Structural relaxation in Ag-Ni nanoparticles: atomistic modeling away from equilibrium
The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the e...
Saved in:
Published in | European physical journal. Applied physics Vol. 97; p. 16 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
EDP Sciences
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the evolution of chemical ordering in Ni
core
Ag
shell
nanoparticles with different surface arrangements is found to proceed spontaneously and induce some rounding of the nickel core and its partial recrystallization. Fast cooling of an initially hot metal vapor mixture was also considered, and it is shown to disfavor silver aggregation at the surface. Silver impurities are also occasionally produced but remain rare events under the conditions of our simulations. |
---|---|
AbstractList | The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the evolution of chemical ordering in Ni
core
Ag
shell
nanoparticles with different surface arrangements is found to proceed spontaneously and induce some rounding of the nickel core and its partial recrystallization. Fast cooling of an initially hot metal vapor mixture was also considered, and it is shown to disfavor silver aggregation at the surface. Silver impurities are also occasionally produced but remain rare events under the conditions of our simulations. The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the evolution of chemical ordering in NicoreAgshell nanoparticles with different surface arrangements is found to proceed spontaneously and induce some rounding of the nickel core and its partial recrystallization. Fast cooling of an initially hot metal vapor mixture was also considered, and it is shown to disfavor silver aggregation at the surface. Silver impurities are also occasionally produced but remain rare events under the conditions of our simulations. |
Author | Calvo, Florent |
Author_xml | – sequence: 1 givenname: Florent surname: Calvo fullname: Calvo, Florent |
BackLink | https://hal.science/hal-03605176$$DView record in HAL |
BookMark | eNp1kD1PwzAQhi0EEm1hZ_TKEHp2YidhqyqgSBUMfKzR1XGKKycOjgv035O2qEhITHf36n1ueIbkuHGNJuSCwRUDwca6XWE75sAZZ8ATeUQGjGcyAhBwfNgTfkqGXbcCACYzMSCvT8GvVVh7tNRri18YjGuoaehkGT0Y2mDjWvTBKKu7a4rB1abrL1q7UlvTLCl-4oZW3tVUv6-NNQtv1vUZOanQdvr8Z47Iy-3N83QWzR_v7qeTeaRilodICCl5UiValyiY1jItecnyskwRlM5LztMMJOZCqIXAXMUpU7HUWVYhLKpcxiNyuf_7hrZovanRbwqHpphN5sU2g1j2dlL5wfou7LvKu67zujoADIqtw2LnsPh12CPyD6JM2BkKHo39H_wGHIl6QQ |
CitedBy_id | crossref_primary_10_1021_acsnano_2c09741 crossref_primary_10_1051_epjap_2022220185 |
Cites_doi | 10.1016/j.calphad.2018.11.013 10.1039/C8NR01481G 10.1063/1.475562 10.1039/C9NR02963J 10.1016/j.matlet.2015.03.081 10.1016/j.optmat.2012.10.053 10.1021/acsaelm.9b00194 10.1016/j.jallcom.2017.03.027 10.1007/s11051-012-0868-7 10.1021/jp911947v 10.1016/j.cplett.2007.10.030 10.1007/s12034-014-0095-1 10.1140/epjd/e2003-00156-y 10.1103/PhysRevLett.86.2826 10.1016/j.matlet.2010.05.032 10.1016/j.tsf.2011.04.201 10.1039/C6NR03560D 10.1021/jp1094678 10.1016/j.apsusc.2015.11.242 10.1021/acs.langmuir.0c02311 10.1088/0957-4484/17/13/002 10.1016/j.apcatb.2018.10.061 10.3390/nano11071733 10.1103/PhysRevLett.92.145502 10.1002/anie.201913704 10.1021/jp5017664 10.1103/PhysRevB.67.155409 10.1016/j.cej.2019.04.141 10.1021/cr040090g 10.1021/am503913y 10.1021/nl102588p 10.1016/j.jhazmat.2019.121270 10.1007/s11468-016-0197-2 10.1021/jp8098413 10.1007/BF02873194 10.1016/j.colsurfa.2010.06.020 10.1016/j.actamat.2011.07.022 10.1016/j.jmmm.2009.11.027 10.1063/1.1898223 10.1103/PhysRevB.77.121406 10.1016/j.jmmm.2018.11.056 10.1103/PhysRevA.99.042504 10.1016/j.susc.2004.05.044 10.1007/s12274-021-3524-7 10.1149/2.esl120008 10.1016/j.jallcom.2018.08.082 10.1039/C4CP01385A 10.1016/j.susc.2020.121695 10.1063/1.4981801 10.1039/C5TA03779D 10.1016/S1003-6326(15)64049-3 10.1016/j.colsurfa.2017.12.050 10.1103/PhysRevLett.90.135504 10.1088/0957-4484/22/19/195604 10.1103/PhysRevB.64.144206 10.1063/1.4821582 10.1016/j.jpcs.2016.06.013 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1051/epjap/2021210246 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1286-0050 |
ExternalDocumentID | oai_HAL_hal_03605176v1 10_1051_epjap_2021210246 |
GroupedDBID | -E. .4S .DC .FH 0E1 123 4.4 5VS 74X 74Y 7~V 8FE 8FG AAOGA AAOTM AAYXX ABGDZ ABGRX ABJNI ABKKG ABNSH ABUBZ ABZDU ACACO ACGFS ACIMK ACQPF ACRPL ADMLS ADNMO AEMTW AFUTZ AGQPQ AI. AJPFC ALMA_UNASSIGNED_HOLDINGS ARABE ARCSS AZPVJ C0O CITATION DC4 EBS EJD HG- HST HZ~ I.6 IL9 I~P J36 J38 J3A L98 M-V O9- P62 RCA RED RR0 S6- TUS VH1 WQ3 WXU ZE2 1XC VOOES |
ID | FETCH-LOGICAL-c319t-556624f4eeda51ee67d2d19dd7a0ce9d227806a955cb5a9c371c36e88fa0bf963 |
ISSN | 1286-0042 |
IngestDate | Fri May 09 12:23:26 EDT 2025 Tue Jul 01 02:08:48 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-556624f4eeda51ee67d2d19dd7a0ce9d227806a955cb5a9c371c36e88fa0bf963 |
OpenAccessLink | https://hal.science/hal-03605176 |
ParticipantIDs | hal_primary_oai_HAL_hal_03605176v1 crossref_primary_10_1051_epjap_2021210246 crossref_citationtrail_10_1051_epjap_2021210246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationTitle | European physical journal. Applied physics |
PublicationYear | 2022 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Calvo (R51) 2013; 139 Molayem (R25) 2011; 115 Bochicchio (R30) 2010; 10 Alruqi (R35) 2018; 540 Shen (R43) 2015; 15 Sridharan (R11) 2013; 35 Rossi (R13) 2021; 11 Rapallo (R23) 2005; 122 Zhao (R29) 2017; 708 Srivastava (R37) 2011; 59 Luo (R21) 2004; 92 Tang (R4) 2014; 16 Zhang (R42) 2010; 114 Baletto (R22) 2004; 566 Gaudry (R15) 2003; 67 Chandel (R9) 2019; 1 Budi (R6) 2019; 384 Yu (R7) 2019; 243 R2 Tabatabaei (R38) 2014; 37 Aguilera-del-Toro (R28) 2019; 474 Mundotiya (R40) 2012; 15 Datta (R27) 2017; 146 Singleton (R18) 1987; 8 Dellago (R58) 1998; 108 Nelli (R52) 2019; 11 Vykoukal (R49) 2019; 770 Kabir (R32) 2010; 322 Xiao (R39) 2011; 519 Shviro (R55) 2014; 118 Udayabhaskar (R17) 2016; 11 Liao (R56) 2018; 10 Zhou (R36) 2015; 25 Park (R33) 2016; 374 Gaidhani (R44) 2021; 37 Calvo (R24) 2008; 77 He (R20) 2001; 64 Ghosh (R8) 2020; 701 Mohammadi (R12) 2019; 372 Ferrando (R1) 2008; 108 Yan (R34) 2016; 98 Bonnin (R54) 2019; 99 Cottancin (R16) 2003; 24 Kumar (R3) 2014; 6 Harb (R26) 2007; 449 Baletto (R50) 2003; 90 Zhang (R41) 2009; 113 Majee (R10) 2020; 59 Tsuji (R45) 2010; 64 Xia (R46) 2010; 367 Chung-Che (R31) 2006; 17 Dhanda (R5) 2015; 3 Santhi (R14) 2012; 14 R57 Huizhang (R47) 2011; 22 He (R19) 2001; 86 Pinkas (R48) 2019; 64 Panizon (R53) 2016; 8 |
References_xml | – volume: 64 start-page: 139 year: 2019 ident: R48 publication-title: Calphad doi: 10.1016/j.calphad.2018.11.013 – volume: 10 start-page: 6684 year: 2018 ident: R56 publication-title: Nanoscale doi: 10.1039/C8NR01481G – volume: 108 start-page: 1964 year: 1998 ident: R58 publication-title: J. Chem. Phys. doi: 10.1063/1.475562 – volume: 11 start-page: 13040 year: 2019 ident: R52 publication-title: Nanoscale doi: 10.1039/C9NR02963J – volume: 15 start-page: 1 year: 2015 ident: R43 publication-title: Mat. Lett. doi: 10.1016/j.matlet.2015.03.081 – volume: 35 start-page: 860 year: 2013 ident: R11 publication-title: Optical Mat. doi: 10.1016/j.optmat.2012.10.053 – volume: 1 start-page: 1215 year: 2019 ident: R9 publication-title: ACS Appl. Electrochem. Mater. doi: 10.1021/acsaelm.9b00194 – volume: 708 start-page: 1150 year: 2017 ident: R29 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.03.027 – volume: 14 start-page: 868 year: 2012 ident: R14 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-0868-7 – volume: 114 start-page: 14309 year: 2010 ident: R42 publication-title: J. Phys. Chem. C doi: 10.1021/jp911947v – volume: 449 start-page: 38 year: 2007 ident: R26 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.10.030 – volume: 37 start-page: 1447 year: 2014 ident: R38 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-014-0095-1 – volume: 24 start-page: 111 year: 2003 ident: R16 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2003-00156-y – volume: 86 start-page: 2826 year: 2001 ident: R19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.2826 – volume: 64 start-page: 1793 year: 2010 ident: R45 publication-title: Mat. Lett. doi: 10.1016/j.matlet.2010.05.032 – volume: 519 start-page: 7116 year: 2011 ident: R39 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.04.201 – volume: 8 start-page: 15911 year: 2016 ident: R53 publication-title: Nanoscale doi: 10.1039/C6NR03560D – volume: 115 start-page: 7179 year: 2011 ident: R25 publication-title: J. Phys. Chem. C doi: 10.1021/jp1094678 – volume: 374 start-page: 257 year: 2016 ident: R33 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.242 – volume: 37 start-page: 1637 year: 2021 ident: R44 publication-title: Langmuir doi: 10.1021/acs.langmuir.0c02311 – volume: 17 start-page: 3094 year: 2006 ident: R31 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/13/002 – volume: 243 start-page: 304 year: 2019 ident: R7 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.10.061 – volume: 11 start-page: 1733 year: 2021 ident: R13 publication-title: Nanomaterials doi: 10.3390/nano11071733 – volume: 92 start-page: 145502 year: 2004 ident: R21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.145502 – volume: 59 start-page: 2881 year: 2020 ident: R10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913704 – volume: 118 start-page: 10455 year: 2014 ident: R55 publication-title: J. Phys. Chem. C doi: 10.1021/jp5017664 – volume: 67 start-page: 155409 year: 2003 ident: R15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.155409 – ident: R2 – volume: 372 start-page: 648 year: 2019 ident: R12 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.141 – volume: 108 start-page: 845 year: 2008 ident: R1 publication-title: Chem. Rev. doi: 10.1021/cr040090g – volume: 6 start-page: 16071 year: 2014 ident: R3 publication-title: ACS Appl. Mat. Interfaces doi: 10.1021/am503913y – volume: 10 start-page: 4211 year: 2010 ident: R30 publication-title: Nano Lett. doi: 10.1021/nl102588p – volume: 384 start-page: 121270 year: 2019 ident: R6 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121270 – volume: 11 start-page: 1461 year: 2016 ident: R17 publication-title: Plasmonics doi: 10.1007/s11468-016-0197-2 – volume: 113 start-page: 1155 year: 2009 ident: R41 publication-title: J. Phys. Chem. C doi: 10.1021/jp8098413 – volume: 8 start-page: 119 year: 1987 ident: R18 publication-title: Bull. Alloy Phase Diag. doi: 10.1007/BF02873194 – volume: 367 start-page: 96 year: 2010 ident: R46 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2010.06.020 – volume: 59 start-page: 6501 year: 2011 ident: R37 publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.07.022 – volume: 322 start-page: 934 year: 2010 ident: R32 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2009.11.027 – volume: 122 start-page: 194308 year: 2005 ident: R23 publication-title: J. Chem. Phys. doi: 10.1063/1.1898223 – volume: 77 start-page: 121406(R) year: 2008 ident: R24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.121406 – volume: 474 start-page: 551 year: 2019 ident: R28 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.11.056 – volume: 99 start-page: 042504 year: 2019 ident: R54 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.042504 – volume: 566 start-page: 192 year: 2004 ident: R22 publication-title: Surf. Sci. doi: 10.1016/j.susc.2004.05.044 – ident: R57 doi: 10.1007/s12274-021-3524-7 – volume: 15 start-page: K41 year: 2012 ident: R40 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/2.esl120008 – volume: 770 start-page: 377 year: 2019 ident: R49 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.08.082 – volume: 16 start-page: 19250 year: 2014 ident: R4 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01385A – volume: 701 start-page: 121695 year: 2020 ident: R8 publication-title: Surf. Sci. doi: 10.1016/j.susc.2020.121695 – volume: 146 start-page: 164301 year: 2017 ident: R27 publication-title: J. Chem. Phys. doi: 10.1063/1.4981801 – volume: 3 start-page: 19563 year: 2015 ident: R5 publication-title: J. Mat. Chem. A doi: 10.1039/C5TA03779D – volume: 25 start-page: 4001 year: 2015 ident: R36 publication-title: Trans. Nonferrous Mat. Soc. China doi: 10.1016/S1003-6326(15)64049-3 – volume: 540 start-page: 36 year: 2018 ident: R35 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2017.12.050 – volume: 90 start-page: 135504 year: 2003 ident: R50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.135504 – volume: 22 start-page: 195604 year: 2011 ident: R47 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/19/195604 – volume: 64 start-page: 144206 year: 2001 ident: R20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.144206 – volume: 139 start-page: 111102 year: 2013 ident: R51 publication-title: J. Chem. Phys. doi: 10.1063/1.4821582 – volume: 98 start-page: 107 year: 2016 ident: R34 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2016.06.013 |
SSID | ssj0001685 |
Score | 2.280879 |
Snippet | The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 16 |
SubjectTerms | Physics |
Title | Structural relaxation in Ag-Ni nanoparticles: atomistic modeling away from equilibrium |
URI | https://hal.science/hal-03605176 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa4aNJ4mAbbBGxD1sTLNIXaqeMke6vYUDUBQgIm3iLHFygqoaCOXX79ji9xw2XT2EtUuelR6i8-Pj4-32eENgteamNylohUsoRlRCai1jDcZU1qqowSyu7o7u3z4TH7cpKdtKfZB3bJtN6Svx7klfwPqtAGuFqW7COQjUahAT4DvnAFhOH6TxgfOvFXJ5xhOSk_RFu5ODhN9kcfGtHAkrhT-QYL7AsnzOwPwHH8xO_ip-eY6KtvI0cACOIMd9P1kxbR8GhbMYL138TgfFuMb1wCdmd8ed3W1YTEQtrJMsKcxRM7nP0k0W3zKrGt6_SltcH3ec7kPZcMo96CMzkXE8s-sZLyENSwB_Sv78xLsVrQ7ZNntHI2qpmFebSYwuIA3PHi4NPe7mGcgSl3R7HGvxG2p8FGz9nozWzcCkfmz9psuosujp6jZ2FZgAcerGU0p5sVtNQRi1xBTw58N79AX2e44xnueNRghzu-hftHHFHHLerYoo4t6riD-kt0vPP5aHuYhPMxEgmOc5pkEIqnzDAIc0RGtea5ShUtlcoFkbpUluVMuCizTNaZKGU_p7LPdVEYQWoDnvcVWmguG72KcCnKok9q0acyZ5yqggtipGEFKQuitFlDvbabKhnE4-0ZJuPqT-CsoffxFxMvnPKXe99Bz8fbrOL5cLBb2TYIsKyKHL-h648w-Bo9tW-0T5W9QQuAin4LweO03gjvym_3rXH5 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+relaxation+in+Ag-Ni+nanoparticles%3A+atomistic+modeling+away+from+equilibrium&rft.jtitle=European+physical+journal.+Applied+physics&rft.au=Calvo%2C+Florent&rft.date=2022&rft.issn=1286-0042&rft.eissn=1286-0050&rft.volume=97&rft.spage=16&rft_id=info:doi/10.1051%2Fepjap%2F2021210246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjap_2021210246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1286-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1286-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1286-0042&client=summon |