Deep Neural Networks Motivated by Partial Differential Equations

Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate functions and the output of image processing algori...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical imaging and vision Vol. 62; no. 3; pp. 352 - 364
Main Authors Ruthotto, Lars, Haber, Eldad
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate functions and the output of image processing algorithms as solutions to certain PDEs. Posing image processing problems in the infinite-dimensional setting provides powerful tools for their analysis and solution. For the last few decades, the reinterpretation of classical image processing problems through the PDE lens has been creating multiple celebrated approaches that benefit a vast area of tasks including image segmentation, denoising, registration, and reconstruction. In this paper, we establish a new PDE interpretation of a class of deep convolutional neural networks (CNN) that are commonly used to learn from speech, image, and video data. Our interpretation includes convolution residual neural networks (ResNet), which are among the most promising approaches for tasks such as image classification having improved the state-of-the-art performance in prestigious benchmark challenges. Despite their recent successes, deep ResNets still face some critical challenges associated with their design, immense computational costs and memory requirements, and lack of understanding of their reasoning. Guided by well-established PDE theory, we derive three new ResNet architectures that fall into two new classes: parabolic and hyperbolic CNNs. We demonstrate how PDE theory can provide new insights and algorithms for deep learning and demonstrate the competitiveness of three new CNN architectures using numerical experiments.
AbstractList Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate functions and the output of image processing algorithms as solutions to certain PDEs. Posing image processing problems in the infinite-dimensional setting provides powerful tools for their analysis and solution. For the last few decades, the reinterpretation of classical image processing problems through the PDE lens has been creating multiple celebrated approaches that benefit a vast area of tasks including image segmentation, denoising, registration, and reconstruction. In this paper, we establish a new PDE interpretation of a class of deep convolutional neural networks (CNN) that are commonly used to learn from speech, image, and video data. Our interpretation includes convolution residual neural networks (ResNet), which are among the most promising approaches for tasks such as image classification having improved the state-of-the-art performance in prestigious benchmark challenges. Despite their recent successes, deep ResNets still face some critical challenges associated with their design, immense computational costs and memory requirements, and lack of understanding of their reasoning. Guided by well-established PDE theory, we derive three new ResNet architectures that fall into two new classes: parabolic and hyperbolic CNNs. We demonstrate how PDE theory can provide new insights and algorithms for deep learning and demonstrate the competitiveness of three new CNN architectures using numerical experiments.
Author Ruthotto, Lars
Haber, Eldad
Author_xml – sequence: 1
  givenname: Lars
  orcidid: 0000-0003-0803-3299
  surname: Ruthotto
  fullname: Ruthotto, Lars
  email: lruthotto@emory.edu
  organization: Department of Mathematics, Emory University, Xtract Technologies Inc
– sequence: 2
  givenname: Eldad
  surname: Haber
  fullname: Haber, Eldad
  organization: Department of Earth and Ocean Science, The University of British Columbia, Xtract Technologies Inc
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxNowYyd2vAO15SGVxwLWlpM4KKUkre2A-vekCRISi66uRjN37syZkFHd1JaQc4RLBJBXHiFNkAIqCqCAUzwiY0wkp1KkfETGoFhMlQJ5QiberwAgZSjH5Hpu7SZ6sq0z607Cd-M-fPTYhOrLBFtE2S56MS5UXXdelaV1tu6LxbY1oWpqf0qOS7P29uxXp-TtdvE6u6fL57uH2c2S5hxVoIlAkWdMSBErLIUtGAAXEmOZcy6VNCLJ8izlRcaRJxnPLLIiNjY2YETOkE_JxbB345pta33Qq6Z1dRepGU8lSzsCsptiw1TuGu-dLfXGVZ_G7TSC3pPSAyndkdI9Kb1fnf4z5VXovwvOVOvDVj5YfZdTv1v3d9UB1w_7on3W
CitedBy_id crossref_primary_10_1093_mnras_stae1672
crossref_primary_10_1137_20M1376790
crossref_primary_10_1186_s13662_023_03787_z
crossref_primary_10_1088_1361_6420_ace9d4
crossref_primary_10_1137_23M1570727
crossref_primary_10_3389_fbinf_2022_715006
crossref_primary_10_1021_acsenergylett_1c00194
crossref_primary_10_1515_phys_2023_0121
crossref_primary_10_1016_j_cma_2024_116890
crossref_primary_10_1109_TAI_2022_3230632
crossref_primary_10_1137_23M1586355
crossref_primary_10_5194_gmd_13_3373_2020
crossref_primary_10_1137_24M1648703
crossref_primary_10_1007_s00285_023_01873_0
crossref_primary_10_1109_TE_2022_3200162
crossref_primary_10_3390_electronics10212627
crossref_primary_10_1109_TAP_2023_3245281
crossref_primary_10_1016_j_physd_2024_134159
crossref_primary_10_1007_s11063_022_10968_6
crossref_primary_10_1002_sam_11531
crossref_primary_10_1080_09500340_2024_2367036
crossref_primary_10_1155_2021_9544018
crossref_primary_10_1088_1361_6420_ad0f3b
crossref_primary_10_1137_23M1576700
crossref_primary_10_1109_ACCESS_2025_3542173
crossref_primary_10_1016_j_neunet_2023_01_031
crossref_primary_10_3390_app11093776
crossref_primary_10_1103_PhysRevE_110_065307
crossref_primary_10_1002_msd2_12109
crossref_primary_10_1016_j_neucom_2021_11_010
crossref_primary_10_3934_mfc_2024040
crossref_primary_10_1016_j_cma_2025_117755
crossref_primary_10_1088_1742_5468_ad5713
crossref_primary_10_1109_TPAMI_2022_3174908
crossref_primary_10_1007_s40314_021_01678_1
crossref_primary_10_1088_1361_6420_ab80d7
crossref_primary_10_3390_min12121621
crossref_primary_10_1109_LED_2023_3290930
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1080_13682199_2024_2349340
crossref_primary_10_1109_TNNLS_2021_3120472
crossref_primary_10_3390_pr13030811
crossref_primary_10_1007_s11071_024_10795_5
crossref_primary_10_1016_j_eswa_2024_123605
crossref_primary_10_2478_amns_2022_2_00008
crossref_primary_10_1016_j_engappai_2024_108656
crossref_primary_10_1088_2632_2153_aba8e7
crossref_primary_10_1016_j_engappai_2024_107844
crossref_primary_10_1155_2021_4040497
crossref_primary_10_1016_j_ins_2022_07_138
crossref_primary_10_1016_j_neunet_2025_107219
crossref_primary_10_1016_j_geothermics_2023_102824
crossref_primary_10_11948_20220136
crossref_primary_10_1287_ijoo_2022_0008
crossref_primary_10_1016_j_physd_2022_133630
crossref_primary_10_3390_lubricants12050172
crossref_primary_10_1016_j_apm_2025_116060
crossref_primary_10_1137_24M1632103
crossref_primary_10_1007_s00025_023_02074_3
crossref_primary_10_1007_s40747_022_00671_3
crossref_primary_10_1109_TAP_2022_3217333
crossref_primary_10_1137_20M1359511
crossref_primary_10_3390_jne5030023
crossref_primary_10_1137_20M1341428
crossref_primary_10_3934_mfc_2024030
crossref_primary_10_1007_s10851_021_01057_9
crossref_primary_10_1016_j_aej_2023_09_002
crossref_primary_10_12677_AAM_2024_135226
crossref_primary_10_1137_24M1633662
crossref_primary_10_1109_TKDE_2022_3222373
crossref_primary_10_1016_j_jcp_2023_112738
crossref_primary_10_1016_j_displa_2025_103005
crossref_primary_10_1109_TPAMI_2024_3380007
crossref_primary_10_1016_j_jpowsour_2024_234918
crossref_primary_10_1016_j_jcp_2024_113623
crossref_primary_10_1007_s10898_022_01228_x
crossref_primary_10_1007_s10851_019_00890_3
crossref_primary_10_1007_s00245_023_10059_5
crossref_primary_10_1038_s41598_024_53185_y
crossref_primary_10_1098_rspa_2021_0162
crossref_primary_10_1016_j_cma_2022_115730
crossref_primary_10_1007_s10994_022_06139_2
crossref_primary_10_1016_j_cma_2022_115850
crossref_primary_10_1007_s10765_022_03102_0
crossref_primary_10_1155_2021_4062200
crossref_primary_10_1186_s42162_021_00170_8
crossref_primary_10_1016_j_enganabound_2025_106161
crossref_primary_10_2514_1_J063243
crossref_primary_10_1016_j_amc_2023_128392
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1111_mice_13312
crossref_primary_10_1007_s00170_022_09591_5
crossref_primary_10_3390_en15072661
crossref_primary_10_3390_axioms12050429
crossref_primary_10_1016_j_ifacol_2021_06_124
crossref_primary_10_3390_math11183935
crossref_primary_10_1137_21M1452512
crossref_primary_10_1016_j_neucom_2024_129267
crossref_primary_10_1088_2057_1976_ada1da
crossref_primary_10_1007_s10462_024_10784_5
crossref_primary_10_1007_s10489_021_02474_4
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122791
crossref_primary_10_1016_j_engappai_2023_106721
crossref_primary_10_14495_jsiaml_15_101
crossref_primary_10_1007_s00034_024_02902_z
crossref_primary_10_1134_S0361768823030088
crossref_primary_10_1038_s41598_023_29822_3
crossref_primary_10_1109_ACCESS_2024_3352823
crossref_primary_10_3390_math13010014
crossref_primary_10_1109_TCAD_2022_3166103
crossref_primary_10_3934_era_2024310
crossref_primary_10_5194_gmd_17_6657_2024
crossref_primary_10_1109_TNNLS_2022_3213308
crossref_primary_10_1007_s10851_022_01114_x
crossref_primary_10_1016_j_ins_2025_122108
crossref_primary_10_1137_23M1599744
crossref_primary_10_1145_3567591
crossref_primary_10_1016_j_ocemod_2023_102174
crossref_primary_10_1137_21M1438554
crossref_primary_10_1016_j_eswa_2021_114923
crossref_primary_10_1109_TRO_2024_3428433
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_euromechsol_2024_105551
crossref_primary_10_2478_amns_2022_2_0111
crossref_primary_10_3390_make3010003
crossref_primary_10_1002_mma_8685
crossref_primary_10_1038_s42005_023_01433_4
crossref_primary_10_1007_s40687_022_00354_y
crossref_primary_10_1016_j_ifacol_2023_10_1411
crossref_primary_10_1137_19M1294484
crossref_primary_10_1016_j_cattod_2022_04_002
crossref_primary_10_1088_1361_6420_ad49ca
crossref_primary_10_1007_s10851_022_01106_x
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121616
crossref_primary_10_1098_rsta_2021_0198
crossref_primary_10_1007_s40687_022_00339_x
crossref_primary_10_2139_ssrn_4134906
crossref_primary_10_3390_e25040674
crossref_primary_10_1137_22M1527337
crossref_primary_10_6339_23_JDS1093
crossref_primary_10_1016_j_eng_2024_07_002
crossref_primary_10_1002_pamm_202300299
crossref_primary_10_1016_j_patcog_2024_111008
crossref_primary_10_1137_23M1583302
crossref_primary_10_1016_j_media_2023_102917
crossref_primary_10_1038_s42256_023_00685_7
crossref_primary_10_1016_j_neucom_2024_128769
crossref_primary_10_1016_j_compchemeng_2022_108111
crossref_primary_10_1016_j_acha_2021_12_007
crossref_primary_10_1016_j_compstruc_2024_107342
crossref_primary_10_3390_pr12122660
crossref_primary_10_1007_s10851_019_00922_y
crossref_primary_10_1093_ptep_ptad131
crossref_primary_10_1016_j_asoc_2023_110936
crossref_primary_10_1016_j_cma_2025_117759
crossref_primary_10_3389_fams_2022_1021069
crossref_primary_10_5802_smai_jcm_74
crossref_primary_10_1007_s10915_023_02173_x
crossref_primary_10_1016_j_advengsoft_2022_103199
crossref_primary_10_1016_j_cnsns_2021_105989
crossref_primary_10_3390_math9040434
crossref_primary_10_1364_OE_400364
crossref_primary_10_1007_s10915_024_02691_2
crossref_primary_10_1149_1945_7111_ad14cd
crossref_primary_10_1016_j_cma_2022_114710
crossref_primary_10_1007_s40305_019_00287_4
crossref_primary_10_3934_fods_2022007
crossref_primary_10_1137_22M1517135
Cites_doi 10.1088/1361-6420/aa9a90
10.1109/TPAMI.2016.2596743
10.1037/h0042519
10.1137/1.9780898718935
10.1038/nature14539
10.1002/cpa.3160430805
10.1109/72.279181
10.1016/0004-3702(81)90024-2
10.1137/1.9780898718874
10.1561/2200000006
10.1109/MSP.2012.2205597
10.1016/0167-2789(92)90242-F
10.1109/34.56205
10.1137/1.9781611971231
10.1002/cpa.3160420503
10.1109/83.902291
10.1109/TPAMI.2008.128
10.1137/1.9780898718843
10.1002/gamm.201010013
10.1109/CVPR.2016.90
10.1145/3132747.3132785
10.5244/C.30.87
10.1109/ACSSC.2017.8335634
10.1609/aaai.v32i1.11680
10.1137/19M1272780
10.1109/ISCAS.2010.5537907
10.1609/aaai.v32i1.11668
10.1007/978-3-319-46493-0_38
10.1609/aaai.v29i1.9796
10.1109/CVPR.2017.17
10.1145/1553374.1553486
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
DOI 10.1007/s10851-019-00903-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1573-7683
EndPage 364
ExternalDocumentID 10_1007_s10851_019_00903_1
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: LNAG/036; RG91310
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Directorate for Mathematical and Physical Sciences
  grantid: 1522599; 1751636
  funderid: http://dx.doi.org/10.13039/100000086
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z83
Z88
Z8M
Z8N
Z8R
Z8S
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-5616cb2676491f6ed200367147c33797a65bcb83db3135b3be12d4ae4a0a6c213
IEDL.DBID U2A
ISSN 0924-9907
IngestDate Fri Jul 25 11:03:57 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Jul 01 03:20:34 EDT 2025
Fri Feb 21 02:35:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep neural networks
Partial differential equations
PDE-constrained optimization
Machine learning
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5616cb2676491f6ed200367147c33797a65bcb83db3135b3be12d4ae4a0a6c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0803-3299
PQID 2387281087
PQPubID 2043734
PageCount 13
ParticipantIDs proquest_journals_2387281087
crossref_primary_10_1007_s10851_019_00903_1
crossref_citationtrail_10_1007_s10851_019_00903_1
springer_journals_10_1007_s10851_019_00903_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical imaging and vision
PublicationTitleAbbrev J Math Imaging Vis
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR38
Ascher, Mattheij, Russell (CR3) 1995
CR35
CR31
CR30
Rogers, Moodie (CR43) 1984
Rosenblatt (CR44) 1958; 65
Chan, Vese (CR8) 2001; 10
Modersitzki (CR37) 2009
Krizhevsky, Sutskever, Hinton (CR32) 2012; 61
CR9
Hernández-Lobato, Gelbart, Adams, Hoffman, Ghahramani (CR26) 2016; 17
CR48
Horn, Schunck (CR29) 1981; 17
Herzog, Kunisch (CR27) 2010; 33
CR42
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (CR28) 2012; 29
CR40
Weinan (CR49) 2017; 5
Chen, Pock (CR12) 2017; 39
Hansen, Nagy, O’Leary (CR23) 2006
Torralba, Fergus, Freeman (CR47) 2008; 30
Biegler, Ghattas, Heinkenschloss, Keyes, van Bloemen Waanders (CR6) 2007
Bengio, Simard, Frasconi (CR5) 1994; 5
Mumford, Shah (CR39) 1989; 42
CR18
CR17
CR16
Perona, Malik (CR41) 1990; 12
Ambrosio, Tortorelli (CR1) 1990; 43
CR15
CR14
CR13
CR11
CR10
CR51
CR50
Borzì, Schulz (CR7) 2012
LeCun, Bengio, Hinton (CR34) 2015; 521
Rudin, Osher, Fatemi (CR45) 1992; 60
Ascher (CR2) 2010
Haber, Ruthotto (CR21) 2017; 34
Scherzer, Grasmair, Grossauer, Haltmeier, Lenzen (CR46) 2009
Goodfellow, Bengio, Courville (CR19) 2016
CR25
CR24
CR22
Li, Chen, Tai, Weinan (CR36) 2017; 18
CR20
Bengio (CR4) 2009; 2
LeCun, Bengio (CR33) 1995; 3361
903_CR51
903_CR50
Y Chen (903_CR12) 2017; 39
U Ascher (903_CR2) 2010
F Rosenblatt (903_CR44) 1958; 65
903_CR18
903_CR17
903_CR16
Q Li (903_CR36) 2017; 18
903_CR15
JM Hernández-Lobato (903_CR26) 2016; 17
A Krizhevsky (903_CR32) 2012; 61
903_CR14
A Torralba (903_CR47) 2008; 30
903_CR13
903_CR11
903_CR10
903_CR40
L Ambrosio (903_CR1) 1990; 43
C Rogers (903_CR43) 1984
Y LeCun (903_CR33) 1995; 3361
P Perona (903_CR41) 1990; 12
E Weinan (903_CR49) 2017; 5
R Herzog (903_CR27) 2010; 33
BK Horn (903_CR29) 1981; 17
LI Rudin (903_CR45) 1992; 60
U Ascher (903_CR3) 1995
903_CR48
I Goodfellow (903_CR19) 2016
903_CR42
903_CR30
903_CR9
D Mumford (903_CR39) 1989; 42
Y Bengio (903_CR5) 1994; 5
TF Chan (903_CR8) 2001; 10
Y LeCun (903_CR34) 2015; 521
Y Bengio (903_CR4) 2009; 2
903_CR38
A Borzì (903_CR7) 2012
LT Biegler (903_CR6) 2007
903_CR35
G Hinton (903_CR28) 2012; 29
E Haber (903_CR21) 2017; 34
903_CR31
PC Hansen (903_CR23) 2006
O Scherzer (903_CR46) 2009
J Modersitzki (903_CR37) 2009
903_CR25
903_CR24
903_CR22
903_CR20
References_xml – volume: 34
  start-page: 014004
  year: 2017
  ident: CR21
  article-title: Stable architectures for deep neural networks
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa9a90
– ident: CR22
– ident: CR16
– ident: CR51
– volume: 39
  start-page: 1256
  issue: 6
  year: 2017
  end-page: 1272
  ident: CR12
  article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– volume: 3361
  start-page: 255
  year: 1995
  end-page: 258
  ident: CR33
  article-title: Convolutional networks for images, speech, and time series
  publication-title: Handb. Brain Theory Neural Netw.
– year: 2016
  ident: CR19
  publication-title: Deep Learning
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  end-page: 408
  ident: CR44
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– ident: CR35
– year: 2007
  ident: CR6
  publication-title: Real-Time PDE-Constrained Optimization
  doi: 10.1137/1.9780898718935
– ident: CR25
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR34
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR42
– ident: CR15
– volume: 43
  start-page: 999
  issue: 8
  year: 1990
  end-page: 1036
  ident: CR1
  article-title: Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160430805
– volume: 61
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR32
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR50
– ident: CR11
– ident: CR9
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  end-page: 166
  ident: CR5
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– year: 2010
  ident: CR2
  publication-title: Numerical Methods for Evolutionary Differential Equations
– volume: 17
  start-page: 185
  issue: 1–3
  year: 1981
  end-page: 203
  ident: CR29
  article-title: Determining optical flow
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– ident: CR18
– volume: 5
  start-page: 1
  issue: 1
  year: 2017
  end-page: 11
  ident: CR49
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
– year: 2006
  ident: CR23
  publication-title: Deblurring Images: Matrices, Spectra and Filtering
  doi: 10.1137/1.9780898718874
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  end-page: 127
  ident: CR4
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– ident: CR14
– year: 2009
  ident: CR46
  publication-title: Variational Methods in Imaging
– ident: CR30
– ident: CR10
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  end-page: 97
  ident: CR28
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  end-page: 268
  ident: CR45
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Phys. D
  doi: 10.1016/0167-2789(92)90242-F
– ident: CR40
– volume: 12
  start-page: 629
  issue: 7
  year: 1990
  end-page: 639
  ident: CR41
  article-title: Scale-space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.56205
– year: 1984
  ident: CR43
  publication-title: Wave Phenomena: Modern Theory and Applications
– year: 1995
  ident: CR3
  publication-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
  doi: 10.1137/1.9781611971231
– volume: 42
  start-page: 577
  issue: 5
  year: 1989
  end-page: 685
  ident: CR39
  article-title: Optimal approximations by piecewise smooth functions and associated variational-problems
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160420503
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  end-page: 277
  ident: CR8
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.902291
– ident: CR48
– volume: 18
  start-page: 5998
  issue: 1
  year: 2017
  end-page: 6026
  ident: CR36
  article-title: Maximum principle based algorithms for deep learning
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 1958
  issue: 11
  year: 2008
  end-page: 1970
  ident: CR47
  article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.128
– ident: CR38
– volume: 17
  start-page: 2
  year: 2016
  end-page: 51
  ident: CR26
  article-title: A general framework for constrained bayesian optimization using information-based search
  publication-title: J. Mach. Learn. Res.
– ident: CR17
– ident: CR31
– ident: CR13
– year: 2009
  ident: CR37
  publication-title: FAIR: Flexible Algorithms for Image Registration
  doi: 10.1137/1.9780898718843
– year: 2012
  ident: CR7
  publication-title: Computational Optimization of Systems Governed by Partial Differential Equations
– ident: CR24
– ident: CR20
– volume: 33
  start-page: 163
  issue: 2
  year: 2010
  end-page: 176
  ident: CR27
  article-title: Algorithms for PDE-constrained optimization
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.201010013
– ident: 903_CR24
  doi: 10.1109/CVPR.2016.90
– volume: 33
  start-page: 163
  issue: 2
  year: 2010
  ident: 903_CR27
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.201010013
– ident: 903_CR48
– ident: 903_CR40
  doi: 10.1145/3132747.3132785
– ident: 903_CR51
  doi: 10.5244/C.30.87
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  ident: 903_CR8
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.902291
– ident: 903_CR15
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  ident: 903_CR45
  publication-title: Phys. D
  doi: 10.1016/0167-2789(92)90242-F
– ident: 903_CR10
  doi: 10.1109/ACSSC.2017.8335634
– ident: 903_CR22
  doi: 10.1609/aaai.v32i1.11680
– ident: 903_CR11
– ident: 903_CR30
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 903_CR4
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– ident: 903_CR16
  doi: 10.1137/19M1272780
– volume: 3361
  start-page: 255
  year: 1995
  ident: 903_CR33
  publication-title: Handb. Brain Theory Neural Netw.
– ident: 903_CR35
  doi: 10.1109/ISCAS.2010.5537907
– volume: 43
  start-page: 999
  issue: 8
  year: 1990
  ident: 903_CR1
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160430805
– volume-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
  year: 1995
  ident: 903_CR3
  doi: 10.1137/1.9781611971231
– volume: 17
  start-page: 185
  issue: 1–3
  year: 1981
  ident: 903_CR29
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 903_CR5
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 903_CR28
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume-title: FAIR: Flexible Algorithms for Image Registration
  year: 2009
  ident: 903_CR37
  doi: 10.1137/1.9780898718843
– volume: 12
  start-page: 629
  issue: 7
  year: 1990
  ident: 903_CR41
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.56205
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 903_CR34
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 34
  start-page: 014004
  year: 2017
  ident: 903_CR21
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aa9a90
– volume-title: Wave Phenomena: Modern Theory and Applications
  year: 1984
  ident: 903_CR43
– volume-title: Numerical Methods for Evolutionary Differential Equations
  year: 2010
  ident: 903_CR2
– volume: 18
  start-page: 5998
  issue: 1
  year: 2017
  ident: 903_CR36
  publication-title: J. Mach. Learn. Res.
– ident: 903_CR9
  doi: 10.1609/aaai.v32i1.11668
– volume-title: Computational Optimization of Systems Governed by Partial Differential Equations
  year: 2012
  ident: 903_CR7
– ident: 903_CR25
  doi: 10.1007/978-3-319-46493-0_38
– ident: 903_CR50
  doi: 10.1609/aaai.v29i1.9796
– volume: 61
  start-page: 1097
  year: 2012
  ident: 903_CR32
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Real-Time PDE-Constrained Optimization
  year: 2007
  ident: 903_CR6
  doi: 10.1137/1.9780898718935
– volume: 39
  start-page: 1256
  issue: 6
  year: 2017
  ident: 903_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– volume: 42
  start-page: 577
  issue: 5
  year: 1989
  ident: 903_CR39
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160420503
– volume-title: Variational Methods in Imaging
  year: 2009
  ident: 903_CR46
– volume: 30
  start-page: 1958
  issue: 11
  year: 2008
  ident: 903_CR47
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.128
– volume: 17
  start-page: 2
  year: 2016
  ident: 903_CR26
  publication-title: J. Mach. Learn. Res.
– ident: 903_CR17
– ident: 903_CR13
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 903_CR44
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 5
  start-page: 1
  issue: 1
  year: 2017
  ident: 903_CR49
  publication-title: Commun. Math. Stat.
– ident: 903_CR38
  doi: 10.1109/CVPR.2017.17
– ident: 903_CR20
– volume-title: Deblurring Images: Matrices, Spectra and Filtering
  year: 2006
  ident: 903_CR23
  doi: 10.1137/1.9780898718874
– ident: 903_CR42
  doi: 10.1145/1553374.1553486
– ident: 903_CR18
– ident: 903_CR31
– ident: 903_CR14
– volume-title: Deep Learning
  year: 2016
  ident: 903_CR19
SSID ssj0008217
Score 2.6531267
Snippet Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 352
SubjectTerms Algorithms
Applications of Mathematics
Artificial neural networks
Computer Science
Convolution
Image classification
Image processing
Image Processing and Computer Vision
Image reconstruction
Image segmentation
Machine learning
Mathematical Methods in Physics
Multivariate analysis
Neural networks
Noise reduction
Partial differential equations
Signal,Image and Speech Processing
Video data
Title Deep Neural Networks Motivated by Partial Differential Equations
URI https://link.springer.com/article/10.1007/s10851-019-00903-1
https://www.proquest.com/docview/2387281087
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLYQXWDgKCAKpcrABpZix0ey0dKWCtSKgUplimzHmVAppAz8e54TpwUESEiRotjOG56v77PfgdB5Ziw3uRQY9jaLGdEEJ9ImOA-5iqkCzmEcURxPxGjKbmd85p3Citravb6SLFfqT85ugA6A-iY4dIcLGDhPgzvuDqN4Srur9TemZZ7dEJgFhrVWeleZn2V83Y7WGPPbtWi52wz30I6HiUG36td9tGHnTbTrIWPgJ2QBRXVWhrqsibbHq0isxQG66lu7CFwIDhA3qWy-i2BcZTUDUfo9uHejB2r7PldK-TF4qWKAF4doOhw8XI-wz5qADUynJQZAJIymQgqWkFzYzJmfCUmYNFEkE6kE10bHUaYjEnEdaUtoxpRlKlTCUBIdoc3589weo8C5ElrNZZYB7VLManh4yKyJFFGC5i1EauWlxocUd5ktntJ1MGSn8BQUnpYKT0kLXaz-WVQBNf5s3a77JPWTq0gBZUgaQ1vZQpd1P62rf5d28r_mp2iLOnZd2um00eby9c2eAQRZ6g5qdIe93sS9bx7vBp1yBH4AQqnSPg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFMjABpbiR-xko6KtCjQVQyt1i2zHnVAppAz8e86J0wICJKQssZ0b7vz4vvgeCF3mxkZmKgWGs81iTjTBibQJnoaRiqkCzmEcUUyHoj_m95No4oPCitrbvb6SLHfqT8FugA6A-iY4dD8XMHCeDQADsXPkGtP2cv-NaVlnNwRmgWGvlT5U5mcZX4-jFcb8di1anja9PbTjYWLQruy6j9bsrIF2PWQM_IIsoKmuylC3NdB2uszEWhygm46188Cl4ABxw8rnuwjSqqoZiNLvwaObPdDb8bVSypfuS5UDvDhE4153dNvHvmoCNrCcFhgAkTCaCil4QqbC5s79TEjCpWFMJlKJSBsds1wzwiLNtCU058pyFSphKGFHaH32PLPHKHChhFZHMs-BdiluNTxRyK1hiihBp01EauVlxqcUd5UtnrJVMmSn8AwUnpUKz0gTXS2_mVcJNf4c3aptkvnFVWRgc0ljGCub6Lq206r7d2kn_xt-gTb7o3SQDe6GD6doizqmXfrstND64vXNngEcWejzcvZ9ACSH0iE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMPAqIQoEMbGA1dhy72agoVXm06kClbpHtOBMKhYSBf885cdqCAAkpS2znhjs_7ovvvkPoItEm1KngGM42gxlRBEfCRDj1Q9mlEjCHtkBxNObDKbufhbOVLP4y2r2-kqxyGixLU1Z05knaWUl8A08BYHCEffujAQP-WYftmNh5PaW9xV7cpWXNXR9QBoZ9V7i0mZ9lfD2alv7mtyvS8uQZ7KJt5zJ6vcrGe2jNZE2049xHzy3OHJrqCg11WxNtjRasrPk-uu4bM_csHQeIG1fx37k3qiqcgSj14U3sTILevqubUr7cvlZ84PkBmg5un26G2FVQwBp0UWBwjrhWlAvOIpJyk9hQNC4IEzoIRCQkD5VW3SBRAQlCFShDaMKkYdKXXFMSHKJG9pKZI-TZtEKjQpEkAMEkMwqe0GdGB5JITtMWIrXyYu3oxW2Vi-d4SYxsFR6DwuNS4TFpocvFN_OKXOPP0e3aJrFbaHkMHoegXRgrWuiqttOy-3dpx_8bfo42Jv1B_Hg3fjhBm9SC7jJ8p40axdu7OQXPpFBn5eT7BKI21l0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Networks+Motivated+by+Partial+Differential+Equations&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Ruthotto%2C+Lars&rft.au=Haber%2C+Eldad&rft.date=2020-04-01&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=62&rft.issue=3&rft.spage=352&rft.epage=364&rft_id=info:doi/10.1007%2Fs10851-019-00903-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10851_019_00903_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon