (2019) Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8178–8187 – reference: Yang J, Gong D, Liu L, Shi Q (2018) Seeing deeply and bidirectionally: A deep learning approach for single image reflection removal. In: Proceedings of the european conference on computer vision (ECCV), pp 654–669 – reference: Raza MF (2009) For visions come not to polluted eyes, flickr. https://www.flickr.com/photos/m-f-raza/4205563005/. Accessed 10 June 2019 – reference: NakazawaANitschkeCNishidaTRegistration of eye reflection and scene images using an aspherical eye modelJOSA A201633112264227610.1364/JOSAA.33.002264 – reference: Rong J, Huang S, Shang Z, Ying X (2016) Radial lens distortion correction using convolutional neural networks trained with synthesized images. In: Asian conference on computer vision. Springer, pp 35–49. – reference: Nitschke C, Nakazawa A (2012) Super-resolution from corneal images. In: BMVC, pp 1–12 – reference: Lim B, Son S, Kim H, Nah S, Mu Lee K (2017) Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 136–144 – reference: Numakura K, Takemura K (2019) Indoor human localization based on the corneal reflection of illumination. In: Proceedings of the 21st international conference on human-computer interaction with mobile devices and services, pp 1–6 – reference: NishinoKNayarSKCorneal imaging system: Environment from eyesInt J Comput Vis2006701234010.1007/s11263-006-6274-9 – reference: Xue Z, Xue N, Xia GS, Shen W (2019) Learning to calibrate straight lines for fisheye image rectification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1643–1651 – reference: MacKenzie I (2018) The Wiley handbook of human computer interaction. In: Chapter Fitts’ Law. John Wiley & Sons, Ltd, Chichester, UK – reference: Wang C, Wan R, Gao F, Shi B, Duan LY (2019) Learning to remove reflections for text images. In: 2019 IEEE international conference on multimedia and expo (ICME). IEEE, pp. 1276–1281 – reference: Yin X, Wang X, Yu J, Zhang M, Fua P, Tao D (2018) Fisheyerecnet: A multi-context collaborative deep network for fisheye image rectification. In: Proceedings of the european conference on computer vision (ECCV), pp. 469–484 – ident: 10409_CR2 doi: 10.1007/978-3-319-10593-2_13 – ident: 10409_CR26 doi: 10.1007/978-3-030-01249-6_29 – ident: 10409_CR10 doi: 10.1007/978-3-030-22649-7_31 – ident: 10409_CR18 – ident: 10409_CR7 doi: 10.1109/CVPRW.2017.151 – ident: 10409_CR5 – ident: 10409_CR14 doi: 10.5244/C.26.22 – ident: 10409_CR3 – volume: 5 start-page: 1 year: 2013 ident: 10409_CR15 publication-title: IPSJ Trans Comput Vision Appl doi: 10.2197/ipsjtcva.5.1 – ident: 10409_CR27 doi: 10.1109/CVPR.2018.00503 – ident: 10409_CR22 doi: 10.1109/ICME.2019.00222 – volume: 33 start-page: 2264 issue: 11 year: 2016 ident: 10409_CR12 publication-title: JOSA A doi: 10.1364/JOSAA.33.002264 – volume: 101 start-page: 1278 issue: 5 year: 2018 ident: 10409_CR17 publication-title: IEICE Trans Inf Syst doi: 10.1587/transinf.2017MVP0020 – ident: 10409_CR23 doi: 10.1109/CVPR.2019.00837 – ident: 10409_CR20 doi: 10.1007/978-3-319-54187-7_3 – ident: 10409_CR8 doi: 10.1002/9781118976005.ch17 – ident: 10409_CR25 doi: 10.1007/978-3-030-01219-9_40 – ident: 10409_CR16 doi: 10.1145/3338286.3344388 – ident: 10409_CR11 doi: 10.1007/978-3-642-33709-3_12 – ident: 10409_CR1 doi: 10.1109/CVPRW.2017.150 – ident: 10409_CR6 doi: 10.1109/CVPR.2017.19 – ident: 10409_CR24 doi: 10.1109/CVPR.2019.00174 – volume: 21 start-page: 4695 issue: 12 year: 2012 ident: 10409_CR9 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2214050 – volume: 8 start-page: e83325 issue: 12 year: 2013 ident: 10409_CR4 publication-title: PloS ONE doi: 10.1371/journal.pone.0083325 – volume: 70 start-page: 23 issue: 1 year: 2006 ident: 10409_CR13 publication-title: Int J Comput Vis doi: 10.1007/s11263-006-6274-9 – ident: 10409_CR19 – ident: 10409_CR21 doi: 10.1109/CVPR.2016.207 |
SSID | ssj0016524 |
Score | 2.2604408 |
Snippet | Corneal reflection extracted from an eye image identifies the relationship between the subject of the image and the scene in front of the subject. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21363 |
SubjectTerms | Algorithms Computer Communication Networks Computer Science Computer vision Cornea Data Structures and Information Theory Digital computers Digital imaging Evaluation Image processing Image reconstruction Multimedia Information Systems Psychology Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOjBj6k4nZKDNy00zUeb4xDHEPRkYbfQpImX0Qnb_48vXbqqqOCt0CQtv5eX_B7vC-BWiSqvnTSJr4xIeF6xRLkQuOZwS3NaZWnrMX1-kbOSP83FPCaFrbpo984l2Z7UfbIbDakkwdzBh-Cx34U9gbZ7UMcym2x9B1LEVrYFflKkNKbK_LzG1-uo55jf3KLtbTM9hsNIE8lkI9cT2HHNEI66FgwkauQQDj7VEzyFNBiTfUlYsvQkFGtyJES3vxE0NBvkhQT_YtFGYDVnUE4fXx9mSWyJkFjUlXUiZM14XrPK2jovmHHcG6tsaguDkNceCY3njHuXekQZz2EEXwVZcKpwsGTnMGiWjbsAIpRHduULZqnihcqVt6ZKc4Vsm1rHzAhoh4y2sV54aFux0H2l44CmRjR1i6ZmI7jbznnfVMv4c_S4A1xHzVnpDA-Fggsu5QjuOyH0r39f7fJ_w69gP-ydTdTXGAYoGneN_GJtbtrt9AEQKcQ0 priority: 102 providerName: Springer Nature |
Title | Reconstruction of scene using corneal reflection |
URI | https://link.springer.com/article/10.1007/s11042-020-10409-3 https://www.proquest.com/docview/2531845466 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu5SBRwFRKFUGNoiIazuJJ1RQHwJRIUSlMkWxY7NUaVG78O85p04DSHRKlDgP3Xc-f_ad7wCuBE-jTIfSN6nkPotS6gttA9c0qjQjaTcoPKbP43A0YY9TPnULbksXVlnaxMJQZ3Nl18hvu6gsMeMsDO8Wn76tGmW9q66Exi7UCY40Vs_jwXDjRQi5K2ob48d5QNymmfXWOWI3ptjJE55Y___vgalim38cpMW4MziEfUcYvd4a4SPY0XkTDspiDJ7rm03Y-5FZsAmNjWH7OobAzjGrTLHe3Hg2h5P2bND7h4fzzxzpooe_NCsCs_ITmAz6bw8j31VK8BV2oZXPw4yyKKOpUlkUU6mZkUqoQMUSkcgM8hzDKDM6MCh8NM-IibAQMSKwcUhPoZbPc30GHhcGSZeJqSKCxSISRsk0iASScKI0lS0gpZgS5dKI22oWs6RKgGxFm6Bok0K0CW3B9eaZxTqJxtbW7VL6ietQy6SCvwU3JSLV7f_fdr79bRfQ6NoolWJdpQ01hEJfIs1YyU6hSx2o94bvT3083vfHL694ddLtfQPk2c_Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2V9kA5sBQQZfUBThCRxM7iA0IsRYUuQqhI3ELs2FxQCmolxE_xjYzTpAEkeustUhxrPH4Zz3g2gEPuxUGifGHpWHgWC2JqcWUC1xRCmjmxa2ce017fbz-yuyfvqQJfRS6MCassZGImqJOhNHfkpy6CJWQe8_3zt3fLdI0y3tWihcYEFh31-YEm2-js9hr398h1b1qDq7aVdxWwJMJtbHl-QlmQ0FjKJAipUEwLyaUtQ4FUJxp1As0o08rWSCiKMqSfm-Uwh-Ngn-K8C1BjJqO1CrXLVv_-Yeq38L28jW6Iy_VsJ0_TmSTrOSYVxphr-GAiDn4fhaV--8clm510N6uwnKuo5GKCqTWoqLQBK0X7B5JLgwYs_ahl2ID6VJR-roNtrNqyNi0ZamKqRiliwuxfCFq8KSqoBEl6zULB0g14nAsXN6GaDlO1BcTjGtU8HVLpcBbygGspYjvgqPY7UlHRBKdgUyTzwuWmf8ZrVJZcNqyNkLVRxtqINuF4-s3bpGzHzNG7Bfej_BceRSXgmnBS7Ej5-v_ZtmfPdgCL7UGvG3Vv-50dqLsmRia71dmFKm6L2kMlZyz2c2QReJ43mL8B2WQMMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJgYPPlAjiroHPWlD290-9mCMERFEiQdJuNV2u-uFFAwkhr_mr3O2tFRN5MatSbebndmvszM7L4Bz7oReLN3IUGHkGMwLqcGlDlyTCGlmhbaZekyfe267zx4HzqAEX3kujA6rzGViKqjjkdB35A0bweIzh7luQ2VhES_N1s34w9AdpLSnNW-nMYdIV84-0XybXHeauNcXtt26f71rG1mHAUMg9KaG48aUeTENhYg9n0aSqUhwYQo_QgpihfqBYpQpaSpcNIo1pIVr0pjFcbBLcd41WPeox7Xh57ceFh4M18ka6vpIuGNaWcLOPG3P0kkx2nDDBx178PtQLDTdP87Z9Mxr7cBWpqyS2zm6dqEkkyps540gSCYXqrD5o6phFSoLoTrbA1Pbt0WVWjJSRNePkkQH3L8TtH0TVFUJLmmYBoUl-9BfCQ8PoJyMEnkIxOEKFT7lU2Fx5nOPKxGFJvLW5paQNKqBlbMpEFkJc91JYxgUxZc1awNkbZCyNqA1uFx8M54X8Fg6up5zP8h-5klQQK8GV_mOFK__n-1o-WxnsIEQDp46ve4xVGwdLJNe79ShjLsiT1DbmUanKawIvK0ax9-c8Q8D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+scene+using+corneal+reflection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rafiq+Maimoona&rft.au=Bajwa%2C+Usama+Ijaz&rft.au=Gilanie+Ghulam&rft.au=Anwar+Waqas&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=14&rft.spage=21363&rft.epage=21379&rft_id=info:doi/10.1007%2Fs11042-020-10409-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |