High performance reconciliation for practical quantum key distribution systems
Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate (SKR) of a practical QKD system, most studies on reconciliation primarily focused on improving the reconciliation efficiency. With the increasing pe...
Saved in:
Published in | Optical and quantum electronics Vol. 54; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate (SKR) of a practical QKD system, most studies on reconciliation primarily focused on improving the reconciliation efficiency. With the increasing performance of practical QKD systems, the research priority has shifted to the improvement of both throughput and efficiency. In this paper, we propose a high-performance solution of Cascade reconciliation, including a high-throughput-oriented framework and an integrated-optimization-oriented scheme. Benefiting from the fully utilizing computation and storage resources, effectively dealing with communication delays, the integrated-optimization-oriented parameters setting, etc., an excellent overall performance was achieved. Experimental results showed that, the throughput of up to 570 Mbps with an efficiency of 1.038 was achieved, which, to our knowledge, was more than four times faster than any throughput previously demonstrated. Furthermore, throughputs on real data sets were capable of reaching up to 86 Mbps even on embedded platforms. Additionally, our solution offers good adaptability to the fluctuating communication delay and quantum bit error rate (QBER). Based on our study, low performance (i.e. low power-consumption and cost-effective) CPU platforms will be sufficient for reconciliation in the existing and near-term QKD systems. |
---|---|
AbstractList | Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate (SKR) of a practical QKD system, most studies on reconciliation primarily focused on improving the reconciliation efficiency. With the increasing performance of practical QKD systems, the research priority has shifted to the improvement of both throughput and efficiency. In this paper, we propose a high-performance solution of Cascade reconciliation, including a high-throughput-oriented framework and an integrated-optimization-oriented scheme. Benefiting from the fully utilizing computation and storage resources, effectively dealing with communication delays, the integrated-optimization-oriented parameters setting, etc., an excellent overall performance was achieved. Experimental results showed that, the throughput of up to 570 Mbps with an efficiency of 1.038 was achieved, which, to our knowledge, was more than four times faster than any throughput previously demonstrated. Furthermore, throughputs on real data sets were capable of reaching up to 86 Mbps even on embedded platforms. Additionally, our solution offers good adaptability to the fluctuating communication delay and quantum bit error rate (QBER). Based on our study, low performance (i.e. low power-consumption and cost-effective) CPU platforms will be sufficient for reconciliation in the existing and near-term QKD systems. Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate (SKR) of a practical QKD system, most studies on reconciliation primarily focused on improving the reconciliation efficiency. With the increasing performance of practical QKD systems, the research priority has shifted to the improvement of both throughput and efficiency. In this paper, we propose a high-performance solution of Cascade reconciliation, including a high-throughput-oriented framework and an integrated-optimization-oriented scheme. Benefiting from the fully utilizing computation and storage resources, effectively dealing with communication delays, the integrated-optimization-oriented parameters setting, etc., an excellent overall performance was achieved. Experimental results showed that, the throughput of up to 570 Mbps with an efficiency of 1.038 was achieved, which, to our knowledge, was more than four times faster than any throughput previously demonstrated. Furthermore, throughputs on real data sets were capable of reaching up to 86 Mbps even on embedded platforms. Additionally, our solution offers good adaptability to the fluctuating communication delay and quantum bit error rate (QBER). Based on our study, low performance (i.e. low power-consumption and cost-effective) CPU platforms will be sufficient for reconciliation in the existing and near-term QKD systems. |
ArticleNumber | 163 |
Author | Mao, Hao-Kun Hao, Peng-Lei Abd-El-Atty, Bassem Iliyasu, Abdullah M. Li, Qiong |
Author_xml | – sequence: 1 givenname: Hao-Kun surname: Mao fullname: Mao, Hao-Kun organization: Department of Computer Science and Technology, Harbin Institute of Technology – sequence: 2 givenname: Qiong orcidid: 0000-0002-8627-4066 surname: Li fullname: Li, Qiong email: qiongli@hit.edu.cn organization: Department of Computer Science and Technology, Harbin Institute of Technology – sequence: 3 givenname: Peng-Lei surname: Hao fullname: Hao, Peng-Lei organization: CAS Key Laboratory of Quantum Information, University of Science and Technology of China, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 4 givenname: Bassem surname: Abd-El-Atty fullname: Abd-El-Atty, Bassem organization: Department of Computer Science, Faculty of Computers and Information, Luxor University – sequence: 5 givenname: Abdullah M. orcidid: 0000-0002-4964-6609 surname: Iliyasu fullname: Iliyasu, Abdullah M. organization: Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, School of Computing, Tokyo Institute of Technology, School of Computer Science and Technology, Changchun University of Science and Technology |
BookMark | eNp9kD1PwzAURS1UJFrgDzBFYjY8fzsjqoAiVbB0YLNcxykujdPaydB_T9ogsTE96erc-6QzQ5PYRo_QHYEHAqAeMyGgKQZKMDCuS8wv0JQIRbEm6nOCpsBAYl2S8grNct4CgOQCpuh9ETZfxd6nuk2Njc4Xybs2urALtgttLIa82CfruuDsrjj0NnZ9U3z7Y1GF3KWw7s9YPubON_kGXdZ2l_3t771Gq5fn1XyBlx-vb_OnJXaMlB0WTErwVpWeApOKrK2Srq5LUYL2uiLUlmC1trrixBHhiBXCa-a44JJWnF2j-3F2n9pD73Nntm2f4vDRUEm10gr4iaIj5VKbc_K12afQ2HQ0BMxJmxm1mUGbOWszpxIbS3mA48anv-l_Wj9LYXJR |
CitedBy_id | crossref_primary_10_1007_s11128_024_04395_w crossref_primary_10_1103_PhysRevLett_131_140801 crossref_primary_10_1038_s41566_023_01166_4 crossref_primary_10_1038_s41566_023_01168_2 crossref_primary_10_1364_OL_481374 crossref_primary_10_1109_ACCESS_2023_3303392 crossref_primary_10_1016_j_optcom_2024_130681 |
Cites_doi | 10.1038/s41586-018-0066-6 10.1364/OL.43.002030 10.1016/j.optlastec.2019.105942 10.1049/cje.2017.07.006 10.1016/j.physa.2019.123869 10.1016/j.tcs.2014.05.025 10.1063/1.5027030 10.1364/OE.27.014545 10.1109/JPHOT.2020.2987611 10.1109/JLT.2018.2843136 10.1364/AOP.361502 10.1109/JLT.2020.2985408 10.1016/j.future.2019.05.053 10.1007/s10946-018-9697-1 10.1016/j.physa.2019.123687 10.1109/TPDS.2015.2435787 10.1103/PhysRevApplied.8.044017 10.1109/ICNC.2008.755 10.15439/2017F163 10.1038/s41598-018-28703-4 10.1103/PhysRevLett.117.190501 10.1038/s41598-020-71534-5 10.1109/IMCCC.2018.00282 10.1109/ISIT.2015.7282551 10.1103/PhysRevLett.125.010502 10.1007/s11128-019-2342-2 10.1038/srep07275 10.1109/LCOMM.2020.3021142 10.1007/3-540-48285-7_35 10.1103/PhysRevA.81.012318 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-021-03489-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_021_03489_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62071151; 61301099 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFFNX AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G8K GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8Z Z92 ZMTXR ZY4 ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c319t-53660ea79e203671ba76cff95908e8d12a90a88a8d41c15c1a55e83c45462d43 |
IEDL.DBID | U2A |
ISSN | 0306-8919 |
IngestDate | Thu Oct 10 16:49:21 EDT 2024 Thu Sep 12 17:50:20 EDT 2024 Sat Dec 16 12:07:23 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Quantum computing Quantum key distribution Information reconciliation High efficiency Cascade High speed |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-53660ea79e203671ba76cff95908e8d12a90a88a8d41c15c1a55e83c45462d43 |
ORCID | 0000-0002-4964-6609 0000-0002-8627-4066 |
PQID | 2628787044 |
PQPubID | 2043598 |
ParticipantIDs | proquest_journals_2628787044 crossref_primary_10_1007_s11082_021_03489_4 springer_journals_10_1007_s11082_021_03489_4 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Lucamarini, Yuan, Dynes, Shields (CR21) 2018; 557 Pirandola, Andersen, Banchi, Berta, Bunandar, Colbeck, Englund, Gehring, Lupo, Ottaviani, Pereira, Razavi, Shaari, Tomamichel, Usenko, Vallone, Villoresi, Wallden (CR27) 2020; 12 Yan, Li, Mao, Xue (CR33) 2020; 12 Wang, Chen, Yin, He, Hui, Hao, Fan-Yuan, Wang, Zhang, Kuang, Liu, Zhou, Wang, Guo, Han (CR30) 2018; 43 Yan, Wang, Fang, Jiang, Wang (CR32) 2018; 27 CR19 CR18 Boaron, Korzh, Houlmann, Boso, Rusca, Gray, Li, Nolan, Martin, Zbinden (CR6) 2018; 112 Martinez-Mateo, Elkouss, Martin (CR23) 2012; 12 CR16 Abd EL-Latif, Abd-El-Atty, Venegas-Andraca, Mazurczyk (CR2) 2019; 100 CR15 CR37 CR35 Abd EL-Latif, Abd-El-Atty, Abou-Nassar, Venegas-Andraca (CR3) 2020; 124 CR11 Bennett, Brassard (CR5) 2014; 560 CR31 Abd El-Latif, Abd-El-Atty, Elseuofi, Khalifa, Alghamdi, Polat, Amin (CR1) 2020; 541 Gao, Jiang, Guo, Chen (CR13) 2019; 27 Jouguet, Kunz-Jacques (CR14) 2014; 14 Elkouss, Martinez-mateo, Martin (CR10) 2011; 11 CR8 CR7 CR29 CR28 Yang, Lu, Li (CR34) 2020; 38 Abd EL-Latif, Abd-El-Atty, Venegas-Andraca (CR4) 2020; 547 CR25 CR22 CR20 Pedersen, Toyran (CR26) 2015; 15 Levinthal (CR17) 2009; 30 Duplinskiy, Kiktenko, Pozhar, Anufriev, Ermakov, Kotov, Brodskiy, Yunusov, Kurochkin, Fedorov, Kurochkin (CR9) 2018; 39 Martinez-Mateo, Pacher, Peev, Ciurana, Martin (CR24) 2015; 15 Yuan, Murakami, Kujiraoka, Lucamarini, Tanizawa, Sato, Shields, Plews, Takahashi, Doi, Tam, Sharpe, Dixon, Lavelle, Dynes (CR36) 2018; 36 Gal, Jego (CR12) 2016; 27 TB Pedersen (3489_CR26) 2015; 15 3489_CR18 3489_CR15 3489_CR37 3489_CR16 3489_CR19 J Martinez-Mateo (3489_CR23) 2012; 12 3489_CR31 BL Gal (3489_CR12) 2016; 27 AV Duplinskiy (3489_CR9) 2018; 39 3489_CR35 3489_CR11 S Wang (3489_CR30) 2018; 43 CH Bennett (3489_CR5) 2014; 560 S Yan (3489_CR32) 2018; 27 S Pirandola (3489_CR27) 2020; 12 AA Abd EL-Latif (3489_CR2) 2019; 100 D Elkouss (3489_CR10) 2011; 11 AA Abd EL-Latif (3489_CR4) 2020; 547 M Lucamarini (3489_CR21) 2018; 557 C Gao (3489_CR13) 2019; 27 3489_CR28 AA Abd El-Latif (3489_CR1) 2020; 541 3489_CR29 3489_CR20 AA Abd EL-Latif (3489_CR3) 2020; 124 3489_CR8 D Levinthal (3489_CR17) 2009; 30 S-S Yang (3489_CR34) 2020; 38 3489_CR7 3489_CR25 3489_CR22 J Martinez-Mateo (3489_CR24) 2015; 15 P Jouguet (3489_CR14) 2014; 14 B Yan (3489_CR33) 2020; 12 Z Yuan (3489_CR36) 2018; 36 A Boaron (3489_CR6) 2018; 112 |
References_xml | – volume: 557 start-page: 400 issue: 7705 year: 2018 end-page: 403 ident: CR21 article-title: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters publication-title: Nature doi: 10.1038/s41586-018-0066-6 contributor: fullname: Shields – ident: CR22 – ident: CR18 – volume: 12 start-page: 791 issue: 9–10 year: 2012 end-page: 812 ident: CR23 article-title: Blind reconciliation publication-title: Quantum Info. Comput. contributor: fullname: Martin – volume: 43 start-page: 2030 issue: 9 year: 2018 ident: CR30 article-title: Practical gigahertz quantum key distribution robust against channel disturbance publication-title: Opt. Lett. doi: 10.1364/OL.43.002030 contributor: fullname: Han – ident: CR16 – ident: CR37 – volume: 11 start-page: 226 issue: 3 year: 2011 end-page: 238 ident: CR10 article-title: Information reconciliation for quantum key distribution publication-title: Quantum Info. Comput. contributor: fullname: Martin – volume: 124 start-page: 105942 year: 2020 ident: CR3 article-title: Controlled alternate quantum walks based privacy preserving healthcare images in internet of things publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105942 contributor: fullname: Venegas-Andraca – volume: 27 start-page: 250 issue: 2 year: 2018 end-page: 255 ident: CR32 article-title: An improved polar codes-based key reconciliation for practical quantum key distribution publication-title: Chin. J. Electron. doi: 10.1049/cje.2017.07.006 contributor: fullname: Wang – volume: 547 start-page: 123869 year: 2020 ident: CR4 article-title: Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123869 contributor: fullname: Venegas-Andraca – ident: CR35 – ident: CR29 – volume: 560 start-page: 7 year: 2014 end-page: 11 ident: CR5 article-title: Quantum cryptography: public key distribution and coin tossing publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2014.05.025 contributor: fullname: Brassard – ident: CR8 – volume: 112 start-page: 171108 issue: 17 year: 2018 ident: CR6 article-title: Simple 2.5GHz time-bin quantum key distribution publication-title: Appl. Phys. Lett. doi: 10.1063/1.5027030 contributor: fullname: Zbinden – volume: 14 start-page: 329 issue: 3–4 year: 2014 end-page: 338 ident: CR14 article-title: High performance error correction for quantum key distribution using polar codes publication-title: Quantum Info. Comput. contributor: fullname: Kunz-Jacques – volume: 27 start-page: 14545 issue: 10 year: 2019 ident: CR13 article-title: Multi-matrix error estimation and reconciliation for quantum key distribution publication-title: Opt. Express doi: 10.1364/OE.27.014545 contributor: fullname: Chen – ident: CR25 – volume: 15 start-page: 453 issue: 5–6 year: 2015 end-page: 477 ident: CR24 article-title: Demystifying the information reconciliation protocol cascade publication-title: Quantum Info. Comput. contributor: fullname: Martin – volume: 12 start-page: 1 issue: 3 year: 2020 end-page: 13 ident: CR33 article-title: High-speed privacy amplification scheme using GMP in quantum key distribution publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2020.2987611 contributor: fullname: Xue – volume: 36 start-page: 3427 issue: 16 year: 2018 end-page: 3433 ident: CR36 article-title: 10-mb/s quantum key distribution publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2843136 contributor: fullname: Dynes – volume: 30 start-page: 18 year: 2009 ident: CR17 article-title: Performance analysis guide for intel core i7 processor and intel xeon 5500 processors publication-title: Intel. Perform. Anal. Guide contributor: fullname: Levinthal – ident: CR19 – volume: 12 start-page: 1012 issue: 4 year: 2020 ident: CR27 article-title: Advances in quantum cryptography publication-title: Adv. Optics Photonics doi: 10.1364/AOP.361502 contributor: fullname: Wallden – volume: 38 start-page: 3935 issue: 15 year: 2020 end-page: 3941 ident: CR34 article-title: High-speed post-processing in continuous-variable quantum key distribution based on FPGA implementation publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2985408 contributor: fullname: Li – volume: 15 start-page: 419 issue: 5–6 year: 2015 end-page: 434 ident: CR26 article-title: High performance information reconciliation for qkd with cascade publication-title: Quantum Info. Comput. contributor: fullname: Toyran – ident: CR15 – volume: 100 start-page: 893 year: 2019 end-page: 906 ident: CR2 article-title: Efficient quantum-based security protocols for information sharing and data protection in 5g networks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.05.053 contributor: fullname: Mazurczyk – volume: 39 start-page: 113 issue: 2 year: 2018 end-page: 119 ident: CR9 article-title: Quantum-secured data transmission in urban fiber-optics communication lines publication-title: J. Russ. Laser Res. doi: 10.1007/s10946-018-9697-1 contributor: fullname: Kurochkin – ident: CR31 – ident: CR11 – volume: 541 start-page: 123687 year: 2020 ident: CR1 article-title: Secret images transfer in cloud system based on investigating quantum walks in steganography approaches publication-title: Phys. A doi: 10.1016/j.physa.2019.123687 contributor: fullname: Amin – ident: CR7 – volume: 27 start-page: 1373 issue: 5 year: 2016 end-page: 1386 ident: CR12 article-title: High-throughput multi-core LDPC decoders based on x86 processor publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2015.2435787 contributor: fullname: Jego – ident: CR28 – ident: CR20 – ident: 3489_CR16 doi: 10.1103/PhysRevApplied.8.044017 – ident: 3489_CR28 – ident: 3489_CR31 doi: 10.1109/ICNC.2008.755 – volume: 43 start-page: 2030 issue: 9 year: 2018 ident: 3489_CR30 publication-title: Opt. Lett. doi: 10.1364/OL.43.002030 contributor: fullname: S Wang – volume: 12 start-page: 1 issue: 3 year: 2020 ident: 3489_CR33 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2020.2987611 contributor: fullname: B Yan – volume: 27 start-page: 14545 issue: 10 year: 2019 ident: 3489_CR13 publication-title: Opt. Express doi: 10.1364/OE.27.014545 contributor: fullname: C Gao – ident: 3489_CR18 doi: 10.15439/2017F163 – volume: 12 start-page: 1012 issue: 4 year: 2020 ident: 3489_CR27 publication-title: Adv. Optics Photonics doi: 10.1364/AOP.361502 contributor: fullname: S Pirandola – ident: 3489_CR29 doi: 10.1038/s41598-018-28703-4 – volume: 12 start-page: 791 issue: 9–10 year: 2012 ident: 3489_CR23 publication-title: Quantum Info. Comput. contributor: fullname: J Martinez-Mateo – ident: 3489_CR35 doi: 10.1103/PhysRevLett.117.190501 – volume: 100 start-page: 893 year: 2019 ident: 3489_CR2 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.05.053 contributor: fullname: AA Abd EL-Latif – volume: 560 start-page: 7 year: 2014 ident: 3489_CR5 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2014.05.025 contributor: fullname: CH Bennett – ident: 3489_CR20 doi: 10.1038/s41598-020-71534-5 – volume: 14 start-page: 329 issue: 3–4 year: 2014 ident: 3489_CR14 publication-title: Quantum Info. Comput. contributor: fullname: P Jouguet – ident: 3489_CR19 doi: 10.1109/IMCCC.2018.00282 – volume: 15 start-page: 419 issue: 5–6 year: 2015 ident: 3489_CR26 publication-title: Quantum Info. Comput. contributor: fullname: TB Pedersen – volume: 38 start-page: 3935 issue: 15 year: 2020 ident: 3489_CR34 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2985408 contributor: fullname: S-S Yang – ident: 3489_CR25 doi: 10.1109/ISIT.2015.7282551 – volume: 15 start-page: 453 issue: 5–6 year: 2015 ident: 3489_CR24 publication-title: Quantum Info. Comput. contributor: fullname: J Martinez-Mateo – ident: 3489_CR37 doi: 10.1103/PhysRevLett.125.010502 – volume: 11 start-page: 226 issue: 3 year: 2011 ident: 3489_CR10 publication-title: Quantum Info. Comput. contributor: fullname: D Elkouss – volume: 27 start-page: 1373 issue: 5 year: 2016 ident: 3489_CR12 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2015.2435787 contributor: fullname: BL Gal – ident: 3489_CR22 doi: 10.1007/s11128-019-2342-2 – volume: 27 start-page: 250 issue: 2 year: 2018 ident: 3489_CR32 publication-title: Chin. J. Electron. doi: 10.1049/cje.2017.07.006 contributor: fullname: S Yan – volume: 557 start-page: 400 issue: 7705 year: 2018 ident: 3489_CR21 publication-title: Nature doi: 10.1038/s41586-018-0066-6 contributor: fullname: M Lucamarini – volume: 547 start-page: 123869 year: 2020 ident: 3489_CR4 publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123869 contributor: fullname: AA Abd EL-Latif – volume: 124 start-page: 105942 year: 2020 ident: 3489_CR3 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105942 contributor: fullname: AA Abd EL-Latif – volume: 39 start-page: 113 issue: 2 year: 2018 ident: 3489_CR9 publication-title: J. Russ. Laser Res. doi: 10.1007/s10946-018-9697-1 contributor: fullname: AV Duplinskiy – volume: 112 start-page: 171108 issue: 17 year: 2018 ident: 3489_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5027030 contributor: fullname: A Boaron – ident: 3489_CR8 doi: 10.1038/srep07275 – volume: 36 start-page: 3427 issue: 16 year: 2018 ident: 3489_CR36 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2843136 contributor: fullname: Z Yuan – volume: 30 start-page: 18 year: 2009 ident: 3489_CR17 publication-title: Intel. Perform. Anal. Guide contributor: fullname: D Levinthal – ident: 3489_CR15 doi: 10.1109/LCOMM.2020.3021142 – volume: 541 start-page: 123687 year: 2020 ident: 3489_CR1 publication-title: Phys. A doi: 10.1016/j.physa.2019.123687 contributor: fullname: AA Abd El-Latif – ident: 3489_CR7 doi: 10.1007/3-540-48285-7_35 – ident: 3489_CR11 doi: 10.1103/PhysRevA.81.012318 |
SSID | ssj0006450 |
Score | 2.414217 |
Snippet | Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate (SKR)... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Bit error rate Characterization and Evaluation of Materials Communication Computer Communication Networks Efficiency Electrical Engineering Error analysis Issues and Challenges Lasers Optical Devices Optics Optimization Photonics Physics Physics and Astronomy Platforms Power consumption Quantum cryptography Quantum mechanics Quantum technology Quantum walks and quantum image processing: Emerging Trends Qubits (quantum computing) Reconciliation |
Title | High performance reconciliation for practical quantum key distribution systems |
URI | https://link.springer.com/article/10.1007/s11082-021-03489-4 https://www.proquest.com/docview/2628787044 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ohqAHP6bidI4cvGmgadO0OW66ORR32mCeSpqmIGiddvv_TdLUqujBU6EJKfxe3xd57_cALrgIiPBSjnMWM0xzlmFBBcOGx0QnXCJjlmf2Ycomc3q3CBdNH7ctdq9vJK2hbnrdiPZW2FQUeAGNOaab0NbBAzUZ19wffJpfRu1YVhML45gT7jplfj_juzdqQswft6LW2Yz3YddFiWhQifUANlTRgT0XMSKnj2UHdr7QCXZgy5ZzyvIQpqZ8Ay2bpgBkE1_59FxJAun3yDVI6e-8rTW-6xekFRplhknXDcFCFc9zeQSz8Wh2PcFucgKWWqVWOAwY85SIuDL3jBFJRcRknnMz4FzFGfEF94SWRJxRIkkoiQhDFQeShpT5GQ2OoVW8FuoEUCqEYMLyxEsap3mqt5iUUhhel0hlXbisAUyWFT9G0jAhG7gTDXdi4U5oF3o1xonTlTLxmc7atNmgevmqxr1Z_vu00_9tP4Nt3_Qu2AKyHrRW72t1riOKVdqH9mB4Mxyb5-3j_ahv_6gPDhLD8A |
link.rule.ids | 315,783,787,27937,27938,41094,41536,42163,42605,52124,52247 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oRNSDH1NxOjUHbxpo2jRtjkMcU7edNtgtpGkKgs5pt__fJE2tih68NiGFX_K-eO_9HsAVlxGRQcZxwVKGacFyLKlk2PKYmIBL5szxzI7GbDClD7N45pvCyrravU5JOk3dNLsRY66wLSkIIppyTNdhw_Kr20K-adj71L-Murms1hnGKSfct8r8fsZ3c9T4mD_Sos7a9Pdh17uJqFfd6wGs6Xkb9rzLiLxAlm3Y-cIn2IZNV8-pykMY2_oNtGi6ApCLfNXTc3UVyHxHvkPK_OdtZQBevSAj0Si3VLp-ChaqiJ7LI5j07ya3A-xHJ2BlZGqJ44ixQMuEa5toTEgmE6aKgtsJ5zrNSSh5IM1VpDklisSKyDjWaaRoTFmY0-gYWvPXuT4BlEkpmXRE8YqmWZGZLTamlJbYJdF5B65rAMWiIsgQDRWyhVsYuIWDW9AOdGuMhReWUoTMhG1Gb1CzfFPj3iz_fdrp_7ZfwtZgMhqK4f348Qy2Q9vI4KrJutBavq_0uXEvltmFe00fQYTERQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT8IwFH5RiEYPoqgRRe3BmxYo67rtSBREUeIBEzwtXbclRkWU7eKvt-06h0QPxuvadNt77et7ee_7HsCJxy3CW4GHY-YyTGMWYk45w4rHRAZcPGSaZ_Z2yPr39Hpsj-dQ_LraPU9JZpgGxdI0SZrTMG4WwDciry6sygtaFnU9TJehTIkMVUpQ7lw-DLpf1phR3aVVucbY9YhngDM_r_L9cio8zoUkqb57ehXg-VdnJSdPjTQJGuJjgdDxP7-1CRvGMUWdbCdtwVI0qULFOKnImIBZFdbnGAyrsKIrSMVsG4aqYgRNCxwC0rG2eHzOlI_kc2QwWfI9b6lUafqCpA1BoSLvNX23UEYtPduBUa87Ou9j06wBC3mKE2xbjLUi7niRSm06JOAOE3HsqZ7qkRuSNvdaXCrfDSkRxBaE23bkWoLalLVDau1CafI6ifYABZxzxjU1vaBuEAdyiopiuaKScaKwBqe5kvxpRsnhF-TLSoK-lKCvJejTGtRzPfrmeM78NpOBorRUVA6f5Wophn9fbf9v049h9e6i599cDQcHsNZWyAldvlaHUvKeRofSn0mCI7NlPwER4uoc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+performance+reconciliation+for+practical+quantum+key+distribution+systems&rft.jtitle=Optical+and+quantum+electronics&rft.au=Mao%2C+Hao-Kun&rft.au=Li%2C+Qiong&rft.au=Hao%2C+Peng-Lei&rft.au=Abd-El-Atty%2C+Bassem&rft.date=2022-03-01&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=54&rft.issue=3&rft_id=info:doi/10.1007%2Fs11082-021-03489-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11082_021_03489_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon |