Using Machine Learning to Quantify the Multimedia Risk Due to Fuzzing
There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, an...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 25; pp. 36685 - 36698 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, and (3) Security issues. Among these, security vulnerability poses a major threat to modern multimedia systems. Therefore, it is imperative to carefully investigate the security issues that can endanger wireless and mobile communications. At present, multimedia security research mainly focuses on wireless traffic monitoring, wireless system attacks, and wireless and mobile security. In this paper, we have used the network attack-type, “
Reconnaissance
”, which contains two types of malicious activities: (1) OS scanning, and (2) Fuzzing. The goal of this paper is to quantify multimedia security risks due to Fuzzing by using various types of machine learning models. The highest accuracy i.e., 96.8%, is obtained using the XGBoost classifier, which is good compared to the existing models present in the literature. This is the first paper, to the best of our knowledge, that uses machine learning methods to differentiate between benign and malignant Fuzzing attacks. |
---|---|
AbstractList | There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, and (3) Security issues. Among these, security vulnerability poses a major threat to modern multimedia systems. Therefore, it is imperative to carefully investigate the security issues that can endanger wireless and mobile communications. At present, multimedia security research mainly focuses on wireless traffic monitoring, wireless system attacks, and wireless and mobile security. In this paper, we have used the network attack-type, “
Reconnaissance
”, which contains two types of malicious activities: (1) OS scanning, and (2) Fuzzing. The goal of this paper is to quantify multimedia security risks due to Fuzzing by using various types of machine learning models. The highest accuracy i.e., 96.8%, is obtained using the XGBoost classifier, which is good compared to the existing models present in the literature. This is the first paper, to the best of our knowledge, that uses machine learning methods to differentiate between benign and malignant Fuzzing attacks. There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, and (3) Security issues. Among these, security vulnerability poses a major threat to modern multimedia systems. Therefore, it is imperative to carefully investigate the security issues that can endanger wireless and mobile communications. At present, multimedia security research mainly focuses on wireless traffic monitoring, wireless system attacks, and wireless and mobile security. In this paper, we have used the network attack-type, “Reconnaissance”, which contains two types of malicious activities: (1) OS scanning, and (2) Fuzzing. The goal of this paper is to quantify multimedia security risks due to Fuzzing by using various types of machine learning models. The highest accuracy i.e., 96.8%, is obtained using the XGBoost classifier, which is good compared to the existing models present in the literature. This is the first paper, to the best of our knowledge, that uses machine learning methods to differentiate between benign and malignant Fuzzing attacks. |
Author | Wazir, Samar Kashyap, Gautam Siddharth Malik, Karan Khan, Rijwan |
Author_xml | – sequence: 1 givenname: Gautam Siddharth orcidid: 0000-0003-2140-9617 surname: Kashyap fullname: Kashyap, Gautam Siddharth email: officialgautamgsk.gsk@gmail.com organization: Department of Computer Science and Engineering, SEST – sequence: 2 givenname: Karan surname: Malik fullname: Malik, Karan organization: USICT- Guru Gobind Singh Indraprastha University – sequence: 3 givenname: Samar surname: Wazir fullname: Wazir, Samar organization: Department of Computer Science and Engineering, SEST – sequence: 4 givenname: Rijwan surname: Khan fullname: Khan, Rijwan organization: Department of Computer Science and Engineering, ABES Institute of Technology |
BookMark | eNp9kE1PwjAYxxuDiYh-AU9LPE_7tOu6Hg2CmkCMRs5Nt3VQhA7b7gCf3uJMTDxwel7y_z0v_0s0sK3VCN0AvgOM-b0HwBlJMYEUgLEiFWdoCIzTlHMCg5jTAqecYbhAl96vMYackWyIJgtv7DKZq2plrE5mWjl7bIQ2eeuUDabZJ2Glk3m3CWara6OSd-M_k8dOHzXT7nCI8it03qiN19e_cYQW08nH-DmdvT69jB9maUVBhJSRohYiF5luKt5UeTwHYplTDIKJPCdZVbBYUWBCUFzWWqtalYTmQkNZUjpCt_3cnWu_Ou2DXLeds3GlJBw4jZ8ziCrSqyrXeu90I3fObJXbS8DyaJfs7ZLRLvljlxQRKv5BlQkqmNYGp8zmNEp71Mc9dqnd31UnqG-4tH6i |
CitedBy_id | crossref_primary_10_1007_s10207_024_00868_2 crossref_primary_10_1007_s44227_024_00032_1 crossref_primary_10_1007_s41870_023_01450_0 crossref_primary_10_35940_ijeat_D4393_13030224 crossref_primary_10_3390_electronics13122404 crossref_primary_10_1007_s41870_024_02353_4 crossref_primary_10_3390_fintech3010010 crossref_primary_10_1007_s41870_024_02251_9 crossref_primary_10_1007_s41870_024_02250_w crossref_primary_10_35940_ijisme_B1313_12020224 crossref_primary_10_1007_s41870_024_02270_6 crossref_primary_10_1007_s41870_024_02150_z crossref_primary_10_15406_ipcb_2023_09_00288 crossref_primary_10_1007_s41870_024_02313_y crossref_primary_10_35940_ijisme_B1312_12020224 |
Cites_doi | 10.1109/tetc.2016.2633228 10.1109/discex.2000.821506 10.1109/csci51800.2020.00031 10.1109/tii.2018.2836150 10.14722/ndss.2018.23204 10.1016/j.future.2017.08.04 10.1049/cp.2018.0035 10.1016/j.asoc.2015.07.029 10.1016/S1361-3723(21)00098-1 10.1109/est.2017.8090413 10.1016/j.iot.2019.100059 10.1145/3243127.3243130 10.1109/tifs.2021.3050605 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-021-11558-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 36698 |
ExternalDocumentID | 10_1007_s11042_021_11558_9 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-528d99694efc7fc6501196963019596624c856303159930bdeeadab2369e1bb33 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 03:27:01 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 04:13:11 EDT 2025 Fri Feb 21 02:44:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Multimedia Random forest algorithm XGBoost Machine learning Fuzzing Cybersecurity Vulnerability Gradient boosting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-528d99694efc7fc6501196963019596624c856303159930bdeeadab2369e1bb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2140-9617 |
PQID | 2717355851 |
PQPubID | 54626 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2717355851 crossref_primary_10_1007_s11042_021_11558_9 crossref_citationtrail_10_1007_s11042_021_11558_9 springer_journals_10_1007_s11042_021_11558_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Abubakar, A., Pranggono, B.: Machine learning based intrusion detection system for software defined networks. 2017 Seventh International Conference on Emerging Security Technologies (EST) (2017). https://doi.org/10.1109/est.2017.8090413 https://www.rfc-editor.org/rfc/rfc3875.txt. Accessed 15 June 2021 DiroChilamkurtiAANDistributed attack detection scheme using deep learning approach for Internet of ThingsFutur. Gen. Comput. Syst.20188276176810.1016/j.future.2017.08.04 Anthi, E., Williams, L., Burnap, P.: Pulse: an adaptive intrusion detection for the internet of things. Theietorg (2018). https://doi.org/10.1049/cp.2018.0035 LiuLiuLiuYangXYALTDefending ON–OFF attacks using light probing messages in smart sensors for industrial communication systemsIEEE Trans. Ind. Inf.2018143801381110.1109/tii.2018.2836150 PajouhJavidanKhayamiHHHHRA two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networksIEEE Trans Emerg Top Comput2019731432310.1109/tetc.2016.2633228 https://www.kaggle.com/francoisxa/ds2ostraffictraces. Accessed 18 June 2021 HasanMIslamMdMZarifMIIHashemMMAAttack and anomaly detection in IoT sensors in IoT sites using machine learning approachesInternet Things2019710.1016/j.iot.2019.100059 Lippmann, R.P., Fried, D.J., Graf, I., et al.: Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation. Proceedings DARPA Information Survivability Conference and Exposition DISCEX’00 (2000). https://doi.org/10.1109/discex.2000.821506 Conole, A.: sfuzz | Penetration Testing Tools. https://tools.kali.org/%20vulnerability-analysis/sfuzz. Accessed 15 June 2021 Pahl, M.O., Aubet, F.X.: All eyes on you: distributed multi-dimensional IoT microservice anomaly detection. In: Ieee.org (2018). https://ieeexplore.ieee.org/abstract/document/8584985. Accessed 16 June 2021 MarteauP-FRandom partitioning forest for point-wise and collective anomaly detection—application to network intrusion detectionIEEE Trans. Inf. Forensics Security2021162157217210.1109/tifs.2021.3050605 https://www.aon.com/getmedia/952b6e59-0f6b-4970-aa6e-9f7809b28abe/PWC_global-economic-crime-and-fraud-survey-2018.aspx. Accessed 15 June 2021 Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. In: arXiv.org.(2018). https://arxiv.org/abs/1802.09089. Accessed 15 June 2021 https://www.mbsd.jp/blog/takaesu_index.html. Accessed 18 June 2021 D’angeloPalmieriGFFiccoRamponeMSAn uncertainty-managing batch relevance-based approach to network anomaly detectionAppl Soft Comput20153640841810.1016/j.asoc.2015.07.029 Ognawala, S., Amato, R.N., Pretschner, A., Kulkarni, P.: Automatically assessing vulnerabilities discovered by compositional analysis | Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis. In: Acm.org (2018). https://doi.org/10.1145/3243127.3243130 Attia, A., Faezipour, M., Abuzneid, A.: Network intrusion detection with XGBoost and deep learning algorithms: an evaluation study. 2020 international conference on computational science and computational intelligence (CSCI) (2020). https://doi.org/10.1109/csci51800.2020.00031 https://regmedia.co.uk/2016/03/17/slides_987676587434243.pdf. Accessed 18 June 2021 https://www.imperva.com/learn/data-security/data-security/. Accessed 18 June 2021 11558_CR15 P-F Marteau (11558_CR19) 2021; 16 M Hasan (11558_CR13) 2019; 7 11558_CR16 11558_CR14 11558_CR17 11558_CR18 11558_CR9 11558_CR12 11558_CR20 11558_CR6 11558_CR5 HHHHR PajouhJavidanKhayami (11558_CR10) 2019; 7 11558_CR4 11558_CR3 11558_CR2 11558_CR1 GF D’angeloPalmieri (11558_CR11) 2015; 36 AAN DiroChilamkurti (11558_CR8) 2018; 82 XYALT LiuLiuLiuYang (11558_CR7) 2018; 14 |
References_xml | – reference: Conole, A.: sfuzz | Penetration Testing Tools. https://tools.kali.org/%20vulnerability-analysis/sfuzz. Accessed 15 June 2021 – reference: DiroChilamkurtiAANDistributed attack detection scheme using deep learning approach for Internet of ThingsFutur. Gen. Comput. Syst.20188276176810.1016/j.future.2017.08.04 – reference: Pahl, M.O., Aubet, F.X.: All eyes on you: distributed multi-dimensional IoT microservice anomaly detection. In: Ieee.org (2018). https://ieeexplore.ieee.org/abstract/document/8584985. Accessed 16 June 2021 – reference: Ognawala, S., Amato, R.N., Pretschner, A., Kulkarni, P.: Automatically assessing vulnerabilities discovered by compositional analysis | Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis. In: Acm.org (2018). https://doi.org/10.1145/3243127.3243130 – reference: https://regmedia.co.uk/2016/03/17/slides_987676587434243.pdf. Accessed 18 June 2021 – reference: https://www.rfc-editor.org/rfc/rfc3875.txt. Accessed 15 June 2021 – reference: Attia, A., Faezipour, M., Abuzneid, A.: Network intrusion detection with XGBoost and deep learning algorithms: an evaluation study. 2020 international conference on computational science and computational intelligence (CSCI) (2020). https://doi.org/10.1109/csci51800.2020.00031 – reference: https://www.aon.com/getmedia/952b6e59-0f6b-4970-aa6e-9f7809b28abe/PWC_global-economic-crime-and-fraud-survey-2018.aspx. Accessed 15 June 2021 – reference: Anthi, E., Williams, L., Burnap, P.: Pulse: an adaptive intrusion detection for the internet of things. Theietorg (2018). https://doi.org/10.1049/cp.2018.0035 – reference: https://www.mbsd.jp/blog/takaesu_index.html. Accessed 18 June 2021 – reference: https://www.kaggle.com/francoisxa/ds2ostraffictraces. Accessed 18 June 2021 – reference: HasanMIslamMdMZarifMIIHashemMMAAttack and anomaly detection in IoT sensors in IoT sites using machine learning approachesInternet Things2019710.1016/j.iot.2019.100059 – reference: MarteauP-FRandom partitioning forest for point-wise and collective anomaly detection—application to network intrusion detectionIEEE Trans. Inf. Forensics Security2021162157217210.1109/tifs.2021.3050605 – reference: Abubakar, A., Pranggono, B.: Machine learning based intrusion detection system for software defined networks. 2017 Seventh International Conference on Emerging Security Technologies (EST) (2017). https://doi.org/10.1109/est.2017.8090413 – reference: D’angeloPalmieriGFFiccoRamponeMSAn uncertainty-managing batch relevance-based approach to network anomaly detectionAppl Soft Comput20153640841810.1016/j.asoc.2015.07.029 – reference: Lippmann, R.P., Fried, D.J., Graf, I., et al.: Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation. Proceedings DARPA Information Survivability Conference and Exposition DISCEX’00 (2000). https://doi.org/10.1109/discex.2000.821506 – reference: Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. In: arXiv.org.(2018). https://arxiv.org/abs/1802.09089. Accessed 15 June 2021 – reference: PajouhJavidanKhayamiHHHHRA two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networksIEEE Trans Emerg Top Comput2019731432310.1109/tetc.2016.2633228 – reference: LiuLiuLiuYangXYALTDefending ON–OFF attacks using light probing messages in smart sensors for industrial communication systemsIEEE Trans. Ind. Inf.2018143801381110.1109/tii.2018.2836150 – reference: https://www.imperva.com/learn/data-security/data-security/. Accessed 18 June 2021 – volume: 7 start-page: 314 year: 2019 ident: 11558_CR10 publication-title: IEEE Trans Emerg Top Comput doi: 10.1109/tetc.2016.2633228 – ident: 11558_CR12 doi: 10.1109/discex.2000.821506 – ident: 11558_CR18 doi: 10.1109/csci51800.2020.00031 – volume: 14 start-page: 3801 year: 2018 ident: 11558_CR7 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/tii.2018.2836150 – ident: 11558_CR2 doi: 10.14722/ndss.2018.23204 – volume: 82 start-page: 761 year: 2018 ident: 11558_CR8 publication-title: Futur. Gen. Comput. Syst. doi: 10.1016/j.future.2017.08.04 – ident: 11558_CR16 – ident: 11558_CR17 – ident: 11558_CR9 doi: 10.1049/cp.2018.0035 – volume: 36 start-page: 408 year: 2015 ident: 11558_CR11 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.07.029 – ident: 11558_CR20 – ident: 11558_CR3 – ident: 11558_CR14 doi: 10.1016/S1361-3723(21)00098-1 – ident: 11558_CR1 – ident: 11558_CR4 – ident: 11558_CR6 – ident: 11558_CR5 doi: 10.1109/est.2017.8090413 – volume: 7 year: 2019 ident: 11558_CR13 publication-title: Internet Things doi: 10.1016/j.iot.2019.100059 – ident: 11558_CR15 doi: 10.1145/3243127.3243130 – volume: 16 start-page: 2157 year: 2021 ident: 11558_CR19 publication-title: IEEE Trans. Inf. Forensics Security doi: 10.1109/tifs.2021.3050605 |
SSID | ssj0016524 |
Score | 2.5527208 |
Snippet | There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face... There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 36685 |
SubjectTerms | 1219: Multimedia Security Based on Quantum Cryptography and Blockchain Computer Communication Networks Computer Science Data Structures and Information Theory Machine learning Multimedia Multimedia Information Systems Security Special Purpose and Application-Based Systems Wireless communications |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXODAxwAxGCgHblCpSdq1OU6waUICCcSk3aokTRECbYi1B_brcbKUAgIkjlXdHBy7tmW_Z4DTlCa0YFIFUhRFEBkq7SL3EB9zDHcmUVI7ts-b3mgcXU3iiQeFzetp97ol6f7UDdiNWiiJHSnALCZGN12FtdjW7mjFY9b_6B30Yr_KNg0DjIfUQ2V-PuNrOGpyzG9tURdthtuw6dNE0l_e6w6smGkbtuoVDMR7ZBs2PvEJ7sLADQCQazcgaYjnTn0g5YzcVtKOBb0RTPiIQ906zAi5e5w_kcvKWJlhtVig-B6Mh4P7i1Hg9yQEGh2oxFoyzbFsEZEpdFJozLmoI73hFgyI5QyLdGppwDimLoKHKjdoPlIx3hOGKsX5PrSms6k5AJKHIpVRnmue64hKIZmSIYb02BQhZ0XSAVqrK9OeRNzusnjOGvpjq-IMVZw5FWeiA2cf37wsKTT-lO7Wt5B5d5pnzM4KxLaD2YHz-maa17-fdvg_8SNYZxbe4Ib1utAqXytzjElHqU6cjb0DBJbKJg priority: 102 providerName: Springer Nature |
Title | Using Machine Learning to Quantify the Multimedia Risk Due to Fuzzing |
URI | https://link.springer.com/article/10.1007/s11042-021-11558-9 https://www.proquest.com/docview/2717355851 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPTgAzWiSPbgTRu7fdD2ZEApRCNRIgmemu12a4wGUNqD_Hpnly2oiZyapts9zO7szOzM9w3AmU89mlosNliQpoYjKJON3E18TdDcCS9mXLF99pu9oXM7ckf6wm2myyqLM1Ed1MmEyzvyS0umi12ZxLqafhiya5TMruoWGiWo4BHsY_BVaXf6D4NlHqHp6ra2vmmgbaQaNrMAz1EJTZElCugVuaj2v03Tyt_8kyJVlifchW3tMpLWYo33YEOMq7BTtGMgWjursPWDW3AfOqoYgNyrYklBNI_qC8km5DFnskToi6DzRxQCV-FHyOB19kZuciHHhPl8jsMPYBh2nq57hu6ZYHBUpgzjSj_BECZwRMq9lKP_RRUBji2BgRjaWA73JSWYjW5MYJtxInArsdiym4GgcWzbh1AeT8biCEhiBj5zkoTbCXcoC5gVMxPNuytS07ZSrwa0EFfENaG47GvxHq2okKWIIxRxpEQcBTU4X_4zXdBprB1dL1Yh0qo1i1YboQYXxcqsPv8_2_H62U5g05LQBlWoV4dy9pmLU3Q4srgBJT_sNqDSCtvtvnx2n-86Db3X8OvQan0DqADTjg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEJ0QPagHP1AjiroHPWljd9tCezDGCAiCJhpIvNXtdmuMBlQgRn6Uv9GZpRU10RvHptseZmdnXjvz3gDs-bzMEyEjSwZJYrmaSxrkbuNljOlOlyOpjNrnVanecS9uvdscfGRcGGqrzGKiCdRxT9E_8iNB5WKPilgnzy8WTY2i6mo2QmPsFk39_oafbP3jRgX3d1-IWrV9VrfSqQKWQncb4JeXHyPID1ydqHKiEKFwIxHjEHUOwb9wlU-iWQ4m-sCxo1ijsWUknFKgeRTRD1AM-bOu4wR0ovza-VfVouSlQ3R928JMzFOSzpiqx4kIQw0RiME8DDI_E-EE3f4qyJo8V1uGxRSgstOxR61ATnfzsJQNf2BpLMjDwjclw1WomtYDdmlaMzVLVVvv2aDHroeSGpLeGUJNZvi-hq3Cbh76j6wy1LSmNhyNcPkadKZiy3WY6fa6egNYbAe-dONYObFyuQykiKSNYMLTie2IpFwAnpkrVKl8OU3ReAonwstk4hBNHBoTh0EBDr6eeR6Ld_y7upjtQpge5H44cbsCHGY7M7n999s2_3_bLszV25etsNW4am7BvCBShWkRLMLM4HWotxHqDKId418M7qbt0J9Dkwf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6kgujBt1itugc9aTC7SZrkIKK2xWdRUfAWN5uNiNKqbZH60_x1zmw3VgW9eQzZ7GF2Mo-d-b4BWI94yHMhU0fGee74mksa5O7iY4buToepVIbts1k9vPaPb4KbEXgvsDDUVlnYRGOos7aiO_JtQeXigIpY27ltizivNXafnh2aIEWV1mKcxkBFTnT_FdO3zs5RDc96Q4hG_erg0LETBhyFqtfFLCzKMOCPfZ2rMFcYrXBDF-MRjA4TAeGriAi0PHT6seemmUbBy1R41VjzNKXLUDT_oyFmRW4JRvfrzfPLzxpGNbAjdSPXQb_MLWRnANzjBIuh9giMyAI0Od_d4jDW_VGeNV6vMQ2TNlxlewP9moER3ZqFqWIUBLOWYRYmvvAazkHdNCKwM9OoqZnlcL1j3Ta76ElqT-ozDDyZQf8a7Aq7vO88sFpP05pG7-0Nl8_D9b9IcwFKrXZLLwLL3DiSfpYpL1M-l7EUqXQxtAh07noiD8vAC3ElypKZ00yNx2RIw0wiTlDEiRFxEpdh8_ObpwGVx5-rK8UpJPa37iRDJSzDVnEyw9e_77b0925rMIbKnJweNU-WYVwQwsL0C1ag1H3p6RWMe7rpqlUwBrf_rdMfXlQNig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Machine+Learning+to+Quantify+the+Multimedia+Risk+Due+to+Fuzzing&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kashyap%2C+Gautam+Siddharth&rft.au=Malik%2C+Karan&rft.au=Wazir%2C+Samar&rft.au=Khan%2C+Rijwan&rft.date=2022-10-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=25&rft.spage=36685&rft.epage=36698&rft_id=info:doi/10.1007%2Fs11042-021-11558-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11558_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |