Structural relaxation in Ag-Ni nanoparticles: atomistic modeling away from equilibrium

The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the e...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal. Applied physics Vol. 97; p. 16
Main Author Calvo, Florent
Format Journal Article
LanguageEnglish
Published EDP Sciences 2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the evolution of chemical ordering in Ni core Ag shell nanoparticles with different surface arrangements is found to proceed spontaneously and induce some rounding of the nickel core and its partial recrystallization. Fast cooling of an initially hot metal vapor mixture was also considered, and it is shown to disfavor silver aggregation at the surface. Silver impurities are also occasionally produced but remain rare events under the conditions of our simulations.
AbstractList The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the evolution of chemical ordering in Ni core Ag shell nanoparticles with different surface arrangements is found to proceed spontaneously and induce some rounding of the nickel core and its partial recrystallization. Fast cooling of an initially hot metal vapor mixture was also considered, and it is shown to disfavor silver aggregation at the surface. Silver impurities are also occasionally produced but remain rare events under the conditions of our simulations.
The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular dynamics trajectories in which the temperature is decreased gradually over hundreds of nanoseconds. At low silver concentration of 10–30%, the evolution of chemical ordering in NicoreAgshell nanoparticles with different surface arrangements is found to proceed spontaneously and induce some rounding of the nickel core and its partial recrystallization. Fast cooling of an initially hot metal vapor mixture was also considered, and it is shown to disfavor silver aggregation at the surface. Silver impurities are also occasionally produced but remain rare events under the conditions of our simulations.
Author Calvo, Florent
Author_xml – sequence: 1
  givenname: Florent
  surname: Calvo
  fullname: Calvo, Florent
BackLink https://hal.science/hal-03605176$$DView record in HAL
BookMark eNp1kD1PwzAQhi0EEm1hZ_TKEHp2YidhqyqgSBUMfKzR1XGKKycOjgv035O2qEhITHf36n1ueIbkuHGNJuSCwRUDwca6XWE75sAZZ8ATeUQGjGcyAhBwfNgTfkqGXbcCACYzMSCvT8GvVVh7tNRri18YjGuoaehkGT0Y2mDjWvTBKKu7a4rB1abrL1q7UlvTLCl-4oZW3tVUv6-NNQtv1vUZOanQdvr8Z47Iy-3N83QWzR_v7qeTeaRilodICCl5UiValyiY1jItecnyskwRlM5LztMMJOZCqIXAXMUpU7HUWVYhLKpcxiNyuf_7hrZovanRbwqHpphN5sU2g1j2dlL5wfou7LvKu67zujoADIqtw2LnsPh12CPyD6JM2BkKHo39H_wGHIl6QQ
CitedBy_id crossref_primary_10_1021_acsnano_2c09741
crossref_primary_10_1051_epjap_2022220185
Cites_doi 10.1016/j.calphad.2018.11.013
10.1039/C8NR01481G
10.1063/1.475562
10.1039/C9NR02963J
10.1016/j.matlet.2015.03.081
10.1016/j.optmat.2012.10.053
10.1021/acsaelm.9b00194
10.1016/j.jallcom.2017.03.027
10.1007/s11051-012-0868-7
10.1021/jp911947v
10.1016/j.cplett.2007.10.030
10.1007/s12034-014-0095-1
10.1140/epjd/e2003-00156-y
10.1103/PhysRevLett.86.2826
10.1016/j.matlet.2010.05.032
10.1016/j.tsf.2011.04.201
10.1039/C6NR03560D
10.1021/jp1094678
10.1016/j.apsusc.2015.11.242
10.1021/acs.langmuir.0c02311
10.1088/0957-4484/17/13/002
10.1016/j.apcatb.2018.10.061
10.3390/nano11071733
10.1103/PhysRevLett.92.145502
10.1002/anie.201913704
10.1021/jp5017664
10.1103/PhysRevB.67.155409
10.1016/j.cej.2019.04.141
10.1021/cr040090g
10.1021/am503913y
10.1021/nl102588p
10.1016/j.jhazmat.2019.121270
10.1007/s11468-016-0197-2
10.1021/jp8098413
10.1007/BF02873194
10.1016/j.colsurfa.2010.06.020
10.1016/j.actamat.2011.07.022
10.1016/j.jmmm.2009.11.027
10.1063/1.1898223
10.1103/PhysRevB.77.121406
10.1016/j.jmmm.2018.11.056
10.1103/PhysRevA.99.042504
10.1016/j.susc.2004.05.044
10.1007/s12274-021-3524-7
10.1149/2.esl120008
10.1016/j.jallcom.2018.08.082
10.1039/C4CP01385A
10.1016/j.susc.2020.121695
10.1063/1.4981801
10.1039/C5TA03779D
10.1016/S1003-6326(15)64049-3
10.1016/j.colsurfa.2017.12.050
10.1103/PhysRevLett.90.135504
10.1088/0957-4484/22/19/195604
10.1103/PhysRevB.64.144206
10.1063/1.4821582
10.1016/j.jpcs.2016.06.013
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1051/epjap/2021210246
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1286-0050
ExternalDocumentID oai_HAL_hal_03605176v1
10_1051_epjap_2021210246
GroupedDBID -E.
.4S
.DC
.FH
0E1
123
4.4
5VS
74X
74Y
7~V
8FE
8FG
AAOGA
AAOTM
AAYXX
ABGDZ
ABGRX
ABJNI
ABKKG
ABNSH
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACQPF
ACRPL
ADMLS
ADNMO
AEMTW
AFUTZ
AGQPQ
AI.
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARCSS
AZPVJ
C0O
CITATION
DC4
EBS
EJD
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
L98
M-V
O9-
P62
RCA
RED
RR0
S6-
TUS
VH1
WQ3
WXU
ZE2
1XC
VOOES
ID FETCH-LOGICAL-c319t-556624f4eeda51ee67d2d19dd7a0ce9d227806a955cb5a9c371c36e88fa0bf963
ISSN 1286-0042
IngestDate Fri May 09 12:23:26 EDT 2025
Tue Jul 01 02:08:48 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-556624f4eeda51ee67d2d19dd7a0ce9d227806a955cb5a9c371c36e88fa0bf963
OpenAccessLink https://hal.science/hal-03605176
ParticipantIDs hal_primary_oai_HAL_hal_03605176v1
crossref_primary_10_1051_epjap_2021210246
crossref_citationtrail_10_1051_epjap_2021210246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationTitle European physical journal. Applied physics
PublicationYear 2022
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Calvo (R51) 2013; 139
Molayem (R25) 2011; 115
Bochicchio (R30) 2010; 10
Alruqi (R35) 2018; 540
Shen (R43) 2015; 15
Sridharan (R11) 2013; 35
Rossi (R13) 2021; 11
Rapallo (R23) 2005; 122
Zhao (R29) 2017; 708
Srivastava (R37) 2011; 59
Luo (R21) 2004; 92
Tang (R4) 2014; 16
Zhang (R42) 2010; 114
Baletto (R22) 2004; 566
Gaudry (R15) 2003; 67
Chandel (R9) 2019; 1
Budi (R6) 2019; 384
Yu (R7) 2019; 243
R2
Tabatabaei (R38) 2014; 37
Aguilera-del-Toro (R28) 2019; 474
Mundotiya (R40) 2012; 15
Datta (R27) 2017; 146
Singleton (R18) 1987; 8
Dellago (R58) 1998; 108
Nelli (R52) 2019; 11
Vykoukal (R49) 2019; 770
Kabir (R32) 2010; 322
Xiao (R39) 2011; 519
Shviro (R55) 2014; 118
Udayabhaskar (R17) 2016; 11
Liao (R56) 2018; 10
Zhou (R36) 2015; 25
Park (R33) 2016; 374
Gaidhani (R44) 2021; 37
Calvo (R24) 2008; 77
He (R20) 2001; 64
Ghosh (R8) 2020; 701
Mohammadi (R12) 2019; 372
Ferrando (R1) 2008; 108
Yan (R34) 2016; 98
Bonnin (R54) 2019; 99
Cottancin (R16) 2003; 24
Kumar (R3) 2014; 6
Harb (R26) 2007; 449
Baletto (R50) 2003; 90
Zhang (R41) 2009; 113
Majee (R10) 2020; 59
Tsuji (R45) 2010; 64
Xia (R46) 2010; 367
Chung-Che (R31) 2006; 17
Dhanda (R5) 2015; 3
Santhi (R14) 2012; 14
R57
Huizhang (R47) 2011; 22
He (R19) 2001; 86
Pinkas (R48) 2019; 64
Panizon (R53) 2016; 8
References_xml – volume: 64
  start-page: 139
  year: 2019
  ident: R48
  publication-title: Calphad
  doi: 10.1016/j.calphad.2018.11.013
– volume: 10
  start-page: 6684
  year: 2018
  ident: R56
  publication-title: Nanoscale
  doi: 10.1039/C8NR01481G
– volume: 108
  start-page: 1964
  year: 1998
  ident: R58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475562
– volume: 11
  start-page: 13040
  year: 2019
  ident: R52
  publication-title: Nanoscale
  doi: 10.1039/C9NR02963J
– volume: 15
  start-page: 1
  year: 2015
  ident: R43
  publication-title: Mat. Lett.
  doi: 10.1016/j.matlet.2015.03.081
– volume: 35
  start-page: 860
  year: 2013
  ident: R11
  publication-title: Optical Mat.
  doi: 10.1016/j.optmat.2012.10.053
– volume: 1
  start-page: 1215
  year: 2019
  ident: R9
  publication-title: ACS Appl. Electrochem. Mater.
  doi: 10.1021/acsaelm.9b00194
– volume: 708
  start-page: 1150
  year: 2017
  ident: R29
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.03.027
– volume: 14
  start-page: 868
  year: 2012
  ident: R14
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-0868-7
– volume: 114
  start-page: 14309
  year: 2010
  ident: R42
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp911947v
– volume: 449
  start-page: 38
  year: 2007
  ident: R26
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.10.030
– volume: 37
  start-page: 1447
  year: 2014
  ident: R38
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-014-0095-1
– volume: 24
  start-page: 111
  year: 2003
  ident: R16
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2003-00156-y
– volume: 86
  start-page: 2826
  year: 2001
  ident: R19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.2826
– volume: 64
  start-page: 1793
  year: 2010
  ident: R45
  publication-title: Mat. Lett.
  doi: 10.1016/j.matlet.2010.05.032
– volume: 519
  start-page: 7116
  year: 2011
  ident: R39
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.04.201
– volume: 8
  start-page: 15911
  year: 2016
  ident: R53
  publication-title: Nanoscale
  doi: 10.1039/C6NR03560D
– volume: 115
  start-page: 7179
  year: 2011
  ident: R25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1094678
– volume: 374
  start-page: 257
  year: 2016
  ident: R33
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.242
– volume: 37
  start-page: 1637
  year: 2021
  ident: R44
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c02311
– volume: 17
  start-page: 3094
  year: 2006
  ident: R31
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/13/002
– volume: 243
  start-page: 304
  year: 2019
  ident: R7
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.10.061
– volume: 11
  start-page: 1733
  year: 2021
  ident: R13
  publication-title: Nanomaterials
  doi: 10.3390/nano11071733
– volume: 92
  start-page: 145502
  year: 2004
  ident: R21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.145502
– volume: 59
  start-page: 2881
  year: 2020
  ident: R10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913704
– volume: 118
  start-page: 10455
  year: 2014
  ident: R55
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5017664
– volume: 67
  start-page: 155409
  year: 2003
  ident: R15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.155409
– ident: R2
– volume: 372
  start-page: 648
  year: 2019
  ident: R12
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.141
– volume: 108
  start-page: 845
  year: 2008
  ident: R1
  publication-title: Chem. Rev.
  doi: 10.1021/cr040090g
– volume: 6
  start-page: 16071
  year: 2014
  ident: R3
  publication-title: ACS Appl. Mat. Interfaces
  doi: 10.1021/am503913y
– volume: 10
  start-page: 4211
  year: 2010
  ident: R30
  publication-title: Nano Lett.
  doi: 10.1021/nl102588p
– volume: 384
  start-page: 121270
  year: 2019
  ident: R6
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121270
– volume: 11
  start-page: 1461
  year: 2016
  ident: R17
  publication-title: Plasmonics
  doi: 10.1007/s11468-016-0197-2
– volume: 113
  start-page: 1155
  year: 2009
  ident: R41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8098413
– volume: 8
  start-page: 119
  year: 1987
  ident: R18
  publication-title: Bull. Alloy Phase Diag.
  doi: 10.1007/BF02873194
– volume: 367
  start-page: 96
  year: 2010
  ident: R46
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2010.06.020
– volume: 59
  start-page: 6501
  year: 2011
  ident: R37
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.07.022
– volume: 322
  start-page: 934
  year: 2010
  ident: R32
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.11.027
– volume: 122
  start-page: 194308
  year: 2005
  ident: R23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1898223
– volume: 77
  start-page: 121406(R)
  year: 2008
  ident: R24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.121406
– volume: 474
  start-page: 551
  year: 2019
  ident: R28
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.11.056
– volume: 99
  start-page: 042504
  year: 2019
  ident: R54
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.042504
– volume: 566
  start-page: 192
  year: 2004
  ident: R22
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2004.05.044
– ident: R57
  doi: 10.1007/s12274-021-3524-7
– volume: 15
  start-page: K41
  year: 2012
  ident: R40
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/2.esl120008
– volume: 770
  start-page: 377
  year: 2019
  ident: R49
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.08.082
– volume: 16
  start-page: 19250
  year: 2014
  ident: R4
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01385A
– volume: 701
  start-page: 121695
  year: 2020
  ident: R8
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2020.121695
– volume: 146
  start-page: 164301
  year: 2017
  ident: R27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4981801
– volume: 3
  start-page: 19563
  year: 2015
  ident: R5
  publication-title: J. Mat. Chem. A
  doi: 10.1039/C5TA03779D
– volume: 25
  start-page: 4001
  year: 2015
  ident: R36
  publication-title: Trans. Nonferrous Mat. Soc. China
  doi: 10.1016/S1003-6326(15)64049-3
– volume: 540
  start-page: 36
  year: 2018
  ident: R35
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2017.12.050
– volume: 90
  start-page: 135504
  year: 2003
  ident: R50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.135504
– volume: 22
  start-page: 195604
  year: 2011
  ident: R47
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/19/195604
– volume: 64
  start-page: 144206
  year: 2001
  ident: R20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.144206
– volume: 139
  start-page: 111102
  year: 2013
  ident: R51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4821582
– volume: 98
  start-page: 107
  year: 2016
  ident: R34
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2016.06.013
SSID ssj0001685
Score 2.280879
Snippet The out-of-equilibrium structural relaxation of Ag-Ni nanoparticles containing about 1000–3000 atoms was investigated computationally by means of molecular...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 16
SubjectTerms Physics
Title Structural relaxation in Ag-Ni nanoparticles: atomistic modeling away from equilibrium
URI https://hal.science/hal-03605176
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa4aNJ4mAbbBGxD1sTLNIXaqeMke6vYUDUBQgIm3iLHFygqoaCOXX79ji9xw2XT2EtUuelR6i8-Pj4-32eENgteamNylohUsoRlRCai1jDcZU1qqowSyu7o7u3z4TH7cpKdtKfZB3bJtN6Svx7klfwPqtAGuFqW7COQjUahAT4DvnAFhOH6TxgfOvFXJ5xhOSk_RFu5ODhN9kcfGtHAkrhT-QYL7AsnzOwPwHH8xO_ip-eY6KtvI0cACOIMd9P1kxbR8GhbMYL138TgfFuMb1wCdmd8ed3W1YTEQtrJMsKcxRM7nP0k0W3zKrGt6_SltcH3ec7kPZcMo96CMzkXE8s-sZLyENSwB_Sv78xLsVrQ7ZNntHI2qpmFebSYwuIA3PHi4NPe7mGcgSl3R7HGvxG2p8FGz9nozWzcCkfmz9psuosujp6jZ2FZgAcerGU0p5sVtNQRi1xBTw58N79AX2e44xnueNRghzu-hftHHFHHLerYoo4t6riD-kt0vPP5aHuYhPMxEgmOc5pkEIqnzDAIc0RGtea5ShUtlcoFkbpUluVMuCizTNaZKGU_p7LPdVEYQWoDnvcVWmguG72KcCnKok9q0acyZ5yqggtipGEFKQuitFlDvbabKhnE4-0ZJuPqT-CsoffxFxMvnPKXe99Bz8fbrOL5cLBb2TYIsKyKHL-h648w-Bo9tW-0T5W9QQuAin4LweO03gjvym_3rXH5
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+relaxation+in+Ag-Ni+nanoparticles%3A+atomistic+modeling+away+from+equilibrium&rft.jtitle=European+physical+journal.+Applied+physics&rft.au=Calvo%2C+Florent&rft.date=2022&rft.issn=1286-0042&rft.eissn=1286-0050&rft.volume=97&rft.spage=16&rft_id=info:doi/10.1051%2Fepjap%2F2021210246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjap_2021210246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1286-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1286-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1286-0042&client=summon