Deep Neural Networks Motivated by Partial Differential Equations
Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate functions and the output of image processing algori...
Saved in:
Published in | Journal of mathematical imaging and vision Vol. 62; no. 3; pp. 352 - 364 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate functions and the output of image processing algorithms as solutions to certain PDEs. Posing image processing problems in the infinite-dimensional setting provides powerful tools for their analysis and solution. For the last few decades, the reinterpretation of classical image processing problems through the PDE lens has been creating multiple celebrated approaches that benefit a vast area of tasks including image segmentation, denoising, registration, and reconstruction. In this paper, we establish a new PDE interpretation of a class of deep convolutional neural networks (CNN) that are commonly used to learn from speech, image, and video data. Our interpretation includes convolution residual neural networks (ResNet), which are among the most promising approaches for tasks such as image classification having improved the state-of-the-art performance in prestigious benchmark challenges. Despite their recent successes, deep ResNets still face some critical challenges associated with their design, immense computational costs and memory requirements, and lack of understanding of their reasoning. Guided by well-established PDE theory, we derive three new ResNet architectures that fall into two new classes: parabolic and hyperbolic CNNs. We demonstrate how PDE theory can provide new insights and algorithms for deep learning and demonstrate the competitiveness of three new CNN architectures using numerical experiments. |
---|---|
AbstractList | Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate functions and the output of image processing algorithms as solutions to certain PDEs. Posing image processing problems in the infinite-dimensional setting provides powerful tools for their analysis and solution. For the last few decades, the reinterpretation of classical image processing problems through the PDE lens has been creating multiple celebrated approaches that benefit a vast area of tasks including image segmentation, denoising, registration, and reconstruction. In this paper, we establish a new PDE interpretation of a class of deep convolutional neural networks (CNN) that are commonly used to learn from speech, image, and video data. Our interpretation includes convolution residual neural networks (ResNet), which are among the most promising approaches for tasks such as image classification having improved the state-of-the-art performance in prestigious benchmark challenges. Despite their recent successes, deep ResNets still face some critical challenges associated with their design, immense computational costs and memory requirements, and lack of understanding of their reasoning. Guided by well-established PDE theory, we derive three new ResNet architectures that fall into two new classes: parabolic and hyperbolic CNNs. We demonstrate how PDE theory can provide new insights and algorithms for deep learning and demonstrate the competitiveness of three new CNN architectures using numerical experiments. |
Author | Ruthotto, Lars Haber, Eldad |
Author_xml | – sequence: 1 givenname: Lars orcidid: 0000-0003-0803-3299 surname: Ruthotto fullname: Ruthotto, Lars email: lruthotto@emory.edu organization: Department of Mathematics, Emory University, Xtract Technologies Inc – sequence: 2 givenname: Eldad surname: Haber fullname: Haber, Eldad organization: Department of Earth and Ocean Science, The University of British Columbia, Xtract Technologies Inc |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxNowYyd2vAO15SGVxwLWlpM4KKUkre2A-vekCRISi66uRjN37syZkFHd1JaQc4RLBJBXHiFNkAIqCqCAUzwiY0wkp1KkfETGoFhMlQJ5QiberwAgZSjH5Hpu7SZ6sq0z607Cd-M-fPTYhOrLBFtE2S56MS5UXXdelaV1tu6LxbY1oWpqf0qOS7P29uxXp-TtdvE6u6fL57uH2c2S5hxVoIlAkWdMSBErLIUtGAAXEmOZcy6VNCLJ8izlRcaRJxnPLLIiNjY2YETOkE_JxbB345pta33Qq6Z1dRepGU8lSzsCsptiw1TuGu-dLfXGVZ_G7TSC3pPSAyndkdI9Kb1fnf4z5VXovwvOVOvDVj5YfZdTv1v3d9UB1w_7on3W |
CitedBy_id | crossref_primary_10_1093_mnras_stae1672 crossref_primary_10_1137_20M1376790 crossref_primary_10_1186_s13662_023_03787_z crossref_primary_10_1088_1361_6420_ace9d4 crossref_primary_10_1137_23M1570727 crossref_primary_10_3389_fbinf_2022_715006 crossref_primary_10_1021_acsenergylett_1c00194 crossref_primary_10_1515_phys_2023_0121 crossref_primary_10_1016_j_cma_2024_116890 crossref_primary_10_1109_TAI_2022_3230632 crossref_primary_10_1137_23M1586355 crossref_primary_10_5194_gmd_13_3373_2020 crossref_primary_10_1137_24M1648703 crossref_primary_10_1007_s00285_023_01873_0 crossref_primary_10_1109_TE_2022_3200162 crossref_primary_10_3390_electronics10212627 crossref_primary_10_1109_TAP_2023_3245281 crossref_primary_10_1016_j_physd_2024_134159 crossref_primary_10_1007_s11063_022_10968_6 crossref_primary_10_1002_sam_11531 crossref_primary_10_1080_09500340_2024_2367036 crossref_primary_10_1155_2021_9544018 crossref_primary_10_1088_1361_6420_ad0f3b crossref_primary_10_1137_23M1576700 crossref_primary_10_1109_ACCESS_2025_3542173 crossref_primary_10_1016_j_neunet_2023_01_031 crossref_primary_10_3390_app11093776 crossref_primary_10_1103_PhysRevE_110_065307 crossref_primary_10_1002_msd2_12109 crossref_primary_10_1016_j_neucom_2021_11_010 crossref_primary_10_3934_mfc_2024040 crossref_primary_10_1016_j_cma_2025_117755 crossref_primary_10_1088_1742_5468_ad5713 crossref_primary_10_1109_TPAMI_2022_3174908 crossref_primary_10_1007_s40314_021_01678_1 crossref_primary_10_1088_1361_6420_ab80d7 crossref_primary_10_3390_min12121621 crossref_primary_10_1109_LED_2023_3290930 crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1080_13682199_2024_2349340 crossref_primary_10_1109_TNNLS_2021_3120472 crossref_primary_10_3390_pr13030811 crossref_primary_10_1007_s11071_024_10795_5 crossref_primary_10_1016_j_eswa_2024_123605 crossref_primary_10_2478_amns_2022_2_00008 crossref_primary_10_1016_j_engappai_2024_108656 crossref_primary_10_1088_2632_2153_aba8e7 crossref_primary_10_1016_j_engappai_2024_107844 crossref_primary_10_1155_2021_4040497 crossref_primary_10_1016_j_ins_2022_07_138 crossref_primary_10_1016_j_neunet_2025_107219 crossref_primary_10_1016_j_geothermics_2023_102824 crossref_primary_10_11948_20220136 crossref_primary_10_1287_ijoo_2022_0008 crossref_primary_10_1016_j_physd_2022_133630 crossref_primary_10_3390_lubricants12050172 crossref_primary_10_1016_j_apm_2025_116060 crossref_primary_10_1137_24M1632103 crossref_primary_10_1007_s00025_023_02074_3 crossref_primary_10_1007_s40747_022_00671_3 crossref_primary_10_1109_TAP_2022_3217333 crossref_primary_10_1137_20M1359511 crossref_primary_10_3390_jne5030023 crossref_primary_10_1137_20M1341428 crossref_primary_10_3934_mfc_2024030 crossref_primary_10_1007_s10851_021_01057_9 crossref_primary_10_1016_j_aej_2023_09_002 crossref_primary_10_12677_AAM_2024_135226 crossref_primary_10_1137_24M1633662 crossref_primary_10_1109_TKDE_2022_3222373 crossref_primary_10_1016_j_jcp_2023_112738 crossref_primary_10_1016_j_displa_2025_103005 crossref_primary_10_1109_TPAMI_2024_3380007 crossref_primary_10_1016_j_jpowsour_2024_234918 crossref_primary_10_1016_j_jcp_2024_113623 crossref_primary_10_1007_s10898_022_01228_x crossref_primary_10_1007_s10851_019_00890_3 crossref_primary_10_1007_s00245_023_10059_5 crossref_primary_10_1038_s41598_024_53185_y crossref_primary_10_1098_rspa_2021_0162 crossref_primary_10_1016_j_cma_2022_115730 crossref_primary_10_1007_s10994_022_06139_2 crossref_primary_10_1016_j_cma_2022_115850 crossref_primary_10_1007_s10765_022_03102_0 crossref_primary_10_1155_2021_4062200 crossref_primary_10_1186_s42162_021_00170_8 crossref_primary_10_1016_j_enganabound_2025_106161 crossref_primary_10_2514_1_J063243 crossref_primary_10_1016_j_amc_2023_128392 crossref_primary_10_1038_s42005_024_01521_z crossref_primary_10_1111_mice_13312 crossref_primary_10_1007_s00170_022_09591_5 crossref_primary_10_3390_en15072661 crossref_primary_10_3390_axioms12050429 crossref_primary_10_1016_j_ifacol_2021_06_124 crossref_primary_10_3390_math11183935 crossref_primary_10_1137_21M1452512 crossref_primary_10_1016_j_neucom_2024_129267 crossref_primary_10_1088_2057_1976_ada1da crossref_primary_10_1007_s10462_024_10784_5 crossref_primary_10_1007_s10489_021_02474_4 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122791 crossref_primary_10_1016_j_engappai_2023_106721 crossref_primary_10_14495_jsiaml_15_101 crossref_primary_10_1007_s00034_024_02902_z crossref_primary_10_1134_S0361768823030088 crossref_primary_10_1038_s41598_023_29822_3 crossref_primary_10_1109_ACCESS_2024_3352823 crossref_primary_10_3390_math13010014 crossref_primary_10_1109_TCAD_2022_3166103 crossref_primary_10_3934_era_2024310 crossref_primary_10_5194_gmd_17_6657_2024 crossref_primary_10_1109_TNNLS_2022_3213308 crossref_primary_10_1007_s10851_022_01114_x crossref_primary_10_1016_j_ins_2025_122108 crossref_primary_10_1137_23M1599744 crossref_primary_10_1145_3567591 crossref_primary_10_1016_j_ocemod_2023_102174 crossref_primary_10_1137_21M1438554 crossref_primary_10_1016_j_eswa_2021_114923 crossref_primary_10_1109_TRO_2024_3428433 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_euromechsol_2024_105551 crossref_primary_10_2478_amns_2022_2_0111 crossref_primary_10_3390_make3010003 crossref_primary_10_1002_mma_8685 crossref_primary_10_1038_s42005_023_01433_4 crossref_primary_10_1007_s40687_022_00354_y crossref_primary_10_1016_j_ifacol_2023_10_1411 crossref_primary_10_1137_19M1294484 crossref_primary_10_1016_j_cattod_2022_04_002 crossref_primary_10_1088_1361_6420_ad49ca crossref_primary_10_1007_s10851_022_01106_x crossref_primary_10_1016_j_ijheatmasstransfer_2021_121616 crossref_primary_10_1098_rsta_2021_0198 crossref_primary_10_1007_s40687_022_00339_x crossref_primary_10_2139_ssrn_4134906 crossref_primary_10_3390_e25040674 crossref_primary_10_1137_22M1527337 crossref_primary_10_6339_23_JDS1093 crossref_primary_10_1016_j_eng_2024_07_002 crossref_primary_10_1002_pamm_202300299 crossref_primary_10_1016_j_patcog_2024_111008 crossref_primary_10_1137_23M1583302 crossref_primary_10_1016_j_media_2023_102917 crossref_primary_10_1038_s42256_023_00685_7 crossref_primary_10_1016_j_neucom_2024_128769 crossref_primary_10_1016_j_compchemeng_2022_108111 crossref_primary_10_1016_j_acha_2021_12_007 crossref_primary_10_1016_j_compstruc_2024_107342 crossref_primary_10_3390_pr12122660 crossref_primary_10_1007_s10851_019_00922_y crossref_primary_10_1093_ptep_ptad131 crossref_primary_10_1016_j_asoc_2023_110936 crossref_primary_10_1016_j_cma_2025_117759 crossref_primary_10_3389_fams_2022_1021069 crossref_primary_10_5802_smai_jcm_74 crossref_primary_10_1007_s10915_023_02173_x crossref_primary_10_1016_j_advengsoft_2022_103199 crossref_primary_10_1016_j_cnsns_2021_105989 crossref_primary_10_3390_math9040434 crossref_primary_10_1364_OE_400364 crossref_primary_10_1007_s10915_024_02691_2 crossref_primary_10_1149_1945_7111_ad14cd crossref_primary_10_1016_j_cma_2022_114710 crossref_primary_10_1007_s40305_019_00287_4 crossref_primary_10_3934_fods_2022007 crossref_primary_10_1137_22M1517135 |
Cites_doi | 10.1088/1361-6420/aa9a90 10.1109/TPAMI.2016.2596743 10.1037/h0042519 10.1137/1.9780898718935 10.1038/nature14539 10.1002/cpa.3160430805 10.1109/72.279181 10.1016/0004-3702(81)90024-2 10.1137/1.9780898718874 10.1561/2200000006 10.1109/MSP.2012.2205597 10.1016/0167-2789(92)90242-F 10.1109/34.56205 10.1137/1.9781611971231 10.1002/cpa.3160420503 10.1109/83.902291 10.1109/TPAMI.2008.128 10.1137/1.9780898718843 10.1002/gamm.201010013 10.1109/CVPR.2016.90 10.1145/3132747.3132785 10.5244/C.30.87 10.1109/ACSSC.2017.8335634 10.1609/aaai.v32i1.11680 10.1137/19M1272780 10.1109/ISCAS.2010.5537907 10.1609/aaai.v32i1.11668 10.1007/978-3-319-46493-0_38 10.1609/aaai.v29i1.9796 10.1109/CVPR.2017.17 10.1145/1553374.1553486 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10851-019-00903-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1573-7683 |
EndPage | 364 |
ExternalDocumentID | 10_1007_s10851_019_00903_1 |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: LNAG/036; RG91310 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Directorate for Mathematical and Physical Sciences grantid: 1522599; 1751636 funderid: http://dx.doi.org/10.13039/100000086 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z83 Z88 Z8M Z8N Z8R Z8S Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-5616cb2676491f6ed200367147c33797a65bcb83db3135b3be12d4ae4a0a6c213 |
IEDL.DBID | U2A |
ISSN | 0924-9907 |
IngestDate | Fri Jul 25 11:03:57 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Tue Jul 01 03:20:34 EDT 2025 Fri Feb 21 02:35:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep neural networks Partial differential equations PDE-constrained optimization Machine learning Image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5616cb2676491f6ed200367147c33797a65bcb83db3135b3be12d4ae4a0a6c213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0803-3299 |
PQID | 2387281087 |
PQPubID | 2043734 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2387281087 crossref_primary_10_1007_s10851_019_00903_1 crossref_citationtrail_10_1007_s10851_019_00903_1 springer_journals_10_1007_s10851_019_00903_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical imaging and vision |
PublicationTitleAbbrev | J Math Imaging Vis |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR38 Ascher, Mattheij, Russell (CR3) 1995 CR35 CR31 CR30 Rogers, Moodie (CR43) 1984 Rosenblatt (CR44) 1958; 65 Chan, Vese (CR8) 2001; 10 Modersitzki (CR37) 2009 Krizhevsky, Sutskever, Hinton (CR32) 2012; 61 CR9 Hernández-Lobato, Gelbart, Adams, Hoffman, Ghahramani (CR26) 2016; 17 CR48 Horn, Schunck (CR29) 1981; 17 Herzog, Kunisch (CR27) 2010; 33 CR42 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (CR28) 2012; 29 CR40 Weinan (CR49) 2017; 5 Chen, Pock (CR12) 2017; 39 Hansen, Nagy, O’Leary (CR23) 2006 Torralba, Fergus, Freeman (CR47) 2008; 30 Biegler, Ghattas, Heinkenschloss, Keyes, van Bloemen Waanders (CR6) 2007 Bengio, Simard, Frasconi (CR5) 1994; 5 Mumford, Shah (CR39) 1989; 42 CR18 CR17 CR16 Perona, Malik (CR41) 1990; 12 Ambrosio, Tortorelli (CR1) 1990; 43 CR15 CR14 CR13 CR11 CR10 CR51 CR50 Borzì, Schulz (CR7) 2012 LeCun, Bengio, Hinton (CR34) 2015; 521 Rudin, Osher, Fatemi (CR45) 1992; 60 Ascher (CR2) 2010 Haber, Ruthotto (CR21) 2017; 34 Scherzer, Grasmair, Grossauer, Haltmeier, Lenzen (CR46) 2009 Goodfellow, Bengio, Courville (CR19) 2016 CR25 CR24 CR22 Li, Chen, Tai, Weinan (CR36) 2017; 18 CR20 Bengio (CR4) 2009; 2 LeCun, Bengio (CR33) 1995; 3361 903_CR51 903_CR50 Y Chen (903_CR12) 2017; 39 U Ascher (903_CR2) 2010 F Rosenblatt (903_CR44) 1958; 65 903_CR18 903_CR17 903_CR16 Q Li (903_CR36) 2017; 18 903_CR15 JM Hernández-Lobato (903_CR26) 2016; 17 A Krizhevsky (903_CR32) 2012; 61 903_CR14 A Torralba (903_CR47) 2008; 30 903_CR13 903_CR11 903_CR10 903_CR40 L Ambrosio (903_CR1) 1990; 43 C Rogers (903_CR43) 1984 Y LeCun (903_CR33) 1995; 3361 P Perona (903_CR41) 1990; 12 E Weinan (903_CR49) 2017; 5 R Herzog (903_CR27) 2010; 33 BK Horn (903_CR29) 1981; 17 LI Rudin (903_CR45) 1992; 60 U Ascher (903_CR3) 1995 903_CR48 I Goodfellow (903_CR19) 2016 903_CR42 903_CR30 903_CR9 D Mumford (903_CR39) 1989; 42 Y Bengio (903_CR5) 1994; 5 TF Chan (903_CR8) 2001; 10 Y LeCun (903_CR34) 2015; 521 Y Bengio (903_CR4) 2009; 2 903_CR38 A Borzì (903_CR7) 2012 LT Biegler (903_CR6) 2007 903_CR35 G Hinton (903_CR28) 2012; 29 E Haber (903_CR21) 2017; 34 903_CR31 PC Hansen (903_CR23) 2006 O Scherzer (903_CR46) 2009 J Modersitzki (903_CR37) 2009 903_CR25 903_CR24 903_CR22 903_CR20 |
References_xml | – volume: 34 start-page: 014004 year: 2017 ident: CR21 article-title: Stable architectures for deep neural networks publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa9a90 – ident: CR22 – ident: CR16 – ident: CR51 – volume: 39 start-page: 1256 issue: 6 year: 2017 end-page: 1272 ident: CR12 article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2596743 – volume: 3361 start-page: 255 year: 1995 end-page: 258 ident: CR33 article-title: Convolutional networks for images, speech, and time series publication-title: Handb. Brain Theory Neural Netw. – year: 2016 ident: CR19 publication-title: Deep Learning – volume: 65 start-page: 386 issue: 6 year: 1958 end-page: 408 ident: CR44 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – ident: CR35 – year: 2007 ident: CR6 publication-title: Real-Time PDE-Constrained Optimization doi: 10.1137/1.9780898718935 – ident: CR25 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR34 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR42 – ident: CR15 – volume: 43 start-page: 999 issue: 8 year: 1990 end-page: 1036 ident: CR1 article-title: Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160430805 – volume: 61 start-page: 1097 year: 2012 end-page: 1105 ident: CR32 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: CR50 – ident: CR11 – ident: CR9 – volume: 5 start-page: 157 issue: 2 year: 1994 end-page: 166 ident: CR5 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – year: 2010 ident: CR2 publication-title: Numerical Methods for Evolutionary Differential Equations – volume: 17 start-page: 185 issue: 1–3 year: 1981 end-page: 203 ident: CR29 article-title: Determining optical flow publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – ident: CR18 – volume: 5 start-page: 1 issue: 1 year: 2017 end-page: 11 ident: CR49 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. – year: 2006 ident: CR23 publication-title: Deblurring Images: Matrices, Spectra and Filtering doi: 10.1137/1.9780898718874 – volume: 2 start-page: 1 issue: 1 year: 2009 end-page: 127 ident: CR4 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – ident: CR14 – year: 2009 ident: CR46 publication-title: Variational Methods in Imaging – ident: CR30 – ident: CR10 – volume: 29 start-page: 82 issue: 6 year: 2012 end-page: 97 ident: CR28 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 60 start-page: 259 issue: 1–4 year: 1992 end-page: 268 ident: CR45 article-title: Nonlinear total variation based noise removal algorithms publication-title: Phys. D doi: 10.1016/0167-2789(92)90242-F – ident: CR40 – volume: 12 start-page: 629 issue: 7 year: 1990 end-page: 639 ident: CR41 article-title: Scale-space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – year: 1984 ident: CR43 publication-title: Wave Phenomena: Modern Theory and Applications – year: 1995 ident: CR3 publication-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations doi: 10.1137/1.9781611971231 – volume: 42 start-page: 577 issue: 5 year: 1989 end-page: 685 ident: CR39 article-title: Optimal approximations by piecewise smooth functions and associated variational-problems publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160420503 – volume: 10 start-page: 266 issue: 2 year: 2001 end-page: 277 ident: CR8 article-title: Active contours without edges publication-title: IEEE Trans. Image Process. doi: 10.1109/83.902291 – ident: CR48 – volume: 18 start-page: 5998 issue: 1 year: 2017 end-page: 6026 ident: CR36 article-title: Maximum principle based algorithms for deep learning publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 1958 issue: 11 year: 2008 end-page: 1970 ident: CR47 article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.128 – ident: CR38 – volume: 17 start-page: 2 year: 2016 end-page: 51 ident: CR26 article-title: A general framework for constrained bayesian optimization using information-based search publication-title: J. Mach. Learn. Res. – ident: CR17 – ident: CR31 – ident: CR13 – year: 2009 ident: CR37 publication-title: FAIR: Flexible Algorithms for Image Registration doi: 10.1137/1.9780898718843 – year: 2012 ident: CR7 publication-title: Computational Optimization of Systems Governed by Partial Differential Equations – ident: CR24 – ident: CR20 – volume: 33 start-page: 163 issue: 2 year: 2010 end-page: 176 ident: CR27 article-title: Algorithms for PDE-constrained optimization publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.201010013 – ident: 903_CR24 doi: 10.1109/CVPR.2016.90 – volume: 33 start-page: 163 issue: 2 year: 2010 ident: 903_CR27 publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.201010013 – ident: 903_CR48 – ident: 903_CR40 doi: 10.1145/3132747.3132785 – ident: 903_CR51 doi: 10.5244/C.30.87 – volume: 10 start-page: 266 issue: 2 year: 2001 ident: 903_CR8 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.902291 – ident: 903_CR15 – volume: 60 start-page: 259 issue: 1–4 year: 1992 ident: 903_CR45 publication-title: Phys. D doi: 10.1016/0167-2789(92)90242-F – ident: 903_CR10 doi: 10.1109/ACSSC.2017.8335634 – ident: 903_CR22 doi: 10.1609/aaai.v32i1.11680 – ident: 903_CR11 – ident: 903_CR30 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 903_CR4 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – ident: 903_CR16 doi: 10.1137/19M1272780 – volume: 3361 start-page: 255 year: 1995 ident: 903_CR33 publication-title: Handb. Brain Theory Neural Netw. – ident: 903_CR35 doi: 10.1109/ISCAS.2010.5537907 – volume: 43 start-page: 999 issue: 8 year: 1990 ident: 903_CR1 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160430805 – volume-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations year: 1995 ident: 903_CR3 doi: 10.1137/1.9781611971231 – volume: 17 start-page: 185 issue: 1–3 year: 1981 ident: 903_CR29 publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 903_CR5 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 903_CR28 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume-title: FAIR: Flexible Algorithms for Image Registration year: 2009 ident: 903_CR37 doi: 10.1137/1.9780898718843 – volume: 12 start-page: 629 issue: 7 year: 1990 ident: 903_CR41 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 903_CR34 publication-title: Nature doi: 10.1038/nature14539 – volume: 34 start-page: 014004 year: 2017 ident: 903_CR21 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa9a90 – volume-title: Wave Phenomena: Modern Theory and Applications year: 1984 ident: 903_CR43 – volume-title: Numerical Methods for Evolutionary Differential Equations year: 2010 ident: 903_CR2 – volume: 18 start-page: 5998 issue: 1 year: 2017 ident: 903_CR36 publication-title: J. Mach. Learn. Res. – ident: 903_CR9 doi: 10.1609/aaai.v32i1.11668 – volume-title: Computational Optimization of Systems Governed by Partial Differential Equations year: 2012 ident: 903_CR7 – ident: 903_CR25 doi: 10.1007/978-3-319-46493-0_38 – ident: 903_CR50 doi: 10.1609/aaai.v29i1.9796 – volume: 61 start-page: 1097 year: 2012 ident: 903_CR32 publication-title: Adv. Neural Inf. Process. Syst. – volume-title: Real-Time PDE-Constrained Optimization year: 2007 ident: 903_CR6 doi: 10.1137/1.9780898718935 – volume: 39 start-page: 1256 issue: 6 year: 2017 ident: 903_CR12 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2596743 – volume: 42 start-page: 577 issue: 5 year: 1989 ident: 903_CR39 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160420503 – volume-title: Variational Methods in Imaging year: 2009 ident: 903_CR46 – volume: 30 start-page: 1958 issue: 11 year: 2008 ident: 903_CR47 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.128 – volume: 17 start-page: 2 year: 2016 ident: 903_CR26 publication-title: J. Mach. Learn. Res. – ident: 903_CR17 – ident: 903_CR13 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 903_CR44 publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 5 start-page: 1 issue: 1 year: 2017 ident: 903_CR49 publication-title: Commun. Math. Stat. – ident: 903_CR38 doi: 10.1109/CVPR.2017.17 – ident: 903_CR20 – volume-title: Deblurring Images: Matrices, Spectra and Filtering year: 2006 ident: 903_CR23 doi: 10.1137/1.9780898718874 – ident: 903_CR42 doi: 10.1145/1553374.1553486 – ident: 903_CR18 – ident: 903_CR31 – ident: 903_CR14 – volume-title: Deep Learning year: 2016 ident: 903_CR19 |
SSID | ssj0008217 |
Score | 2.6531267 |
Snippet | Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 352 |
SubjectTerms | Algorithms Applications of Mathematics Artificial neural networks Computer Science Convolution Image classification Image processing Image Processing and Computer Vision Image reconstruction Image segmentation Machine learning Mathematical Methods in Physics Multivariate analysis Neural networks Noise reduction Partial differential equations Signal,Image and Speech Processing Video data |
Title | Deep Neural Networks Motivated by Partial Differential Equations |
URI | https://link.springer.com/article/10.1007/s10851-019-00903-1 https://www.proquest.com/docview/2387281087 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLYQXWDgKCAKpcrABpZix0ey0dKWCtSKgUplimzHmVAppAz8e54TpwUESEiRotjOG56v77PfgdB5Ziw3uRQY9jaLGdEEJ9ImOA-5iqkCzmEcURxPxGjKbmd85p3Citravb6SLFfqT85ugA6A-iY4dIcLGDhPgzvuDqN4Srur9TemZZ7dEJgFhrVWeleZn2V83Y7WGPPbtWi52wz30I6HiUG36td9tGHnTbTrIWPgJ2QBRXVWhrqsibbHq0isxQG66lu7CFwIDhA3qWy-i2BcZTUDUfo9uHejB2r7PldK-TF4qWKAF4doOhw8XI-wz5qADUynJQZAJIymQgqWkFzYzJmfCUmYNFEkE6kE10bHUaYjEnEdaUtoxpRlKlTCUBIdoc3589weo8C5ElrNZZYB7VLManh4yKyJFFGC5i1EauWlxocUd5ktntJ1MGSn8BQUnpYKT0kLXaz-WVQBNf5s3a77JPWTq0gBZUgaQ1vZQpd1P62rf5d28r_mp2iLOnZd2um00eby9c2eAQRZ6g5qdIe93sS9bx7vBp1yBH4AQqnSPg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFMjABpbiR-xko6KtCjQVQyt1i2zHnVAppAz8e86J0wICJKQssZ0b7vz4vvgeCF3mxkZmKgWGs81iTjTBibQJnoaRiqkCzmEcUUyHoj_m95No4oPCitrbvb6SLHfqT8FugA6A-iY4dD8XMHCeDQADsXPkGtP2cv-NaVlnNwRmgWGvlT5U5mcZX4-jFcb8di1anja9PbTjYWLQruy6j9bsrIF2PWQM_IIsoKmuylC3NdB2uszEWhygm46188Cl4ABxw8rnuwjSqqoZiNLvwaObPdDb8bVSypfuS5UDvDhE4153dNvHvmoCNrCcFhgAkTCaCil4QqbC5s79TEjCpWFMJlKJSBsds1wzwiLNtCU058pyFSphKGFHaH32PLPHKHChhFZHMs-BdiluNTxRyK1hiihBp01EauVlxqcUd5UtnrJVMmSn8AwUnpUKz0gTXS2_mVcJNf4c3aptkvnFVWRgc0ljGCub6Lq206r7d2kn_xt-gTb7o3SQDe6GD6doizqmXfrstND64vXNngEcWejzcvZ9ACSH0iE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMPAqIQoEMbGA1dhy72agoVXm06kClbpHtOBMKhYSBf885cdqCAAkpS2znhjs_7ovvvkPoItEm1KngGM42gxlRBEfCRDj1Q9mlEjCHtkBxNObDKbufhbOVLP4y2r2-kqxyGixLU1Z05knaWUl8A08BYHCEffujAQP-WYftmNh5PaW9xV7cpWXNXR9QBoZ9V7i0mZ9lfD2alv7mtyvS8uQZ7KJt5zJ6vcrGe2jNZE2049xHzy3OHJrqCg11WxNtjRasrPk-uu4bM_csHQeIG1fx37k3qiqcgSj14U3sTILevqubUr7cvlZ84PkBmg5un26G2FVQwBp0UWBwjrhWlAvOIpJyk9hQNC4IEzoIRCQkD5VW3SBRAQlCFShDaMKkYdKXXFMSHKJG9pKZI-TZtEKjQpEkAMEkMwqe0GdGB5JITtMWIrXyYu3oxW2Vi-d4SYxsFR6DwuNS4TFpocvFN_OKXOPP0e3aJrFbaHkMHoegXRgrWuiqttOy-3dpx_8bfo42Jv1B_Hg3fjhBm9SC7jJ8p40axdu7OQXPpFBn5eT7BKI21l0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Networks+Motivated+by+Partial+Differential+Equations&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Ruthotto%2C+Lars&rft.au=Haber%2C+Eldad&rft.date=2020-04-01&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=62&rft.issue=3&rft.spage=352&rft.epage=364&rft_id=info:doi/10.1007%2Fs10851-019-00903-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10851_019_00903_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon |