Using Machine Learning to Quantify the Multimedia Risk Due to Fuzzing

There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, an...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 25; pp. 36685 - 36698
Main Authors Kashyap, Gautam Siddharth, Malik, Karan, Wazir, Samar, Khan, Rijwan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, and (3) Security issues. Among these, security vulnerability poses a major threat to modern multimedia systems. Therefore, it is imperative to carefully investigate the security issues that can endanger wireless and mobile communications. At present, multimedia security research mainly focuses on wireless traffic monitoring, wireless system attacks, and wireless and mobile security. In this paper, we have used the network attack-type, “ Reconnaissance ”, which contains two types of malicious activities: (1) OS scanning, and (2) Fuzzing. The goal of this paper is to quantify multimedia security risks due to Fuzzing by using various types of machine learning models. The highest accuracy i.e., 96.8%, is obtained using the XGBoost classifier, which is good compared to the existing models present in the literature. This is the first paper, to the best of our knowledge, that uses machine learning methods to differentiate between benign and malignant Fuzzing attacks.
AbstractList There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, and (3) Security issues. Among these, security vulnerability poses a major threat to modern multimedia systems. Therefore, it is imperative to carefully investigate the security issues that can endanger wireless and mobile communications. At present, multimedia security research mainly focuses on wireless traffic monitoring, wireless system attacks, and wireless and mobile security. In this paper, we have used the network attack-type, “ Reconnaissance ”, which contains two types of malicious activities: (1) OS scanning, and (2) Fuzzing. The goal of this paper is to quantify multimedia security risks due to Fuzzing by using various types of machine learning models. The highest accuracy i.e., 96.8%, is obtained using the XGBoost classifier, which is good compared to the existing models present in the literature. This is the first paper, to the best of our knowledge, that uses machine learning methods to differentiate between benign and malignant Fuzzing attacks.
There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face three broad categories of challenges: (1) Dependency on continuous network connections, (2) Data-sharing applications & collaboration, and (3) Security issues. Among these, security vulnerability poses a major threat to modern multimedia systems. Therefore, it is imperative to carefully investigate the security issues that can endanger wireless and mobile communications. At present, multimedia security research mainly focuses on wireless traffic monitoring, wireless system attacks, and wireless and mobile security. In this paper, we have used the network attack-type, “Reconnaissance”, which contains two types of malicious activities: (1) OS scanning, and (2) Fuzzing. The goal of this paper is to quantify multimedia security risks due to Fuzzing by using various types of machine learning models. The highest accuracy i.e., 96.8%, is obtained using the XGBoost classifier, which is good compared to the existing models present in the literature. This is the first paper, to the best of our knowledge, that uses machine learning methods to differentiate between benign and malignant Fuzzing attacks.
Author Wazir, Samar
Kashyap, Gautam Siddharth
Malik, Karan
Khan, Rijwan
Author_xml – sequence: 1
  givenname: Gautam Siddharth
  orcidid: 0000-0003-2140-9617
  surname: Kashyap
  fullname: Kashyap, Gautam Siddharth
  email: officialgautamgsk.gsk@gmail.com
  organization: Department of Computer Science and Engineering, SEST
– sequence: 2
  givenname: Karan
  surname: Malik
  fullname: Malik, Karan
  organization: USICT- Guru Gobind Singh Indraprastha University
– sequence: 3
  givenname: Samar
  surname: Wazir
  fullname: Wazir, Samar
  organization: Department of Computer Science and Engineering, SEST
– sequence: 4
  givenname: Rijwan
  surname: Khan
  fullname: Khan, Rijwan
  organization: Department of Computer Science and Engineering, ABES Institute of Technology
BookMark eNp9kE1PwjAYxxuDiYh-AU9LPE_7tOu6Hg2CmkCMRs5Nt3VQhA7b7gCf3uJMTDxwel7y_z0v_0s0sK3VCN0AvgOM-b0HwBlJMYEUgLEiFWdoCIzTlHMCg5jTAqecYbhAl96vMYackWyIJgtv7DKZq2plrE5mWjl7bIQ2eeuUDabZJ2Glk3m3CWara6OSd-M_k8dOHzXT7nCI8it03qiN19e_cYQW08nH-DmdvT69jB9maUVBhJSRohYiF5luKt5UeTwHYplTDIKJPCdZVbBYUWBCUFzWWqtalYTmQkNZUjpCt_3cnWu_Ou2DXLeds3GlJBw4jZ8ziCrSqyrXeu90I3fObJXbS8DyaJfs7ZLRLvljlxQRKv5BlQkqmNYGp8zmNEp71Mc9dqnd31UnqG-4tH6i
CitedBy_id crossref_primary_10_1007_s10207_024_00868_2
crossref_primary_10_1007_s44227_024_00032_1
crossref_primary_10_1007_s41870_023_01450_0
crossref_primary_10_35940_ijeat_D4393_13030224
crossref_primary_10_3390_electronics13122404
crossref_primary_10_1007_s41870_024_02353_4
crossref_primary_10_3390_fintech3010010
crossref_primary_10_1007_s41870_024_02251_9
crossref_primary_10_1007_s41870_024_02250_w
crossref_primary_10_35940_ijisme_B1313_12020224
crossref_primary_10_1007_s41870_024_02270_6
crossref_primary_10_1007_s41870_024_02150_z
crossref_primary_10_15406_ipcb_2023_09_00288
crossref_primary_10_1007_s41870_024_02313_y
crossref_primary_10_35940_ijisme_B1312_12020224
Cites_doi 10.1109/tetc.2016.2633228
10.1109/discex.2000.821506
10.1109/csci51800.2020.00031
10.1109/tii.2018.2836150
10.14722/ndss.2018.23204
10.1016/j.future.2017.08.04
10.1049/cp.2018.0035
10.1016/j.asoc.2015.07.029
10.1016/S1361-3723(21)00098-1
10.1109/est.2017.8090413
10.1016/j.iot.2019.100059
10.1145/3243127.3243130
10.1109/tifs.2021.3050605
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-021-11558-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 36698
ExternalDocumentID 10_1007_s11042_021_11558_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-528d99694efc7fc6501196963019596624c856303159930bdeeadab2369e1bb33
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 03:27:01 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 04:13:11 EDT 2025
Fri Feb 21 02:44:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Multimedia
Random forest algorithm
XGBoost
Machine learning
Fuzzing
Cybersecurity
Vulnerability
Gradient boosting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-528d99694efc7fc6501196963019596624c856303159930bdeeadab2369e1bb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2140-9617
PQID 2717355851
PQPubID 54626
PageCount 14
ParticipantIDs proquest_journals_2717355851
crossref_primary_10_1007_s11042_021_11558_9
crossref_citationtrail_10_1007_s11042_021_11558_9
springer_journals_10_1007_s11042_021_11558_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Abubakar, A., Pranggono, B.: Machine learning based intrusion detection system for software defined networks. 2017 Seventh International Conference on Emerging Security Technologies (EST) (2017). https://doi.org/10.1109/est.2017.8090413
https://www.rfc-editor.org/rfc/rfc3875.txt. Accessed 15 June 2021
DiroChilamkurtiAANDistributed attack detection scheme using deep learning approach for Internet of ThingsFutur. Gen. Comput. Syst.20188276176810.1016/j.future.2017.08.04
Anthi, E., Williams, L., Burnap, P.: Pulse: an adaptive intrusion detection for the internet of things. Theietorg (2018). https://doi.org/10.1049/cp.2018.0035
LiuLiuLiuYangXYALTDefending ON–OFF attacks using light probing messages in smart sensors for industrial communication systemsIEEE Trans. Ind. Inf.2018143801381110.1109/tii.2018.2836150
PajouhJavidanKhayamiHHHHRA two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networksIEEE Trans Emerg Top Comput2019731432310.1109/tetc.2016.2633228
https://www.kaggle.com/francoisxa/ds2ostraffictraces. Accessed 18 June 2021
HasanMIslamMdMZarifMIIHashemMMAAttack and anomaly detection in IoT sensors in IoT sites using machine learning approachesInternet Things2019710.1016/j.iot.2019.100059
Lippmann, R.P., Fried, D.J., Graf, I., et al.: Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation. Proceedings DARPA Information Survivability Conference and Exposition DISCEX’00 (2000). https://doi.org/10.1109/discex.2000.821506
Conole, A.: sfuzz | Penetration Testing Tools. https://tools.kali.org/%20vulnerability-analysis/sfuzz. Accessed 15 June 2021
Pahl, M.O., Aubet, F.X.: All eyes on you: distributed multi-dimensional IoT microservice anomaly detection. In: Ieee.org (2018). https://ieeexplore.ieee.org/abstract/document/8584985. Accessed 16 June 2021
MarteauP-FRandom partitioning forest for point-wise and collective anomaly detection—application to network intrusion detectionIEEE Trans. Inf. Forensics Security2021162157217210.1109/tifs.2021.3050605
https://www.aon.com/getmedia/952b6e59-0f6b-4970-aa6e-9f7809b28abe/PWC_global-economic-crime-and-fraud-survey-2018.aspx. Accessed 15 June 2021
Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. In: arXiv.org.(2018). https://arxiv.org/abs/1802.09089. Accessed 15 June 2021
https://www.mbsd.jp/blog/takaesu_index.html. Accessed 18 June 2021
D’angeloPalmieriGFFiccoRamponeMSAn uncertainty-managing batch relevance-based approach to network anomaly detectionAppl Soft Comput20153640841810.1016/j.asoc.2015.07.029
Ognawala, S., Amato, R.N., Pretschner, A., Kulkarni, P.: Automatically assessing vulnerabilities discovered by compositional analysis | Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis. In: Acm.org (2018). https://doi.org/10.1145/3243127.3243130
Attia, A., Faezipour, M., Abuzneid, A.: Network intrusion detection with XGBoost and deep learning algorithms: an evaluation study. 2020 international conference on computational science and computational intelligence (CSCI) (2020). https://doi.org/10.1109/csci51800.2020.00031
https://regmedia.co.uk/2016/03/17/slides_987676587434243.pdf. Accessed 18 June 2021
https://www.imperva.com/learn/data-security/data-security/. Accessed 18 June 2021
11558_CR15
P-F Marteau (11558_CR19) 2021; 16
M Hasan (11558_CR13) 2019; 7
11558_CR16
11558_CR14
11558_CR17
11558_CR18
11558_CR9
11558_CR12
11558_CR20
11558_CR6
11558_CR5
HHHHR PajouhJavidanKhayami (11558_CR10) 2019; 7
11558_CR4
11558_CR3
11558_CR2
11558_CR1
GF D’angeloPalmieri (11558_CR11) 2015; 36
AAN DiroChilamkurti (11558_CR8) 2018; 82
XYALT LiuLiuLiuYang (11558_CR7) 2018; 14
References_xml – reference: Conole, A.: sfuzz | Penetration Testing Tools. https://tools.kali.org/%20vulnerability-analysis/sfuzz. Accessed 15 June 2021
– reference: DiroChilamkurtiAANDistributed attack detection scheme using deep learning approach for Internet of ThingsFutur. Gen. Comput. Syst.20188276176810.1016/j.future.2017.08.04
– reference: Pahl, M.O., Aubet, F.X.: All eyes on you: distributed multi-dimensional IoT microservice anomaly detection. In: Ieee.org (2018). https://ieeexplore.ieee.org/abstract/document/8584985. Accessed 16 June 2021
– reference: Ognawala, S., Amato, R.N., Pretschner, A., Kulkarni, P.: Automatically assessing vulnerabilities discovered by compositional analysis | Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis. In: Acm.org (2018). https://doi.org/10.1145/3243127.3243130
– reference: https://regmedia.co.uk/2016/03/17/slides_987676587434243.pdf. Accessed 18 June 2021 
– reference: https://www.rfc-editor.org/rfc/rfc3875.txt. Accessed 15 June 2021
– reference: Attia, A., Faezipour, M., Abuzneid, A.: Network intrusion detection with XGBoost and deep learning algorithms: an evaluation study. 2020 international conference on computational science and computational intelligence (CSCI) (2020). https://doi.org/10.1109/csci51800.2020.00031
– reference: https://www.aon.com/getmedia/952b6e59-0f6b-4970-aa6e-9f7809b28abe/PWC_global-economic-crime-and-fraud-survey-2018.aspx. Accessed 15 June 2021
– reference: Anthi, E., Williams, L., Burnap, P.: Pulse: an adaptive intrusion detection for the internet of things. Theietorg (2018). https://doi.org/10.1049/cp.2018.0035
– reference: https://www.mbsd.jp/blog/takaesu_index.html. Accessed 18 June 2021
– reference: https://www.kaggle.com/francoisxa/ds2ostraffictraces. Accessed 18 June 2021 
– reference: HasanMIslamMdMZarifMIIHashemMMAAttack and anomaly detection in IoT sensors in IoT sites using machine learning approachesInternet Things2019710.1016/j.iot.2019.100059
– reference: MarteauP-FRandom partitioning forest for point-wise and collective anomaly detection—application to network intrusion detectionIEEE Trans. Inf. Forensics Security2021162157217210.1109/tifs.2021.3050605
– reference: Abubakar, A., Pranggono, B.: Machine learning based intrusion detection system for software defined networks. 2017 Seventh International Conference on Emerging Security Technologies (EST) (2017). https://doi.org/10.1109/est.2017.8090413
– reference: D’angeloPalmieriGFFiccoRamponeMSAn uncertainty-managing batch relevance-based approach to network anomaly detectionAppl Soft Comput20153640841810.1016/j.asoc.2015.07.029
– reference: Lippmann, R.P., Fried, D.J., Graf, I., et al.: Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation. Proceedings DARPA Information Survivability Conference and Exposition DISCEX’00 (2000). https://doi.org/10.1109/discex.2000.821506
– reference: Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. In: arXiv.org.(2018). https://arxiv.org/abs/1802.09089. Accessed 15 June 2021
– reference: PajouhJavidanKhayamiHHHHRA two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networksIEEE Trans Emerg Top Comput2019731432310.1109/tetc.2016.2633228
– reference: LiuLiuLiuYangXYALTDefending ON–OFF attacks using light probing messages in smart sensors for industrial communication systemsIEEE Trans. Ind. Inf.2018143801381110.1109/tii.2018.2836150
– reference: https://www.imperva.com/learn/data-security/data-security/. Accessed 18 June 2021
– volume: 7
  start-page: 314
  year: 2019
  ident: 11558_CR10
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/tetc.2016.2633228
– ident: 11558_CR12
  doi: 10.1109/discex.2000.821506
– ident: 11558_CR18
  doi: 10.1109/csci51800.2020.00031
– volume: 14
  start-page: 3801
  year: 2018
  ident: 11558_CR7
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/tii.2018.2836150
– ident: 11558_CR2
  doi: 10.14722/ndss.2018.23204
– volume: 82
  start-page: 761
  year: 2018
  ident: 11558_CR8
  publication-title: Futur. Gen. Comput. Syst.
  doi: 10.1016/j.future.2017.08.04
– ident: 11558_CR16
– ident: 11558_CR17
– ident: 11558_CR9
  doi: 10.1049/cp.2018.0035
– volume: 36
  start-page: 408
  year: 2015
  ident: 11558_CR11
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.07.029
– ident: 11558_CR20
– ident: 11558_CR3
– ident: 11558_CR14
  doi: 10.1016/S1361-3723(21)00098-1
– ident: 11558_CR1
– ident: 11558_CR4
– ident: 11558_CR6
– ident: 11558_CR5
  doi: 10.1109/est.2017.8090413
– volume: 7
  year: 2019
  ident: 11558_CR13
  publication-title: Internet Things
  doi: 10.1016/j.iot.2019.100059
– ident: 11558_CR15
  doi: 10.1145/3243127.3243130
– volume: 16
  start-page: 2157
  year: 2021
  ident: 11558_CR19
  publication-title: IEEE Trans. Inf. Forensics Security
  doi: 10.1109/tifs.2021.3050605
SSID ssj0016524
Score 2.5527208
Snippet There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face...
There have been considerable advancements in multimedia technologies over the past 5 years. It has been observed that state-of-the-art multimedia systems face...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36685
SubjectTerms 1219: Multimedia Security Based on Quantum Cryptography and Blockchain
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Machine learning
Multimedia
Multimedia Information Systems
Security
Special Purpose and Application-Based Systems
Wireless communications
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgXODAxwAxGCgHblCpSdq1OU6waUICCcSk3aokTRECbYi1B_brcbKUAgIkjlXdHBy7tmW_Z4DTlCa0YFIFUhRFEBkq7SL3EB9zDHcmUVI7ts-b3mgcXU3iiQeFzetp97ol6f7UDdiNWiiJHSnALCZGN12FtdjW7mjFY9b_6B30Yr_KNg0DjIfUQ2V-PuNrOGpyzG9tURdthtuw6dNE0l_e6w6smGkbtuoVDMR7ZBs2PvEJ7sLADQCQazcgaYjnTn0g5YzcVtKOBb0RTPiIQ906zAi5e5w_kcvKWJlhtVig-B6Mh4P7i1Hg9yQEGh2oxFoyzbFsEZEpdFJozLmoI73hFgyI5QyLdGppwDimLoKHKjdoPlIx3hOGKsX5PrSms6k5AJKHIpVRnmue64hKIZmSIYb02BQhZ0XSAVqrK9OeRNzusnjOGvpjq-IMVZw5FWeiA2cf37wsKTT-lO7Wt5B5d5pnzM4KxLaD2YHz-maa17-fdvg_8SNYZxbe4Ib1utAqXytzjElHqU6cjb0DBJbKJg
  priority: 102
  providerName: Springer Nature
Title Using Machine Learning to Quantify the Multimedia Risk Due to Fuzzing
URI https://link.springer.com/article/10.1007/s11042-021-11558-9
https://www.proquest.com/docview/2717355851
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPTgAzWiSPbgTRu7fdD2ZEApRCNRIgmemu12a4wGUNqD_Hpnly2oiZyapts9zO7szOzM9w3AmU89mlosNliQpoYjKJON3E18TdDcCS9mXLF99pu9oXM7ckf6wm2myyqLM1Ed1MmEyzvyS0umi12ZxLqafhiya5TMruoWGiWo4BHsY_BVaXf6D4NlHqHp6ra2vmmgbaQaNrMAz1EJTZElCugVuaj2v03Tyt_8kyJVlifchW3tMpLWYo33YEOMq7BTtGMgWjursPWDW3AfOqoYgNyrYklBNI_qC8km5DFnskToi6DzRxQCV-FHyOB19kZuciHHhPl8jsMPYBh2nq57hu6ZYHBUpgzjSj_BECZwRMq9lKP_RRUBji2BgRjaWA73JSWYjW5MYJtxInArsdiym4GgcWzbh1AeT8biCEhiBj5zkoTbCXcoC5gVMxPNuytS07ZSrwa0EFfENaG47GvxHq2okKWIIxRxpEQcBTU4X_4zXdBprB1dL1Yh0qo1i1YboQYXxcqsPv8_2_H62U5g05LQBlWoV4dy9pmLU3Q4srgBJT_sNqDSCtvtvnx2n-86Db3X8OvQan0DqADTjg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEJ0QPagHP1AjiroHPWljd9tCezDGCAiCJhpIvNXtdmuMBlQgRn6Uv9GZpRU10RvHptseZmdnXjvz3gDs-bzMEyEjSwZJYrmaSxrkbuNljOlOlyOpjNrnVanecS9uvdscfGRcGGqrzGKiCdRxT9E_8iNB5WKPilgnzy8WTY2i6mo2QmPsFk39_oafbP3jRgX3d1-IWrV9VrfSqQKWQncb4JeXHyPID1ydqHKiEKFwIxHjEHUOwb9wlU-iWQ4m-sCxo1ijsWUknFKgeRTRD1AM-bOu4wR0ovza-VfVouSlQ3R928JMzFOSzpiqx4kIQw0RiME8DDI_E-EE3f4qyJo8V1uGxRSgstOxR61ATnfzsJQNf2BpLMjDwjclw1WomtYDdmlaMzVLVVvv2aDHroeSGpLeGUJNZvi-hq3Cbh76j6wy1LSmNhyNcPkadKZiy3WY6fa6egNYbAe-dONYObFyuQykiKSNYMLTie2IpFwAnpkrVKl8OU3ReAonwstk4hBNHBoTh0EBDr6eeR6Ld_y7upjtQpge5H44cbsCHGY7M7n999s2_3_bLszV25etsNW4am7BvCBShWkRLMLM4HWotxHqDKId418M7qbt0J9Dkwf4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6kgujBt1itugc9aTC7SZrkIKK2xWdRUfAWN5uNiNKqbZH60_x1zmw3VgW9eQzZ7GF2Mo-d-b4BWI94yHMhU0fGee74mksa5O7iY4buToepVIbts1k9vPaPb4KbEXgvsDDUVlnYRGOos7aiO_JtQeXigIpY27ltizivNXafnh2aIEWV1mKcxkBFTnT_FdO3zs5RDc96Q4hG_erg0LETBhyFqtfFLCzKMOCPfZ2rMFcYrXBDF-MRjA4TAeGriAi0PHT6seemmUbBy1R41VjzNKXLUDT_oyFmRW4JRvfrzfPLzxpGNbAjdSPXQb_MLWRnANzjBIuh9giMyAI0Od_d4jDW_VGeNV6vMQ2TNlxlewP9moER3ZqFqWIUBLOWYRYmvvAazkHdNCKwM9OoqZnlcL1j3Ta76ElqT-ozDDyZQf8a7Aq7vO88sFpP05pG7-0Nl8_D9b9IcwFKrXZLLwLL3DiSfpYpL1M-l7EUqXQxtAh07noiD8vAC3ElypKZ00yNx2RIw0wiTlDEiRFxEpdh8_ObpwGVx5-rK8UpJPa37iRDJSzDVnEyw9e_77b0925rMIbKnJweNU-WYVwQwsL0C1ag1H3p6RWMe7rpqlUwBrf_rdMfXlQNig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Machine+Learning+to+Quantify+the+Multimedia+Risk+Due+to+Fuzzing&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kashyap%2C+Gautam+Siddharth&rft.au=Malik%2C+Karan&rft.au=Wazir%2C+Samar&rft.au=Khan%2C+Rijwan&rft.date=2022-10-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=25&rft.spage=36685&rft.epage=36698&rft_id=info:doi/10.1007%2Fs11042-021-11558-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11558_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon